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Введение 

Многие диэлектрические кристаллы, допированные ионами 

редкоземельных элементов, являются рабочими элементами твердотельных 

лазеров и широко применяются в технике. Например, кристалл LiYF4, 

допированный ионами редкоземельных элементов, находит применения в 

датчиках, ультрафиолетовых (УФ) лазерах и сцинтилляторах. Поэтому 

исследование спектров редкоземельных ионов в подобных кристаллах, 

возможность теоретического описания и предсказания их свойств 

представляет собой большой интерес, что обусловливает актуальность темы 

данной работы. При описании спектров часто используется приближение  

кристаллического поля. Параметры кристаллического поля обычно получают 

с помощью сравнения вычисляемых уровней энергии и g-факторов ионов и 

известных экспериментальных данных. 

Постановка цели данной работы была стимулирована теоретическим 

исследованием 4f  параметров кристаллического поля  и g-факторов 

основного крамерсова дублета иона Ce
3+

, легированного в кристалл LiYF4, 

которое было проведено в работе [1]. Примесные ионы Ce
3+

 замещают ионы 

Y
3+

 в кристалле LiYF4 в точках с точечной симметрией S4, в ближайшем 

окружении Y-узла находятся восемь ионов фтора, которые образуют два 

деформированных тетраэдра. Надежные значения параметров 

кристаллического поля для иона Ce
3+

 в кристалле LiYF4 в литературе 

отсутствуют из-за трудностей измерения 4f  энергий кристаллического поля 

для этого соединения. Однако g-факторы для основного уровня иона Ce
3+ 

в 

кристалле LiYF4 известны в литературе [2]. В [1] был рассмотрен 

гамильтониан зеемановского взаимодействия в виде 

ĤZe = μB(2𝐒̂ + 𝐋̂)H,                                                    (1)                                                 
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где H - магнитное поле, μB - магнетон Бора, 𝐒̂ и 𝐋̂ - операторы спинового и 

орбитального моментов 4f электрона иона Ce
3+

. В работе [1] автор приходит к 

выводу, что ни один разумный набор 4f параметров кристаллического поля 

не может удовлетворительно соответствовать значениям g-факторов 

основного крамерсова дублета иона Ce
3+

, измеренного в [2], даже если мы 

строго рассмотрим смешивание мультиплетов 
2𝐹5/2 и 

2𝐹7/2 кристаллическим 

полем. Автор [1] предполагает, что необходимо рассмотреть вопрос об 

уменьшении орбитального момента 4f электрона в энергии Зеемана за счет 

эффектов ковалентности, чтобы достичь лучшего согласия с экспериментом. 

Отметим в качестве аргумента в пользу рассмотрения эффектов 

ковалентности, что эффективный ионный радиус иона Ce
3+

 является 

наибольшим для трехвалентных ионов лантаноидов, он составляет 1,143 Å и 

больше ионного радиуса иона Y
3+

 (1,019 Å) [3].  

Таким образом, можно сформулировать следующую цель данной 

работы: разработать методику расчета компонент g-тензора для примесных 

редкоземельных ионов с учетом изотропной редукции орбитального момента 

электрона в силу эффектов ковалентности и апробировать ее на примере 

согласованного расчета уровней энергии и g-факторов основного крамерсова 

дублета примесного иона Ce
3+

 в кристалле LiYF4. 

В данной работе были поставлены следующие задачи. 

1. Получить формулы для компонент g-тензора крамерсова дублета с учетом 

уменьшения орбитального момента, выраженные через коэффициенты 

разложения волновых функций крамерсова дублета в базисе полного 

момента. (Раздел 2) 

2. Рассмотреть частный случай тетрагональной симметрии кристаллического 

поля и случай электронной конфигурации примесного иона nl
1
. В этих 

случаях общие формулы существенно упрощаются. Например, в случае 

тетрагональной симметрии g-тензор может быть просто приведен к 



 
 
 

5 
 

диагональному виду. (Разделы 3 и 4) 

3. Провести согласованный расчет уровней энергии и g-факторов основного 

крамерсова дублета примесного иона Ce
3+

 в кристалле LiYF4 (электронная 

конфигурация 4f
1
, тетрагональная симметрия примесного центра S4).   

(Раздел 5) 
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1. Постановка задачи 

 

В настоящей работе рассматривается следующий довольно общий 

случай: примесный ион с нечетным числом электронов в кристаллическом 

поле, которое может иметь произвольную точечную симметрию, но 

рассматриваемый энергетический уровень представляет собой крамерсов 

дублет. Мы будем точно учитывать смешивание электронных состояний 

примесных ионов кристаллическим полем, поэтому мы рассматриваем 

разложение волновых функций крамерсова дублета |𝜓1⟩, |𝜓2⟩ в базисе 

полного момента с учетом всех термов и мультиплетов 

                                               |𝜓1⟩ = ∑ 𝑎𝐽𝑀
𝛾𝑆𝐿|𝛾𝑆𝐿𝐽𝑀⟩

𝛾𝑆𝐿𝐽𝑀

,                                               (2) 

                         |𝜓2⟩ = 𝜃̂|𝜓1⟩ = ∑ (−1)𝐽+𝑀𝑎𝐽,−𝑀
𝛾𝑆𝐿 ∗

|𝛾𝑆𝐿𝐽𝑀⟩

𝛾𝑆𝐿𝐽𝑀

,                                (3) 

где 𝜃̂ - оператор обращения времени; квантовое число 𝛾 позволяет различать 

термы с одинаковыми квантовыми числами 𝑆 и 𝐿 спинового и орбитального 

моментами; 𝐽 и 𝑀 - квантовые числа полного момента иона; комплексные 

коэффициенты 𝑎𝐽𝑀
𝛾𝑆𝐿

 удовлетворяют условию нормировки. Во многих работах 

рассматривается только смешивание электронных состояний внутри одного и 

того же мультиплета; например, что касается кристалла LiYF4:Ce
3+

, то в [4,5] 

рассматривалось только смешивание состояний внутри основного 

мультиплета 
2𝐹5/2. 

Рассмотрим гамильтониан зеемановского взаимодействия в виде 

ĤZe = μBm̂H, 
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                                                             m̂ = 𝑔sŜ + 𝑘L̂,                                                       (4)       

    

где 𝑘 - изотропный коэффициент редукции для орбитального момента, 𝑔𝑠 в 

расчетах принимается за 2.0023. Аппроксимация изотропного коэффициента 

редукции была впервые введена в [6] для иона Tm
2+

, легированного в 

кристалле CaF2. Более строгий анализ ковалентного связывания 

молекулярно-орбитальным методом приводит к различным коэффициентам 

редукции для матричных элементов орбитального момента на волновых 

функциях, преобразующихся в соответствии с различными неприводимыми 

представлениями точечной симметрии примесных ионов. Например, что 

касается иона Тm
2+

  в кристалле CaF2 (кубическая точечная симметрия), то в 

[7,8] введены и рассчитаны два коэффициента редукции. В случае сильного 

ковалентного связывания (nd ионы переходных металлов) коэффициенты 

могут достаточно сильно отличаться от 1 и друг от друга для различных 

матричных элементов орбитального момента. Однако для 4f  электронов 

примесных редкоземельных ионов ковалентное связывание мало, с 

коэффициентами редукции, превышающими 0.95, поэтому можно 

пренебречь разницей между их значениями и рассмотреть изотропную 

редукцию орбитального момента (4) как аппроксимацию в оценке его 

матричных элементов. 

В базисе состояний крамерсовых дублетов (2), (3) энергия Зеемана 

может быть представлена эффективным спиновым Гамильтонианом 

                                              ĤZe = μB∑𝑔𝛼𝛽𝑆̂𝛽
eff𝐻𝛼

𝛼,𝛽

,                                                  (5) 

где 𝛼 и 𝛽 - декартовые оси; 𝐒̂eff - эффективный спиновый оператор с 𝑆 = 1/2, 

его компоненты выглядят следующим образом 



 
 
 

8 
 

𝑆̂𝑥
eff =

1

2
(
0 1
1 0

) , 𝑆̂𝑦
eff =

𝑖

2
(
0 −1
1  0

) , 𝑆̂𝑧
eff =

1

2
(
1 0
0 −1

), 

𝑔𝛼𝛽 - компоненты g-тензора, которые определяются матричными элементами 

декартовых компонент оператора m̂ (4) на состояниях крамерсова дублета 

следующим образом 

                                                {

𝑔𝛼𝑥 = 2Re⟨𝜓1|𝑚̂𝛼|𝜓2⟩

𝑔𝛼𝑦 = −2Im⟨𝜓1|𝑚̂𝛼|𝜓2⟩

𝑔𝛼𝑧 = 2⟨𝜓1|𝑚̂𝛼|𝜓1⟩

.                                               (6) 

Как следует из приведенных выше формул, множество коэффициентов 

𝑎𝐽𝑀
𝛾𝑆𝐿

 определяет волновые функции крамерсова дублета (2), (3) и, 

следовательно, значения компонент g-тензора (6). Будем явно выражать 

компоненты g-тензора через коэффициенты 𝑎𝐽𝑀
𝛾𝑆𝐿

 – это будет полезно и с 

точки зрения расчета, и с точки зрения анализа зависимости g-тензора от 

параметров гамильтониана примесного иона. 

Таким образом, целью настоящего исследования является установление 

формул, которые выражали бы компоненты g-тензора для крамерсова 

дублета с учетом уменьшения орбитального момента через коэффициенты 

𝑎𝐽𝑀
𝛾𝑆𝐿

; в качестве примера применения полученные формулы используются в 

Разделе 5 при расчете g-факторов основного крамерсова дублета иона Ce
3+

 в 

кристалле LiYF4. 
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2.  Вывод формул для компонент g-тензора, выраженных 

через коэффициенты разложения в базисе полного 

момента 

 

Для общности рассуждений рассмотрим матричные элементы 

декартовых компонент оператора m̂ между состоянием |𝜓1⟩  (2) и 

произвольным состоянием |𝜑⟩, определяемым следующим образом 

                                                    |𝜑⟩ = ∑ 𝑏𝐽𝑀
𝛾𝑆𝐿|𝛾𝑆𝐿𝐽𝑀⟩

𝛾𝑆𝐿𝐽𝑀

.                                            (7) 

Будем проводить такие преобразования, которые позволяют 

ограничиться вычислением в конечном итоге наименьшего возможного 

количества различных матричных элементов в правой части следующего 

выражения (состояния одного и того же терма 𝛾𝑆𝐿 появляются в матричных 

элементах в соответствии с правилами отбора) 

                     ⟨𝜓1|𝑚̂𝛼|𝜑⟩ = ∑ 𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝛾𝑆𝐿𝐽𝑀𝐽′𝑀′

.                 (8) 

Преобразуем (8) так, чтобы в сумме остались только слагаемые, 

удовлетворяющие 𝐽 ≥ 𝐽′. Для этого разобьём сумму по 𝐽′ на три части: 

𝐽 = 𝐽′, 𝐽 > 𝐽′, 𝐽 < 𝐽′ 

∑ 𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝛾𝑆𝐿𝐽𝑀𝐽′𝑀′

=

∑ [𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽𝑀′
𝛾𝑆𝐿⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽𝑀

′⟩ +

𝛾𝑆𝐿𝐽𝑀𝑀′

∑𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽′<𝐽

+ ∑ 𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽′>𝐽

]. 
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В третьем слагаемом произведем замену: 𝐽 ↔ 𝐽′, 𝑀 ↔ −𝑀′ (отметим, что 

данная замена никак не повлияет на суммы по 𝑀 и 𝑀′ в силу их 

определения). Тогда мы получим следующее выражение для третьего 

слагаемого 

∑𝑎
𝐽′,−𝑀′
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽′, −𝑀′|𝑚̂𝛼|𝛾𝑆𝐿𝐽, −𝑀⟩

𝐽′<𝐽

. 

Теперь к нему применим выражение, которое справедливо для любого 

нечетного по времени эрмитова оператора 

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽
′𝑀′⟩ = (−1)𝐽+𝐽

′−𝑀−𝑀′+1⟨𝛾𝑆𝐿𝐽′, −𝑀′|𝑚̂𝛼|𝛾𝑆𝐿𝐽, −𝑀⟩. 

Тогда третье слагаемое принимает следующий вид 

∑(−1)𝐽+𝐽
′−𝑀−𝑀′+1 𝑎

𝐽′,−𝑀′
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽>𝐽′

. 

В итоге матричный элемент (8) примет вид 

⟨𝜓1|𝑚̂𝛼|𝜑⟩ =  ∑ {𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽𝑀′
𝛾𝑆𝐿⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽𝑀

′⟩ +

𝛾𝑆𝐿𝐽𝑀𝑀′

∑ [𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿

+ (−1)𝐽+𝐽
′−𝑀−𝑀′+1𝑎

𝐽′,−𝑀′
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿 ] ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽′<𝐽

}. 

Для упрощения записи введем следующие обозначения 

{
Для 𝐽 > 𝐽′:     𝐶

𝐽𝐽′𝑀𝑀′
𝛾𝑆𝐿

= 𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀′
𝛾𝑆𝐿

+ (−1)𝐽+𝐽
′−𝑀−𝑀′+1𝑎

𝐽′,−𝑀′
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿

Для 𝐽 = 𝐽′:   𝐶
𝐽𝐽𝑀𝑀′
𝛾𝑆𝐿

= 𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽𝑀′
𝛾𝑆𝐿

, 

тогда (8) можно переписать следующим образом 

⟨𝜓1|𝑚̂𝛼|𝜑⟩ = ∑ {𝐶
𝐽𝐽𝑀𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽𝑀

′⟩ + ∑ 𝐶
𝐽𝐽′𝑀𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝛼|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽′<𝐽

}

𝛾𝑆𝐿𝐽𝑀𝑀′

. 
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Теперь, используя данные выражения, получим данный матричный 

элемент для 𝑧-компоненты оператора m̂ (в данном случае, очевидно, что 

𝑀 = 𝑀′) 

⟨𝜓1|𝑚̂𝑧|𝜑⟩ = ∑ {𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏𝐽𝑀
𝛾𝑆𝐿⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿𝐽𝑀⟩ +

𝛾𝑆𝐿𝐽𝑀

∑ [𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏
𝐽′𝑀

𝛾𝑆𝐿
+ (−1)𝐽+𝐽

′
𝑎
𝐽′,−𝑀

𝛾𝑆𝐿 ∗
𝑏𝐽,−𝑀
𝛾𝑆𝐿 ] ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿𝐽

′𝑀⟩

𝐽′<𝐽

} =

∑ {𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏𝐽𝑀
𝛾𝑆𝐿⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿𝐽𝑀⟩ +

𝛾𝑆𝐿𝐽𝑀

[𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏𝐽−1,𝑀
𝛾𝑆𝐿

+ 𝑎𝐽−1,−𝑀
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿 ] ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿, 𝐽 − 1,𝑀⟩} =

∑ {𝐶𝐽𝐽𝑀𝑀
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿𝐽𝑀⟩ + 𝐶𝐽𝐽−1,𝑀𝑀

𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑧|𝛾𝑆𝐿, 𝐽 − 1,𝑀⟩}

𝛾𝑆𝐿𝐽𝑀

. (9) 

Во второй сумме остается слагаемое лишь с членами 𝐽′ = 𝐽 − 1, так как мы 

вычисляем матричный элемент от компонент вектора, то есть тензора 

первого ранга (𝑘=1). А далее появятся 3𝑗-символы типа (𝐽 𝑘 𝐽′), которые и 

оставят лишь члены с 𝐽′ = 𝐽 − 1. 

Теперь получим матричные элементы (8) для 𝑥,𝑦-компонент оператора 

m̂. В сумме по 𝑀′ в исходном выражении 

⟨𝜓1|𝑚̂𝑥,𝑦|𝜑⟩ =  ∑ {𝐶
𝐽𝐽𝑀𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀

′⟩ + ∑ 𝐶
𝐽𝐽′𝑀𝑀′
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽

′𝑀′⟩

𝐽′<𝐽

}

𝛾𝑆𝐿𝐽𝑀𝑀′

 

останутся только два ненулевых члена: 𝑀 − 1 и 𝑀 + 1. Для начала 

рассмотрим первое слагаемое 
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∑ 𝐶
𝐽𝐽𝑀𝑀′
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀
′⟩

𝛾𝑆𝐿𝐽𝑀𝑀′

=

 ∑ (𝐶𝐽𝐽𝑀𝑀−1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀 − 1⟩ +

𝛾𝑆𝐿𝐽𝑀

 𝐶𝐽𝐽𝑀𝑀+1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀 + 1⟩). 

Второй член данного выражения перепишем следующим образом 

𝐶𝐽𝐽𝑀𝑀+1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀 + 1⟩ = (𝑀 → −𝑀) =

𝐶𝐽𝐽,−𝑀,1−𝑀
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽, −𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽, 1 − 𝑀⟩ =

𝐶𝐽𝐽,−𝑀,1−𝑀
𝛾𝑆𝐿

(−1)𝐽+𝐽−(−𝑀)−(1−𝑀)+1⟨𝛾𝑆𝐿𝐽,𝑀 − 1|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀⟩ =

𝐶𝐽𝐽,−𝑀,1−𝑀
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀 − 1⟩
∗
. 

Теперь рассмотрим второе слагаемое 

∑𝐶
𝐽𝐽′𝑀𝑀′
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽
′𝑀′⟩

𝑀′

=

𝐶
𝐽𝐽′𝑀,𝑀−1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽
′,𝑀 − 1⟩ +

𝐶
𝐽𝐽′𝑀,𝑀+1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽
′,𝑀 + 1⟩. 

 Делая аналогичные преобразования, получим 

𝐶
𝐽𝐽′𝑀𝑀+1

𝛾𝑆𝐿
⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽

′, 𝑀 + 1⟩ =

𝐶
𝐽𝐽′,−𝑀,1−𝑀

𝛾𝑆𝐿
(−1)𝐽−𝐽

′

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽
′𝑀 − 1⟩

∗
. 

В итоге получим следующее выражение для 𝑥,𝑦-компонент оператора m̂ 
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⟨𝜓1|𝑚̂𝑥,𝑦|𝜑⟩ =

 ∑ {𝐶𝐽𝐽𝑀,𝑀−1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽𝑀 − 1⟩ +

𝛾𝑆𝐿𝐽𝑀

𝐶𝐽𝐽,−𝑀,1−𝑀
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿𝐽,𝑀 − 1⟩
∗
+

𝐶𝐽,𝐽−1,𝑀,𝑀−1
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿, 𝐽 − 1,𝑀 − 1⟩ −

𝐶𝐽,𝐽−1,−𝑀,1−𝑀
𝛾𝑆𝐿

⟨𝛾𝑆𝐿𝐽𝑀|𝑚̂𝑥,𝑦|𝛾𝑆𝐿, 𝐽 − 1,𝑀 − 1⟩
∗
}. 

Или в другой форме 

⟨𝜓1|𝑚̂𝑥,𝑦|𝜑⟩ =

 ∑ {𝑎𝐽𝑀
𝛾𝑆𝐿∗

𝑏𝐽,𝑀−1
𝛾𝑆𝐿

⟨𝐽𝑀|𝑚̂𝑥,𝑦|𝐽, 𝑀 − 1⟩ +

𝛾𝑆𝐿𝐽𝑀

𝑎𝐽,−𝑀
𝛾𝑆𝐿 ∗

𝑏𝐽,1−𝑀
𝛾𝑆𝐿

⟨𝐽𝑀|𝑚̂𝑥,𝑦|𝐽, 𝑀 − 1⟩
∗
+ (𝑎𝐽𝑀

𝛾𝑆𝐿∗
𝑏𝐽−1,𝑀−1
𝛾𝑆𝐿

−

𝑎𝐽−1,1−𝑀
𝛾𝑆𝐿 ∗

𝑏𝐽,−𝑀
𝛾𝑆𝐿

)⟨𝐽𝑀|𝑚̂𝑥,𝑦|𝐽 − 1,𝑀 − 1⟩ + (𝑎𝐽−1,𝑀−1
𝛾𝑆𝐿 ∗

𝑏𝐽,𝑀
𝛾𝑆𝐿

−

𝑎𝐽,−𝑀
𝛾𝑆𝐿 ∗

𝑏𝐽−1,1−𝑀
𝛾𝑆𝐿

)⟨𝐽𝑀|𝑚̂𝑥,𝑦|𝐽 − 1,𝑀 − 1⟩
∗
}.                                    (10) 

Отметим, что формулы (9) и (10) справедливы для декартовых 

компонент любого нечетного по времени эрмитова векторного оператора с 

диагональными по квантовым числам 𝛾𝑆𝐿 матричными элементами. Для 

чётного по времени эрмитова векторного оператора можно вывести 

аналогичные формулы, но слагаемые, включающие коэффициенты с 

индексами −𝑀 или 1 − 𝑀 (или оба), появятся с противоположными знаками. 

   Вычисляя матричные элементы диагональные по 𝐽 в (9) и (10), мы 

можем, воспользовавшись теоремой Вигнера-Эккарта, заменить 𝑚̂𝛼 

эквивалентным оператором 

𝑔L(𝑆𝐿𝐽)𝐽𝛼, 

то есть 
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                                                               𝑔LĴ = 𝑔sŜ + 𝑘L̂,                                                  (11) 

где 𝑔L(𝑆𝐿𝐽) - 𝑔-фактор Ланде, модифицированный с учетом уменьшения 

орбитального импульса. Чтобы вычислить его, умножим обе части (11) на Ĵ и 

используем  

{
𝐒̂𝐉̂ =

1

2
(𝐒̂2 + 𝐉̂2 − (𝐉̂ − 𝐒̂)

2
) =

1

2
(𝐒̂2 + 𝐉̂2 − 𝐋̂2)

𝐋̂𝐉̂ =
1

2
(𝐋̂2 + 𝐉̂2 − (𝐉̂ − 𝐋̂)

2
) =

1

2
(𝐋̂2 + 𝐉̂2 − 𝐒̂2)

, 

тогда получим следующее выражение для g-фактора Ланде с учетом 

уменьшения орбитального момента  

               𝑔L(𝑆𝐿𝐽) =
1

2
(𝑔s + 𝑘) + (𝑔s − 𝑘)

𝑆(𝑆 + 1) − 𝐿(𝐿 + 1)

2𝐽(𝐽 + 1)
.                        (12) 

Вычисляя же матричные элементы в (9), (10) между мультиплетами с 

разными 𝐽, мы можем заменить 𝑚̂𝛼 эквивалентным оператором (𝑔s − 𝑘)𝑆̂𝛼. 

Это видно из следующих преобразований 

𝑔s𝑆̂𝛼 + 𝑘𝐿̂𝛼 = (𝑔s − 𝑘)𝑆̂𝛼 + 𝑘(𝑆̂𝛼 + 𝐿̂𝛼) = (𝑔s − 𝑘)𝑆̂𝛼 + 𝑘𝐽𝛼. 

Так как мы вычисляем недиагональные члены по 𝐽, то второе слагаемое не 

даст вклад, поэтому, действительно, данная замена справедлива.  

Сразу обозначим формулы, с помощью которых вычисляются 

матричные элементы оператора 𝑆̂𝛼 [9] (в обозначениях Вигнера для 3𝑗-и 6𝑗-

символов) 

⟨𝛾𝑆𝐿𝐽𝑀|𝑆̂𝑞
(1)
|𝛾′𝑆′𝐿′𝐽′𝑀′⟩ = (−1)𝐽−𝑀 (

𝐽 1 𝐽′

−𝑀 𝑞 𝑀′) ⟨𝛾𝑆𝐿𝐽|𝑆̂
(1)|𝛾′𝑆′𝐿′𝐽′⟩,     (13) 

⟨𝛾𝑆𝐿𝐽|𝑆̂(1)|𝛾′𝑆′𝐿′𝐽′⟩ = 𝛿𝐿𝐿′(−1)
𝐽′+𝑆+𝐿+1 {

𝐽 1 𝐽′

𝑆′ 𝐿 𝑆
}√(2𝐽 + 1)(2𝐽′ + 1)⟨𝛾𝑆|𝑆̂(1)|𝛾′𝑆′⟩, 

⟨𝛾𝑆|𝑆̂(1)|𝛾′𝑆′⟩ = 𝛿𝑆𝑆′𝛿𝛾𝛾′√𝑆(𝑆 + 1)(2𝑆 + 1). 
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В наших формулах в недиагональных матричных элементах остались лишь 

слагаемые, где 𝐽′ = 𝐽 − 1. Ниже представим данные формулы именно для 

этого случая.  6𝑗-символ в данном случае имеет вид 

{
𝐽 1 𝐽 − 1
𝑆 𝐿 𝑆

} = (−1)𝑅√
(𝑅 + 1)(𝑅 − 2𝐿)(𝑅 − 2𝑆)(𝑅 + 1 − 2𝐽)

2𝑆(2𝑆 + 1)(𝑆 + 1)(2𝐽 + 1)2𝐽(2𝐽 − 1)
, 

где 

𝑅 = 𝐿 + 𝑆 + 𝐽. 

Тогда получим следующее выражение для (13) 

⟨𝛾𝑆𝐿𝐽𝑀|𝑆̂𝑞
(1)
|𝛾𝑆𝐿, 𝐽 − 1,𝑀′⟩ =

(−1)2𝑅+𝐽−𝑀 (
𝐽 1 𝐽 − 1
−𝑀 𝑞 𝑀′ )√

(𝑅 + 1)(𝑅 − 2𝐿)(𝑅 − 2𝑆)(𝑅 + 1 − 2𝐽)

4𝐽
. 

Для начала рассчитаем g-компоненту, ей соответствует 𝑞 = 0, то есть 

появиться следующий 3𝑗-символ 

(
𝐽 1 𝐽 − 1
−𝑀 0 𝑀′ ) = 𝛿𝑀𝑀′(−1)𝐽−𝑀√

𝐽2 −𝑀2

(2𝐽 + 1)𝐽(2𝐽 − 1)
, 

тогда отличен от нуля будет лишь следующий матричный элемент 

⟨𝛾𝑆𝐿𝐽𝑀|𝑆̂𝑧|𝛾𝑆𝐿, 𝐽 − 1,𝑀⟩ =
1

2
𝜆(𝑆𝐿𝐽)√𝐽2 −𝑀2 , 

где 

                           𝜆(𝑆𝐿𝐽) = √
(𝑅 + 1)(𝑅 − 2𝐿)(𝑅 − 2𝑆)(𝑅 + 1 − 2𝐽)

𝐽2(2𝐽 + 1)(2𝐽 − 1)
.                  (14) 

Для нахождения 𝑥,𝑦-компонент воспользуемся оператором повышения 
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𝑆̂+ = 𝑆̂𝑥 + 𝑖𝑆̂𝑦. 

Для данного случая 𝑞 = 1, то есть появиться следующий 3𝑗-символ 

(
𝐽 1 𝐽 − 1
−𝑀 1 𝑀′ ) = 𝛿𝑀−1,𝑀′(−1)3𝐽−𝑀√

(𝐽 +𝑀)(𝐽 + 𝑀 − 1)

(2𝐽 + 1)2𝐽(2𝐽 − 1)
, 

тогда отличен от нуля будет лишь матричный элемент 

⟨𝛾𝑆𝐿𝐽𝑀|𝑆̂+
(1)
|𝛾𝑆𝐿, 𝐽 − 1,𝑀 − 1⟩ = −

1

2
𝜆(𝑆𝐿𝐽)√(𝐽 + 𝑀)(𝐽 + 𝑀 − 1). 

Теперь, используя все это, продолжим расчет исходных матричных 

элементов (9) и (10). Для 𝑧-компоненты имеем 

⟨𝜓1|𝑚̂𝑧|𝜑⟩ = ∑ {𝐶𝐽𝐽𝑀𝑀
𝛾𝑆𝐿

𝑔𝐿(𝑆𝐿𝐽)⟨𝛾𝑆𝐿𝐽𝑀|𝐽𝑧|𝛾𝑆𝐿𝐽𝑀⟩ +

𝛾𝑆𝐿𝐽𝑀

𝐶𝐽𝐽−1,𝑀𝑀
𝛾𝑆𝐿 ⟨𝛾𝑆𝐿𝐽𝑀|(𝑔𝑠 − 𝑘)𝑆̂𝑧 + 𝑘𝐽𝑧|𝛾𝑆𝐿, 𝐽 − 1,𝑀⟩} =

∑ {𝐶𝐽𝐽𝑀𝑀
𝛾𝑆𝐿

𝑔𝐿(𝑆𝐿𝐽)𝑀 +
𝑔𝑠 − 𝑘

2
𝐶𝐽𝐽−1,𝑀𝑀
𝛾𝑆𝐿

𝜆(𝑆𝐿𝐽)√𝐽2 −𝑀2}

𝛾𝑆𝐿𝐽𝑀

.                (15) 

Для 𝑥,𝑦-компонент получим 

[
⟨𝜓1|𝑚̂𝑥|𝜑⟩

𝑖⟨𝜓1|𝑚̂𝑦|𝜑⟩
] =

 ∑ {
1

2
𝑔𝐿(𝑆𝐿𝐽)√𝐽(𝐽 + 1) − 𝑀(𝑀 − 1)(𝐶𝐽𝐽𝑀,𝑀−1

𝛾𝑆𝐿
± 𝐶𝐽𝐽,−𝑀,1−𝑀

𝛾𝑆𝐿 ) −

𝛾𝑆𝐿𝐽𝑀

 
(𝑔𝑠 − 𝑘)

4
𝜆(𝑆𝐿𝐽)√(𝐽 + 𝑀 − 1)(𝐽 +𝑀)(𝐶𝐽,𝐽−1,𝑀,𝑀−1

𝛾𝑆𝐿
∓ 𝐶𝐽,𝐽−1,−𝑀,1−𝑀

𝛾𝑆𝐿
 )}.    (16) 

Теперь рассмотрим матричные элементы операторов 𝑚̂𝛼 на состояниях 

крамерсова дублета (2), (3). Выражения для диагональных матричных 

элементов можно получить из (15), (16), просто подставив 𝑏𝐽𝑀
𝛾𝑆𝐿

= 𝑎𝐽𝑀
𝛾𝑆𝐿
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⟨𝜓1|𝑚̂𝑧|𝜓1⟩ = ∑ {𝑔𝐿(𝑆𝐿𝐽)𝑀|𝑎𝐽𝑀
𝛾𝑆𝐿|

2
+ (𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)√𝐽2 −𝑀2𝑅𝑒(𝑎𝐽𝑀

𝛾𝑆𝐿∗
𝑎𝐽−1,𝑀
𝛾𝑆𝐿

)}

𝛾𝑆𝐿𝐽𝑀

=

∑ {𝑔𝐿(𝑆𝐿𝐽)𝑀|𝑎𝐽𝑀
𝛾𝑆𝐿|

2
+ (𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)√𝐽2 −𝑀2𝑅𝑒(𝑎𝐽𝑀

𝛾𝑆𝐿∗
𝑎𝐽−1,𝑀
𝛾𝑆𝐿

)}

𝛾𝑆𝐿𝐽𝑀

, (17) 

[
⟨𝜓1|𝑚̂𝑥|𝜓1⟩

𝑖⟨𝜓1|𝑚̂𝑦|𝜓1⟩
] =

 ∑ {𝑔𝐿(𝑆𝐿𝐽)√𝐽(𝐽 + 1) −𝑀(𝑀 − 1) [
𝑅𝑒
𝐼𝑚
] (𝑎𝐽𝑀

𝛾𝑆𝐿∗
𝑎𝐽,𝑀−1
𝛾𝑆𝐿

) −

𝛾𝑆𝐿𝐽𝑀

1

2
(𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)√(𝐽 + 𝑀 − 1)(𝐽 + 𝑀) [

𝑅𝑒
𝐼𝑚
] (𝑎𝐽𝑀

𝛾𝑆𝐿∗
𝑎𝐽−1,𝑀−1
𝛾𝑆𝐿

−

𝑎𝐽−1,1−𝑀
𝛾𝑆𝐿 ∗

𝑎𝐽,−𝑀
𝛾𝑆𝐿

)}.                                                                                     (18) 

Заметим, что ⟨𝜓2|𝑚̂𝛼|𝜓2⟩ = −⟨𝜓1|𝑚̂𝛼|𝜓1⟩ для нечетного по времени 

оператора.  

Выражения для недиагональных матричных элементов на состояниях 

|𝜓1⟩ и |𝜓2⟩ крамерсова дублета  можно получить из (15) и (16), поставив 

𝑏𝐽𝑀
𝛾𝑆𝐿

= (−1)𝐽+𝑀𝑎𝐽,−𝑀
𝛾𝑆𝐿 ∗

 

⟨𝜓1|𝑚̂𝑧|𝜓2⟩
∗ =

∑ {2𝑔𝐿(𝑆𝐿𝐽) ∑(−1)𝐽+𝑀𝑀𝑎𝐽𝑀
𝛾𝑆𝐿
𝑎𝐽,−𝑀
𝛾𝑆𝐿

𝑀>0

−

𝛾𝑆𝐿𝐽

(𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)∑(−1)𝐽+𝑀√𝐽2 −𝑀2𝑎𝐽𝑀
𝛾𝑆𝐿
𝑎𝐽−1,−𝑀
𝛾𝑆𝐿

𝑀

},                     (19) 
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[
⟨𝜓1|𝑚̂𝑥|𝜓2⟩

∗

−𝑖⟨𝜓1|𝑚̂𝑦|𝜓2⟩
∗] =

−
1

2
∑ {(−1)𝐽𝑔𝐿(𝑆𝐿𝐽) [(−1)

1
2√𝐽(𝐽 + 1) +

1

4
(𝑎

𝐽,
1
2

𝛾𝑆𝐿2
∓ 𝑎

𝐽,−
1
2

𝛾𝑆𝐿 2
) +

𝛾𝑆𝐿𝐽

2 ∑(−1)𝑀√𝐽(𝐽 + 1) − 𝑀(𝑀 − 1)(𝑎𝐽𝑀
𝛾𝑆𝐿
𝑎𝐽,1−𝑀
𝛾𝑆𝐿

∓ 𝑎𝐽,−𝑀
𝛾𝑆𝐿

𝑎𝐽,𝑀−1
𝛾𝑆𝐿

)

𝑀>
1
2

] +

∑(−1)𝐽+𝑀(𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)√(𝐽 + 𝑀 − 1)(𝐽 + 𝑀)(𝑎𝐽𝑀
𝛾𝑆𝐿
𝑎𝐽−1,1−𝑀
𝛾𝑆𝐿

±

𝑀

𝑎𝐽,−𝑀
𝛾𝑆𝐿

𝑎𝐽−1,𝑀−1
𝛾𝑆𝐿

)} .                                                                           (20)  

Отметим, что ⟨𝜓2|𝑚̂𝛼|𝜓1⟩ = ⟨𝜓1|𝑚̂𝛼|𝜓2⟩
∗. Отметим также для полноты, 

что матричные элементы для  𝑚̂𝑦 могут быть получены непосредственно из 

матричных элементов оператора 𝑚̂𝑥 поворотом соответствующих волновых 

функции на угол −
𝜋

2
 вокруг оси 𝑧. В базисе |𝛾SLJM⟩ это эквивалентно 

следующему преобразованию коэффициентов разложения волновых 

функций: 𝑎𝐽𝑀
𝛾𝑆𝐿

→ 𝑎𝐽𝑀
𝛾𝑆𝐿

exp (𝑖𝑀
𝜋

2
) ;   𝑏𝐽𝑀

𝛾𝑆𝐿
→ 𝑏𝐽𝑀

𝛾𝑆𝐿
exp (𝑖𝑀

𝜋

2
). 

Вычисленные матричные элементы операторов 𝑚̂𝛼 (17)-(20) на 

состояниях (2), (3) крамерсова дублета позволяют найти компоненты 𝑔𝛼𝛽 g-

тензора согласно (6). Вращая декартовы оси и осуществляя унитарное 

преобразование в двумерном пространстве состояний крамерсова дублета, 

мы всегда можем привести g-тензор к диагональному виду (будем называть 

диагональные компоненты g-факторами).  
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3.  Вывод формул для g-факторов в случае тетрагонального 

кристаллического поля 

 

Полученные формулы (17) - (20) для компонент g-тензора могут быть 

значительно упрощены в случае тетрагональной симметрии 

кристаллического поля. Если в качестве оси тетрагональной симметрии 

выбрана ось 𝑧 и если разложения волновых функций дублета |𝜓1⟩ и |𝜓2⟩ 

получаются путем диагонализации гамильтониана, который включает спин-

орбитальные и кулоновские взаимодействия и взаимодействие с 

кристаллическим полем, в базисе полного момента |𝛾SLJM⟩, то 

коэффициенты 𝑎𝐽𝑀
𝛾𝑆𝐿

 в (2), (3) могут быть ненулевыми только для таких 

значений М, которые отличаются друг от друга на величину 4𝑝, здесь и далее 

𝑝 является целым числом. Следовательно, как видно из (18), (19), 

⟨𝜓1|𝑚𝑧|𝜓2⟩ = 0, ⟨𝜓1|𝑚𝑥,𝑦|𝜓1⟩ = 0 и, следовательно, согласно (6) 

                                          𝑔𝑥𝑧 = 𝑔𝑦𝑧 = 𝑔𝑧𝑥 = 𝑔𝑧𝑦 = 0.                                               (21) 

Отметим, что (21) будет справедливо и для оси 𝑧, которая является осью 

симметрии второго порядка.  

Более того, путем соответствующей нумерации состояний |𝜓1⟩ и |𝜓2⟩ 

мы всегда можем получить ненулевые коэффициенты 𝑎𝐽𝑀
𝛾𝑆𝐿

  в (2) только для 

𝑀 =
1

2
+ 2𝑝0 + 4𝑝, где 𝑝0 равно 0 или 1 (заметим, что тогда разложение (3) 

для |𝜓2⟩ будет содержать члены только с 𝑀 = −
1

2
+ 2𝑝0 + 4𝑝). Поэтому в 

(20) второе слагаемое во всех трех скобках исчезнет, что приведет к 

равенству ⟨𝜓1|𝑚𝑥|𝜓2⟩ = 𝑖⟨𝜓1|𝑚𝑦|𝜓2⟩. Последнее означает, что при 

соответствующем выборе комплексной фазы волновой функции |𝜓1⟩ g-

тензор будет непосредственно приведен к диагональному виду с 
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компонентами 𝑔𝑥𝑥 = 𝑔𝑦𝑦 = 𝑔

,  𝑔𝑧𝑧 =  𝑔||, где g-факторы, полученные из 

(17), (20) равны 

 𝑔|| = 2 ∑ {𝑔L(𝑆𝐿𝐽) (
1

2
+ 2𝑝0 + 4𝑝) |𝑎

𝐽,
1
2+2𝑝0+4𝑝

𝛾𝑆𝐿
|

2

+

𝛾𝑆𝐿𝐽𝑝

(𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)√𝐽
2 − (

1

2
+ 2𝑝0 + 4𝑝)

2

𝑅𝑒 (𝑎
𝐽,
1
2+2𝑝0+4𝑝

𝛾𝑆𝐿 ∗
𝑎
𝐽−1,

1
2+2𝑝0+4𝑝

𝛾𝑆𝐿
)}, 

 𝑔  = |∑ {𝑔L(𝑆𝐿𝐽) [√𝐽(𝐽 + 1) +
1

4
𝑎
𝐽,
1
2

𝛾𝑆𝐿2
+

𝛾𝑆𝐿𝐽

2 ∑ √𝐽(𝐽 + 1) +
1

4
− (2𝑝0 + 4𝑝)

2𝑎
𝐽,
1
2+2𝑝0+4𝑝

𝛾𝑆𝐿
𝑎
𝐽,
1
2−2𝑝0−4𝑝

𝛾𝑆𝐿

𝑝>−
𝑝0
2

] +

(𝑔𝑠 − 𝑘)𝜆(𝑆𝐿𝐽)∑√(𝐽 + 2𝑝0 + 4𝑝)
2 −

1

4
𝑎
𝐽,
1
2+2𝑝0+4𝑝

𝛾𝑆𝐿
𝑎
𝐽−1,

1
2−2𝑝0−4𝑝

𝛾𝑆𝐿

𝑝

}|. 

Получили формулы для компонент g-тензора в случае тетрагональной 

симметрии кристаллического поля. 
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4.  Вывод формул для компонент g-тензора в случае 

электронной конфигурации 𝒏𝒍𝟏 примесного иона 

 

В случае электронной конфигурации 𝑛𝑙1 примесного иона существует 

единственный один терм 𝐿 = 𝑙, 𝑆 = 1/2 с двумя мультиплетами 𝐽 = 𝐿 − 1/2 и 

𝐽 = 𝐿 + 1/2  . Волновые функции  |𝐽, 𝑀⟩ компонент мультиплетов могут быть 

выражены через одноэлектронные волновые функции |𝑚𝑙, 𝜎⟩, где 𝑚𝑙 и 𝜎 – 

магнитное и спиновое квантовое число 𝑛𝑙 электрона (ниже 𝜎 значения 

обозначаются просто, как + и −). 

Переход можно выполнить следующим образом   

|𝑗1𝑗2𝑗3𝑚3〉 = ∑ 〈𝑗1𝑗2𝑚1𝑚2|𝑗1𝑗2𝑗3𝑚3〉|𝑗1𝑗2𝑚1𝑚2〉,

𝑚1,𝑚2

 

где 〈𝑗1𝑗2𝑚1𝑚2|𝑗1𝑗2𝑗3𝑚3〉 - коэффициенты Клебша-Гордона. Они могут быть 

выражены через 3𝑗-символы 

〈𝑗1𝑗2𝑚1𝑚2|𝑗1𝑗2𝑗3𝑚3〉 = (−1)𝑗1−j2+m3√2j3 + 1(
𝑗1 𝑗2 𝑗3
𝑚1 𝑚2 −𝑚3

). 

Представим эти формулы для наших обозначений 

|𝑙 +
1

2
,𝑀⟩ = ∑ ⟨

1

2
, 𝜎, 𝑙, 𝑚𝑙|

1

2
, 𝑙, 𝑙 +

1

2
, 𝑀⟩ |𝑚𝑙 , 𝜎⟩

𝑚𝑙,𝜎

, 

⟨
1

2
, 𝜎, 𝑙, 𝑚𝑙|

1

2
, 𝑙, 𝑙 +

1

2
,𝑀⟩ = (−1)

1
2
−𝑙+M√2𝑙 + 2(

1

2
𝑙 𝑙 +

1

2
𝜎 𝑚𝑙 −M

). 

Получаем 

|𝑙 +
1

2
,𝑀⟩ = (−1)

1
2
−𝑙+M√2𝑙 + 2∑[(

1

2
𝑙 𝑙 +

1

2
1

2
𝑚𝑙 −M

) |𝑚𝑙, +⟩ + (

1

2
𝑙 𝑙 +

1

2

−
1

2
𝑚𝑙 −M

) |𝑚𝑙 , −⟩]

𝑚𝑙

. 

Теперь, учитывая, что 
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(
j1 j2 j1 + j2
m1 m2 −m1 − m2

) =

(−1)j1−j2+m1+m2√
(2j1)! (2j2)! (j1 + j2 +m1 + m2)! (j1 + j2 −m1 −m2)!

(2j1 + 2j2 + 1)! (j1 +m1)! (j2 +m2)! (j1 −m1)! (j2 −m2)!
, 

получим следующие выражения для 3𝑗-символов 

(

1

2
𝑙 𝑙 +

1

2

±
1

2
𝑚𝑙 −M

) =
1

√2
𝛿
𝑚𝑙,M∓

1
2

(−1)
1
2−𝑙+M

√ (𝑙 +
1
2
±M)

(𝑙 + 1)(2𝑙 + 1)
. 

Тогда выражение для перехода к одноэлектронному базису имеет вид (для 

𝐽 = 𝑙 −
1

2
 расчеты аналогичные) 

            |𝑙 ±
1

2
,𝑀⟩ = √𝑙 ± 𝑀 +

1
2

2𝑙 + 1
|𝑀 −

1

2
, +⟩ ± √

𝑙 ∓𝑀 +
1
2

2𝑙 + 1
|𝑀 +

1

2
, −⟩.          (22) 

Коэффициенты 𝑔L(𝑆𝐿𝐽) (12) и 𝜆(𝑆𝐿𝐽) (14) для конфигурации 𝑛𝑙1 

принимают вид (здесь и далее в этом разделе неинформативные индексы 𝛾𝑆𝐿 

опущены) 

𝑔L (𝑙 +
1

2
) =

1

2
(𝑔s + 𝑘) + (𝑔s − 𝑘)

3
4
− 𝑙(𝑙 + 1)

2(𝑙 +
1
2
)(𝑙 +

3
2
)
=

1

2
(𝑔s + 𝑘) − (𝑔s − 𝑘)

(𝑙 −
1
2
) (𝑙 +

3
2
)

2 (𝑙 +
1
2
) (𝑙 +

3
2
)
=
𝑔s + 2𝑙𝑘

2𝑙 + 1
, 

𝑔L (𝑙 −
1

2
) =

−𝑔s + 2𝑘(𝑙 + 1)

2𝑙 + 1
, 

{
𝜆 (𝑙 +

1

2
) =

2

2𝑙 + 1

𝜆 (𝑙 −
1

2
) = 0

. 
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Рассмотрим пример 𝑛𝑓 электрона (𝑙 = 3). Приведем только формулы 

для матричных элементов ⟨𝜓1|𝑚̂𝑧|𝜓1⟩, ⟨𝜓1|𝑚̂𝑥|𝜓2⟩ (в случае тетрагональной 

симметрии эти матричные элементы непосредственно определяют g-

факторы, как показано в предыдущем разделе) 

{
 
 

 
 𝑔L (𝑙 +

1

2
) =

𝑔s + 6𝑘

7

𝑔L (𝑙 −
1

2
) =

−𝑔s + 8𝑘

7

𝜆 (𝑙 +
1

2
) =

2

2𝑙 + 1
=
2

7

, 

   ⟨𝜓1|𝑚̂𝑧|𝜓1⟩ =

1

7
∑{(𝑔s + 6𝑘)𝑀 |𝑎7

2,𝑀

𝛾𝑆𝐿
|

2

+ (−𝑔s + 8𝑘)𝑀 |𝑎5
2,𝑀

𝛾𝑆𝐿
|

2

+

𝑀

(𝑔s − 𝑘)√49 − 4𝑀
2Re(𝑎7

2,𝑀

𝛾𝑆𝐿∗
𝑎5
2,𝑀

𝛾𝑆𝐿
)},                                                            (23) 

⟨𝜓1|𝑚𝑥|𝜓2⟩
∗ =

−
1

14
{4(𝑔s + 6𝑘) (𝑎7

2
,
1
2

𝛾𝑆𝐿2
− 𝑎7

2
,−
1
2

𝛾𝑆𝐿 2
) − 3(−𝑔s + 8𝑘) (𝑎5

2
,
1
2

𝛾𝑆𝐿2
− 𝑎5

2
,−
1
2

𝛾𝑆𝐿 2
) +

∑(−1)𝑀−
1
2 [(𝑔s + 6𝑘)√63 − 4𝑀(𝑀 − 1)(𝑎7

2
,𝑀

𝛾𝑆𝐿
𝑎7
2
,1−𝑀

𝛾𝑆𝐿
− 𝑎7

2
,−𝑀

𝛾𝑆𝐿
𝑎7
2
,𝑀−1

𝛾𝑆𝐿
) −

𝑀>
1
2

(−𝑔s + 8𝑘)√35 − 4𝑀(𝑀 − 1)(𝑎5
2
,𝑀

𝛾𝑆𝐿
𝑎5
2
,1−𝑀

𝛾𝑆𝐿
− 𝑎5

2
,−𝑀

𝛾𝑆𝐿
𝑎5
2
,𝑀−1

𝛾𝑆𝐿
)] +

∑(−1)𝑀−
1
2(𝑔s − 𝑘)√4(3 + 𝑀)2 − 1(𝑎7

2
,𝑀

𝛾𝑆𝐿
𝑎5
2
,1−𝑀

𝛾𝑆𝐿
+ 𝑎7

2
,−𝑀

𝛾𝑆𝐿
𝑎5
2
,𝑀−1

𝛾𝑆𝐿
)

𝑀

}.     (24) 

Получили матричные элементы для компонент g-тензора в случае 

тетрагональной симметрии кристаллического поля для электронной 

конфигурации 𝑛𝑓1. 
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5. g-факторы основного крамерсова дублета иона Ce
3+

 в 

кристалле LiYF4 

 

Перейдем к рассмотрению конкретного кристалла – двойного фторида 

лития-иттрия LiYF4. Данный кристалл обладает структурой кристалла 

шеелита с общей формулой ABO4, он имеет пространственную группу 

симметрии 𝐶4ℎ
6 (𝐼41/𝑎). 

 

Рис. 1.Тетрагональная ячейка кристалла LiYF4. Иттриевые и литиевые 

узлы расположены в вершинах, на ребрах и на гранях ячейки, один 

иттриевый узел расположен в центре ячейки, показаны две его 

координационные сферы – 8 ионов фтора, расположенные в вершинах двух 

деформированных тетраэдров 

 

Векторы трансляции тетрагональной объемно-центрированной решетки 

равны 𝐚1(𝑎/2, 𝑎/2, − 𝑐/2),         𝐚2(𝑎/2,− 𝑎/2, 𝑐/2),         𝐚3(− 𝑎/2, 𝑎/2, 𝑐/2). 

Постоянные решетки равны 𝑎 = 5.168 Å, 𝑐 = 10.731 Å. Ионы Y
3+

 находятся 

в узлах с симметрией S4. Ближайшие соседи иона Y
3+

 – четыре иона фтора, 

образующих деформированный тетраэдр (см. рис.1). Их координаты в 
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кристаллографической системе координат с началом отсчета на ионе Y
3+

 

равны (x y z), (–x –y z), (y –x –z), (–y x –z), где 𝑥 = (𝑡 −
1

2
) 𝑎, 𝑦 = (

1

2
− 𝑝)𝑎,

𝑧 = −𝑞𝑐, 𝑝 = 0.2821, 𝑡 = 0.1642, 𝑞 = 0.0815. Межионное расстояние Y
3+

 – 

F
-
 составляет 𝑅1 = 2.246Å. Вторая координационная сфера из ионов фтора с 

радиусом 𝑅2 = 2.293Å также представляет собой деформированный тетраэдр 

с параметрами 𝑥 = 𝑡𝑎, 𝑦 = (1/2 − 𝑝)𝑎, 𝑧 = (𝑞 − 1/4)𝑐. Один из тетраэдров 

вытянут, а второй сжат вдоль оси 𝑐 кристалла. Каждый ион Li
+
 расположен в 

центре тетраэдра ионов F
-
. Ионы Y

3+
 замещаются ионами Ce

3+
. При 

замещении иона Y
3+

 атом Се отдает три электрона трем фторам и становится 

ионом Се
3+

 с электронной конфигурацией 4𝑓1. Ион Ce
3+

 в этом 

низкоэнергетическом состоянии имеет один 4𝑓 электрон вне замкнутых 

оболочек. Орбитальный момент 4𝑓 электрона 𝑙 = 3. 

Гамильтониан иона Ce
3+

 в кристалле LiYF4 запишем в виде 

Ĥ = ĤFI + ĤSO + ĤCF, 

где часть гамильтониана свободного иона без спин-орбитального 

взаимодействия 

ĤFI =∑
𝑝̂𝑖
2

2𝑚
−∑

𝑍𝑒2

𝑟𝑖
+∑

𝑒2

𝑟𝑖𝑗
𝑖<𝑗𝑖𝑖

= Ĥ0 +∑
𝑒2

𝑟𝑖𝑗
𝑖<𝑗

= Ĥ0 + Ĥe−e. 

В рамках одноконфигурационного приближения Ĥ0 можно не рассматривать, 

так как Ĥ0 не может расщепить конфигурацию, а лишь смещает её. Кроме 

того, поскольку на незаполненной оболочке иона Ce
3+

 находится один 

электрон, можно также не рассматривать кулоновское взаимодействие 

электронов Ĥе−е (для данной конфигурации существует всего один терм – 

2𝐹). 

Таким образом, будем рассматривать эффективный гамильтониан иона 

Ce
3+

 в кристалле LiYF4 

Ĥeff = ĤSO + ĤCF. 
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Гамильтониан спин-орбитального взаимодействия представляется в 

виде 

ĤSO =∑𝜉(𝑟𝑖)𝐬i𝐥i

𝑁

𝑖=1

= 𝜉𝐬𝐥, 

где 𝜉 – константа спин-орбитального взаимодействия, 𝐬 и 𝐥 – операторы 

спинового и орбитального  моментов 4𝑓 электрона. Учитывая, что 𝐉̂ = 𝐋̂ + 𝐒̂, 

матричные элементы гамильтониана спин-орбитального взаимодействия 

вычисляются следующим образом 

⟨𝐽, 𝐽𝑧|ĤSO|𝐽, 𝐽𝑧
′⟩ = 𝛿𝐽𝑧𝐽𝑍′

𝜉

2
(𝐽(𝐽 + 1) − 𝐿(𝐿 + 1) − 𝑆(𝑆 + 1)). 

Гамильтониан взаимодействия с кристаллическим полем симметрии S4 

(в кристаллографических осях) 

ĤCF = 𝐵0
2𝐶0

(2)
+ 𝐵0

4𝐶0
(4)
+ 𝐵4

4𝐶4
(4)
+ 𝐵−4

4 𝐶−4
(4)
+ 𝐵0

6𝐶0
(6)
+ 𝐵4

6𝐶4
(6)
+ 𝐵−4

6 𝐶−4
(6)
, 

где 𝐵𝑘
𝑝
 – параметры кристаллического поля, удовлетворяющие уравнению 

𝐵𝑘
𝑝∗
= (−1)𝑘𝐵−𝑘

𝑝
, С𝑘

(𝑝)
 – компоненты одноэлектронных сферических 

тензорных операторов 𝐂(𝑝). 

Матричные элементы оператора ĤCF на одноэлектронных функциях 

рассчитываются следующим образом 

⟨𝑛, 𝑙,𝑚, 𝜎|ĤCF|𝑛, 𝑙, 𝑚
′, 𝜎′⟩ =

𝛿𝜎,𝜎′∑𝑒2𝑞𝐿𝑗∑ ∑ √
4ᴨ

(2𝑘 + 1)
𝐶𝑞
𝑘(Θ𝑗 , Φj)

〈𝑟𝑘〉

𝑅𝑗
𝑘+1∫𝑌𝑙,𝑚(θ,φ)𝑌𝑘,𝑞

∗ (θ,φ)

𝑘

𝑞=−𝑘

∞

𝑘=0𝑗

𝑌𝑙,𝑚
∗ (θ, φ)𝑑𝛺, 

где 〈𝑟𝑘〉 = ∫ 𝑟𝑘+2|𝑅𝑛𝑙(𝑟)|
2𝑑𝑟. Принимая во внимание, что  

𝐵𝑞
𝑘 = 𝑒2〈𝑟𝑘〉∑

𝑞L𝑗𝐶𝑞
𝑘(Θ𝑗, Φj)

𝑅𝑗
𝑘+1 ,

𝑗
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∫𝑌𝑙,𝑚(θ,φ)𝑌𝑘,𝑞
∗ (θ, φ)𝑌𝑙,𝑚′

∗ (θ, φ)𝑑𝛺 = =

(−1)𝑚√
(2𝑘 + 1)

4ᴨ
(2𝑙 + 1) (

𝑙 𝑘 𝑙
0 0 0

) (
𝑙 𝑘 𝑙
−𝑚 𝑞 𝑚′), 

получим 

⟨𝑛, 𝑙,𝑚, 𝜎|ĤCF|𝑛, 𝑙, 𝑚
′, 𝜎′⟩ =

𝛿𝜎,𝜎′(−1)
𝑚(2𝑙 + 1)∑ ∑ (

𝑙 𝑘 𝑙
0 0 0

) (
𝑙 𝑘 𝑙
−𝑚 𝑞 𝑚′)

𝑘

𝑞=−𝑘

∞

𝑘=0

𝐵𝑞
𝑘 . 

Мы рассматривает 4𝑓1 конфигурацию, то есть орбитальный момент 

𝑙 = 3. И поэтому тут не придётся вычислять бесконечную сумму по 𝑘, так 

как 3𝑗-символы накладывают ограничение на значение 𝑘: 2𝑙 ≥  𝑘. 

Следовательно, что 𝑘 ≤  6.   Также из свойств 3𝑗-символа следует, что 

𝑘 + 𝑙 + 𝑙 должно быть четным, тогда получаем, что 𝑘 – четное. Нас 

интересуют не абсолютные сдвиги уровней энергии, а лишь их расщепления 

в кристаллическом поле, поэтому можно опустить член с 𝑘 = 0 в 

разложении. В итоге 𝑘 имеет всего три значения: 2, 4, 6. Сразу заметим, что 

существует еще одно ограничение, накладываемое 3𝑗-символами: 𝑚 = 𝑚′ +

𝑞, иначе 3𝑗-символ равен нулю. 

Выберем за базис собственные функции спин-орбитального 

взаимодействия |𝐽, 𝐽𝑧⟩. Тогда, если принять во внимание смешивание 

мультиплетом 
2𝐹5/2 и 

2𝐹7/2, то нам придется рассчитать матрицу 14х14, так как 

у 𝐽 = 5/2 шесть проекций, а у 𝐽 = 7/2 – восемь. Рассчитать матричные 

элементы спин-орбитального гамильтониана не составит труда, а для расчёта 

матричных элементов гамильтониана кристаллического взаимодействия 

лучше перейти от базиса спин-орбитального взаимодействия |𝐽, 𝑀⟩ к 

одноэлектронным волновым функциям |𝑚𝑙, 𝜎⟩, где 𝑚𝑙 и 𝜎 – магнитное и 

спиновое квантовое число 𝑛𝑙 электрона. Подробные расчеты в данной работе 

проводиться не будут, они были изложены в работе [1]. Автор [1] 
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показывает, что наибольший вклад в волновые функции основного 4𝑓 

дублета иона Ce
3+

 в LiYF4 исходит от состояний |
5

2
, ±

5

2
⟩. В соответствии с 

разделом 3 мы выбираем волновую функцию |𝜓1⟩ (2) так, чтобы она 

содержала состояние |
5

2
,
5

2
⟩ (это соответствует 𝑝0 = 1 в разделе 3; волновая 

функция |𝜓2⟩ (3) тогда содержит состояние |
5

2
, −

5

2
⟩), которое смешивается 

взаимодействием кристаллического поля ĤCF только с состояниями 

|
5

2
, − 

3

2
⟩ , |

7

2
,
5

2
⟩ , |

7

2
, − 

3

2
⟩.  

Таким образом, достаточно численно диагонализовать матрицу 4x4 

гамильтониана Ĥeff = ĤSO + ĤCF  иона Ce
3+

 со следующими матричными 

элементами, которые мы приводим здесь для полноты 

 

⟨
5

2
,
5

2
|Ĥ|

5

2
,
5

2
⟩ = −2𝜉 −

6

21
𝐵0
2 +

1

21
𝐵0
4, ⟨

5

2
,−
3

2
|Ĥ|

5

2
,−
3

2
⟩ = −2𝜉 +

2

35
𝐵0
2 −

1

7
𝐵0
4, 

⟨
7

2
,
5

2
|Ĥ|

7

2
,
5

2
⟩ =

3

2
𝜉 −

1

21
𝐵0
2 −

13

77
𝐵0
4 +

25

429
𝐵0
6, ⟨

7

2
, −
3

2
|Ĥ|

7

2
,−
3

2
⟩ =

3

2
𝜉 +

1

7
𝐵0
2 −

3

77
𝐵0
4, 

⟨
5

2
,
5

2
|Ĥ|

5

2
, −
3

2
⟩ =

√14

21
𝐵4
4, ⟨

5

2
,
5

2
|Ĥ|

7

2
,
5

2
⟩ = −

√6

21
𝐵0
2 +

10√6

231
𝐵0
4 −

5√6

429
𝐵0
6,  

⟨
5

2
,
5

2
|Ĥ|

7

2
,−
3

2
⟩ =

4√35

231
𝐵4
4 −

10√7

143
𝐵4
6, ⟨

5

2
,−
3

2
|Ĥ|

7

2
,
5

2
⟩ = −

8√21

231
𝐵−4
4 −

10√105

429
𝐵−4
6 , 

⟨
5

2
,−
3

2
|Ĥ|

7

2
,−
3

2
⟩ =

√10

35
𝐵0
2 +

8√10

231
𝐵0
4 −

5√10

143
𝐵0
6, ⟨
7

2
,
5

2
|Ĥ|

7

2
, −
3

2
⟩ =

√210

77
𝐵4
4 +

5√42

429
𝐵4
6. 

(25) 

Численно диагонализируя матрицу с данными элементами, получаем 

волновую функцию |𝜓1⟩ основного крамерсова дублета иона Ce
3+

 в LiYF4; 

приведя |𝜓1⟩ к форме, пригодной для сравнения с [1], можно написать 

                    |𝜓1⟩ =
1

𝑁
{|
5

2
,
5

2
⟩ + 𝛼 |

5

2
,− 

3

2
⟩ + 𝛽 |

7

2
,
5

2
⟩ + 𝛾 |

7

2
, − 

3

2
⟩} ,                  (26) 

𝑁 = √1 + |𝛼|2 + |𝛽|2 + |𝛾|2 
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(𝑎5
2
,
5
2

𝛾𝑆𝐿
=
1

𝑁
, 𝑎5

2
,−
3
2

𝛾𝑆𝐿
=
𝛼
𝑁
, 𝑎7

2
,
5
2

𝛾𝑆𝐿
=
𝛽
𝑁
, 𝑎7

2
,−
3
2

𝛾𝑆𝐿
=
𝛾
𝑁
). 

Используя формулы (23), (24) для волновой функции (26), получаем 

следующие выражения для g-факторов основного крамерсова дублета иона 

Ce
3+

 в LiYF4 с учетом уменьшения орбитального момента 

𝑔|| =
1

7𝑁2
((8𝑘 − gs)(5 − 3|𝛼|

2) + 4(gs − 𝑘) (√6𝑅𝑒𝛽 + √10Re(𝛼γ
∗)) +

(gs + 6𝑘)(5|𝛽|
2 − 3|γ|2 )),                                                                 (27) 

𝑔⊥ =
2

7𝑁2
|2√3(gs + 6𝑘)𝛽γ + √5 (gs − 8𝑘)𝛼 + (gs − 𝑘)(√30 𝛼𝛽 + √2γ)|.          (28) 

Если положить 𝑔s = 2, 𝑘 = 1, то (27), (28) преобразуются в формулы, 

полученные в [1], но с противоположными знаками коэффициентов 𝛽 и 𝛾, так 

как состояния |
7

2
, 𝑀⟩  были приняты в [1] с противоположными знаками; это 

также приводит к противоположным знакам матричных элементов между 

состояниями 𝐽 =
5

2
и 𝐽 =

7

2
 в (22) по сравнению с [1]. Если мы дополнительно 

положим 𝛽 = 𝛾 = 0, то мы получим случай, исследованный ранее другими 

авторам в [4,5], когда смешивание мультиплетов 
2𝐹5/2 и 

2𝐹7/2 

кристаллическим полем не рассматривается.  

Прежде, чем перейти к результатам расчета g-факторов основного 

дублета иона Ce
3+

 в кристалле LiYF4, приведем их значения  известные в 

литературе в виде таблицы 

 

Табл. 1. g-факторы основного дублета иона Ce
3+

 в кристалле LiYF4 из литературы 

g-факторы  𝑔|| 𝑔⊥ 

Эксперимент [2] 2.737  1.475 

Эксперимент [4]  2.765 1.473 
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Расчет [14]  

 
2.751 1.514 

Расчет [4]  

(без учёта смешивания мультиплетов) 
2.774 1.590 

Расчет [1]  

(с учётом смешивания мультиплетов) 2.846 1.552 

 

Результат работы [14] не вполне корректен из-за ошибки в применении 

метода наименьших квадратов при варьировании параметров 

кристаллического поля. Кроме того, в работе [14] в результате подгонки под 

эксперимент были получены слишком большие значения параметров 

кристаллического поля 𝐵4
6

 и 𝐵−4
6

 (по модулю порядка 2000 см
-1

), что не 

представляется разумным. Видно, что в работах [4] и [1] существует 

проблема в том, что удается неплохо сделать подгонку для одного g-фактора, 

однако второй g-фактор уже не сходится с экспериментом.  

Рассчитаем для работ [4] и [1] выражение, которое покажет отклонение 

от эксперимента 

𝑈 = |𝑔||
exp

− 𝑔||
theor|+|𝑔⊥

exp
− 𝑔⊥

theor|. 

Рассчитанные значения 

g-факторов 

𝑈, эксперимент из [2]  𝑈, эксперимент из [4]  

 [4] 0.126 0.153 

 [1] 0.158 0.186 

 

Видно, что в литературе существует существенное расхождение между 

экспериментальными и рассчитанными g-факторами основного дублета иона 

Ce
3+ 

в кристалле LiYF4. 

Прежде, чем вычислить значения g-факторов по полученным формулам 

(27) и (28), мы должны найти коэффициенты разложения 𝛼, 𝛽, 𝛾. Для этого 
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диагонализируется матрица гамильтониана размерности 14х14. Получим 7 

уровней энергии, каждый из которых вырожден дважды согласно теореме 

Крамерса. К сожалению, мы не можем получить аналитические выражения 

для энергий, ввиду их сложности, поэтому мы вначале должны задать 4𝑓 

параметры, а после получим численные значения как для энергий 4𝑓 

электрона, так и для коэффициентов 𝛼, 𝛽, 𝛾. Все это делалось с помощью 

программы, написанной в MATLAB. Как написано выше, прежде 

необходимо задать 4𝑓 параметры, то есть параметры кристаллического поля 

и константу спин-орбитального взаимодействия. Но, как уже оговаривалось, 

существует проблема поиска надежных значений параметров 

кристаллического поля для Ce
3+

 в кристалле LiYF4  в виду того, что не все из 

уровней энергии наблюдаются экспериментально.  

В качестве иллюстрации эффекта от учета редукции орбитального 

момента для начала рассчитаем g-факторы, используя параметры 

кристаллического поля, взятые из работы [10] 

𝐵0
2 = 360, 𝐵0

4 = −1400, 𝐵4
4 = −1240 + 𝑖 ∙ 751,  𝐵0

6 = −67.2,

𝐵4
6 = −1095 + 𝑖 ∙ 458.                                                                 (29) 

𝑔-факторы или энергии кристаллического поля не подгонялись тщательно в 

[10], но знаки и порядки величин (29) согласуются с параметрами, 

полученными в литературе для трехвалентных редкоземельных ионов, 

легированных в кристалле LiYF4, путем подгонки к экспериментальным 

данным. Мы также используем значение 𝜉=625 см
−1

 из [10] для константы 

спин-орбитального взаимодействия, причем это значение также согласуется с 

общепринятым в литературе (например, 615 см
−1

 в [11] и 628 см
−1

 в [12]). В 

итоге получаются следующие -факторы основного крамерсова дублета иона 

Ce
3+

, рассчитанные без учета уменьшения орбитального импульса [1] (т. е. 

𝑘 = 1 в (27), (28)) 
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                                              𝑔|| = 2.845, 𝑔

= 1.551,                                    (30) 

со среднеквадратичным отклонением от экспериментальных значений [2], 

0.132. Расчеты показывают [1], что большие значения 𝐵±4
6  (𝐵±4

6 ≈ 2000см−1) 

могут в принципе решить проблему такого расхождения с экспериментом, но 

такие большие значения по крайней мере в полтора раза превышают 

ожидаемые, как следует из тенденции параметров, обычно используемых в 

литературе для трехвалентных редкоземельных ионов, легированных в 

двойных кристаллах фторида [11, 13], и не представляются разумными. 

Теперь, чтобы улучшить согласие с экспериментом, рассмотрим 

уменьшение орбитального момента 4𝑓 электрона иона Ce
3+

. При 𝑘 =  0,97 

полученные формулы (27), (28) приводят к следующим g-факторам 

основного крамерсова дублета иона Ce
3+

 в LiYF4 

                                            𝑔|| = 2.734, 𝑔 = 1.487,                                          (31) 

со среднеквадратичным отклонением от экспериментальных значений [2], 

0.013, что в 10 раз меньше, чем без учета уменьшения орбитального момента 

(30). 

Перейдем к согласованному вычислению уровней энергии 4𝑓 

электрона и g-факторов иона Ce
3+

 в кристалле LiYF4. В работе [14] были 

измерены инфракрасные спектры 4𝑓 − 4𝑓 переходов при низких 

температурах, что позволило определить уровни энергии 4𝑓 электрона, 

относящиеся к мультиплету 
2𝐹7/2: 2216, 2313, 2429 и 3158 cм

−1
. Затем в работе 

[15] было проведено моделирование электронно-колебательного спектра 

5𝑑 − 4𝑓 люминесценции LiYF4:Ce
3+

 на основе микроскопической модели 

электрон-фононного взаимодействия. Это позволило идентифицировать 

колебательные максимумы в спектре люминесценции, измеренном в работе 

[12], ошибочно принятые в [12] за бесфононные линии. С другой стороны, 
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удалось достоверно идентифицировать бесфононную линию, отвечающую 

переходу на 4𝑓 уровень с энергией 514 см
-1

. Таким образом, можно 

утверждать, что на сегодня надежно известны 5 из 6 возбужденных уровней 

энергии 4𝑓 электрона иона Ce
3+

 в кристалле LiYF4 (подчеркнем, что до 2015 

года по сути достоверно были известен только один уровень, что 

демонстрирует прогресс в данном вопросе, достигнутый в самое последнее 

время).  

Используя уровни энергии, приведенные выше, и известные из 

эксперимента значения g-факторов, мы применили метод наименьших 

квадратов, чтобы найти оптимальный набор значений параметров 

кристаллического поля. Мы пришли к выводу, что наилучший набор 

параметров кристаллического поля для иона Ce
3+

 в кристалле LiYF4, 

минимизирующий целевую функцию, характеризующую отклонение 

вычисленных и известных из эксперимента энергий 4𝑓 уровней и g-

факторов, следующий (все параметры кристаллического поля в см
-1

) 

 

Сразу отметим, что эти параметры кристаллического поля лежат в физически 

осмысленных пределах и согласуются по порядку величины с 

литературными данными. Уровни энергии 4𝑓 электрона, получаемые при 

данных параметрах, равны: 222, 516, 2224, 2318, 2424, 3169 см
-1

. Заметим, что 

максимальное отличие между экспериментальными и рассчитанными 

уровнями энергии не превышает 10 см
-1

. Данный результат можно счесть за 

хорошее согласие с экспериментом.   

𝐵0
2 = 325 

𝐵0
4 = −1520 

𝐵0
6 = −67.2 

𝐵4
4 = −1220 + 𝑖 · 850 

𝐵4
6 = −1300 + 𝑖 · 350 

𝑘 = 0.97 
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g-факторы, получаемые при данных параметрах, равны  

                                            𝑔|| = 2.722, 𝑔⟂ = 1.486,                                          (32) 

Отклонения для полученных значений g-факторов от 

экспериментальных значений 

Рассчитанные значения g-

факторов 

𝑈, эксперимент [2]  𝑈, эксперимент [4]  

(31) 0.015 0. 045 

(32) 0.026 0.056 

 

Таким образом, мы показали, что учитывая уменьшения орбитального 

момента 4𝑓 электрона иона Ce
3+

 в энергии Зеемана можно значительно 

улучшить согласие с g-факторами, полученными в эксперименте.  
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6.  Заключение 

 

В данной работе были получены следующие результаты: 

1) Получены аналитические выражения для компонент g-тензора 

крамерсова дублета примесного иона, легированного в диэлектрический 

кристалл, с учетом редукции орбитального момента из-за эффектов 

ковалентности: компоненты g-тензора выражаются в явном виде через 

коэффициенты разложения волновых функций дублета в базисе полного 

момента. Полученные выражения могут быть полезны при расчетах и 

анализе зависимости g-тензора от параметров гамильтониана примесного 

иона. 

2) Выражения для компонент g-тензора были преобразованы к 

более простому и удобному для использования виду в частных случаях 

тетрагональной симметрии кристаллического поля и электронной 

конфигурации примесного иона nl
1
. Для полноты приведены также 

выражения для матричных элементов магнитного момента примесного иона 

на произвольных волновых функциях, определяемых разложениями по 

базису полного момента, с учетом редукции орбитального момента. 

3) Полученные формулы были использованы для согласованного 

расчета уровней энергии и g-факторов основного крамерсова дублета 

примесного иона Ce
3+

 в кристалле LiYF4. Было показано, что учет 

уменьшения орбитального момента 4f электрона иона Ce
3+

 в энергии Зеемана 

может значительно улучшить согласие с g-факторами, измеренными 

экспериментально, при этом было также получено хорошее согласие с 

экспериментальными уровнями энергии.  

Полученные результаты могут быть полезны для теоретического 

описания и предсказания свойств активированных редкоземельными ионами 
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диэлектрических кристаллов, используемых в современной технике. 

Дальнейший прогресс может быть достигнут путем выхода за пределы 

приближения изотропной редукции орбитального момента и оценки 

редукции матричных элементов орбитального момента на основе метода 

молекулярных орбиталей. 

По результатам данной работы совместно с научным руководителем 

была написана статья:  

Dudalov, A.S. Calculation of g-tensor of rare-earth ions with account of 

isotropic reduction of orbital momentum / A.S. Dudalov, O.V. Solovyev // 

Magnetic Resonance in Solids. – 2017. – Vol. 19. – P. 17208(1-10). 

Автор выражает благодарность научному руководителю, а также 

профессору Борису Залмановичу Малкину за ценные замечания. 
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