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Введение 

Значительный интерес к твердотельным материалам с оптической 

активностью в ультрафиолетовом и вакуум-ультрафилетовом диапазонах 

связан с возможностью их использования для создания лазеров, 

сцинтилляторов и люминофоров, действующих в данных областях спектра. 

Интерпретация спектров 4fn-4fn-15d переходов примесных трехвалентных 

редкоземельных ионов, как раз лежащих в этих диапазонах, осложняется тем, 

что большая часть интенсивности приходится на электронно-колебательные 

полосы, как следствие взаимодействия 5d электрона с колебаниями 

кристаллической решетки.  

В работе [1] впервые был проведен микроскопический расчет спектров 

4fn-4fn-15d переходов на основе модели обменных зарядов. В частности, в [1] 

был проведен расчет спектров 4f1-5d1 переходов примесного иона Се3+ в 

кристалле LiYF4, были вычислены уровни энергии конфигураций 4f1 и 5d1 и g-

факторы основного крамерсова дублета конфигурации 4f1. Однако в работе [1] 

не учитывались эффекты перемешивания электронных конфигураций 4f1 и 5d1 

иона Се3+ нечетным кристаллическим полем. Позже из работы [2] стало 

известно, что измеренные на эксперименте [3] g-факторы основного 

крамерсова дублета конфигурации 4f1 отличаются от значений, которые 

можно получить теоретическим расчетом, учитывающим взаимодействие с 

магнитным полем только в рамках конфигурации 4f1 иона Се3+. Возникает 

следующая идея – попробовать улучшить согласие с измеренными значениями 

g-факторов, рассматривая перемешивание конфигураций 4f1 и 5d1 с 

последующим учетом взаимодействия с магнитным полем в рамках 

расширенного пространства состояний; либо показать, что учет 

перемешивания конфигураций не приводит к существенному улучшения 

согласия с экспериментом. 

Таким образом, цель данной работы — расчет зависимости g-факторов 

иона Се3+ в кристалле LiYF4 от параметров нечетного кристаллического поля, 

перемешивающего конфигурации 4f1 и 5d1, и выяснение возможности 
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улучшить согласие с известными из литературы измеренными значениями g-

факторов путем учета перемешивания конфигураций. 

Задачи: 

1. Построение матриц гамильтониана иона Се3+ в кристалле LiYF4, 

включающего спин-орбитальное взаимодействие и взаимодействие с 

кристаллическим полем, в базисе полного момента для конфигурации 4f1 и для 

конфигурации 5d1. 

2. Построение матрицы гамильтониана взаимодействия с нечетным 

кристаллическим полем, перемешивающим конфигурации 4f1 и 5d1, в базисе 

полного момента. 

3. Получение аналитических формул для g-факторов основного 

крамерсова дублета конфигурации 4f1 иона Се3+ в кристалле LiYF4 с учетом 

перемешивания конфигураций 4f1 и 5d1. 

4. Исследование численной зависимости g-факторов иона Се3+ в 

кристалле LiYF4 от параметров нечетного кристаллического поля, выяснение 

возможности улучшения согласия вычисленных и известных из эксперимента 

значений g-факторов путем учета перемешивания конфигураций 4f1 и 5d1 иона 

Се3+ нечетным кристаллическим полем. 
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1.Расчет матрицы гамильтониана иона Се3+ в кристалле LiYF4 

 

1.1. Гамильтониан иона Се3+ в кристалле LiYF4 

 

Как известно, на незаполненной оболочке трехвалентного иона Се3+ 

находится один электрон. Поскольку цель работы – изучение эффектов 

перемешивания конфигураций 4f1 и 5d1 иона Се3+ в кристалле LiYF4, нам 

нужно рассмотреть следующий гамильтониан, действующий в объединенном 

24-мерном пространстве состояний этих конфигураций:  

𝐻̂ = 𝐻̂
4𝑓

1 + 𝐻̂
5𝑑

1 + 𝐻̂
4𝑓

1
−5𝑑

1 , 

где 𝐻̂
4𝑓

1 и 𝐻̂
5𝑑

1 – гамильтонианы, действующие внутри соответствующих 

конфигураций, а 𝐻̂
4𝑓

1
−5𝑑

1 – гамильтониан межконфигурационного 

взаимодействия. Ввиду наличия лишь одного электрона на незаполненной 

оболочке, в гамильтониане отсутствуют кулоновское и другие двухчастичные 

взаимодействия. Во внутриконфигурационных гамильтонианах присутствует 

спин-орбитальное взаимодействие; кроме того, в каждом из указанных трех 

гамильтонианов присутствует взаимодействие электрона с кристаллическим 

полем, создаваемым кристаллической решеткой LiYF4. 

Спин-орбитальное взаимодействие есть взаимодействие собственного 

магнитного момента электрона с эффективным магнитным полем, 

возникающим в системе отсчета электрона из-за его движения в поле атомного 

остова. Его гамильтониан имеет вид: 

𝐻̂SO = 𝜉(𝑟)𝑠̂̅𝑙 ̅̂, 

где 𝜉(𝑟) – функция, которую иногда называют спин-орбитальной, она 

учитывает влияние размера орбиты на создаваемое при движении по ней 

магнитное поле, 𝑠̂̅ и 𝑙 ̅̂ – векторные операторы спинового и орбитального 

моментов электрона. При вычислении матричных элементов гамильтониана 

спин-орбитального взаимодействия внутри оболочки (nl) появляется 



6 

 

одноэлектронный параметр спин-орбитального взаимодействия, 

вычисляемый с помощью радиальной функции этой оболочки: 

𝜉𝑛𝑙 = ∫ 𝑟2𝑑𝑟𝑅𝑛𝑙
2 (𝑟)𝜉(𝑟).

+∞

0

 

Таким образом, мы можем записать два эффективных гамильтониана 

спин-орбитального взаимодействия в нашей ситуации: 

𝐻̂SO4𝑓1 = 𝜉4𝑓 𝑠̂̅𝑙 ̅̂ 𝐻̂SO5𝑑1 = 𝜉5𝑑 𝑠̂̅𝑙 ̅̂ 

Взаимодействие электрона с кристаллическим полем представляет 

собой электростатическое взаимодействие со всеми окружающими ионами 

кристаллической решетки. Запишем соответствующий гамильтониан через 

пропорциональный обратному расстоянию между зарядами кулоновский 

потенциал: 

𝐻̂CF = 𝑒𝜑(𝑟̅) = ∑
𝑒𝑍𝐿

|𝑟̅ − 𝑅𝐿
̅̅ ̅|

,

𝐿

 

где 𝑍𝐿 и 𝑅𝐿
̅̅ ̅ – заряд и радиус-вектор L-го иона решетки, а 𝑟̅ – радиус-вектор 

электрона. К данному выражению можно применить разложение по 

приведенным сферическим функциям вида: 

1

|𝑟̅−𝑟′̅̅ ̅|
= ∑

𝑟<
𝑘

𝑟>
𝑘+1 ∑ 𝐶𝑞

𝑘(𝜃, 𝜙)(𝐶𝑞
𝑘(𝜃′, 𝜙′))∗𝑘

𝑞=−𝑘
∞
𝑘=0 , 

где r<  и r> – min(r, r ') и max(r, r') соответственно, а приведенные сферические 

функции пропорциональны обычным сферическим функциям: 

𝐶𝑞
𝑘(𝜃, 𝜙) = √

4𝜋

2𝑘+1
𝑌𝑘𝑞(𝜃, 𝜙). 

Тогда гамильтониан примет вид: 

𝐻̂CF = ∑ 𝑒𝑍𝐿 ∑
𝑟<

𝑘

𝑟>
𝑘+1 ∑ 𝐶𝑞

𝑘(𝜃, 𝜙)(𝐶𝑞
𝑘(𝜃𝐿, 𝜙𝐿))∗

𝑘

𝑞=−𝑘

∞

𝑘=0𝐿

. 

Рассмотрим произвольный матричный элемент такого гамильтониана 

между оболочками (nl) и (n'l'): 

https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D0%BF%D0%B8%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D1%84
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D0%BF%D0%B8%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D1%84
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D0%BF%D0%B8%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D1%84
https://ru.wikipedia.org/wiki/%D0%9C%D0%B0%D1%88%D0%B8%D0%BD%D0%BE%D0%BF%D0%B8%D1%81%D0%BD%D1%8B%D0%B9_%D0%B0%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D1%84
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⟨𝑛, 𝑙, 𝑚, 𝑚𝑠|𝐻̂CF|𝑛′, 𝑙′, 𝑚′, 𝑚𝑠
′ ⟩

= 𝛿𝑚𝑠,𝑚𝑠′ ∫ 𝑑3𝑟̅ (𝜓𝑛𝑙𝑚(𝑟̅))∗𝐻̂𝐶𝐹𝜓𝑛′𝑙′𝑚′(𝑟̅)
+∞

−∞

= 𝛿𝑚𝑠,𝑚𝑠′ ∫ 𝑑3𝑟̅ (𝑅𝑛𝑙(𝑟) 𝑌𝑙𝑚(𝜃, 𝜙))∗  
+∞

−∞

∙ ∑ 𝑒𝑍𝐿 ∑
𝑟<

𝑘

𝑟>
𝑘+1 ∑ 𝐶𝑞

𝑘(𝜃, 𝜙)(𝐶𝑞
𝑘(𝜃𝐿, 𝜙𝐿))∗

𝑘

𝑞=−𝑘

∞

𝑘=0𝐿

 𝑅𝑛′𝑙′(𝑟) 𝑌𝑙′𝑚′(𝜃, 𝜙) 

= 𝛿𝑚𝑠,𝑚𝑠′ ∫ ∫ 𝑑𝜃𝑑𝜙 𝑠𝑖𝑛 𝜃 ( 𝑌𝑙𝑚(𝜃, 𝜙))∗ ∙ 
2𝜋

0

𝜋

0

∙ ∑ ∑ 𝐶𝑞
𝑘(𝜃, 𝜙) [∑ 〈

𝑟<
𝑘

𝑟>
𝑘+1

〉𝑛𝑙,𝑛′𝑙′ 𝑒𝑍𝐿(𝐶𝑞
𝑘(𝜃𝐿, 𝜙𝐿))

𝐿

]

𝑘

𝑞=−𝑘

∞

𝑘=0

𝑌𝑙′𝑚′(𝜃, 𝜙). 

Введем обозначение 𝐵𝑞
𝑘(𝑛𝑙, 𝑛′𝑙′) для содержимого квадратных скобок, 

эти величины называются параметрами кристаллического поля. Далее 

рассмотрим следующее свойство сферических функций: 

∫ ∫ 𝑑𝜃𝑑𝜙 𝑠𝑖𝑛 𝜃 ( 𝑌𝑙𝑚(𝜃, 𝜙))
∗
𝐶𝑞

𝑘(𝜃, 𝜙)𝑌𝑙′𝑚′(𝜃, 𝜙)
2𝜋

0

𝜋

0

= (−1)𝑚(2𝑙 + 1) (
𝑙 𝑘 𝑙′
0 0 0

) (
𝑙 𝑘 𝑙′

−𝑚 𝑞 𝑚′
). 

Матрицами 2 3 здесь обозначены функции шести индексов, 

называемые 3j-символами Вигнера. Окончательно для рассматриваемого 

матричного элемента будем иметь: 

⟨𝑛, 𝑙, 𝑚, 𝑚𝑠|𝐻̂CF|𝑛′, 𝑙′, 𝑚′, 𝑚𝑠′⟩

= 𝛿𝑚𝑠,𝑚𝑠′ ∑ ∑ 𝐵𝑞
𝑘(𝑛𝑙, 𝑛′𝑙′)(−1)𝑚

𝑘

𝑞=−𝑘

∞

𝑘=0

∙ (2𝑙 + 1) (
𝑙 𝑘 𝑙′
0 0 0

) (
𝑙 𝑘 𝑙′

−𝑚 𝑞 𝑚′
). 

Заметим, что в теории кристаллического поля выяснилось, что 

существенный вклад в гамильтониан кристаллического поля вносят эффекты 

перекрывания электронных облаков электронов незаполненных примесного 



8 

 

парамагнитного иона и электронов внешних оболочек лигандов. Однако было 

показано, что общий вид гамильтониана и его матричных элементов остается 

прежним, только меняется смысл параметров кристаллического поля. Таким 

образом, параметры кристаллического поля можно вычислять в 

микроскопических моделях, учитывающих вклад точечных зарядов и 

эффекты, связанные с пространственным распределением электронных 

облаков. В то же время при решении ряда задач спектроскопии можно 

рассматривать параметры кристаллического в качестве подгоночных 

параметров.  

Отметим, что, в силу требования эрмитовости гамильтониана, на 

параметры кристаллического поля накладывается требование:  𝐵𝑞
𝑘∗

=

(−1)
𝑞
𝐵−𝑞

𝑘
. 

3j-символы обладают рядом свойств, из которых выделим следующее: 

(
𝑗

1
𝑗

2
𝑗

3
𝑚1 𝑚2 𝑚3

) ≡ 0, если не выполняется одно из условий: 

• |𝑗1 − 𝑗2| ≤ 𝑗3 ≤ 𝑗1 + 𝑗2; 

• 𝑚1 + 𝑚2 + 𝑚3 = 0; 

• Для случая, когда 𝑚1 = 𝑚2 = 𝑚3 = 0: 𝑗1 + 𝑗2 + 𝑗3 – четное 

число. 

Эти свойства, а также тот факт, что ионы Ce3+ замещают в 

кристаллической решетке LiYF4 ионы Y3+ в узлах с симметрией S4, позволяют 

нам записать следующие выражения для эффективных гамильтонианов 

кристаллического поля: 

𝐻̂CF4𝑓1 = 𝐵0
2(4𝑓)𝐶0

2 + 𝐵0
4(4𝑓)𝐶0

4 + 𝐵4
4(4𝑓)𝐶4

4 + 𝐵−4
4 (4𝑓)𝐶−4

4 + 𝐵0
6(4𝑓)𝐶0

6

+ 𝐵4
6(4𝑓)𝐶4

6 + 𝐵−4
6 (4𝑓)𝐶−4

6  

𝐻̂CF5𝑑1 = 𝐵0
2(5𝑑)𝐶0

2 + 𝐵0
4(5𝑑)𝐶0

4 + 𝐵4
4(5𝑑)𝐶4

4 + 𝐵−4
4 (5𝑑)𝐶−4

4  

𝐻̂CF4𝑓1−5𝑑1 = 𝐵2
3(4𝑓 − 5𝑑)𝐶2

3 + 𝐵−2
3 (4𝑓 − 5𝑑)𝐶−2

3 + 𝐵2
5(4𝑓 − 5𝑑)𝐶2

5

+ 𝐵−2
5 (4𝑓 − 5𝑑)𝐶−2

5  
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Итого, мы имеем следующую структуру внутри- и 

межконфигурационных гамильтонианов иона Се3+ в кристалле LiYF4: 

𝐻̂4𝑓1 = 𝐻̂SO4𝑓1 + 𝐻̂CF4𝑓1 

𝐻̂5𝑑1 = 𝐻̂SO5𝑑1 + 𝐻̂CF5𝑑1 + Δ4𝑓1−5𝑑1 

𝐻̂4𝑓1−5𝑑1 = 𝐻̂CF4𝑓1−5𝑑1 

В гамильтониан 𝐻̂5𝑑1 здесь так же было добавлено слагаемое Δ4𝑓1−5𝑑1, 

имеющее смысл энергетического сдвига конфигурации 4f1 относительно 

конфигурации 5d1, и играющее роль подгоночного параметра при описании 

экспериментальных данных.  

1.2. Расчет матричных элементов гамильтониана в базисе 

одноэлектронных состояний |𝒏, 𝒍, 𝒎, 𝒎𝒔⟩ 

 

Вычисление матричных элементов гамильтониана иона Ce3+ проще 

всего провести в базисе |𝑛, 𝑙, 𝑚, 𝑚𝑠⟩. Рассмотрим вычисление матричных 

элементов гамильтониана спин-орбитального взаимодействия для оболочки 

(nl). Спин-орбитальное взаимодействие в пределах этой оболочки имеет вид 

(у параметра спин-орбитального взаимодействия для простоты опустим 

индексы nl): 

𝐻̂SO = 𝜉𝑠̂̅𝑙 ̅̂ = 𝜉(𝑠̂𝑥𝑙𝑥 + 𝑠̂𝑦𝑙𝑦 + 𝑠̂𝑧𝑙𝑧) 

Положим z осью квантования моментов, а операторы с индексами x и y 

перепишем через соответствующие комбинации операторов повышения и 

понижения: 

𝑠̂𝑥 =
𝑠̂++𝑠̂−

2
,  𝑠̂𝑦 =

𝑠̂+−𝑠̂−

2𝑖
,  𝑙𝑥 =

𝑙++𝑙−

2
,  𝑙𝑦 =

𝑙+−𝑙−

2𝑖
, 

тогда выражение примет вид: 

𝐻̂SO = 𝜉(
𝑠̂+𝑙− + 𝑠̂−𝑙+

2
+ 𝑠̂𝑧𝑙𝑧). 
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Рассмотрим, как каждый из операторов данного гамильтониана 

действует на свои собственные вектора: 

𝑠̂+|𝑚𝑠⟩ = √𝑠(𝑠 + 1) − 𝑚𝑠(𝑚𝑠 + 1)|𝑚𝑠 + 1⟩, 

𝑠̂−|𝑚𝑠⟩ = √𝑠(𝑠 + 1) − 𝑚𝑠(𝑚𝑠 − 1)|𝑚𝑠 − 1⟩, 

𝑙+|𝑚⟩ = √𝑙(𝑙 + 1) − 𝑚(𝑚 + 1)|𝑚 + 1⟩, 

𝑙−|𝑚⟩ = √𝑙(𝑙 + 1) − 𝑚(𝑚 − 1)|𝑚 − 1⟩. 

Спин электрона имеет величину 
1

2
, а потому он может иметь всего 2 

проекции: положительную и отрицательную, которые мы, для краткости, 

будем обозначать просто знаками + и –. Имеем единственные ненулевые 

матричные элементы: 

𝑠̂+|−⟩ = |+⟩, 

𝑠̂−|+⟩ = |−⟩. 

Тогда имеем следующие матричные элементы произведений операторов 

(для простоты опустим индексы nl в обозначениях векторов состояний): 

⟨𝑚, 𝑚𝑠|𝑠̂𝑧𝑙𝑧|𝑚′, 𝑚𝑠′⟩ = 𝑚′𝑚𝑠′⟨𝑚, 𝑚𝑠|𝑚′, 𝑚𝑠′⟩ = 𝑚′𝑚𝑠′𝛿𝑚,𝑚′𝛿𝑚𝑠,𝑚𝑠′ , 

⟨𝑚, 𝑚𝑠|𝑠̂+𝑙−|𝑚′ + 1, 𝑚𝑠′ − 1⟩ = √𝑙(𝑙 + 1) − 𝑚′(𝑚′ + 1)⟨𝑚, 𝑚𝑠|𝑚′, 𝑚𝑠′⟩

= √𝑙(𝑙 + 1) − 𝑚′(𝑚′ + 1)𝛿𝑚,𝑚′𝛿𝑚𝑠,𝑚𝑠′ , 

⟨𝑚, 𝑚𝑠|𝑠̂−𝑙+|𝑚′ − 1, 𝑚𝑠′ + 1⟩ = √𝑙(𝑙 + 1) − 𝑚′(𝑚′ − 1)⟨𝑚, 𝑚𝑠|𝑚′, 𝑚𝑠′⟩

= √𝑙(𝑙 + 1) − 𝑚′(𝑚′ − 1)𝛿𝑚,𝑚′𝛿𝑚𝑠,𝑚𝑠′ . 

Из этих выражений можно заключить следующее: каждый ненулевой 

матричный элемент будет иметь ненулевой вклад лишь от одного из 

слагаемых гамильтониана спин-орбитального взаимодействия. 

Рассмотрим вычисление матричных элементов гамильтониана 

кристаллического поля. Обратившись к приведенному выше выражению для 

произвольного матричного элемента гамильтониана кристаллического 

поля⟨𝑛, 𝑙, 𝑚, 𝑚𝑠|𝐻̂CF|𝑛′, 𝑙′, 𝑚′, 𝑚𝑠′⟩, заметим, что наличие в нем 3j-символа 

(
𝑙 𝑘 𝑙′

−𝑚 𝑞 𝑚′
) с учетом рассмотренных выше свойств 3j-символов дает 
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правило отбора q=m−m'. Еще одним упрощением работы является тот факт, 

что, как видно из общего выражения, ненулевые матричные элементы, 

отличающиеся только спиновыми квантовыми числами, равны, 

т.е. ⟨𝑛, 𝑙, 𝑚, +|𝐻̂CF|𝑛′, 𝑙′, 𝑚′, +⟩ = ⟨𝑛, 𝑙, 𝑚, −|𝐻̂𝐶𝐹|𝑛′, 𝑙′, 𝑚′, −⟩. 

 Вычисленные нами матричные элементы гамильтонианов  

𝐻̂
SO4𝑓

1
,
𝐻̂

SO5𝑑
1 , 𝐻̂

CF4𝑓
1, 𝐻̂

CF5𝑑
1 и 𝐻̂

CF4𝑓
1

−5𝑑
1 в базисе одноэлектронных состояний 

|𝑛, 𝑙, 𝑚, 𝑚𝑠⟩ приведены в Таблицах 1 и 2. 

Таблица 1.Матричные элементы гамильтониана спин-орбитального 

взаимодействия. 

Конфигурация Матричные элементы 

4𝑓1 ⟨3, +|𝐻̂SO4𝑓1|3, +⟩ = ⟨−3, −|𝐻̂SO4𝑓1|−3, −⟩

= −⟨3, −|𝐻̂SO4𝑓1|3, −⟩

= −⟨−3, +|𝐻̂SO4𝑓1|−3, +⟩ =
3

2
𝜉4𝑓 

⟨2, +|𝐻̂SO4𝑓1|2, +⟩ = ⟨−2, −|𝐻̂SO4𝑓1|−2, −⟩

= −⟨−2, +|𝐻̂SO4𝑓1|−2, +⟩

= −⟨2, −|𝐻̂SO4𝑓1|2, −⟩ = 𝜉4𝑓 

⟨1, +|𝐻̂SO4𝑓1|1, +⟩ = ⟨−1, −|𝐻̂SO4𝑓1|−1, −⟩

= −⟨−1, +|𝐻̂SO4𝑓1|−1, +⟩

= −⟨1, −|𝐻̂SO4𝑓1|1, −⟩ =
1

2
𝜉4𝑓 

⟨0, +|𝐻̂SO4𝑓1|0, +⟩ = ⟨0, −|𝐻̂SO4𝑓1|0, −⟩ = 0 

 

⟨−3, +|𝐻̂SO4𝑓1|−2, −⟩ = ⟨2, +|𝐻̂SO4𝑓1|3, −⟩

= ⟨3, −|𝐻̂SO4𝑓1|2, +⟩ = ⟨−2, −|𝐻̂SO4𝑓1|−3, +⟩

=
√6

2
𝜉4𝑓 
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⟨−2, +|𝐻̂SO4𝑓1|−1, −⟩ = ⟨1, +|𝐻̂SO4𝑓1|2, −⟩

= ⟨2, −|𝐻̂SO4𝑓1|1, +⟩ = ⟨−1, −|𝐻̂SO4𝑓1|−2, +⟩

=
√10

2
𝜉4𝑓 

⟨−1, +|𝐻̂SO4𝑓1|0, −⟩ = ⟨0, +|𝐻̂SO4𝑓1|1, −⟩

= ⟨1, −|𝐻̂SO4𝑓1|0, +⟩ = ⟨0, −|𝐻̂SO4𝑓1|−1, +⟩

=
√12

2
𝜉4𝑓 

5𝑑1 ⟨2, +|𝐻̂SO5𝑑1|2, +⟩ = ⟨−2, −|𝐻̂SO5𝑑1|−2, −⟩

= −⟨−2, +|𝐻̂SO5𝑑1|−2, +⟩

= −⟨2, −|𝐻̂SO5𝑑1|2, −⟩ = ⟨−2, +|𝐻̂SO5𝑑1|−1, −⟩

= ⟨1, +|𝐻̂SO5𝑑1|2, −⟩ = ⟨2, −|𝐻̂SO5𝑑1|1, +⟩

= ⟨−1, −|𝐻̂SO5𝑑1|−2, +⟩ = 𝜉5𝑑  

⟨1, +|𝐻̂SO5𝑑1|1, +⟩ = ⟨−1, −|𝐻̂SO5𝑑1|−1, −⟩

= −⟨−1, +|𝐻̂SO5𝑑1|−1, +⟩

= −⟨1, −|𝐻̂SO5𝑑1|1, −⟩ =
1

2
𝜉5𝑑 

⟨0, +|𝐻̂SO5𝑑1|0, +⟩ = ⟨0, −|𝐻̂SO5𝑑1|0, −⟩ = 0 

⟨−1, +|𝐻̂SO5𝑑1|0, −⟩ = ⟨0, +|𝐻̂SO5𝑑1|1, −⟩

= ⟨1, −|𝐻̂SO5𝑑1|0, +⟩ = ⟨0, −|𝐻̂SO5𝑑1|−1, +⟩

=
√6

2
𝜉5𝑑  

 

Таблица 2.Матричные элементы гамильтониана взаимодействия с 

кристаллическим полем. 

Конфигурация Матричные элементы 
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4𝑓1 ⟨4𝑓, 3, +|𝐻̂CF4𝑓1|4𝑓, 3, +⟩ = ⟨4𝑓, −3, −|𝐻̂CF4𝑓1|4𝑓, −3, −⟩

= ⟨4𝑓, 3, −|𝐻̂CF4𝑓1|4𝑓, 3, −⟩

= ⟨4𝑓, −3, +|𝐻̂CF4𝑓1|4𝑓, −3, +⟩

= −
1

3
𝐵0

2(4𝑓) +
1

11
𝐵0

4(4𝑓) −
5

429
𝐵0

6(4𝑓) 

⟨4𝑓, 2, +|𝐻̂CF4𝑓1|4𝑓, 2, +⟩ = ⟨4𝑓, 2, −|𝐻̂CF4𝑓1|4𝑓, 2, −⟩

= −
7

33
𝐵0

4(4𝑓) +
10

143
𝐵0

6(4𝑓) 

⟨4𝑓, 2, +|𝐻̂CF4𝑓1|4𝑓, −2, +⟩ = ⟨4𝑓, 2, −|𝐻̂CF4𝑓1|4𝑓, −2, −⟩

= ⟨4𝑓, −2, −|𝐻̂CF4𝑓1|4𝑓, 2, −⟩

= ⟨4𝑓, −2, +|𝐻̂CF4𝑓1|4𝑓, 2, +⟩

=
√70

33
𝐵4

4(4𝑓) +
10√14

143
𝐵4

6(4𝑓) 

⟨4𝑓, 1, +|𝐻̂CF4𝑓1|4𝑓, 1, +⟩ = ⟨4𝑓, −1, −|𝐻̂CF4𝑓1|4𝑓, −1, −⟩

= ⟨4𝑓, 1, −|𝐻̂CF4𝑓1|4𝑓, 1, −⟩

= ⟨4𝑓, −1, +|𝐻̂CF4𝑓1|4𝑓, −1, +⟩

=
1

5
𝐵0

2(4𝑓) +
1

33
𝐵0

4(4𝑓) −
25

143
𝐵0

6(4𝑓) 

⟨4𝑓, 0, +|𝐻̂CF4𝑓1|4𝑓, 0, +⟩ = ⟨4𝑓, 0, −|𝐻̂CF4𝑓1|4𝑓, 0, −⟩

=
4

15
𝐵0

2(4𝑓) +
2

11
𝐵0

4(4𝑓) +
100

429
𝐵0

6(4𝑓) 
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⟨4𝑓, 3, +|𝐻̂CF4𝑓1|−1, +⟩ = ⟨4𝑓, 3, −|𝐻̂CF4𝑓1|4𝑓, −1, −⟩

= ⟨4𝑓, −1, −|𝐻̂CF4𝑓1|4𝑓, 3, −⟩

= ⟨4𝑓, −1, +|𝐻̂CF4𝑓1|4𝑓, −3, +⟩

= ⟨4𝑓, 1, +|𝐻̂CF4𝑓1|4𝑓, −3, +⟩

= ⟨4𝑓, −3, −|𝐻̂CF4𝑓1|4𝑓, 1, −⟩

= ⟨4𝑓, 1, −|𝐻̂CF4𝑓1|4𝑓, −3, −⟩

= ⟨4𝑓, −3, +|𝐻̂CF4𝑓1|4𝑓, 1, +⟩

=
√42

33
𝐵−4

4 (4𝑓) −
5√210

429
𝐵−4

6 (4𝑓) 

5𝑑1 ⟨5𝑑, 2, +|𝐻̂CF5𝑑1|5𝑑, 2, +⟩ = ⟨5𝑑, 2, −|𝐻̂CF5𝑑1|5𝑑, 2, −⟩

= ⟨5𝑑, −2, −|𝐻̂CF5𝑑1|5𝑑, −2, −⟩

= ⟨5𝑑, −2, +|𝐻̂CF5𝑑1|5𝑑, −2, +⟩

= −
2

7
𝐵0

2(5𝑑) +
1

21
𝐵0

4(5𝑑) 

⟨5𝑑, −2, +|𝐻̂CF5𝑑1|5𝑑, 2, +⟩ = ⟨5𝑑, −2, −|𝐻̂CF5𝑑1|5𝑑, 2, −⟩

=
√70

21
𝐵−4

4 (5𝑑) 

⟨5𝑑, 2, +|𝐻̂CF5𝑑1|5𝑑, −2, +⟩ = ⟨5𝑑, 2, −|𝐻̂CF5𝑑1|5𝑑, −2, −⟩

=
√70

21
𝐵4

4(5𝑑) 

⟨5𝑑, 1, +|𝐻̂CF5𝑑1|5𝑑, 1, +⟩ = ⟨5𝑑, −1, −|𝐻̂CF5𝑑1|5𝑑, −1, −⟩

= ⟨5𝑑, 1, −|𝐻̂CF5𝑑1|5𝑑, 1, −⟩

= ⟨5𝑑, −1, +|𝐻̂CF5𝑑1|5𝑑, −1, +⟩

=
1

7
𝐵0

2(5𝑑) −
4

3
𝐵0

4(5𝑑) 

⟨5𝑑, 0, +|𝐻̂CF5𝑑1|5𝑑, 0, +⟩ = ⟨5𝑑, 0, −|𝐻̂CF5𝑑1|5𝑑, 0, −⟩

=
2

7
𝐵0

2(5𝑑) +
2

7
𝐵0

4(5𝑑) 
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4𝑓1 − 5𝑑1 ⟨4𝑓, 3, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 1, +⟩

= ⟨4𝑓, 3, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 1, −⟩

=
√35

21
𝐵2

3(4𝑓 − 5𝑑) −
√5

33
𝐵2

5(4𝑓 − 5𝑑) 

⟨4𝑓, −3, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −1, −⟩

= ⟨4𝑓, −3, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −1, +⟩

=
√35

21
𝐵−2

3 (4𝑓 − 5𝑑) −
√5

33
𝐵−2

5 (4𝑓 − 5𝑑) 

⟨4𝑓, 2, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 0, +⟩

= ⟨4𝑓, 2, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 0, −⟩

=
√5

11
𝐵2

5(4𝑓 − 5𝑑) 

⟨4𝑓, −2, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 0, +⟩

= ⟨4𝑓, −2, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 0, −⟩

=
√5

11
𝐵−2

5 (4𝑓 − 5𝑑) 

⟨4𝑓, 1, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −1, −⟩

= ⟨4𝑓, 1, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −1, +⟩

= −
1

√21
𝐵2

3(4𝑓 − 5𝑑) −
5√3

33
𝐵2

5(4𝑓 − 5𝑑) 

⟨4𝑓, −1, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 1, −⟩

= ⟨4𝑓, −1, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 1, +⟩

= −
1

√21
𝐵−2

3 (4𝑓 − 5𝑑) −
5√3

33
𝐵−2

5 (4𝑓 − 5𝑑) 

⟨4𝑓, 0, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 2, +⟩

= ⟨4𝑓, 0, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, 2, −⟩

= −
2√7

21
𝐵−2

3 (4𝑓 − 5𝑑) +
5

33
𝐵−2

5 (4𝑓 − 5𝑑) 
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⟨4𝑓, 0, +|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −2, +⟩

= ⟨4𝑓, 0, −|𝐻̂CF4𝑓1−5𝑑1|5𝑑, −2, −⟩

= −
2√7

21
𝐵2

3(4𝑓 − 5𝑑) +
5

33
𝐵2

5(4𝑓 − 5𝑑) 

 

1.3. Расчет матричных элементов гамильтониана в базисе полного 

момента 

 

Как уже отмечалось, наиболее удобным базисом для расчета матричных 

элементов гамильтониана примесного парамагнитного иона является базис 

одноэлектронных состояний |𝑛, 𝑙, 𝑚, 𝑚𝑠⟩, т.к. именно на магнитное и спиновое 

квантовые числа электрона действуют операторы, входящие в спин-

орбитальное взаимодействие. Кроме того, матричные элементы 

гамильтониана кристаллического поля имеют также весьма простой вид в 

данном базисе. 

Однако для наших дальнейших целей – вывод и анализ формул для g-

факторов иона Ce3+ – нам необходимо перейти в базис полного момента. Для 

перехода в этот базис из базиса |𝑛, 𝑙, 𝑚, 𝑚𝑠⟩  воспользуемся коэффициентами 

Клебша-Гордана. 

Пусть имеются 2 момента импульса: 𝑗1 с возможными проекциями 𝑚1 =

{−𝑗1, −𝑗1 + 1, … 𝑗1} и 𝑗2 – с  𝑚2 = {−𝑗2, −𝑗2 + 1, … 𝑗2}, тогда разложение 

полного момента импульса будет иметь вид: 

|𝐽, 𝑀, 𝑗1, 𝑗2⟩ = ∑ |𝑗1, 𝑚1; 𝑗2, 𝑚2⟩⟨𝑗1, 𝑚1; 𝑗2, 𝑚2|𝐽, 𝑀, 𝑗1, 𝑗2⟩
𝑚1,𝑚2

, 

где множители ⟨𝑗1, 𝑚1; 𝑗2, 𝑚2|𝐽, 𝑀, 𝑗1, 𝑗2⟩ есть коэффициенты Клебша-Гордана: 

⟨𝑗1, 𝑚1; 𝑗2, 𝑚2|𝐽, 𝑀, 𝑗1, 𝑗2⟩

= √2𝑗 + 1 √𝛥𝑗1𝑗2𝑗  √
(𝑗1 + 𝑚1)! (𝑗 − 𝑚)!

(𝑗1 − 𝑚1)! (𝑗2 + 𝑚2)! (𝑗2 − 𝑚2)! (𝑗 + 𝑚)!
× 
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∑
(−1)𝑗1+𝑚2−𝑠(𝑗 + 𝑠)(𝑗2 + 𝑠 − 𝑚1)!

(𝑗 − 𝑠)! (𝑠 − 𝑚1 − 𝑚2)! (𝑠 − 𝑗1 + 𝑗2)! (𝑗1 + 𝑗2 + 𝑠 + 1)!
,

𝑗

𝑠=max(𝑚1+𝑚2,𝑗1−𝑗2)
 

в этом выражении  

 𝛥𝑗1𝑗2𝑗 =
(𝑗1 + 𝑗2 − 𝑗)! (𝑗2 + 𝑗 − 𝑗1)! (𝑗 + 𝑗1 − 𝑗2)!

(𝑗1 + 𝑗2 + 𝑗 + 1)!
. 

В случае с переходом от |𝑚, 𝑚𝑠⟩ к |𝐽, 𝑀𝐽⟩: 𝑗1 = 𝑙, 𝑚1 = {−𝑙, −𝑙 + 1, … 𝑙}, а 

𝑗2 = 𝑠, 𝑚2 = {±
1

2
}. 

Важным вспомогательным свойством коэффициентов Клебша-Гордана 

является то, что они могут быть отличны от нуля только при 𝑀 = 𝑚1 + 𝑚2 – 

это условие отражает равенство проекции полного момента сумме проекций 

составляющих его моментов. 

Рассмотрим, в каких состояниях может находиться изучаемый нами ион 

Се3+ в базисе полного момента: 

𝐽 = 𝑙 ± 𝑠  𝑀𝐽 = {−𝐽, −𝐽 + 1, . . 𝐽} 

конфигурация 4𝑓1: 

• 𝐽 =
5

2
 𝑀5

2

= {−
5

2
, −

3

2
, . .

5

2
}; 

• 𝐽 =
7

2
 𝑀7

2

= {−
7

2
, −

5

2
, . .

7

2
}; 

конфигурация 5𝑑1: 

• 𝐽 =
3

2
 𝑀3

2

= {−
3

2
, −

1

2
, . .

3

2
}; 

• 𝐽 =
5

2
 𝑀5

2

= {−
5

2
, −

3

2
, . .

5

2
}. 

Проекции полных моментов принимают только полуцелые значения, а 

условие для ненулевых коэффициентов Клебша-Гордана имеет вид 𝑀 = 𝑚1 +

𝑚2, где 𝑚1 принимает только целые значения, а 𝑚2 = ±𝑠 = ±
1

2
. Потому 

разложения будут выглядеть следующим образом: 

|𝐽, 𝑀, 𝑗1, 𝑗2⟩ = |𝑗1, 𝑀 −
1

2
; 𝑗2, −

1

2
⟩ ⟨𝑗1, 𝑀 −

1
2

; 𝑗2, −
1
2

|𝐽, 𝑀, 𝑗1, 𝑗2⟩

+ |𝑗1, 𝑀 +
1

2
; 𝑗2,

1

2
⟩ ⟨𝑗1, 𝑀 +

1
2

; 𝑗2,
1
2

|𝐽, 𝑀, 𝑗1, 𝑗2⟩ 
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и иметь не более двух слагаемых. Все полученные для исследуемых 

конфигураций разложения записаны в Таблице 3. 

 

Таблица 3. Разложения векторов состояний базиса полного момента в базисе 

|𝑛, 𝑙, 𝑚, 𝑚𝑠⟩. 

Конфигурация и 

квантовое число полного 

момента 

Разложение векторов состояний 

4𝑓1 

𝐽 =
5

2
 

|4𝑓,
5

2
, −

5

2
⟩ = √

1

7
|4𝑓, −2, −⟩ − √

6

7
|4𝑓, −3, +⟩ 

|4𝑓,
5

2
,
5

2
⟩ = √

6

7
|4𝑓, 3, −⟩ − √

1

7
|4𝑓, 2, +⟩ 

|4𝑓,
5

2
, −

3

2
⟩ = √

2

7
|4𝑓, −1, −⟩ − √

5

7
|4𝑓, −2, +⟩ 

|4𝑓,
5

2
,
3

2
⟩ = √

5

7
|4𝑓, 2, −⟩ − √

2

7
|4𝑓, 1, +⟩ 

|4𝑓,
5

2
, −

1

2
⟩ = √

3

7
|4𝑓, 0, −⟩ − √

4

7
|4𝑓, −1, +⟩ 

|4𝑓,
5

2
,
1

2
⟩ = √

4

7
|4𝑓, 1, −⟩ − √

3

7
|4𝑓, 0, +⟩ 

4𝑓1 

𝐽 =
7

2
 

|4𝑓,
7

2
, −

7

2
⟩ = |4𝑓, −3, −⟩ 

|4𝑓,
7

2
,
7

2
⟩ = |4𝑓, 3, +⟩ 

|4𝑓,
7

2
, −

5

2
⟩ = √

6

7
|4𝑓, −2, −⟩ + √

1

7
|4𝑓, −3, +⟩ 



19 

 

|4𝑓,
7

2
,
5

2
⟩ = √

1

7
|4𝑓, 3, −⟩ + √

6

7
|4𝑓, 2, +⟩ 

|4𝑓,
7

2
, −

3

2
⟩ = √

5

7
|4𝑓, −1, −⟩ + √

2

7
|4𝑓, −2, +⟩ 

|4𝑓,
7

2
,
3

2
⟩ = √

2

7
|4𝑓, 2, −⟩ + √

5

7
|4𝑓, 1, +⟩ 

|4𝑓,
7

2
, −

1

2
⟩ = √

4

7
|4𝑓, 0, −⟩ + √

3

7
|4𝑓, −1, +⟩ 

|4𝑓,
7

2
,
1

2
⟩ = √

3

7
|4𝑓, 1, −⟩ + √

4

7
|4𝑓, 0, +⟩ 

5𝑑1 

𝐽 =
3

2
 

|5𝑑,
3

2
, −

3

2
⟩ = √

1

5
|5𝑑, −1, −⟩ − √

4

5
|5𝑑, −2, +⟩ 

|5𝑑,
3

2
,
3

2
⟩ = √

4

5
|5𝑑, 2, −⟩ − √

1

5
|5𝑑, 1, +⟩ 

|5𝑑,
3

2
, −

1

2
⟩ = √

2

5
|5𝑑, 0, −⟩ − √

3

5
|5𝑑, −1, +⟩ 

|5𝑑,
3

2
,
1

2
⟩ = √

3

5
|5𝑑, 1, −⟩ − √

2

5
|5𝑑, 0, +⟩ 

5𝑑1 

𝐽 =
5

2
 

|5𝑑,
5

2
, −

5

2
⟩ = |5𝑑, −2, −⟩ 

|5𝑑,
5

2
,
5

2
⟩ = |5𝑑, 2, +⟩ 

|5𝑑,
5

2
, −

3

2
⟩ = √

4

5
|5𝑑, −1, −⟩ + √

1

5
|5𝑑, −2, +⟩ 
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|5𝑑,
5

2
,
3

2
⟩ = √

1

5
|5𝑑, 2, −⟩ + √

4

5
|5𝑑, 1, +⟩ 

|5𝑑,
5

2
, −

1

2
⟩ = √

3

5
|5𝑑, 0, −⟩ + √

2

5
|5𝑑, −1, +⟩ 

|5𝑑,
5

2
,
1

2
⟩ = √

2

5
|5𝑑, 1, −⟩ + √

3

5
|5𝑑, 0, +⟩ 

 

Как будет показано в следующей главе, нам достаточно построить лишь 

часть матрицы гамильтониана в базисе полного момента. Часть базиса, 

которой мы можем ограничиться, составляют вектор 
5 5

4 , ,
2 2

f  и те базисные 

вектора в схеме полного момента, которые будут «перемешиваться» с 

указанным вектором кристаллическим полем. «Перемешивание» двух 

состояний означает отличие от нуля недиагонального матричного элемента 

гамильтониана кристаллического поля, взятого на соответствующих им 

векторах. Потому, для нахождения состояний, перемешивающихся с 

выделенным выше, рассмотрим разложение последнего: 

|4𝑓,
5

2
,
5

2
⟩ = √

6

7
|4𝑓, 3, −⟩ − √

1

7
|4𝑓, 2, +⟩. 

Как следует из формулы для матричных элементов кристаллического 

поля и вида гамильтониана кристаллического поля симметрии S4, указанное 

состояние будет смешиваться с другими состояниями, содержащими в себе 

вектора |4𝑓, 3, −⟩ и |4𝑓, 2, +⟩ , а также с теми, что включают вектора 

|4𝑓, −1, −⟩, |4𝑓, −2, +⟩, |5𝑑, 0, +⟩ и |5𝑑, 1, −⟩. Таковыми являются (см. 

Таблицу3 ): 

|4𝑓,
5

2
, −

3

2
⟩ = √

2

7
|4𝑓, −1, −⟩ − √

5

7
|4𝑓, −2, +⟩, 
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|4𝑓,
7

2
,
5

2
⟩ = √

1

7
|4𝑓, 3, −⟩ + √

6

7
|4𝑓, 2, +⟩, 

|4𝑓,
7

2
, −

3

2
⟩ = √

5

7
|4𝑓, −1, −⟩ + √

2

7
|4𝑓, −2, +⟩, 

|5𝑑,
3

2
,
1

2
⟩ = √

3

5
|5𝑑, 1, −⟩ − √

2

5
|5𝑑, 0, +⟩, 

|5𝑑,
5

2
,
1

2
⟩ = √

2

5
|5𝑑, 1, −⟩ + √

3

5
|5𝑑, 0, +⟩. 

На данных состояниях, с использованием Таблиц 1, 2 и 3, была 

построена матрица гамильтониана размерности 6 на 6. Упомянем, что, в силу 

требования эрмитовости, для этой матрицы выполняется  ⟨𝑖|𝐻̂|𝑗⟩ = ⟨𝑗|𝐻̂|𝑖⟩
∗
. 

Нами были получены следующие диагональные матричные элементы 

гамильтониана: 

⟨4𝑓,
5
2

,
5
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩ = −2𝜉4𝑓 −
6

21
𝐵0

2(4𝑓) +
1

21
𝐵0

4(4𝑓), 

⟨4𝑓,
5
2

, −
3
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩ = −2𝜉4𝑓 +
2

35
𝐵0

2(4𝑓) −
1

7
𝐵0

4(4𝑓), 

⟨4𝑓,
7
2

,
5
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩ =
3

2
𝜉4𝑓 −

1

21
𝐵0

2(4𝑓) −
13

77
𝐵0

4(4𝑓) +
25

429
𝐵0

6(4𝑓), 

⟨4𝑓,
7
2

, −
3
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩ =
3

2
𝜉4𝑓 +

1

7
𝐵0

2(4𝑓) −
3

77
𝐵0

4(4𝑓) −
15

143
𝐵0

6(4𝑓), 

⟨5𝑑,
3
2

,
1
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩ = −
3

2
𝜉5𝑑 +

1

5
𝐵0

2(5𝑑)+Δ4𝑓1−5𝑑1 , 

⟨5𝑑,
5
2

,
1
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = 𝜉5𝑑 +
8

35
𝐵0

2(5𝑑) +
2

21
𝐵0

4(5𝑑) + Δ4𝑓1−5𝑑1 

и недиагональные матричные элементы гамильтониана:  

⟨4𝑓,
5
2

,
5
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩ = ⟨4𝑓,
5
2

, −
3
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩
∗

=
√14

21
𝐵4

4(4𝑓), 
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⟨4𝑓,
5
2

,
5
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩ = ⟨4𝑓,
7
2

,
5
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩
∗

= −
√6

21
𝐵0

2(4𝑓) +
10√6

231
𝐵0

4(4𝑓) −
5√6

429
𝐵0

6(4𝑓), 

⟨4𝑓,
5
2

,
5
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩ = ⟨4𝑓,
7
2

, −
3
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩
∗

=
4√35

231
𝐵4

4(4𝑓) −
10√7

143
𝐵4

6(4𝑓), 

⟨4𝑓,
5
2

,
5
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩ = ⟨5𝑑,
3
2

,
1
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩
∗

=
√2

7
𝐵2

3(4𝑓 − 5𝑑), 

⟨4𝑓,
5
2

,
5
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = ⟨5𝑑,
5
2

,
1
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩
∗

=
2√3

21
𝐵2

3(4𝑓 − 5𝑑) −
5√21

231
𝐵2

5(4𝑓 − 5𝑑), 

⟨4𝑓,
5
2

, −
3
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩ = ⟨4𝑓,
7
2

,
5
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩
∗

= −
8√21

231
𝐵−4

4 (4𝑓) −
10√105

429
𝐵−4

6 (4𝑓), 

⟨4𝑓,
5
2

, −
3
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩ = ⟨4𝑓,
7
2

, −
3
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩
∗

=
√10

35
𝐵0

2(4𝑓) +
8√10

231
𝐵0

4(4𝑓) −
5√10

429
𝐵0

6(4𝑓), 

⟨4𝑓,
5
2

, −
3
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩ = ⟨5𝑑,
3
2

,
1
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩
∗

= −
√10

35
𝐵−2

3 (4𝑓 − 5𝑑), 

⟨4𝑓,
5
2

, −
3
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = ⟨5𝑑,
5
2

,
1
2

|𝐻̂|4𝑓,
5
2

, −
3
2

⟩
∗

= −
2√15

105
𝐵−2

3 (4𝑓 − 5𝑑) −
5√105

231
𝐵−2

5 (4𝑓 − 5𝑑), 

⟨4𝑓,
7
2

,
5
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩ = ⟨4𝑓,
7
2

, −
3
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩
∗

=
√210

77
𝐵4

4(4𝑓) +
5√42

429
𝐵4

6(4𝑓), 
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⟨4𝑓,
7
2

,
5
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩ = ⟨5𝑑,
3
2

,
1
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩
∗

=
√3

21
𝐵2

3(4𝑓 − 5𝑑) −
√21

33
𝐵2

5(4𝑓 − 5𝑑), 

⟨4𝑓,
7
2

,
5
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = ⟨5𝑑,
5
2

,
1
2

|𝐻̂|4𝑓,
7
2

,
5
2

⟩
∗

=
√2

21
𝐵2

3(4𝑓 − 5𝑑) +
8√14

231
𝐵2

5(4𝑓 − 5𝑑), 

⟨4𝑓,
7
2

, −
3
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩ = ⟨5𝑑,
3
2

,
1
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩
∗

= −
1

7
𝐵−2

3 (4𝑓 − 5𝑑) −
√7

11
𝐵−2

5 (4𝑓 − 5𝑑), 

⟨4𝑓,
7
2

, −
3
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = ⟨5𝑑,
5
2

,
1
2

|𝐻̂|4𝑓,
7
2

, −
3
2

⟩
∗

= −
√6

21
𝐵−2

3 (4𝑓 − 5𝑑) −
2√42

231
𝐵−2

5 (4𝑓 − 5𝑑), 

⟨5𝑑,
3
2

,
1
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩ = ⟨5𝑑,
5
2

,
1
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩
∗

= −
√6

35
𝐵0

2(5𝑑) −
2√6

21
𝐵0

4(5𝑑). 
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2. Расчет g-факторов иона Се3+ в кристалле LiYF4 

 

2.1. Взаимодействие с магнитным полем, g-тензор, g-факторы. 

 

Обратим внимание на то, что трехвалентный ион Се3+ имеет один 

электрон на незаполненной оболочке. Следовательно, его уровни энергии по 

меньшей мере двукратно вырождены. Такое вырождение называется 

крамерсовым, обусловлено оно симметрией относительно обращения 

времени. Свойства оператора обращения времени 𝜃̂ рассмотрены в [4]. 

Выделим из них следующие: 

1. Оператор обращения времени–антиунитарен, т.е. для него верно 

равенство: 

⟨𝜃𝜓|𝜃𝜙⟩ = ⟨𝜓|𝜙⟩∗ = ⟨𝜙|𝜓⟩ 

2. В координатном представлении, т.е. когда матрица оператора 𝑟̂̅ 

является диагональной, и при вещественных матрицах операторов 𝑠𝑥̂ и 𝑠𝑧̂ 

рассматриваемого одного электрона имеет место, что 𝜃2̂ = −1  Предположим 

также, что гамильтониан одноэлектронной системы 𝐻̂ и оператор обращения 

времени коммутируют (что достижимо при отсутствии магнитного поля). 

Тогда, если  𝜓𝑖 -некоторое стационарное состояние этой системы, 

соответствующее энергии Е𝑖, то 𝐻̂𝜃̂𝜓𝑖 = 𝜃̂𝐻̂𝜓𝑖 = 𝜃̂Е𝑖𝜓𝑖 = Е𝑖𝜃̂𝜓𝑖, а потому 𝜃̂𝜓𝑖 

так же является стационарным состоянием с энергией Е𝑖. Введя обозначение 

𝜙𝑖 = 𝜃̂𝜓𝑖, рассмотрим скалярное произведение 𝜓𝑖 и 𝜙𝑖: 

⟨𝜓𝑖|𝜙𝑖⟩ = ⟨𝜓𝑖|𝜃𝜓𝑖⟩ = (свойство1) = ⟨𝜃𝜓𝑖|𝜃2𝜓𝑖⟩
∗

= ⟨𝜃2𝜓𝑖|𝜃𝜓𝑖⟩ = −⟨𝜓𝑖|𝜃𝜓𝑖⟩

= −⟨𝜓𝑖|𝜙𝑖⟩ = 0 

Таким образом, состояния 𝜓𝑖 и 𝜙𝑖 не только соответствуют одной 

энергии, но еще и ортогональны, что делает уровень энергии вырожденным 

по меньшей мере двукратно. Данное явление называется крамерсовым 

вырождением, и, если уровень энергии вырожден двукратно, его называют 
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крамерсовым дублетом. Такие же результаты будут справедливы для системы 

из нечетного числа электронов.  

Отметим также еще два полезных свойств оператора обращения 

времени, которые применим в дальнейшем: 

3. Рассмотрим действие 𝜃̂ на вектора в базисе полного момента. 

Пусть |𝜓⟩ = ∑ 𝐶𝐽,𝑀𝐽
|𝐽, 𝑀𝐽⟩𝐽,𝑀𝐽

,где J– квантовое число полного момента, а 𝑀𝐽 – 

его проекция на ось квантования. Тогда 

𝜃 |𝜓⟩ = ∑(−1)𝐽−𝑀𝐽𝐶𝐽,𝑀𝐽

∗|𝐽, −𝑀𝐽⟩;

𝐽,𝑀𝐽

 

4. Матрицы Т-нечетных операторов, определяемых выполнением 

для них равенства 𝜃𝐴̂𝜃−1 = −𝐴̂† обладают свойством: Sp(A)=0. 

Гамильтониан взаимодействия электронной подсистемы примесного 

парамагнитного иона с внешним магнитным полем (зеемановского 

взаимодействия) имеет вид: 

𝐻̂𝑍𝑒 = 𝜇̂̅𝐻.̅̅̅ 

-магнитный момент, связанный с квантовомеханическим моментом 

гиромагнитным соотношением: 𝜇̅ = 𝛾𝐽̅. Для электрона полный момент 

складывается из спинового и орбитального моментов, однако гиромагнитные 

коэффициенты для них имеют разные значения: 

𝐻̂Ze = 𝜇𝐵 (2𝑠̂̅ + 𝑙 ̅̂) 𝐻̅ ≡ 𝜇𝐵𝑚̂̅𝐻̅. 

Рассмотрим матрицу зеемановского взаимодействия, построенную в 

базисе некоторого крамерсова дублета 1 2( , )  . В силу эрмитовости для нее 

будет верным следующее разложение через матрицы Паули: 

(
  ⟨𝜓1| 𝐻̂Ze |𝜓1⟩  ⟨𝜓1|𝐻̂Ze |𝜓2⟩

 ⟨𝜓2| 𝐻̂Ze |𝜓1⟩  ⟨𝜓2| 𝐻̂Ze |𝜓2⟩
)

= 𝐴 (
0

1

2
1

2
0

) + 𝐵 (
0 −

𝑖

2
𝑖

2
0

) + 𝐶 (

1

2
0

0 −
1

2

) + 𝐷 (

1

2
0

0
1

2

). 
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Применим свойство 4 оператора обращения времени: 𝑚̂̅– Т-нечетный 

оператор, а потому его след равен нулю, что будет справедливо и для ĤZe, что 

выполняется при D=0. Потому имеем: 

(
  ⟨𝜓1| 𝐻̂Ze |𝜓1⟩  ⟨𝜓1| 𝐻̂Ze |𝜓2⟩

 ⟨𝜓2| 𝐻̂Ze |𝜓1⟩  ⟨𝜓2| 𝐻̂Ze |𝜓2⟩
) = 𝐴𝑆𝑥 + 𝐵𝑆𝑦 + 𝐶𝑆𝑧. 

Далее мы можем выразить A, B, C через матричные элементы 

зеемановского гамильтониана: 

𝐴 = 2 𝜇𝐵Re(∑ ⟨𝜓1| 𝑚̂𝛼|𝜓2⟩
𝛼

𝐻𝛼), 

𝐵 = −2 𝜇𝐵Im(∑ ⟨𝜓1| 𝑚̂𝛼|𝜓2⟩
𝛼

𝐻𝛼), 

С = 2 𝜇𝐵 ∑ ⟨𝜓1| 𝑚̂𝛼|𝜓1⟩
𝛼

𝐻𝛼 , 

𝛼 = 𝑥, 𝑦, 𝑧. 

Переобозначим A, B, C в Xx, Xy, Xz, для каждого из них выполняется: 

    𝑋𝛽 = ∑ 𝑌𝛼𝛽𝐻𝛼
𝛼

, 𝛽 = 𝑥, 𝑦, 𝑧. 

Потому: 

𝐻̂Ze = ∑ 𝑋𝛽𝑆𝛽 =𝛽 ∑ 𝑌𝛼𝛽𝐻𝛼𝛼,𝛽 𝑆𝛽 ≡ 𝜇𝐵 ∑ 𝑔𝛼𝛽𝐻𝛼𝛼,𝛽 𝑆𝛽 ,где 

𝑔𝛼𝑥 = 2 Re(⟨𝜓1| 𝑚̂𝛼 |𝜓2⟩), 

𝑔𝛼𝑦 = −2 Im(⟨𝜓1| 𝑚̂𝛼 |𝜓2⟩), 

𝑔𝛼𝑧 = 2 ⟨𝜓1| 𝑚̂𝛼 |𝜓1⟩. 

Набор из 9-ти величин 𝑔𝛼𝛽 составляет так называемый «g-тензор» (не 

являющийся, однако, тензором с точки зрения его математических свойств); 

«g-тензор» можно диагонализовать, числа, получаемые при этом на главной 

диагонали, называются g-факторами. 

2.2. Аналитические формулы для g-факторов иона Ce3+ в кристалле 

LiYF4 
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В кристаллическом поле симметрии S4 конфигурация 4f1 иона Се3+  

расщепляется на 7 крамерсовых дублетов, а конфигурация 5d1 иона Ce3+ – на 

5 крамерсовых дублетов. Рассмотрим основной крамерсов дублет (𝜓1, 𝜓2) 

конфигурации 4f1 иона Се3+. Как было показано в [2], наибольший вклад в 

вектора состояния (𝜓1, 𝜓2)  основного крамерсова дублета вносят вектора 

|4𝑓,
5

2
,

5

2
⟩ и  |4𝑓,

5

2
, −

5

2
⟩. Кроме того, в (𝜓1, 𝜓2)  будут вносить вклад векторы 

состояния в схеме полного момента, которые будут «перемешиваться» с 

указанными векторами кристаллическим полем, как подробно 

рассматривалось в параграфе 1.3. Таким образом, можно записать 

|𝜓1⟩ =
1

𝑁
(|4𝑓,

5

2
,
5

2
⟩ + 𝛼 |4𝑓,

5

2
, −

3

2
⟩ + 𝛽 |4𝑓,

7

2
,
5

2
⟩ + 𝛾 |4𝑓,

7

2
, −

3

2
⟩ + 𝛿 |5𝑑,

3

2
,
1

2
⟩

+ 𝜀 |5𝑑,
5

2
,
1

2
⟩), 

где из условия нормировки N = √1 + |α|2 + |β|2 + |γ|2 + |δ|2 + |ε|2. Тогда, из 

свойства 3 оператора обращения времени, второй вектор состояния 

крамерсова дублета  

|𝜓2⟩ = 𝜃̂|𝜓1⟩

=
1
𝑁

(|4𝑓,
5
2

, −
5
2

⟩ + 𝛼∗ |4𝑓,
5
2

,
3
2

⟩ − 𝛽
∗

|4𝑓,
7
2

, −
5
2

⟩ − 𝛾∗ |4𝑓,
7
2

,
3
2

⟩

− 𝛿
∗

|5𝑑,
3
2

, −
1
2

⟩ + 𝜀∗ |5𝑑,
5
2

, −
1
2

⟩). 

Для расчета компонент «g-тензора» по приведенным в параграфе 2.1 

формулам, мы вычислили матричные элементы декартовых компонент 

оператора m̂̅̅̅ = (2ŝ̅ + l ̅̂): 

⟨𝜓1| 𝑚̂𝑧 |𝜓2⟩ = ⟨𝜓1| 𝑚̂𝑥 |𝜓1⟩ = ⟨𝜓1| 𝑚̂𝑦 |𝜓1⟩ = 0 
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⟨𝜓1| 𝑚̂𝑧 |𝜓1⟩

=
1

7𝑁2
(15 − √6(𝛽 + 𝛽∗) + 20|𝛽|2 − 9|𝛼|2 − √10(𝛼∗𝛾 + 𝛾∗𝛼)

− 12|𝛾|2 + 7|𝐴|2) 

⟨𝜓1| 𝑚̂𝑥 |𝜓2⟩ = 𝑖⟨𝜓1| 𝑚̂𝑦 |𝜓2⟩

=
1

7𝑁2
(6√5𝛼∗ + √2𝛾∗ + √30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 + √6𝐴𝐵)) 

где A = √
3

5
ε*-√

2

5
δ* и B = √

2

5
ε* + √

3

5
δ*. Тем самым мы получаем компоненты 

«g-тензора»: 

𝑔𝑥𝑧 = 𝑔𝑦𝑧 = 𝑔𝑧𝑥 = 𝑔𝑧𝑦 = 0 

𝑔𝑥𝑥=
2

7𝑁2
Re{6√5𝛼∗ + √2𝛾∗ + √30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 + √6𝐴𝐵)} 

𝑔𝑦𝑥=−
2

7𝑁2
Re {𝑖 (6√5𝛼∗ + √2𝛾∗ + √30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 +

√6𝐴𝐵))} 

𝑔𝑦𝑦=
2

7𝑁2
Im {𝑖 (6√5𝛼∗ + √2𝛾∗ + √30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 +

√6𝐴𝐵))} 

𝑔𝑥𝑦=−
2

7𝑁2
 Im{6√5𝛼∗ + √2𝛾∗ + √30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 + √6𝐴𝐵)} 

𝑔𝑧𝑧 =
2

7𝑁2
(15 − √6(𝛽 + 𝛽∗) + 20|𝛽|2 − 9|𝛼|2 − √10(𝛼∗𝛾 + 𝛾∗𝛼) − 12|𝛾|2

+ 7|𝐴|2) 

Диагонализацию «g-тензора» с целью получения g-факторов можно 

провести следующим простым способом: пусть 𝑄 = 6√5𝛼∗ + √2𝛾∗ +

√30𝛼∗𝛽∗ − 16√3𝛽∗𝛾∗ + 7(𝐴2 + √6𝐴𝐵) = |𝑄|𝑒𝑖ℎ, перейдем к новому базису 

крамерсовых состояний: |𝜓1′⟩ = |𝜓1⟩𝑒𝑖
ℎ
2, |𝜓2′⟩ = |𝜓2⟩𝑒−𝑖

ℎ

2. В нем ранее 

рассчитанные матричные элементы примут вид: 

⟨𝜓1
′ | 𝑚̂𝑧 |𝜓1

′ ⟩ = 𝑒−𝑖
ℎ
2𝑒𝑖

ℎ
2⟨𝜓1| 𝑚̂𝑧 |𝜓1⟩ = ⟨𝜓1| 𝑚̂𝑧 |𝜓1⟩ 

⟨𝜓1′| 𝑚̂𝑥 |𝜓2′⟩ = 𝑖⟨𝜓1′| 𝑚̂𝑦 |𝜓2′⟩ =
1

7𝑁2
𝑒−𝑖

ℎ
2𝑒−𝑖

ℎ
2|𝑄|𝑒𝑖ℎ =

1

7𝑁2
|𝑄| 



29 

 

⟨𝜓1′| 𝑚̂𝑧 |𝜓2′⟩ = ⟨𝜓1′| 𝑚̂𝑥 |𝜓1′⟩ = ⟨𝜓1′| 𝑚̂𝑦 |𝜓1′⟩ = 0 

 

в свою очередь «g-тензор»: 

𝑔𝑥𝑧′ = 𝑔𝑦𝑧′ = 𝑔𝑧𝑥′ = 𝑔𝑧𝑦′ = 0 

𝑔𝑥𝑥′ =
2

7𝑁2
Re{|𝑄|} =

2

7𝑁2
|𝑄| =

2

7𝑁2
Im{𝑖|𝑄|} = 𝑔𝑦𝑦′ 

𝑔𝑦𝑥′ = −
2

7𝑁2
Re{𝑖|𝑄|} = 0 = −

2

7𝑁2
 Im{|𝑄|} = 𝑔𝑥𝑦′ 

𝑔𝑧𝑧′ = 𝑔𝑧𝑧 

Таким образом, не осталось ненулевых компонент, кроме 

диагональных. Введем поперечную составляющую g-фактора 𝑔
⊥

= 𝑔
𝑥𝑥

′ = 𝑔
𝑦𝑦

′  

и параллельную g
∥

= g
zz

'. Окончательно имеем: 

𝑔⊥ =
2

7𝑁2
 |6√5𝛼 + √2𝛾 + √30𝛼𝛽 − 16√3𝛽𝛾 +

63

5
𝜀2 −

7√6

5
𝜀𝛿 −

28

5
𝛿2| 

𝑔∥ =
2

7𝑁2
(15 − √6(𝛽 + 𝛽∗) + 20|𝛽|2 − 9|𝛼|2 − √10(𝛼∗𝛾 + 𝛾∗𝛼) − 12|𝛾|2

+ 7 |√
3

5
𝜀∗ − √

2

5
𝛿∗|

2

). 

В данных выражениях величины 𝛿 и 𝜀 отвечают за вклад 5d1 состояний 

в вектора состояния основного крамерсова дублета конфигурации 4f1 иона 

Ce3+. Если положить их равными нулю, наши выражения для g-факторов 

перейдут в формулы, полученные в [2] для одноконфигурационного 

приближения, в котором учитывалось только пространство состояний 

конфигурации 4f1: 

𝑔⊥ =
2

7𝑁2
 |6√5𝛼 + √2𝛾 + √30𝛼𝛽 − 16√3𝛽𝛾| 

𝑔∥ =
2

7𝑁2
(15 − √6(𝛽 + 𝛽∗) + 20|𝛽|2 − 9|𝛼|2 − √10(𝛼∗𝛾 + 𝛾∗𝛼) − 12|𝛾|2). 

Если же в последних формулах приравнять к нулю 𝛽 и 𝛾, 

определяющие вклад состояний 2𝐹7/2 мультиплета конфигурации 4f1, то 
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получатся выражения для g-факторов в приближении, в котором учитывается 

только пространство состояний мультиплета 2𝐹5/2 конфигурации 4f1. Этот 

случай наиболее грубого приближения рассматривался в [5]. Было замечено, 

что если выразить 𝛼 через один из факторов и подставить в другой, то будет 

получено уравнение эллиптической кривой в плоскости g-факторов (далее 

будем называть его «эллипсом мультиплетного приближения»): 

(𝑔∥ − 𝑔𝐽)
2

16
+

𝑔⊥
2

5
= 𝑔𝐽

2, 

где 𝑔
𝐽

=
6

7
 – g-фактор Ланде для мультиплета 2𝐹5/2. 
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3. Исследование численной зависимости g-факторов иона Се3+ в 

кристалле LiYF4 от параметров нечетного кристаллического 

поля 

 

Как уже говорилось во введении, в работе [1] был проведен расчет 

спектров 4f1-5d1 переходов примесного иона Се3+ в кристалле LiYF4, были 

вычислены уровни энергии конфигураций 4f1 и 5d1 и g-факторы основного 

крамерсова дублета конфигурации 4f1. Из сравнений с экспериментальными 

данными по 4f1-5d1 спектрам иона Се3+ в кристалле LiYF4 в [1] были 

установлены следующие значения параметров кристаллического поля и 

параметра спин-орбитального взаимодействия для 4f-электрона (в см-1): 

𝐵0
2(4𝑓) = 360 

𝐵0
4(4𝑓) = −1400 

𝐵4
4(4𝑓) = −1240 + 751𝑖 → 𝐵−4

4 (4𝑓) = −1240 − 751𝑖 

𝐵0
6(4𝑓) = −67,2 

𝐵4
6(4𝑓) = −1095 + 458𝑖 → 𝐵−4

6 (4𝑓) = −1095 − 458𝑖 

𝜉4𝑓 = 625 

Диагонализация матрицы гамильтониана конфигурации 4f1 иона Се3+ с 

этими значениями параметров приводит к следующим значениям 

коэффициентов, определяющих вектор состояния |𝜓1⟩ основного крамерсова 

дублета иона Се3+ 

𝛼 = 0,4445 + 0,2797𝑖,  𝛽 = −0,0303 − 0,0081𝑖, 

𝛾 = −0,0128 + 0,0061𝑖, 

и к значениям g-факторов основного крамерсова дублета конфигурации 4f1 

𝑔⊥=1,552, 𝑔∥=2,846 

Заметим, что при этом коэффициенты 𝛿 =  𝜀 = 0, поскольку 

перемешивание конфигураций в [1] не рассматривалось. 

В работе [3] были экспериментально измерены следующие значения g-

факторов иона Се3+ в кристалле LiYF4: 
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𝑔⊥𝑒𝑥𝑝 =  1,475, 𝑔∥𝑒𝑥𝑝 = 2,737. 

Для оценки близости рассчитанных g-факторов к экспериментальным, 

измеренным в [3], в настоящей работе мы используем величину 

среднеквадратичного отклонения: 

∆𝑔= √(𝑔⊥ − 𝑔⊥𝑒𝑥𝑝)
2

+ (𝑔∥ − 𝑔∥𝑒𝑥𝑝)
2

, 

которая для g-факторов, вычисленных в [1], составляет 0.133g = . 

Включим теперь в рассмотрение перемешивание конфигураций 4f1 и 5d1 

иона Се3+ нечетным кристаллическим полем. Полученные нами в параграфе 

2.2 аналитические формулы позволяют исследовать численно зависимость g-

факторов основного крамерсова дублета конфигурации 4f1 от коэффициентов 

𝛿 и 𝜀, определяющих примешивание 5d-состояний в |𝜓1⟩. 

Мы провели 4 расчета, варьируя по отдельности реальную и мнимую 

части коэффициентов 𝛿 и 𝜀 в пределах от 0 до 0,2 (с шагом 0,01). Отметим 

следующее: пока варьируется одна из этих четырех компонент, другие 

остаются равны нулю, а потому наши формулы для g-факторов становятся 

четными относительно варьируемой компоненты, что позволяет не 

рассматривать  ее отрицательные значения. Выбранная нами верхняя граница 

0.2 интервалов для варьирования коэффициентов соответствует тому факту, 

что коэффициенты 𝛿 и 𝜀 отвечают примешиванию 5d-состояний, отстоящих 

по энергии от 4f-состояний на значительную величину порядка 40000 см-1 [1]. 

Полученные результаты проиллюстрированы на рис. 1 и 2. Черная точка 

соответствует значениям g-факторов, вычисленных в [1] (перемешивания 

конфигураций нет, 𝛿 =  𝜀 = 0), красная точка – измеренные в [3] значения g-

факторов. 
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Рис. 1. Вычисленные g-факторы иона Се3+ при варьировании реальной 

и мнимой частей коэффициента 𝛿 

 

Рис. 2. Вычисленные g-факторы иона Се3+ при варьировании реальной 

и мнимой частей коэффициента 𝜀 

Наименьшие значения величины среднеквадратичного отклонения g  

вычисленных от экспериментальных значений g-факторов для каждой 

варьируемой компоненты приведены в Таблице 4. 
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Таблица 4. Наименьшие отклонения ∆𝑔 
при варьировании 𝛿, 𝜀 

Варьируемая 

компонента 

Наименьшее 

отклонение ∆𝑔 

Значение 

компоненты 

Re(𝛿) 0,0480 ±0,2 

Im(𝛿) 0,0848 ±0,2 

Re(𝜀) 0,1300 ±0,13 

Im(𝜀) 0,0764 ±0,17 

 

Как видно из рис. 1 и 2, вычисленные значения g-факторов 

оказываются ближе всего к экспериментальным значениям при увеличении 

Re(𝛿) и Im(𝜀) по модулю до величин порядка 0.2. 

Оценим теперь, каковы по порядку величины должны быть параметры 

нечетного кристаллического поля, перемешивающего конфигурации 4f1 и 5d1 

иона Се3+, чтобы добиться таких значений коэффициентов. Можно грубо 

оценить значения коэффициентов 𝛿 и 𝜀 по теории возмущений через 

соответствующий недиагональный матричный элемент гамильтониана : 

𝛿 =
⟨5𝑑,

3
2

,
1
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩

𝐸
4𝑓,

5
2

,
5
2

− 𝐸
5𝑑,

3
2

,
1
2

 
≈ −

⟨4𝑓,
5
2

,
5
2

|𝐻̂|5𝑑,
3
2

,
1
2

⟩
∗

40000 
≈ −

0,2 𝐵2
3(4𝑓 − 5𝑑)∗

40000 
     

𝜀 =
⟨5𝑑,

5
2

,
1
2

|𝐻̂|4𝑓,
5
2

,
5
2

⟩

𝐸
4𝑓,

5
2

,
5
2

− 𝐸
5𝑑,

5
2

,
1
2

 
≈ −

⟨4𝑓,
5
2

,
5
2

|𝐻̂|5𝑑,
5
2

,
1
2

⟩
∗

40000 

≈ −
0,2 𝐵2

3(4𝑓 − 5𝑑)∗ + 0,1 𝐵2
5(4𝑓 − 5𝑑)∗

40000 
 

Re(𝛿) =  −
0,2Re(𝐵2

3(4𝑓 − 5𝑑))

40000 
 

Im(𝜀) =
0,2Im(𝐵2

3(4𝑓 − 5𝑑)) + 0,1Im(𝐵2
5(4𝑓 − 5𝑑))

40000 
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Отсюда следует, что для получения значений Re(𝛿)= ±0,2 , 

Im(𝜀)= ±0,17 , необходимы значения параметров нечетного кристаллического 

поля порядка нескольких десятков тысяч см-1 по модулю, однако столь 

большие значения параметров кристаллического поля физически 

бессмысленны. 

Оценим величину параметров нечетного кристаллического поля, 

перемешивающего конфигурации 4f1 и 5d1 примесного иона Се3+ в кристалле 

LiYF4. Из сравнений с экспериментальными данными по 4f1-5d1 спектрам иона 

Се3+ в кристалле LiYF4 в [1] были установлены следующие значения 

параметров кристаллического поля и параметра спин-орбитального 

взаимодействия для 5d-электрона (в см-1): 

𝐵0
2(5𝑑) = 4678 

𝐵0
4(5𝑑) = −18008 

𝐵4
4(5𝑑) = −16722 + 16949𝑖 → 𝐵−4

4 (4𝑓) = −16722 − 16949𝑖 

𝜉5𝑑 = 1082 

Заметим, кстати, что из формул для матричных элементов 

гамильтониана, полученных нами в параграфе 1.3, следует, что параметры 

кристаллического поля 
4

4(5 )B d  не участвуют в расчете интересующих нас 

величин. Выше они были приведены для полноты. 

Как видно из формул параграфа 1.1, параметр кристаллического поля 

ранга k пропорционален моменту k-го порядка на радиальных функциях 

соответствующих оболочек: 

𝐵𝑞
𝑘(𝑛𝑙, 𝑛′𝑙′)~〈𝑟𝑘〉𝑛𝑙,𝑛′𝑙′ 

Тогда можно грубо считать, что 

|𝐵𝑞
3(4𝑓)| ≈ √|𝐵0

2(4𝑓)||𝐵0
4(4𝑓)|, 

|𝐵𝑞
3(5𝑑)| ≈ √|𝐵0

2(5𝑑)||𝐵0
4(5𝑑)| 

и, наконец, 
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|𝐵𝑞
3(4𝑓 − 5𝑑)| ≈ √|𝐵𝑞

3(4𝑓)||𝐵𝑞
3(5𝑑)| = √|𝐵0

2(4𝑓)||𝐵0
4(4𝑓)||𝐵0

2(5𝑑)||𝐵0
4(5𝑑)|

4
 

Пригодность этой методики оценки величины параметра нечетного 

кристаллического поля мы проверили по единственной известной нам 

опубликованной статье, в которой микроскопически рассчитывались 

параметры межконфигурационного (5f - 6d для иона U3+) нечетного 

кристаллического поля [6]. По данной методике получается оценка |𝐵3
3(5𝑓 −

6𝑑)| ≈ 2618см-1, в самой же статье [6] в рамках модели обменных зарядов 

было вычислено значение |𝐵3
3(5𝑓 − 6𝑑)| = 2842см-1, то есть очень близкое 

значение.  

По данной методике невозможно оценить параметры кристаллического 

поля 5 ранга из-за отсутствия параметров с k = 6 для d-оболочки. Мы 

попробовали оценить по методике, аналогичной той, что была нами 

предложена выше, параметры 4 ранга для [6]: |𝐵𝑞
4(5𝑓 − 6𝑑)| ≈

√|𝐵0
4(5𝑓)||𝐵0

4(6𝑑)| = 5113см-1. При этом в [6] в рамках модели обменных 

зарядов было вычислено значение|𝐵3
5(5𝑓 − 6𝑑)| = 11433см-1. Эта величина 

превосходит нашу оценку параметра 4 ранга примерно в 2 раза, что 

обусловлено тем, что параметр 5 ранга содержит момент пятой степени, а не 

четвертой. Предположим, что установленное отношение, равное 2, 

сохраняется для параметров 4 и 5 рангов и для иона Ce3+. 

Применив предложенные методики для параметров нечетного 

кристаллического поля иона Ce3+ в кристалле LiYF4, мы получили следующие 

оценки |𝐵2
3(4𝑓 − 5𝑑)| ≈ 2552  см-1 и |𝐵2

5(4𝑓 − 5𝑑)| ≈ 10042см-1.  

Тем самым, становится ясно, что желаемые значения коэффициентов 

Re(𝛿)= ±0,2  и Im(𝜀)= ±0,17 недостижимы, и, следовательно, нам не удастся 

добиться радикального улучшения согласия вычисленных и известных из 

эксперимента значений g-факторов иона Се3+ путем учета перемешивания 

конфигураций 4f1 и 5d1 нечетным кристаллическим полем. 
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Чтобы более точно ответить на вопрос, насколько это согласие удается 

в принципе улучшить, проведем исследование численной зависимости g-

факторов иона Се3+ в кристалле LiYF4 непосредственно от параметров 

нечетного кристаллического поля 𝐵2
3(4𝑓 − 5𝑑) и 𝐵2

5(4𝑓 − 5𝑑).  

Мы рассмотрели в общей сложности примерно 4 миллиона наборов 

параметров 
3

2 (4 5 )B f d−  и 
5

2 (4 5 )B f d− , варьируемых независимо и 

равномерно распределенных в интервалах все в см-1 

−1800 < Re(𝐵2
3(4𝑓 − 5𝑑)) < 1800 

−1800 < Im(𝐵2
3(4𝑓 − 5𝑑)) < 1800 

−7100 < Re(𝐵2
5(4𝑓 − 5𝑑)) < 7100 

−7100 < Im(𝐵2
5(4𝑓 − 5𝑑)) < 7100 

Результаты расчетов визуализированы на рис.3: каждая из синих точек, 

сливающихся на рис. 3 в сплошную область, соответствуют паре g-факторов, 

вычисленных при определенном наборе значений параметров нечетного 

кристаллического поля. Как видно из рис. 3, все эти точки распределяются 

вдоль эллипса мультиплетного приближения,  значительного сближения с 

экспериментальными значениями (красная точка) не происходит, что 

согласуется с вышеприведенными выводами на основе анализа зависимости g-

факторов от коэффициентов 𝛿 и 𝜀, определяющих величину примешивания 5d-

состояний к основному крамерсову дублету иона Ce3+. 

Отметим, что наименьшее среднеквадратичное отклонение для массива 

рассмотренных точек в плоскости g-факторов получилось равным ∆𝑔= 0,104, 

оно было достигнуто при параметрах нечетного кристаллического поля, 

равных (в см-1) 𝐵2
3(4𝑓 − 5𝑑) = 1700 − 1800𝑖, 𝐵2

5(4𝑓 − 5𝑑) = 6300 + 6800𝑖.  
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Рис. 3. Варьирование параметров кристаллического поля. 

Суммируем результаты расчета g-факторов иона Се3+ в кристалле 

LiYF4 в различных приближениях в Таблице 5. Заметим, что в работе [5] в 

приближении мультиплета 2𝐹5/2  g-факторы для изучаемого нами кристалла не 

вычислялись; поэтому мы провели процедуру поиска значений с 

минимальным отклонением от эксперимента сами, найдя ближайшую (с 

наименьшим g ) к эксперименту точку на эллипсе. 

Таблица 5. Сравнение значений g-факторов в различных 

приближениях. 

Приближение 𝑔 − факторы ∆𝑔 

Мультиплет 2𝐹5/2  [5] 
𝑔⊥=1,583 

𝑔∥=2,779 
0,120 

Конфигурация 4𝑓1 [1] 
𝑔⊥=1,552 

𝑔∥=2,846 
0,133 

Учет перемешивания с 
5𝑑1 

𝑔⊥=1,580 

𝑔∥=2,770 
0,104 

 

Таким образом, мы показали, что учет взаимодействия конфигурации 4f1 

и 5d1 позволяет улучшить согласие вычисленных и измеренных значений g-
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факторов иона Се3+ в кристалле LiYF4 на величину порядка 20% по сравнению 

с расчетами, не учитывающими межконфигурационное взаимодействие. 

В завершение необходимо обсудить следующее важное обстоятельство. 

Численная диагонализация матрицы гамильтониана дает нам не только 

вектора состояния, с помощью которых мы вычисляем g-факторы, бывшие в 

центре внимания настоящей работы, но и, конечно же, сами уровни энергии 

электрона. Полный анализ параметров кристаллического поля для иона Се3+ в 

кристалле LiYF4, проведение которого остается задачей для будущих 

исследований, должен включать в себя одновременный расчет и сравнение с 

экспериментом как уровней энергии, так и g-факторов.  

В качестве иллюстрации влияния перемешивания конфигураций 4f1 и 

5d1 на энергетический спектр иона Се3+ в кристалле LiYF4, в Таблице 6 

приведено сравнение энергетического спектра, вычисленного нами с набором 

параметров нечетного кристаллического поля, минимизирующим отклонение 

g  на рис. 3, со спектром, вычисленным в [1] без учета перемешивания 

конфигураций. 

Таблица 6. Сравнение спектров энергий иона Се3+ в кристалле LiYF4. 

Серые строки – уровни энергии, не вычисляемые в данной работе 

Конфигурация Спектр без учета 

перемешивания 

конфигураций, 

см−1 [1] 

Спектр с учетом 

перемешивания 

конфигураций, см−1 

Сдвиг 

энергии, см−1 

4f1 0 0 0 

242   

514 433 -81 

2222   

2320 2254 -66 

2432   
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3121 3000 -121 

5d1 34088   

41703 41894 +191 

49531 49687 +156 

50233   

53157   

Из Таблицы 6 видна следующая тенденция: 4f1 уровни становятся 

ниже, а 5d1 – выше, т.е. учет перемешивания конфигураций приводит к их 

расталкиванию. 
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Заключение 

 

В настоящей работе были получены следующие результаты и выводы: 

1. Построены матрицы гамильтониана иона Се3+ в кристалле LiYF4, 

включающего спин-орбитальное взаимодействие и взаимодействие с 

кристаллическим полем, в базисе полного момента для конфигураций 4f1 и 5d1. 

2. Построена матрица гамильтониана взаимодействия с нечетным 

кристаллическим полем, перемешивающим конфигурации 4f1 и 5d1 иона Се3+ 

в кристалле LiYF4, в базисе полного момента. 

3. Получены аналитические формулы для g-факторов основного 

крамерсова дублета конфигурации 4f1 иона Се3+ в кристалле LiYF4, 

записанного в базисе полного момента, с учетом перемешивания 

конфигураций 4f1 и 5d1. 

4. Исследована численная зависимость g-факторов иона Се3+ в кристалле 

LiYF4 от коэффициентов, определяющих примешивание 5d-состояний в 

векторы состояния основного крамерсова дублета иона Се3+ в базисе полного 

момента. 

5. Исследована численная зависимость g-факторов иона Се3+ в кристалле 

LiYF4 от параметров нечетного кристаллического поля. 

6. Показано, что учет взаимодействия конфигураций 4f1 и 5d1 позволяет 

улучшить согласие вычисленных и известных из литературы 

экспериментальных значений g-факторов иона Се3+ в кристалле LiYF4 на 

величину порядка 20% по сравнению с расчетами, не учитывающими 

межконфигурационное взаимодействие. 
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