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Abstract 

In the current paper, we introduce a high-level approach for an integration of a neuromorphic memristive neuron in 
a real-time operating robotic system. The memristive neuron schematic, which we had presented in our earlier 
works, is capable of inhibitory and excitatory learning (eSTDP, iSTDP) as well as modulation via dopamine input. 
We discuss a possibility of integration of the analog memristive neuron into a digital robotic embodiment and 
present block diagram of an adapter that includes pseudo-neuronal encoder and decoder.  
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1. Introduction 

Previously we have demonstrated successive attempts to 
implement in bio-plausible manner four of eight basic 
emotions or affects in a computational system1,2. These 
emotional drives could be useful for the self-learning 
autonomous robotic systems to be used as reward-and-
punishment systems. This development of our research 
put us in a position to answer the question of a robotic 
embodiment therefore we have started the project 
“Robot dream” 1. 

The idea of proposed project is to discriminate two 
phases of real-time (a so-called “wake”) phase and not 
real-time bio-inspired calculations (“dream”) phase. The 
“wake” phase is performed via a robotic system that is 
synchronized periodically with the “dream” phase, 
which is implemented at a cluster or a supercomputer 
due to their high performance impact. NeuCogAr 
project2 describes in details the bio-plausible 
neuromodulating cognitive architecture. For the purpose 
of implementation of the real-time operating robotic 

embodiment system we have selected a memristive 
approach that was introduced during several decades in 
various optional implementations including organic 
polyaniline3,4 and silicon memristive devices5 etc. One 
of promising features of memristive devices is spike 
timing dependent plasticity (STDP) characteristic of 
learning or self-learning of a memristive devices5,6. 
Using this feature we have implemented excitatory and 
inhibitory STDP and dopamine modulation of a 
memristive artificial neuron7. 

2. Problem 

The idea to use memristive device as synapse is not new 
but still we have failed to find a successful 
implementation of bio-plausible neural network capable 
of neuromodulation, excitatory (eSTDP) and inhibitory 
(iSTDP) STDP. The listed above basic neurobiological 
mechanisms are crucial for mammalian emotional 
regulation, decision-making and behavioral strategies 
generation and implementation8,9,10,11. Even if we could 
create a bio-inspired memristive brain there is still a 
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fundamental problem of its embodiment. We believe 
that the most promising approach for the embodiment 
problem solution is through a use of a robotic body. 
How do we integrate a spiking neural network with a 
digital robotic environment?  

This position paper describes a high level 
architecture for memristive neuromorphic devices 
integration with a realtime or semi-realtime robotic 
embodiment system and is based on our previous papers 
on memristive neuromorphic computing solution for 
neuromodulating neuron with eSTDP and iSTDP11. 

3. Proposed Solution 

3.1.  Memristive neuron 

Previously we have proposed an overall block diagram 
and the implementation of memristive neuromodulatory 
neuron11. We have demonstrated the bio-inspired 
learning via STDP and modulation of learning functions 
via dopamine input. The proposed schematic has three 
types of input: excitatory, inhibitory and modulatory. 
Excitatory and inhibitory inputs have their memristive 
devices that implement the learning functions of eSTDP 
and iSTDP. The modulating input alters the eSTDP 
functions increasing and decreasing its amplitude in bio-
inspired manner12. Currently we carry on with making 
the schematic more bio-plausible to get easier 
integration option into biological environment. We have 
successfully demonstrated the simulation results of the 
Hebbian learning via levels of memristive device 
conductivity that was determined by series of learning 
impulses ∆w = 1/∆t where ∆t is the time lag between 
pre-synaptic spike and post-synaptic spike or inbound 
and outbound impulses of the memristive neuron, and 
their modulation by the dopamine level. The dopamine 
level is identified via the setup of dopamine 
potentiometer that influences the learning impulses 
amplitude and in its turn influences the memristive 
device conductivity. 

The simulation results are presented in Figure 1. The 
top graph depicts the dopamine (DA) level and 
identifies the level of modulation of learning impulses 
that is visible as the increment of green graph amplitude 
(the bottom graph), that in its turn influences the 
memristive device conductivity, described below. In 

Figure 1 (in the middle) the lilac graph represents the 
result of the memristive device learning the overall 
conductivity.  It is set by modulated learning impulses 
that are formed as Hebbian learning. For the 
simplification of the simulation purposes we used two 
different generators with phase shift to simulate 
different ∆t. This way we could depict the entire 
Hebbian learning in one graph. Simulation methods 
were used to calculate required nominal values of the 
electronic components and to validate the quality of the 

proposed model. We used integrated schematic editor 
and mixed analog/digital simulator LTspice. Figure 2 
represents the wiring schematic, where excitatory and 
inhibitory learning impulses are transmitted to 
memristive elements. Two different sources generate 
signals with different phase to gain the effect of viable 
∆w. Temporal and amplitude characteristics of impulses 
have been simulated. Impulses have been investigated in 
the time range from 1 to 800 milliseconds. The 
excitatory and inhibitory impulses replicate the Hebbian 
and ”sombrero'' learning functions according to the 
theoretically predicated forms. 

 
 
Fig. 1. The simulation results of learning STDP: (top) level of 
DA influence or setup of DA potentiometer, (middle) graph of 
memristive device conductivity, (bottom) learning impulses 
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3.2.  Integration 

The other interesting goal is the integration into digital 
robotic embodiment system, which could be the 
anthropomorphic13 or non-anthropomorphic12 system. 
The presented in the Figure 3 high-level architecture 
includes: memristive neuron presented above. The 
neuron has three types of inputs: sensory, inhibitory and 
modulatory.  

Sensory is usually excitatory and is the input from 
different sensors that are connected via controllers and 
digital-to-neuronal converters (DNC) or encoders that 
translate the digital input in form of pseudo-neuronal 
activity via, for example inverse rate encoding. The 
pseudo-neuronal activity is similar to neuronal but is 
generated by artificial for example memristive neuronal 
devices. The inhibitory input is usually the input that 
comes from different neurons; for example, for 
reciprocally inhibition, this is frequent pattern in spinal 
cord. This could be considered as a blocking system for 
unwanted behavior.  

 
 
 

 

 
 

Fig. 2. Wiring schematic of modulatory, excitatory and inhibitory memristive neuron device. 

 
Fig. 3. The basic integration high-level architecture to 
integrate spiking memristive neuron with digital environment. 
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The modulatory input balances the neuron towards 
spiking or generating output impulses. It could represent 
a reward subsystem of a robotic system embodiment. 
This way we could “naturally implement the rewarding 
associations with, e.g., power supply. 

The output of the memristive neuron schematic is 
processed via NDC (neuronal activity to digital 
converter) that converts pseudo neuronal activity into 
digital output activating more intensively robot 
actuators with higher firing rate of memristive artificial 
neuron. This way in the boundaries of one neuron and 
several sensors, we could associate modulating reward 
with power supply and then train a robotic embodiment 
system to look for the energy supply autonomously. 

4. Discussion 

In this position paper we proposed the overall 
architecture for the integration of memristive 
neuromodulating neuron introduced earlier. 

To the best of our knowledge, there is no existing 
memristive schematic that successfully implements 
neuromodulation, though it plays important role in 
emotional regulation of mammals. Therefore, it seems 
fruitful to implement these mechanisms in a robotic 
environment in order to solve the integration problem. 

We have proposed the overall integration approach 
of memristive analog devices with digital robotic 
environment. This approach could be used to implement 
"natural" reward system. The reward system could use 
the dopamine modulating input of proposed earlier 
memristive modulating device. Hopefully using 
pain/pleasure stimulus we could train proper 
associations in a real-time robotic embodiment similar 
to mammalian training.  
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