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Предисловие

Основной продукт математического творчества – теоремы и до-
казательства. ≪Со времен древних греков говорить ≪математика≫ —
значит говорить ≪доказательство≫.≫ (Н. Бурбаки). Сам же процесс
творчества организован принципами, которые мы называем рацио-
нальными. Первый уровень принципов, которые математик исполь-
зует при поиске доказательств, изложены в руководствах по реше-
нию олимпиадных задач. Системный подход к изложению принци-
пов также был предпринят: принципы объединялись либо в области
правдоподобных рассуждений (Д. Пойа), или как область эвристики
(Ж. Адамар, А. Пуанкаре, Э. Боне и др).

Цель автора показать, что рациональные принципы математики
по мере усложнения материала, ими организуемого, становятся близ-
ки к категориям и законам диалектической логики как по форме, так
и по содержанию.

Абстрактно сформулированный закон диалектической логики,
как, например, закон единства и борьбы противоположностей, мало
продвигает математика в решении конкретной проблемы.

Дело в том, что эти законы должны быть ≪пережиты≫ матема-
тиком и закреплены в его сознании в математических формах. Цель
книги — эти формы проявить. Приведем поясняющий пример, сопо-
ставляя высказывания двух выдающихся отечественных математи-
ков.

≪Точно так же, смысл математического понятия далеко не содер-
жится в его формальном определении. Не меньше (скорее больше)
дает набор основных примеров (как правило, в не очень большом
числе), являющихся для математика одновременно и мотивировкой, и
содержательным определением, и ≪смыслом≫ ≪понятия≫≫. (И.Р. Ша-
фаревич)

≪Занятия совсем общими полуфилософскими размышлениями у
меня самого заняли больше времени и энергии, чем, может быть, ка-
жется издали. В такой выработке совсем общих взглядов итог усилий
заключается не в формулировке точно фиксированных результатов,
а в общей перестройке собственного сознания и размещения всего в
надлежащей перспективе≫. (А.Н. Колмогоров)

В двойственности этих высказываний, в сопоставлении их содер-
жится следующий принцип: необходимо исследовать частные случаи
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проблемы, аналогичные примеры с тем, чтобы затем путем апосте-
риорных рассуждений, ≪полуфилософских размышлений≫, подыто-
живая результаты в ≪обобщенно-абстрактных≫ формулировках, вы-
работать достаточно четкое понимание стратегии проведения дока-
зательства. Только работа над примерами и постоянная рефлексия
на результаты позволяет выработать в одном мысленном представле-
нии все факторы, необходимые для создания образа доказательства.
Здесь проявляют себя двойственности: ≪конкретное — абстрактное≫,
≪действие — рефлексия на действие≫.

Надо вообще выработать в себе способность размышлять в двой-
ственности – вот лейтмотив книги. Надо уметь анализировать вза-
имодействия противополагаемых объектов, оставляя себе ≪на па-
мять≫ обобщенные выводы в виде принципов.

Принципы сами способны развиваться до теорий, и мы приводим
примеры такого развития.

Далее, приводятся разделы классических дисциплин: теории фор-
мальных систем, теории метрических и общих топологических про-
странств. Это диктуется необходимостью. Во-первых, нам нужны
примеры ≪высокого уровня≫, а не только из ≪школьной≫ математи-
ки. Во-вторых, только проследив развитие идей на ≪длинном интер-
вале≫, можно сформулировать точно и полно некоторые принципы.
Наконец, это делает изложение независимым от необходимости загля-
дывать в соответствующие учебники.

≪Опасность не в том, что компьютер однажды начнет мыслить
как человек, а в том, что человек однажды начнет мыслить как ком-
пьютер≫. (С.Д. Харрис)

Автор надеется, что эта книга учит мыслить ≪не как компьютер≫.
≪Машины должны работать. Люди должны думать≫. Девиз ком-

пании IBM.
О содержании книги четкое представление дает оглавление.
Благодарности. В первую очередь я признателен профессору ка-

федры вычислительной математики КФУ М.М. Карчевскому за его
большую помощь при подготовке книги к изданию. Я признателен
профессорам кафедры М.Ф. Павловой, Р.З. Даутову, А.О. Задвор-
нову за моральную поддержку автора во время работы над книгой.
Наконец, я приношу благодарность студентам, прослушавшим курс
лекций по материалам этой книги и предоставившим мне свои записи.
Особенная благодарность выпускникам кафедры Г.Н. Дорошкиной и
А.А. Соболеву за техническую помощь в оформлении рукописи.



Глава 1
Понимание и доказательство. Основные объекты и

идеология этой книги

§ 1. Объект

Объекты, явления, процессы в природе, на которые направлено
или которых касается наше мышление, будем называть одним словом
≪объекты≫. Гроза, водопад, рождение человека, распад атома, лев,
электрон — всё это объекты.

Мы умеем отождествлять и различать объекты, и это вызвано
объективными обстоятельствами и сущностными свойствами объек-
тов (и только в этой способности:отождествлять и различать, — толь-
ко в этом отношении субъекта и объекта мы видим некий оттенок
трансцендентальности), например, устойчивостью и повторяемостью.

Объект обладает фундаментальной двойственностью: предметное
бытие — идеальное бытие. Пример — деньги. Их предметное бытие —
бумажная купюра или металлическая монета. Их идеальное бытие
есть та роль, какую они играют в организации жизни общества, това-
рооборота. Или другой пример. Дверь — это не только прямоугольник
из дерева, пластмассы или металла, это и функциональная ее роль в
организации замкнутого пространства. Компьютер в руках дикаря-
это игрушка из железа, а не средство расчета, например, ожидаемого
урожая.

≪Из чего состоит кот: из одиночества, лежания, умыва-
ния, поиска солнышка, мышей и блох≫. М. Жванецкий.

В рамках математики фундаментальная двойственность объекта
по мере эволюции понятий с ним связанных проявляется чаще все-
го, как фундаментальная математическая двойственность: простран-
ство — величина. Пространство обусловлено взаиморасположением
родственных данному объектов. Величина связана с операторной ро-
лью объекта, его организующей ролью во внешнем (идеальном) бы-
тии, хотя бы в рамках рода.

А вот как определяется объект в ≪философской≫ литературе.
≪Словарь философских терминов≫ М.: Издательство МГУ, 2004.

≪ОБЪЕКТ — 1) в онтологическом смысле самостоятельный
центр бытийной активности; 2) в гносеологическом смысле — то, на
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что направлена активность субъекта. Объект представляет собой вы-
деленный, относительно обособленный фрагмент реальности, само-
стоятельно организующий и поддерживающий себя посредством им-
манентных механизмов воспроизводства (онтологическая трактовка),
либо конструируемый познающим субъектом в ходе познавательной
деятельности≫.

§ 2. Понятие

Отношение объекта и субъекта характеризуется через язык: сло-
вами, предложениями. Последние формируют понятие об объекте.
Понятие словесно характеризует объект, является символом и пас-
портом объекта и более или менее однозначно возвращает нас к ре-
альности объекта.

Язык — это предмышление, необходимая среда существования по-
нятий. Точная, сжатая, близкая к полноте передача сущности опреде-
ленного понятия — это одно из основных требований к языку науки.
Иногда не логический строй предложения, а метафора точнее пере-
дает смысл понятия. Контекст, в котором передается, развивается
метафорическое мышление, это литература, поэзия.

Предложение, определяющее понятие, достаточно определенно,
чтобы удерживать денотат понятия как центр нашего внимания,
удерживать объект как ≪одно≫. Но в то же время любое предложение
имеет необходимую неопределенность, допускающую развитие содер-
жания понятия ≪вовне≫. Фиксируя определенное предложение, мы
обрубаем многие связи объекта с внешним, в идеальном его бытии.
≪Но концы этих связей должны торчать≫.

Приведем, как пример, замечательное высказывание известного
математика и механика Трусделла о силе: ≪Мы не знаем, что такое
сила. Но мы знаем, что можно с ней делать≫.

Это прямое указание на относительность понятия ≪сила≫; со вре-
менем мы устанавливаем (в ходе экспериментов, практики) все новые
факты и законы физики, которые меняют содержание понятия ≪си-
ла≫;

≪Обучение языку есть обучение некоему типу мышления (и
наоборот): насколько универсален язык, настолько продук-
тивно и мышление≫. Н. Латыпов.

≪Глубокое изучение Имманентной Реальности приводит к
выводу, что он покоится на трёх столпах: на Языке, на Ло-
гике и на Науке≫. А. Дзикини.
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Операторная роль понятия связана с фундаментальной двой-
ственностью. Понятие, выделившись из среды, организует послед-
нюю по мере ≪силы≫ полученного содержания, связывает окружа-
ющие объекты ≪своим видением≫ расположения относительно себя.

Проведя много рассуждений с понятием А, мы переводим послед-
нее в устойчивое существование, как для самого объекта повторяе-
мость и устойчивость реализуют объект. Повтор и устойчивость ≪бо-
лее реальны≫, чем сам объект. Снова обратимся к словарям.

≪Философский словарь≫. (Перевод с немецкого) М.: Издательство
≪Республика≫, 2003.

≪ПОНЯТИЕ — простейший акт мышления в противоположность
суждению и умозаключению, которые состоят из понятий. По Зиг-
варту, понятие есть представление, содержащее в себе требование по-
стоянности, совершенной определенности, всеобщего признания, од-
нозначного языкового выражения.

Кроме самого акта мышления при рассмотрении понятия следует
различать следующие моменты: содержание мышления (то, что от-
носится к понятию) и предмет понятия (независимый от мышления
объект), затем — объем понятия (совокупность вещей, которые охва-
тываются данным понятием) и содержание понятия (совокупность
объединенных в нем признаков одного или нескольких предметов).≫

Мы приводим эти выдержки, чтобы усилить восприятие сказан-
ного нами. Есть различия между нашими определениями и приве-
денными из словарей, но отправляемся мы от наших определений.
Подробнее о свойствах понятия.

1. Понятие тройственно.

1. Оно выступает как имя, символьно представляющее целост-
ность предложений, характеризующих понятие.

2. Оно имеет реальный носитель (денотат), созданный природой
или интеллектуальной деятельностью общества (объект).

3. Оно имеет смысл (концепт денотата), вызывающий процесс его
понимания и применения и отражающий идеальное бытие денотата.

Пример. Имя: лошадь, das Pferd. Денотат — соответствующее
животное. Концепт — предметное описание на языке биологии и опи-
сание роли в жизнедеятельности человека.

2. Неполнота любого определения понятия.

Ряд высказываний вскрывает шаг за шагом сущностные стороны
понятия.
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≪Что такое истина?- движущаяся толпа метафор≫. Ниц-
ше.

Пример вариативного ряда, который ≪строит≫ концепт понятия
≪время≫:

1. ≪Философская энциклопедия≫. М.: Советская энциклопедия,
1960, т. 1–5: ≪Время – одна из основных (наряду с пространством)
форм существования материи≫. (Комментарий. Определение не
определяет: в смысле не представляет как завершенное нечто перед
нашим умственным взором; определение только отсылает к другим
понятиям: ≪форма существования≫, ≪материя≫)

2. ≪Философский словарь≫ М.: Издательство ≪Республика≫, 2003,
с. 85. Перевод с немецкого: ≪Время (die Zeit) — присущая человече-
скому сознанию форма восприятия изменения: возникновения, ста-
новления, течения, разрушения в мире, а так же его самого вме-
сте со всем тем, что к нему относится≫. ≪≪Объективное время≫,
измеряемое физическими изменениями или отрезками пути небес-
ных тел, нужно отличать от ≪субъективного≫ времени, которое
основано на сознании времени≫. (Комментарий: какой-то хаотичный
текст, но есть и положительное содержание.)

3. ≪Словарь философских терминов≫ М.: ≪ИНФРА-М≫.2004:
≪Время — философская и общенаучная категория, в которой на-
шло выражение разнообразие представлений о времени: длитель-
ность существования и мера изменений материи (Аристотель, Де-
карт, Гольдбах); внутренняя характеристика души, фиксируется
только настоящее, окружённое небытием (Августин); форма про-
явления абсолютной вечности, преходящая длительность (Платон,
Гегель); однородная для всей вселенной абсолютная длительность
(Ньютон); относительное свойство вещей, порядок последователь-
ности состояний (Лейбниц); форма упорядочивания комплекса ощу-
щений (Беркли, Юм, Мах); априорная форма чувственного созерца-
ния (Кант); форма бытия материи, выражающая длительность
и последовательность изменений (Энгельс, Ленин). Большинство
представлений о времени можно свести к двум основным концепци-
ям: субстанциональной и реляционной. Первая рассматривает вре-
мя как длительность, вторая – как особого рода отношение между
объектами и процессами≫. (Комментарий: собственно, представлен
свой редакторский вариативный ряд.)

4. ≪Пространство — это одномоментность бытия, время – про-
тяжённость бытия≫.

(Комментарий: понятие время надо обсуждать в двойственно-
сти ≪пространство — время≫. Приведённый член вариативного ряда
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отражает часть сущности понятия ≪время≫, и является вариантом в
каком-то смысле к ≪Время каждый миг творит пространство заново≫.
Операционное понимание времени.)

5. ≪Пространство реализует отношения. Время реализует про-
цессы≫.

6. ≪Время атрибут движения≫. Двойственное к этому в духе
Протагора: ≪Нет движения, а есть то, что движется≫. (Сравни:
≪Нет равенства, а есть то, что устанавливает равенство≫. ≪Движение
распределено по предметам как материя≫.)

8, 9, 10, и т. д. — нет предела пониманию.
Перефразируя Трусделла, можно сказать: ≪Мы не знаем, что та-

кое время, но многое знаем о его свойствах и действии≫.
Итак, понятие идёт за вариативным рядом своих определений;

понимание наступает как переход количества продуманных предло-
жений в качество. Общественная практика постоянно удлиняет этот
ряд, и процесс понимания запускается заново. Попытка ухватить сущ-
ность понятия одномоментно конечным текстом невозможна. Глуби-
на проникновения в сущность всегда относительна и определяет меру
успеха наших действий.

Неполнота понятия – это ген теоремы о неполноте Гёделя.

3. Развитие содержания понятия.

С неполнотой связано, что понятие находится в развитии — в ≪ре-
ке Гераклита≫ (≪Все течет, все меняется. На входящего в реку на-
бегают все новые воды. И смертной сущности нельзя прикоснуться
дважды≫, (перевод известной фразы Гераклита, сделанный Плехано-
вым)). Деятельность человека обогащает понятие все новым содер-
жанием. Наглядный пример — понятие числа. Вначале это понятие
охватывало только класс целых положительных чисел, потом появи-
лись числа нуль и отрицательные, числа рациональные, веществен-
ные, комплексные, нестандартные. Числа можно воспринимать как
код, как гёделевский номер целых теорий и т.д.

≪Истина должна быть не преподана, а пережита≫. Гессе.

Ничего вне исторического движения(развития) нет. Поэтому ≪по-
нять≫ означает осмыслить ещё и историю данного понятия. Мате-
риализм не только диалектичен, но и историчен. Собственно, тело
диалектики (денотат)— это история.

≪Кто хочет ограничиться настоящим без знания прошло-
го, тот никогда его не поймёт≫. Лейбниц.
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Например, исторический анализ (траектории во времени, проло-
женной вариативным рядом осмыслений) понятия ≪время≫ просто
необходим. Здесь существенно одно замечание.

Фраза ≪Давайте представим, что думали древние греки о числе,
о времени≫ несёт в себе нечто невозможное в реализации. Наши мыс-
ли о мыслях греков две тысячи лет назад обусловлены уровнем се-
годняшнего знания. Это привносит какую-то неустранимую погреш-
ность: проясняя одно, мы искажаем другое (как в квантовой меха-
нике). Мы вторгаемся с инструментом анализа, которого много лет
назад не было, но который обуславливает определённые формы умо-
заключения.

4. Развитие понятия через двойственность и противоре-
чие.

Полноту понятие приобретает, когда, развиваясь, включает в своё
содержание двойственность. Пример. Понятие пространства после ра-
бот Лобачевского отделило в себе пространство ≪математическое≫ от
пространства ≪физического≫. Это стимулировало процесс рождения
пространств ≪делением в себе≫: от евклидового пространства отдели-
лось метрическое, от метрического — топологическое и т. д.

Развитие понятия (развитие содержания, концепта) необходимо
приводит к противоречию. Здесь я имею в виду, что рано или поздно
мы приходим к необходимости принять в содержание понятия одно
из взаимно исключающих свойств.

Идут параллельно два процесса: обогащается содержание поня-
тия — по-новому формируется денотат, носитель понятия. Следствие
развития понятия — неполнота понятия (≪философский≫ аналог тео-
ремы Гёделя) и перестройка отношений между основными элемен-
тами понятия, включая замену некоторых положений на противопо-
ложные.

В эволюции понятия должны сохраняться преемственность, не
отрицание, эквивалентное разрушению, а перестройка с сохранением
фундамента.

Понятие ≪пространство≫ совпадало с представлением о евклидо-
вом трёхмерном пространстве. Но развитие этого представления об-
наружило, что возможно принять как единственность, так и множе-
ственность прямых, проходящих через заданную точку параллельно
другой прямой. Поэтому у понятия ≪пространство≫ денотат возрос до
системы: физическое, евклидово, риманово и другие пространства.

≪Истина есть ещё не доказанная ложь≫. Леонид Андреев.
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§ 3. Речь. Предложение

.Для абстрактного мышления нужна речь. Только воспри-
ятие не требует внутренней речи. А любая мысль — это
фраза. К. Шереметьев.

Обсудим ≪предложение≫ как элемент базиса последующих рас-
суждений. Именно предложения формируют члены вариативного ря-
да, определяющего понятие.

Предложение — реальное воплощение противоречия: формули-
руя его, считаем, что смысл предложения определяется содержанием
понятий-слов. Однако, предложение обладает смыслом, отличным от
≪простой≫ совокупности смыслов входящих слов-понятий. Имеется
внутреннее, иммержентное, ≪смысловое≫ качество предложения, ко-
торое изменяет содержание вошедших понятий. Понятия входят с од-
ним содержанием в предложение, выходят с другим. Иммержентное
содержание исходит от идеального бытия объекта.

≪Предложение — не просто упорядоченная последователь-
ность слов. Предложение — это траектория движущейся
мысли≫. Р.Р. Дигаш.

Поясняющие высказывания. ≪Что такое время? Ведь ты, спраши-
вая, понимаешь что-то под словом ≪время≫. Тогда в чём смысл во-
проса? Ты хочешь узнать нечто, что тебе неизвестно, что в это что-то
не входит?≫

≪Как собираешься ты искать нечто, природа чего тебе со-
вершенно неизвестна? Что из неизвестного тебе нужно
найти? И если, волею случая, ты найдёшь это, как ты
узнаешь, что это именно то, что ты ищешь, если тебе
это неизвестно?≫ Платон.

Вот высказывание, которое проявляет сущностное свойство по-
нятия ≪предложение≫: ≪Если вы думаете, что не правы, значит, вы
не правы. Следовательно, если вы думаете, что не правы, значит, вы
правы≫.

Еще одно предложение.
≪Аксиома выбора гласит, что если дана система множеств, то

можно составить новое множество, выбрав по одному элементу из
каждого множества системы.≫

К пониманию аксиомы:
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≪Когда в первый раз встречаются с аксиомой выбора, то
она кажется бесспорной и очевидной, но по мере того, как
начинают размышлять о ней, она представляется всё бо-
лее и более загадочной, а следствия — изумительными, и
тогда начинают спрашивать, что же собственно она зна-
чит?≫ Бертран Рассел.

Аксиома выбора определяет, что такое выбор. Сравни: ≪Нет рав-
ных, а есть то, что делает равными≫. Подробнее об аксиоме выбора
см. в [23].

≪Предложение — это уравнение, определяющее слово≫. Ди-
гаш.

≪Фраза ≪Охотник нашел тулун и утолил жажду . . . ≫ до-
ступна для понимания. Несмотря на незнакомое слово ≪ту-
лун≫, мы можем приблизительно представить его значение
путем . . . семантического согласования. Скорее всего, это
что-то для питья. И действительно, тулун — это монголь-
ский кожаный бурдюк для питья≫. К. Шереметьев.

≪ Так . . . отдельная шестеренка — это никому не нужная ше-
стеренка. Она имеет смысл только при наличии механизма,
в котором она будет вращаться. Любое понятие напомина-
ет шестеренку. Только внутри умственной конструкции оно
приобретает смысл≫. К. Шереметьев.

≪Созданные для нашей повседневной жизни, слова облада-
ют привычным значением лишь при известных ограничен-
ных обстоятельствах≫. Г. Вейль.

≪Невозможно применять математику, пока слова затемняют
реальность.≫

≪Суть каждого предложения состоит в указании на отно-
шения понятий . . . .Восприятие . . . фразы вызывает чрезвы-
чайно сложный процесс каскадной интерпретации. Как го-
ризонтальной, так и вертикальной.
Во время горизонтальной интерпретации завитушки линий
интерпретируются как образы букв. Буквы складываются в
изображения слов. А слова запускают вертикальную интер-
претацию.
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Во время вертикальной интерпретации слова вызывают се-
мантический контекст — те образы, которые обозначаются
словами. Эти образы попадают в специальное место созна-
ния, которое мы будем называть креативным полем. В кре-
ативном поле образы складываются в целостную психосце-
ну.≫ К. Шереметьев.

§ 4. О математическом мышлении

Предметом большей части нашей книги будет математическое
мышление. Сразу отметим, что нет отделенного (≪в чистом≫ виде) ни
математического, ни философского, ни какого-то экспериментального
физического мышления. Есть просто мышление – деятельность субъ-
екта, направленная на организацию фактов, такую организацию, ко-
торая продуктивна для действия. Но направленное на изучение опре-
деленной области естествознания мы можем характеризовать его по
этой направленности, как математическое или иное мышление в силу
специфических форм мышления, вызываемых особенностями более
узкой области размышлений.

≪Подобно самой истине и опыту мышление по своему ха-
рактеру есть нечто довольно однородное и универсальное.
Влекомое глубочайшим внутренним светом, оно не сво-
дится к набору механически применяемых правил и не мо-
жет быть разделено водонепроницаемыми переборками на
такие отсеки, как мышление историческое, философское,
математическое и другое.≫ Г. Вейль.

У мышления две важнейшие функции: понимание и организация
фактов (сознания, информации, деятельности), обеспечивающие про-
дуктивность действия (умственного, практического).

В контексте математики это функции: 1) постановка задачи,
осмысливание проблемы; 2) формулировка предположений и прове-
дение доказательств.

1. Понимание

Даже в математике понимание и доказательство не одно и то же.
Далее следует вариативный ряд высказываний, поясняющих это.

≪Каждый математик, впрочем, знает, что доказатель-
ство не является ≪понятым≫ в подлинном смысле это-
го слова, если ограничиться лишь проверкой правильности
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выводов, которые его составляют, и не пытаться понять
отчетливо идеи, которые привели к созданию этой цепоч-
ки выводов предпочтительно перед всякой другой≫. Н. Бур-
баки.

Когда дано сложное доказательство математического утвержде-
ния, понимание наступает не тогда, когда проверены по частям все
логические связки, а тогда, когда доказательство представлено в раз-
витии и структурировано иерархически: выделены основные идеи,
затем принципы и подыдеи, приведены априорные и апостериорные
рассуждения и т. п. Проверять длинное доказательство как цепочку
силлогизмов — это всё равно, что вместо кино рассматривать после-
довательно кадры киноленты.

Решение проблемы тождества слов в группе, данное Адяном и
Новиковым, заняло в изложении несколько выпусков журнала ≪Из-
вестия АН СССР. Серия математическая≫, и имеет следующий вид
с начала до конца: предложение 1, предложение 2, . . . , предложе-
ние 300 и т.д. Проверка перехода от предложения к последующему
проста для квалифицированного математика, но длинна. Американ-
ские математики потратили год на проверку всего доказательства.
Справедливые упрёки последовали со стороны математического со-
общества, что Адян и Новиков не сформулировали общие руководив-
шие их рассуждениями идеи и принципы. Это и было сделано Адяном
и Новиковым в соответствующей статье.

Так же ≪трудно≫ воспринимается ≪машинное≫ доказательство
проблемы четырех красок. Даже выделяя некоторые схемы для ≪рас-
суждений≫ машины, Коэн смог ≪укоротить≫ доказательство только
до 300–400 страничной книги.

А теперь вариативный ряд к ≪понимание≫.

≪Мы хотим прежде всего понять, а уже затем, поняв,
сформулировать доказательство.≫ Альберти.

≪Когда вы убедитесь, что теоремы верна, вы начинаете
её доказывать.≫ Д. Пойа.

≪Мы видим, как в размышлениях о творчестве появля-
ется новый фактор — понимание, который применитель-
но к математике может иметь первостепенную важ-
ность≫. Альберти.

≪Не плакать, не смеяться, а понимать.≫ Б. Спиноза.
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≪Рационально мыслящего человека убедит аргумент, а до-
казательство нужно, чтобы убедить того, кто не особо
умён.≫ П. Рентелн, А. Дандес.

≪Доказательство в реальной жизни, полностью или ча-
стично, является неформальным. Фрагмент формальной
аргументации — вычисления — обретают смысл только
как дополнение или подтверждение некоторого неформаль-
ного рассуждения. Логический и формальный облик доказа-
тельства является предметом рассмотрения логики, а не
математики реального мира.≫ Херш.

Процесс понимания для разума более внутренний, чем процесс
доказательства. Доказательство выделяется из рассуждений как экс-
кременты жизнедеятельности ума.

Доказательство — это только локальный момент познания исти-
ны.

≪Решение, подсказанное здравым смыслом, гораздо инте-
реснее и уж, конечно, более творческое, а также со-
держит больше информации, чем сугубо математиче-
ское.≫ Р. Смаллиан.

Аспекты понимания:
1) умение выделять части изучаемой системы и их взаимодей-

ствие;
2) выбор контекста, в котором рассматривается задача;
3) выбор интерпретации проблемы, точки зрения на неё;
4) ретроспективный обзор ≪путей≫ в прошлое (накопленные зна-

ния) и ≪путей≫ в будущее (пути абстрагирования и обобщения);
5) медитация и сосредоточение;
6) полнота информации.

2. Оператор организации.

Обсудим вторую функцию мышления, организующую. В вариа-
тивном ряду понимания этой функции я стартую, формулируя прин-
цип: ≪мышление есть действие и рефлексия к действию≫.

Задача. Каждая точка плоскости окрашена в один из трёх цве-
тов. Доказать, что всегда найдутся две точки, одинаково окрашенные
и отстоящие друг от друга на расстоянии один метр.

Решение. 1) Опираясь на сформулированный принцип, начнём
выполнять действия, соответствуя данной задаче. Самое простое, что
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можно сделать — это выбрать точку. Рефлексия к этому действию:
точка окрашена в один из трёх цветов, например, в цвет 1.

2) Следующее действие, возможное в контексте задачи — взя-
тие ещё одной точки, удалённой от первой на расстояние 1 м. Ре-
флексия — осмысление ситуации ко второму шагу: если вторая точка
окрашена как и предыдущая, то утверждение задачи верно. Поэтому
предположим, что вторая точка окрашена цветом 2.

3) На третьем шаге действия напрашивается добавление третьей
точки, равноотстоящей на метр от первых двух. Если она окрашена
одним из цветов двух предыдущих, то утверждение задачи выполня-
ется. Поэтому предположим, что все вершины полученного равносто-
роннего треугольника окрашены разными цветами от 1 до 3.

4) Теперь возьмём новую точку, равноотстоящую от точек цвета
2 и 3 на 1 м. если новая точка окрашена в цвет 2 или 3, то утвержде-
ние задачи выполняется. Следовательно, надо осмыслить ситуацию
с четвёртой точкой цвета 1. Здесь требуется более глубокое проник-
новение в ситуацию (более напряжённая рефлексия): при сдвиге от
первоначальной точки цвета 1 в произвольном направлении на рас-
стояние двух высот равностороннего треугольника, то есть на

√
3 м,

мы получим точки одного цвета (в ситуации, когда описанное постро-
ение четырёх точек ещё не решает задачу). Все точки на окружности
радиуса

√
3 м будут окрашены цветом 1, и среди них найдутся отсто-

ящие на 1 метр друг от друга.
Если рефлексия на новую ситуацию после 4 шага ≪не сработа-

ла> можно повторять действие выбора новых точек. В конце концов
≪количество действий перейдет в качество≫ — легко усматривае-
мый факт: на расстоянии 3 метров от исходной точки окружности
радиуса 3 окрашены цветом 1. �

≪Вот вам пример того, что можно сделать, если не поле-
ниться≫, — сказал Иа. ≪Тебе понятно, Пух? Тебе понятно,
Пятачок? Во-первых, смекалка, а во-вторых, Добросовест-
ная Работа. Ясно?≫ А.А. Милн ≪Винни-Пух и все-все-все≫.

То, что мышление — это на 90% действие особенно ясно воспри-
нимается на обучении слепо-глухо-немых детей (была такая школа
в СССР, некоторые воспитанники которой затем оканчивали МГУ и
успешно работали в науке). Речь, слово для них заменяются тактиль-
ными ощущениями от движений рук, пальцев.

Праматерия мышления — это движение. Мозг сошедших с де-
ревьев обезьян (во времена Великой Засухи в Африке) был ≪напол-
нен≫ образами разнообразнейших движений, реализованных сложны-
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ми связями нейронов головного мозга. Это и послужило перевопло-
щению этих образов в мышление, а не ≪освобождение≫ рук, хотя это
и способствовало (ведь у кенгуру Австралии ≪руки≫ освободились
изначально, но это не развило их мышление).

§ 5. Силлогистическое и ассоциативное мышление

1. Двойственность математического мышления.
Математическое мышление протекает в единстве таких момен-

тов,как:
1) владение математическим материалом (теорией);
2) абстрактно-философская рефлексия к проблеме;
3) психология творчества (воля,мотивация,чувство красоты);
4) владение выразительными средствами языка. Когда рассуж-

даешь в поисках идеи доказательства теоремы, решения задачи, фи-
лософские и математические аспекты размышления трудно отделить
друг от друга.Те общие принципы, которые вырабатывает математик
для получения решения, назовем рациональными принципами мате-
матики.

В целом же мышление проявляет себя как силлогистическое, до-
казательное или как ассоциативное, образное. Основу доказатель-
ных рассуждений образуют силлогистическая (классическая) логика,
сформировавшаяся усилиями ораторов, философов-математиков, за-
вершенная Аристотелем, использованная Евклидом. Именно в Древ-
ней Греции была осознана необходимость проводить свои рассужде-
ния в виде строго выделенных форм умозаключения - силлогизмов,
отправляясь от максимально очевидных исходных положений – акси-
ом.

Пути философии и математики начались с Фалеса и Пифаго-
ра, пути осознанного мышления. Силлогистическая логика (класси-
ческая) оформилась благодаря их размышлениям над первоосновами,
трудам софистов, дававшим уроки, развивавшие искусство убеждать;
благодаря приемам ораторов на народных собраниях, стремящихся
склонить мнение толпы в определенную сторону. Этот период станов-
ления классической логики завершился оформлением ее как науки в
трудах Аристотеля,и фундаментальным ее использованием матема-
тиком Евклидом (и школой им представляемой).

Аксиомы и правила вывода, сформулированные, например, в «На-
чалах» Евклида — результат схватывания общности в разрозненных
актах мышления и абстрагирования от частностей обсуждаемого.
Коллективная мысль Древних Греков уловила общее в частностях.
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Классическая логика возникла не благодаря исключительно чи-
стому созерцанию области мышления (в таком случае она скорее воз-
никла бы у индийцев-йогов), а благодаря практике. В основании сво-
ем силлогизмы отражают не фигуры мышления, а простейшие фи-
зические законы, причино-следственные связи. Человек, можно ска-
зать, экспериментально шел к абстрактной форме — фигуре умоза-
ключения. Наблюдая: если явление А вызывает явление В, а за явле-
нием В следует явление С, то всегда после А последует С. Если рык
издается тигром, и за спиной раздался рык, то надо спасаться (ибо
за спиной тигр). Нечто подобное, многократно повторяющееся было
«праматерией» силлогизмов.

Еще одно важное замечание. Если какую-то область мышления
(схваченную как понятие!) мы формализуем, то никакая формализа-
ция не есть полное представление этой области!

Если «племя» натуральных чисел формализовалось в аксиомах
Пеано, то есть еще много другого у чисел, чего нельзя извлечь, поль-
зуясь только формальной арифметикой. Все это многое лежит в ме-
таарифметике, в нумерологии, в чем-то еще, что приходит извне.

Живое мышление не тождественно доказательству. Доказатель-
ство есть только один из продуктов мышления, аргументированный
силлогизмами способ изложения результатов мышления. Избавление
от всего, от чего можно избавиться, силлогистическое изложение при-
водит к формальной системе.

После Древней Греции следующий глобальный скачок в матема-
тическом мышлении произошел благодаря переходу к единому осно-
ванию во всех математических дисциплинах — к теории множеств,
заложенной в трудах Кантора. Труды Н. Бурбаки показали форма-
лизуемость всех известных классических дисциплин в рамках аксио-
матической теории множеств.

Формальные системы — это скорее способ изложения (доказатель-
ный) достигнутых результатов, а в получении сложных теорем и раз-
витии теории исследователь пользуется не только (вернее не столь-
ко) классическими силлогизмами и правилами вывода классической
логики, а и рациональными принципами, большей частью не форма-
лизованными в какой-то системе, но организующими рассуждения по
поиску идей, путей доказательства или развития теории. Мы назовем
эти принципы рациональными принципами математики и постараем-
ся изучить их как содержательную систему в последующих главах.
В главе 9 изложим как формальную систему арифметику и теорию
множеств.

Легче всего ухватить суть ассоциативного мышления, обсуждая
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понятие ≪человек≫. Определение человека, приводимое в научной ли-
тературе включает более десяти характеристик:

≪Нас, людей, следует классифицировать как вид Homo
Sapiens, рода Homo, в семействе Гоминидов, в надсемей-
стве Гоминоидов инфраотряда Узконосых подотряда Ан-
тропоидов отряда Приматов подкласса Плацентарных в
классе Млекопитающих, в надклассе Четвероногих из ти-
па хордовых в царстве Животных домена Ядерных в им-
перии Организмов≫. Питер Эткинз.

И, однако, оно не полное! Чтобы понять неполноту, вспомните
≪ощипанную курицу≫ Диогена.

≪Cамое главное в человеке — то, что нельзя потрогать
руками, увидеть глазами, нельзя взвесить и измерить≫.
Александр Мень.

Как я уже отметил, любое конечное описание реально существую-
щего объекта неполно. Дадите вы полное определение тому, что такое
человек? Я — нет. Однако, ребёнок трёх лет уже владеет этим поня-
тием. Содержание понятия выработалось у него через предъявление:
мать твоя — человек, вот он — человек, и т.д., — через ассоциативное
мышление. Конечно, у ребенка вырабатывается только содержание
стартового определения (начального члена вариативного ряда) чело-
века, и некоторые сущностные черты человека (человек ест ложкой,
человек даёт понять другому, что хочет и т. д.) ему указываются.

Математик излагает свои результаты (теоремы, теории), следуя
правилам классической Аристотелевой логики, обосновывая последо-
вательно свои выводы её силлогизмами. Н. Бурбаки в своём много-
томном трактате ≪Элементы математики≫ показывает, что вся совре-
менная математика может быть представлена как формальная систе-
ма, введённая в первом томе — в трактате ≪Теория множеств≫. Но к
идеям доказательства теорем и развития теории математик приходит
иначе, руководствуясь правилами-принципами, которые ему подска-
зывают опыт и интуиция, и которые добыты на поле ассоциативного
мышления. Мы называем эти принципы рациональными принципами
математики.

≪Разум есть способность создавать принципы≫ . И. Кант.



22 Глава 1. Понимание и доказательство

Ассоциативное и силлогистическое мышления являются отраже-
нием двойственности: понимание — доказательство. И если силлогиз-
мы формируют формальные системы(исчисление предикатов, фор-
мальная арифметика, . . . ), то ассоциативное мышление структури-
руется,воспринимается как система через рациональные принципы.

≪Научный метод . . .— это совокупность правил, иногда об-
щих, иногда частных, которые помогают исследователю в пути в
джунгли поначалу разрозненных, противоречащих друг другу фак-
тов. Научное исследование — это искусство, а правила в искус-
стве, если они слишком жестки, приносят больше вреда, чем поль-
зы.≫ Д.П. Томпсон.

2. Рациональные принципы математики.

Наша цель — исследовать рациональные принципы как систему.
Остановимся только на отправных моментах. Во-первых, рациональ-
ные принципы должны обладать воспроизводимостью другими мате-
матиками как определенная в своем качестве мыслительная процеду-
ра и допускать обогащение содержания и развитие. Отметим в связи
с этим роль языка. В рациональных принципах наиболее общих от-
сутствует четкая и жесткая формулировка как у теорем. Принципы
сотрудничают с интуицией и не сводятся к алгоритмам. Алгоритмы
жестко регламентируют действия,принципы — нет.

Поскольку принципы словесно оформлены, сила принципа зави-
сит от силы выразительных средств языка. Богатство языка и средств
языкового выражения позволяет исследователю давать различные
формулировки для сложившейся ситуации и тем самым дает различ-
ные оттенки проблемы и более глубокое понимание ее. Формулируя
в словах, мы уже обобщаем задачу. Сила обобщения в привлекае-
мых словах и конструкции предложения (сравните обыденную речь
с предложениями трудов Гегеля и Хайдеггера). Слова при обдумы-
вании математической проблемы всегда приобретают оттенок фило-
софских понятий.

Во-вторых, нужно отметить иерархию принципов. Принципы пер-
вого уровня сведены Д. Пойа в таблицу «Как решать задачу». Это
правила, приемы излагаются во многих руководствах по подготовке к
математическим олимпиадам. правила типа «рассмотрите аналогич-
ный частный случай, аналогичный обобщающий пример»;«начните
решать задачу с конца, или от противного», «принцип Дирихле», и
т. п. Это то, что Томсон называет ≪частными правилами≫ (см. [2],
[40]–[42]).

Принципы более высокого уровня, более абстрактны, носят уже
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философский характер. Они помогают проникнуть за непосредствен-
ную данность, когда ум начинает работать с отрицания непосред-
ственно воспринимаемой картины, ситуации задачи. Эти принципы
как бы медитируют напряжение, необходимое для продвижения мыс-
ли за очевидность. Выработать эти принципы помогают книги [3], [4],
[6], [7]–[9], [19], [24], [26], [27], [31]–[33], [35], [37], [39], [62], [64].

Эти принципы поднимаются до уровня категорий и понятий диа-
лектической логики. Например, аналогия, которая на первом уровне
принципов выступает как рассуждение и действие по сходству, те-
перь проступает как воплощение категории всеединства, как выделе-
ние сущности через ряд явлений. Другим понятием, организующим
математические рассуждения, является категория «идеальное» (в по-
нимании Э. Ильенкова, см. [51], т. 2, статья ≪Идеальное≫).

В-третьих, что же дает изучение принципов конкретно для реше-
ния задач? При выработке того или иного принципа ,собственно, вы-
рабатывается весьма общее напряжение — образ идеи, которая реали-
зуется в конкретную идею при решении конкретной задачи. Поясним
это следующим высказыванием. Была раньше такая игра: высмотреть
в наброске штрихов какой-либо объект, например, зайца. Невозможно
это сделать, не обладая мысленным образом зайца, и невозможно по
исходному рисунку дать представление о зайце незнакомому с ним че-
ловеку. Философско-математический принцип — это добытое сырье,
которое в конкретной задаче превращается в конкретную идею.

≪Таким образом, представление о математике может быть
неверным из-за ошибочных представлений о том, как великие ма-
тематики делали свое дело. Незнание того, как именно работают
математики, ведет не только к непониманию природы математи-
ческих исследований, но и в некоторой степени является причи-
ной непопулярности этой науки. Конечно результат исследований,
который обычно принимает форму теоремы, выглядит в перерабо-
танном и отшлифованном виде так, что почти всегда оказывается
слишком непонятным для людей, не имеющих соответствующей
подготовки. Постороннему человеку трудно увидеть красоту в ма-
тематических формулировках, которые содержат много техниче-
ских деталей и чистой логики. Однако сам исследователь шел не по
такому ясному и логическому пути, а долго блуждал в кромешной
тьме в дремучем лесу чисел в поисках едва различимых тропинок.≫

≪ . . .математика исследует самые тайные интеллекту-
альные ландшафты≫. Энрике Грасиан.

3. Еще о рациональных принципах метаматематики.
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Конечно, для своей реализации принципу требуются дополни-
тельные усилия нашей мысли. Но принципы эффективно организуют
наши рассуждения в отличие например от следующего определения.

≪Математика — это наука, исторически основанная на реше-
нии задач о количественных и пространственных соотношениях ре-
ального мира путем идеализации необходимых для этого свойств
объектов и формализации этих задач.≫

Это определение мало что дает как принцип действия, направ-
ленного на поиск идей, решающих задачу.

≪Нельзя объять необъятное≫ — любил говорить Козьма Прутков.
Но накопление ≪пережитых≫ исследователем принципов позволяет
охватывать путем иерархической их организации все большую тер-
риторию науки.

Базовым для нас принципом будет уже приведенное определение:
мышление (в том числе математическое) есть действие и рефлексия
на действие.

Практические действия позволяют непосредственно восприни-
мать результаты отдельных этапов решения задачи, лучше знако-
миться с ними. По мере выполнения действий получаются новые по-
дробности, что позволяет по-новому взглянуть на проблему, а также,
возможно, достигается частичное решение задачи, в силу чего она
упрощается, и это облегчает ее решение в целом. Практические дей-
ствия служат основой проверки предположений, дают возможность
судить о правильности или ошибочности гипотез. Эти действия осо-
бенно необходимы тогда, когда возникают затруднения в мысленном
представлении того, что необходимо для решения задачи. Так бывает,
например, нередко тогда, когда приходится иметь дело с крупными
задачами, со сложным взаимодействием их частей, с большим количе-
ством намечаемых действий, результаты которых недостаточно четко
представляются в ≪мысленной≫ форме.

≪Опыт структурирует работу ума≫ В.А. Садовничий.
Математическое мышление включает в себя помимо действий со

специальным математическим материалом абстрактно-философское
выражение осознанных фактов и язык, как ту определенность, кото-
рая недостаточно определена, но достаточно ограничивает направле-
ние мысли; его неопределенность порождает возможности.

Помимо отмеченных моментов мышление математики включает
в себя еще интуицию.

Интуиция подсказывает, но не доказывает. Интуиция может и об-
мануть. Рассмотрим, например, следующую задачу. На рисунке 1 да-
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ны две фигуры из упругого растяжимого материала (резина). Можно
ли одну фигуру продеформировать в другую, не разрывая?

Рис. 1. Две фигуры 2. Необходимая деформация

Интуиция говорит, что это невозможно сделать. Но на рисунке 2
показана возможная деформация: ≪раздуваем≫ соединяющую ≪коль-
ца≫ трубку C и скользящей деформацией по ≪раздутой≫ поверхности
меняем местами участки A и B.

Другая задача. Пусть дан упругий шар. Можно ли не разрывая
шар сделать из него сферу? Интуиция с очевидностью говорит, что
этого сделать нельзя. Но строго математически доказать невозмож-
ность достаточно сложно.

4. Таблица Пойа .
Принципы первого уровня приводятся в книгах, посвященных

подготовке к олимпиаде. Назовем совокупность этих принципов ≪таб-
лицей Пойа≫.

В своей книге ≪Как решать задачу≫ Д. Пойа приводит следующие
рекомендации.

1) Понимание постановки задачи. Нужно ясно понять задачу. Что
известно? Что дано? В чем состоит условие? Возможно ли удо-
влетворить условию? Достаточно ли условия для определения
неизвестного? Или недостаточно? Или чрезмерно? Или проти-
воречиво? Сделайте чертеж. Введите подходящие обозначения.
Разделите условия на части. Постарайтесь записать.

2) Составление плана решения. Нужно найти связь между данны-
ми и неизвестными. Если не удается сразу обнаружить эту связь
,возможно, полезно прийти к плану решения. Не встречалась ли
вам эта задача? Хотя бы в несколько другой форме? Известна
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ли вам какая-нибудь родственная задача? Не знаете ли теоремы,
которая могла бы оказаться полезной? Рассмотрите неизвестное!
И постарайтесь вспомнить знакомую задачу с тем же или по-
добным неизвестным. Вот задача, родственная с данной и уже
решенная. Нельзя ли воспользоваться ею? Нельзя применить ее
результат? Нельзя ли использовать метод ее решения? Не сле-
дует ли ввести какой-нибудь вспомогательный элемент, чтобы
стало возможно воспользоваться прежней задачей? Нельзя ли
иначе сформулировать задачу? Еще иначе? Вернитесь к опре-
делениям. Если не удается решить данную задачу, попытайтесь
сначала решить сходную. Нельзя ли придумать более доступ-
ную сходную задачу? Более общую? Более частную? Аналогич-
ную задачу? Нельзя ли решить часть задачи? Сохранить толь-
ко часть условия, отбросив остальную часть: насколько опреде-
ленным окажется тогда неизвестное; как оно может меняться?
Нельзя ли извлечь что-либо полезное из данных? Нельзя ли при-
думать другие данные, из которых можно было бы определить
неизвестное, или данные, или, если необходимо, и то и другое
так, чтобы новое неизвестное и новые данные оказались ближе
к друг другу? Все ли данные вами использованы? Все ли усло-
вия? Приняты ли вами во внимание все существенные понятия,
содержащиеся в задаче.

3) Осуществление плана. Нужно осуществить план решения. Осу-
ществляя план решения, контролируйте свой шаг. Ясно ли вам,
что предпринятый вами шаг правилен? Сумеете ли доказать, что
он правилен?

4) Взгляд назад. (Изучение полученного решения.) Нужно изучить
полученное решение. Нельзя ли проверить результат? Нельзя ли
проверить ход решения? Нельзя ли получить тот же результат
иначе? Нельзя ли усмотреть с одного взгляда? Нельзя ли в какой-
нибудь другой задаче использовать результат и метод решения?

Рассмотрим таблицу Пойа как систему советов, стимулирующих
понимание (≪понять, а потом доказывать≫).

1) Как можно разбить на части? Смотрим на их взаимодействие,
думаем о том, что замечательного в отношениях частей.

2) Как иначе можно переформулировать условие? Дать другую ин-
терпретацию задачи.
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3) Что кроется за поверхностью фактов. Глубина проникновения в
текст задачи.

4) Осознаны ли полностью все детали задачи, факты условия.

Надо отдавать себе отчёт, что двумя разными контекстами нельзя
полностью отделить понимание и доказательство. Они

”
проникают“

друг в друга.
Пример. Четыре лошади разместили по углам квадратного поля.

В центре находится стрелок. Тремя выстрелами он убил всех лоша-
дей. Как он это сделал?

Пример (имевшийся в действительности факт). На один из бен-
зовозов, развозивших топливо по бензоколонкам, стали поступать жа-
лобы в управляющую компанию, что количество сливаемого бензина
не соответствовало указанному в документах, всегда было меньше на
5–7 литров. Осмотр машины и наблюдение за шофером в течение все-
го рабочего дня ничего не прояснили. Дайте реалистичное объяснение
факта.

Пример. Издеваясь над захваченной пиратами девушкой, гла-
варь заявил ей, что если она вытащит из мешочка, куда он положит,
лежащие на берегу, черный и белый камешки, белый, то ее отпустят.
Девушка заподозрила,что оба камня пират положил черного цвета.
Но пираты вынуждены были ее отпустить. Что сделала девушка?

Пример. Гипотенуза прямоугольного треугольника равна 10, а
опущенная на нее высота — 6. Найти площадь треугольника? (задача
из ≪американских≫ ЕГЭ)

Пример. Надо решить уравнение

5x2 + 7x+ 3

5x2 + 9x+ 3
=

5x2 + x+ 3

5x2 + 11x+ 3
.

Замечаем,что 5x2 + 3 повторяется во всех четырех квадратных трех-
членах. Делаем далее так, чтобы эти четыре части отличались бы
только слагаемыми без x:

5x+ 7 + 3/x

5x+ 9 + 3/x
=

5x+ 1 + 3/x

5x+ 11 + 3/x
.

Замена 5x+3/x = t, x ̸= 0 позволяет свести уравнение к квадратному.
Сформулированный принцип требует глубины понимания (нужно

усилить глубину понимания).
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≪Ухватить трудность на глубине, – вот что главное≫.
А. Витгенштейн.

Что кроется за поверхностью фактов?
Задача. Найти углы треугольника, для которого известна пло-

щадь S = a2+b2

4 , где a и b — стороны треугольника, (последние не
известны).

Решение. Надо четко выделить препятствие: обычно, для то-
го, чтобы ≪рассчитать≫ треугольник необходимо знание хотя бы трех
числовых характеристик треугольника, здесь же имеется только од-
на — площадь. Понимание этого факта и опыт решения подобных за-
дач (вспоминаем ряд подобных случаев с ≪недостаточностью≫ инфор-
мации) подсказывает, что здесь в треугольнике реализуется какой-то
экстремальный и исключительный, особый случай для элементов тре-
угольника. Опять же ряд аналогичных в отношении недостаточности
информации задач подсказывает, что особый случай обнаруживает-
ся через оценки, неравенства. Используя неравенство a2 + b2 ≥ 2ab,
заметим, что

S =
a2 + b2

4
≥ ab

2
.

С другой стороны, площадь треугольника вычисляется по формуле:

S =
1

2
ab sin γ.

Отсюда следует, что

1

2
ab sin γ ≥ ab

2
.

Значит, sin γ ≥ 1, поэтому sin γ = 1, и γ = π/2. Так как один из уг-
лов треугольника равен π/2, то рассматриваемый треугольник пря-
моугольный. В результате, мы можем написать следующие равенства:

S =
a2 + b2

4
=
ab

2
,

но a2+ b2 = 2ab тогда и только тогда, когда a = b, значит рассматри-
ваемый треугольник равнобедренный, а у равнобедренного треуголь-
ника углы при основании равны. Значит, остальные углы равны π/4.

В целом,абстрактно-общие формулировки рациональных принци-
пов в совокупности с решением примеров формулируют образ дока-
зательства исследуемой теоремы.



Глава 2
Принцип специализации и индукции

§ 1. Частный случай как организация доказательства

Частные случаи иногда подсказывают решение в общем случае.
А общий случай иногда проще решить, чем частный.

Задача. В треугольник АВС найти такую точку О, что сумма
расстояний ОА+ОВ+ОС будет минимальной.

Руководствуясь нашим принципом, начнем действовать. Действо-
вать можно, используя одно из правил таблицы Пойя. Например, рас-
смотрим частный случай задачи.

Для начала возьмем равносторонний треугольник . Главная цель
специализации — найти формулировку ≪решающей≫ идеи. При этом
поиске необязательно проводить строгие рассуждения.

Рис. 1. Равносторонний треугольник

Легко установить единственность искомой точки и, зная, что
равносторонний треугольник — симметричная фигура, предполага-
ем, что точка O совпадает с точкой пересечения медиан, биссектрис
и высот этого треугольника. Предположение это легко доказать.

После решения для равностороннего треугольника, возникает во-
прос: как использовать его для решения общей задачи?

Какую характеристику точки O будем ≪переносить≫ на произ-
вольный треугольник? Рассмотрим варианты.

Точка O — точка пересечения высот.
Точка O — точка пересечения медиан.
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Точка O — точка пересечения биссектрис.
Из точки O каждая сторона видна под углом 120 градусов. С

помощью опровергающих примеров легко убедиться, что нам не под-
ходят первые три варианта в общем случае.

Таким образом предположение формируется так: доказать, что
точка O, из которой каждая сторона треугольника видна под уг-
лом 120 градусов, дает минимальную сумму расстояний до вершин.

Рассмотрим, например, еще один частный случай усиления прав-
доподобности утверждения. Пусть дан равнобедренный треуголь-
ник ABC, где

Рис. 2. Исследуемый угол ϑ

AC = BC, CD — высота=d,DB = e. ПустьDO = x. Тогда сумма
расстояний от точки O до A,B,C есть

S = 2
√
x2 + e2+d−x, S ′x =

2x√
x2 + e2

−1 = 0, 3x2 = e2, x =
e√
3
,

tgθ =
1√
3
, θ = 30◦, ∠AOC = ∠AOB = 120◦.

Сформулированное предположение подтвердилось и в этом част-
ном случае. Обратимся к общему случаю, пусть O — точка, из кото-
рой стороны △ABC видны под углом 120◦, а треугольник таков, что
точка O лежит внутри треугольника.

Построим △A1B1C1 стороны которого перпендикулярны отрез-
кам OA,OB,OC, как на рисунке.

Для любой точки P в △A1B1C1 сумма длин перпендикуляров,
проведенных из P на стороны треугольника, есть постоянное число,
равное OA+OB +OC = 2(площадь ∆A1B1C1/периметр ∆A1B1C1).
Длина PA не меньше длины перпендикуляра, опущенного из P на
сторону B1C1, проходящую через A. Тем более PA + PB + PC не
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Рис. 3. Преобразование треугольника

меньше суммы длин всех перпендикуляров, которая равна AO+BO+
CO, равенство сумм достигается, когда P совпадает с O. �

На примере этой задачи можно убедиться, что для данного прин-
ципа важен богатый базис возможных действий. Богатство фактов,
богатства интерпретаций ведет к решению.

Резюмируем: в ходе решения задачи мы, опираясь на базис зна-
ний из области геометрии, сперва преобразовали исходную задачу в
новую, более конкретную. Затем для исходной задачи, пользуясь до-
полнительной информацией, осуществили превращение формы: пере-
шли от суммы расстояний до вершин к сумме расстояний описанного
равностороннего треугольника. Последняя сумма оказалась инвари-
антом (не зависящим от выбора точки). Поиск инварианта — тоже
принцип.

§ 2. Специализация задачи

Теорема 2.1. В раскрашенном в два цвета множество целых
чисел всегда можно найти три одноцветных числа, образующие
арифметическую прогрессию.

Доказательство. Если мы найдем натуральное число n такое,
что при любом разбиении множества 1, 2, . . . , n на два класса, в од-
ном из классов найдутся три числа, образующие прогрессию, то за-
дача будет решена и в общем случае.

Есть эвристические соображения, что такое n существует. На-
пример, при увеличении фиксированного n всего на единицу, число
различных троек возрастает на

C3
n+1 − C3

n =
n(n− 1)

2
.

И, если мы добьемся, приложив немало сил, для n такого раз-
биения, что ни в одном классе подходящей тройки не будет, то
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уже для n + 1 это будет сделать значительно сложнее, ибо ≪раз-
бивать≫ дополнительно придется все тройки (n + 1, n, n − 1), (n +
1, n − 1, n − 3), . . . , (n + 1, (n+ 2)/2, 1). Предполагаем n четным.
Получается, что еще в n/2 тройках надо выбрать элементы для пер-
вого и второго классов предыдущего (для n) разбиения.

Если даже мы не найдем подходящего n, проведенные с конкрет-
ными ≪кандидатами≫ на n рассуждения многое прояснят и породят
много полезных предположений.

Замечание 2.1. Роль подобных ≪оценочных≫ рассуждений ве-
лика. Элементарным примером могут служить рассуждения при при
решении последней задачи из гл. 1, § 5, с. 28. Приведем более слож-
ный пример. Пусть уравнение anx

n + · · · + a1x + a0 = 0, где ak,
k = 1, 2. . . . , n, — комплексные числа, разрешимо в радикалах, т. е.
существует формула Φ, дающая все корни уравнения, и которая пред-
ставима как последовательность символов Φ = σ1σ2 . . . σm, где сим-
вол σj, j = 1, 2, . . . ,m, означает либо коэффициент уравнения, либо
скобку, либо одну из арифметических операций, либо операцию из-
влечения корня степени p (p — целое число, большее единицы), либо
не зависящее от коэффициентов уравнения число. Наличие в после-
довательности σj, j = 1, 2, . . . ,m, операций вида p

√
, q
√

дает нам pq
возможных значений Φ. Известно, что рассматриваемое нами урав-
нение имеет не более n различных корней. Даже, если p, q ≤ n, то
их произведение может значительно превосходить n. Отсюда следу-
ет, что что формула Φ должна обладать определенной симметрией.
Приведенные ≪оценочные≫ рассуждения наводят на мысль, что, во-
первых, формулы с богатой симметрией уже при n = 5, скорее всего,
невозможны и, во-вторых, надо отдельно исследовать отдельные сим-
метрии формы σ1σ2 . . . σm. Последнее неизбежно приводит к группам
перестановок.

Вернемся к нашей задаче. Начнем с n = 5, поскольку 1 6 n 6 5
явно не удовлетворяют. Вот разбиение, ≪исключающее≫ 5 из возмож-
ных кандидатов:

{1, 2, 3, 4, 5} = {1, 2, 4} ∪ {3, 5}.

Во второе слагаемое добавим 6 и получим контрпример для n = 6

{1, 2, . . . , 6} = {1, 2, 4} ∪ {3, 5, 6}.

Разбиение, исключающее n = 7

{1, 2, . . . , 7} = {1, 2, 5, 7} ∪ {3, 4, 6}.



§ 2. Специализация задачи 33

Разбиение, исключающее n = 8

{1, 2, . . . , 8} = {1, 2, 5, 6} ∪ {3, 4, 7, 8}.

(Какой принцип оптимального размещения можно сформулировать
после этих примеров?)

Рассмотрим случай n = 9. Следующие тройки не должны попа-
дать в один класс:

(9, 8, 7), (9, 7, 5), (9, 6, 3), (9, 5, 1).

Внимательно смотрим на эти тройки. Наблюдаем ли мы что-нибудь
примечательное? Да, 7 и 5 встречаются два раза. Осмысление этого
факта (рефлексия), дает ли нам что-нибудь? Да, если 9 и 5 принадле-
жат классу I, то 7 и 1 принадлежат другому классу II (аналогично,
если {9, 7} ⊂ I, то {8, 5} ⊂ II).

Подробно рассмотрим случай {9, 5} ⊂ I, {7, 1} ⊂ II. Пытаемся
разбить числа так, чтобы в классах не получилось прогрессии. Нельзя
добавить 4 во II класс, ибо 7− 4 = 4− 1. Итак {9, 5, 4} ⊂ I. По тому
же принципу 6 и 3 попадают во II класс, и тогда число 2 попадает в
I класс. {9, 5, 4, 2} ⊂ I, {7, 6, 3, 1} ⊂ II остается число 8, куда бы ни
добавили, получим прогрессию.

Рассмотрим случай: {9, 7} ⊂ I, {8, 5} ⊂ II. Нельзя добавить
2 во II класс, следовательно получаем {9, 7, 2} ⊂ I, {8, 5} ⊂ II.
Теперь рассмотрим два варианта событий: 6 попадает в I класс —
{9, 7, 6, 2} ⊂ I,⇒ {8, 5, 4, 3} ⊂ II (5,4,3 образуют прогрессию), и
другой вариант, когда 6 попадает во II класс — {8, 6, 5} ⊂ II, ⇒
{9, 7, 4, 2} ⊂ I,⇒ {8, 6, 5, 1} ⊂ II (остается число 3, которое образует
прогрессии в обоих классах).

Пусть теперь в I классе будет только одно число {9} ⊂ I, очевид-
но, что {7, 5} ⊂ II, тогда 6 и 3 должны попасть в I класс, {9, 6, 3} ⊂ I,
а это дает уже прогрессию.

Эта простая задача допускает много различных решений. Мы
приведем решение, которое может быть основой для дальнейшего
обобщения и которое приводится в литературе.

Рассмотрим на числовой прямой (тем самым, вместо чисел будем
говорить о точках) девять троек точек вида (x, x + 1, x + 2) (напри-
мер, для 1 ≤ x ≤ 9). Существует 23 = 8 способов раскраски такой
тройки точек, поэтому, согласно принципу Дирихле, какие-то две из
рассматриваемых троек раскрашены одинаково. С другой стороны,
в каждой тройке найдутся две одноцветные точки. Таким образом,
мы получили четыре точки A11, A12, A21, A22, раскрашенные одина-
ково (для определенности, скажем, в белый цвет), причем

−−−−→
A11A12 =
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−−−−→
A21A22 (Рис.1). Отметим также точки A13 и A23 так, чтобы тройки
A11, A12, A13 и A21, A22, A23 образовывали арифметические прогрес-
сии. Если какая-то из двух добавленных точек белая, то искомая
тройка найдена. Если же они обе черные, то рассмотрим точку A33,
образующую арифметическую прогрессию с точками A13 и A23. Если
точка A33 черная, то одноцветная будет тройка точек (A13, A23, A33),
а если белая, то тройка (A11, A22, A33). �

Рис. 4. Искомое расположение точек

§ 3. Пример из функционального анализа

Теорема 3.1. Пусть дана равномерно ограниченная (числом М)
последовательность непрерывных функций f1, f2, . . . , fn, . . . , опре-
деленных на отрезке [0, 1] и сходящихся в каждой точке этого от-
резка к непрерывной функции f(x). Тогда для любого ε > 0 суще-
ствует выпуклая комбинация конечного числа функций последова-

тельности λ1fk1(x) + λ2fk2(x) + · · ·+ λmfkm(x), λi ≥ 0,
m∑
i=1

λi = 1

со свойством:

|f(x)−
m∑
i=1

λifki(x)| ≤ ε, для всех x ∈ [0; 1].

Доказательство. Не теряя общности, будем предполагать,
что f(x) тождественно равна нулю. Рассмотрим базовый пример по-
следовательности функций со свойством сходимости поточечно, но не
равномерно.

У функции φn(x) носитель Spt φn есть замкнутый интервал ∆n,
при этом ∆i ∩ ∆j = ∅, если i ̸= j;

∑∞
i=1 |∆i| < 1; |∆n+1| < |∆n|.

Если ∆n = [an; bn], то |∆n| = bn − an. Пусть lim bn = lim an = 1. Да-
лее, пусть φn(x) ≥ 0,maxφn(x) = Mдля всех n. То, что последова-
тельность φn сходится поточечно к нулю, а равномерная сходимость
отсутствует, - очевидно. Взяв достаточно большое N , обеспечиваем
неравенство

N∑
i=1

1

N
φi(x) ≤ ε, для всех x ∈ [0; 1].
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Этот пример, частный случай, подсказывает, что и в общем случае
доказательство нужно вести, выделяя вот такие ≪горбы≫, отделенные
друг от друга и образуемые отдельной функцией или несколькими
функциями.

Рис. 5

Попробуем реализовать этот план. Фиксируем число ϵ > 0.
Пусть nm есть конечное множество (кортеж) натуральных чисел

nm = {nm1, nm2, . . . , nmk}

со свойством:
Dm =

∩
i∈nm

{x : fi(x) ≥ ϵ} ̸= ∅. (3.1)

При этом полагаем, что множество nm нельзя расширить, сохраняя
свойство (1). Строим следующие Dm+1, начав со взятия fj, j /∈ nm
и Dfj ̸= ∅. Пусть индекс m имеет возможность последователь-
но принимать бесконечное число значений: 1,2, . . . Наблюдаем, что
Dm ∩ Dp = ∅,если m ̸= n. Это позволяет начать рассуждения, про-
веденные в примере, взяв вместо ∆m множество Dm, а вместо fm —
набор функций. Выберем N множеств Dm, m = 1, ..., N . Пусть km —
число элементов в nm, составим выпуклую комбинацию∑
i∈n1

1

N

1

k1
fi(x) +

∑
i∈n2

1

N

1

k2
fi(x) + ...+

∑
i∈nN

1

N

1

kN
fi(x) = ϕN(x). (3.2)

Если x принадлежит, к примеру, D1, имеем оценку∣∣∣∣∣∑
i∈n1

1

N

1

k1
fi(x)

∣∣∣∣∣ ≤ M

N
,

выбором N можно сделать M
N меньше заранее выбранного числа

ε > 0. Препятствие к получению оценок малыми величинами воз-
никает для последующих слагаемых. Например, (x — по-прежнему
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элемент D1) в одном из слагаемых суммы∑
i∈n2

1

N

1

k2
fi(x),

какая-то функция fi(x) может быть больше ϵ, хотя x ̸= D1. Если бы
такой факт не наблюдался, то есть:

∀i ∈ n2&∀x ∈ D1 ⇒ fi(x) ≤ ϵ, (3.3)

то можно было бы провести такую оценку обсуждаемого слагаемого:∣∣∣∣∣∑
i∈n2

1

N

1

k2
fi(x)

∣∣∣∣∣ ≤ ϵ

N
, ∀x ∈ D1.

Если это верно и для последующих слагаемых, то ϕN(x) в (3.2)сверху
оценивается неравенством

ϕN(x) ≤
M

N
+ ϵ

N − 1

N
. (3.4)

Из сказанного ясно, что надо провести построение последователь-
ности {nm} таким образом, чтобы соблюдалось (3.3).

Пусть f1(x), f2(x), . . . — исходная последовательность. Напоми-
наем, что через Dfi(x) обозначим множество {x : fi(x) ≥ ϵ}. Предпо-
ложим, что для всех i|Dfi ̸= ∅.

Имеем следующую альтернативу для Df1:
А. Существует бесконечная подпоследовательность

σ1 = {fn1, fn2, . . . }

исходной последовательности со свойством:Df1∩Dfnq = ∅ для всех q.
В. Исключая конечное число функций из исходной последователь-

ности, получаем подпоследовательность σ1 такую, что Df1 ∩Df ̸= ∅
для всех fj ∈ σ1.

Осуществляем первый шаг построения. Формируем n1 рав-
ным {1} и подпоследовательность σ1 исходной последовательности
согласно А или В.

Предположим, что мы прошли m шагов построения и получили
конечные последовтельности индексов n1, n2, . . . , nk, где k ≤ m, и,
если i < j ≤ k, p ∈ nj, то Dfp ∩ Dni = ∅. Считаем, что построили
также кроме Dni подпоследовательность σm исходных функций.
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Делаем m + 1 шаг. Для nk и σm имеем альтернативу А или В,
где в формулировке нужно заменить исходную последовательность
f1, f2, . . . на σm, Df1 на Dnk .

Если имеет место A, построение nk заканчиваем и начинаем стро-
ить следующий кортеж nk+1, полагая nk+1 = {i}, где i — индекс
функции, являющейся первым членом σm+1. А σm+1 получается из
σm оставлением таких функций f , что Df ∩Dnk = ∅.

Если имеет место В, то последовательность σm+1 получаем, вы-
кидывая из σm функции f (их конечное число) со свойством:

Df ∩Dnk = ∅.

Расширяем nk, присоединяя к нему номер первого члена последова-
тельности σm+1.

Легко усматривается, что последовательно альтернатива В мо-
жет применяться только конечное число раз. Действительно, в
противном случае имели бы бесконечную последовательность ко-
нечных наборов функций e1 = {φ11}, e2 = {φ21, φ22}, . . . , em =
{φm1, φm2, . . . , φmm}, . . . такую, что система замкнутых множеств
{Dem}, m = 1, 2, ... центрирована, а потому имеет общую замкнутую
точку x. Получется, что в этой точке бесконечное число членов исход-
ной последовательности fi не меньше ϵ > 0. Последнее противоречит
поточечной сходимости: lim fi(x) = 0 для всех x ∈ [0; 1].

Действуя описанным способом, мы получаем сколь угодно длин-
ную цепочку кортежей nm, со свойством: если i < j ≤ k, то
Dni ∩Dfq = ∅, где q ∈ nj.

Для этой цуепочки проходит одна оценка (4). Мы всегда можем
выбрать N так, что

M

N
+
ϵ(N − 1)

N
≤ ε, если ϵ =

ε

2
.

Теорема доказана, поскольку, если имеется бесконечное число
членов fi, для которых ∥fi∥ < ε, то утверждение теоремы с этим
ε очевидно.

§ 4. Развернутый принцип специализации

Наконец, приведем пример ≪широкого≫ развертывания частных
случаев, осознания на их основе общих фактов, пример восхождения
от частных случаев к абстрактно-общему результату (теореме Гиль-
берта об идеалах в кольце полиномов).
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1. Основные определения.
Моном от переменных x1, x2, . . . , xn есть произведение вида

xα1
1 x

α2
2 · · ·xαn

n , где показатели степеней α1, . . . , αn — неотрицатель-
ные целые числа. По определению полная степень монома есть сумма
|α| = α1 + α2 + · · ·+ αn. Вектор (α1, . . . , αn) = α называется мульти-
индексом.

Полиномом от переменных x1, x2, . . . , xn с коэффициентами из
поля K называется конечная линейная комбинация мономов:

f =
∑
α

aαx
α, aα ∈ K.

Всюду далее K — поле вещественных или комплексных чисел.
Переменные x1, . . . , xn также будут принимать значения в K. Мно-
жество всех полиномов от переменных x1, . . . , xn с коэффициентами
из K обозначается через K[x1, . . . , xn].

Пусть f =
∑
α
aαx

α — полином из K[x1, . . . , xn]. Тогда

(i) aα называется коэффициентом монома xα;

(ii) если aα ̸= 0, то aαxα называется членом полинома f ;

(iii) полной степенью полинома f называется максимум степеней |α|
членов полинома.

Естественные операции сложения и умножения превращают
K[x1, . . . , xn] в кольцо.

Подмножество I ⊆ K[x1, . . . , xn] называется идеалом, если вы-
полнены следующие условия:

(i) 0 ∈ I;

(ii) если f, g ∈ I, то f + g ∈ I;

(iii) если f ∈ I, и h ∈ K[x1, ..., xn], то hf ∈ I.

Пусть f1, . . . , fs — полиномы в K[x1, ..., xn]. Положим

⟨f1, ..., fs⟩ =
{ s∑
i=1

hifi : h1, . . . , hs ∈ K[x1, . . . , xn]
}
.

Множество ⟨f1, . . . , fs⟩ есть идеал.
Соответствуя этому примеру, идеал I называется конечно-порож-

денным, если существуют полиномы f1, . . . , fs ∈ K[x1, . . . , xn] такие,
что I = ⟨f1, . . . , fs⟩. При этом множество полиномов f1, . . . , fs назы-
вается базисом идеала I.
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Теорема 4.1 (Гильберт). Каждый идеал I в кольце полиномов
K[x1, ..., xn] является конечно-порожденным.

Начнем доказательство с подробного исследования частного слу-
чая — кольца полиномов от одной переменной.

2. Алгоритм деления многочленов.
Пусть даны многочлены Pn(x) = anx

n + ... + a1x + a0 и Qn(x) =
bmx

m + ... + b1x + b0, an ̸= 0, bm ̸= 0. Если n ≥ m, то можно Pn(x)
представить в следующем виде

Pn(x) = Qm(x)
(an
bm
xn−m

)
+Rn−1(x). (4.1)

Здесь полиномRn−1 имеет степень меньшую, чем n. Формулу (5) мож-
но применить к Rn−1(x), если степень Rn−1 не ниже m:

Rn−1(x) = Qm(x) ·
(cn−1
bm

xn−m−1
)
+Rn−2(x),

где cn−1 — старший коэффициент полинома Rn−1(x).
Итак, повторяя разложение по формуле (5), получаем

Pn(x) = Qm(x)Sn−m(x) +R(x), (4.2)

где степень l многочлена R(x) меньше m.
Изложенное представляет алгоритм нахождения частного S(x) и

остаточного члена R(x) при делении fn(x) на Qm(x). Этот алгоритм
может быть представлен геометрией расположения отдельных эта-
пов. Такое представление называется делением ≪столбиком≫, причем
форма записи различна в русскоязычной и англоязычной научной ли-
тературе. Приведем на примере эти формы.

Пусть P5(x) = x5 − 4x+ 1, Q3(x) = x3 − x2 + x.

|x3 − x2 + x

Расположим алгоритм деления ≪русским≫ столбиком:

_x5 − 4x+ 1
x5 − x4 + x3

_x4 − x3 − 4x+ 1
x4 − x3 − x2

−x2 − 4x+ 1

| x3 − x2 + x
x2 + x

Это деление привело к представлению

x5 − 4x+ 1 = (x2 + x)(x3 − x2 + x) + (−x2 − 4x+ 1),
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S(x) = x2 + x, R(x) = −x2 − 4x+ 1.

Вот как располагаются этапы деления ≪английским≫ столбиком:

x3 − x2 + x
x2 + x√
_x5 − 4x+ 1
x5 − x4 + x3

_x4 − x3 − 4x+ 1
x4 − x3 − x2

−x2 − 4x+ 1

≪Перевернули≫ на обратное все, что можно: знак | на знак √ ;
писали делимое слева, теперь — справа; частное писали внизу специ-
ального знака, теперь — наверху.

Как мы увидим далее, ≪английская≫ форма геометрического
представления деления полинома на полином имеет преимущества в
случае полиномов от нескольких переменных: имеется возможность
записи результатов на двух ≪этажах≫ — выше и ниже строки, содер-
жащей делимое и делитель.

Если делитель Q(x) двучлен x − a, то остаток представляется
числом. В этом случае нахождения S и R полезен ≪чисто алгебраи-
ческий≫ подход. Используем формулу, доказываемую простым умно-
жением равенства на x− a:

xk − ak

x− a
= xk−1 + xk−2a1 + · · ·+ x1ak−2 + ak−1 (4.3)

Имеем: Pn(x) = [Pn(x)− Pn(a)] + Pn(a) =

= an(x
n − an) + an−1(x

n−1 − an−1) + · · ·+ a1(x− a) + Pn(a).

Согласно формуле (4.3) имеем

S(x) =
n∑
k=1

ak
xk − ak

x− a
, R(x) = Pn(a).

3. Наблюдение фактов.
Мы убедились, что итерация приводит к полезным новым соот-

ношениям, результатам, например, к получению частного и остатка
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(формула (1.6)). Но сама формула (1.6) тоже имеет ≪возможность в
себе≫ повторного применения. Запишем её в виде

P (x) = Q(x)S1(x) +R1(x),

где степень R1 меньше степени Q. Мы можем повторить подобное
разложение для пары Q(x) и R1(x), если R1(x) — ненулевой полином

Q(x) = R1(x)S2(x) +R2(x),

R1(x) = R2(x)S3(x) +R3(x),

. . . . . . . . . . . .

Схема получаемых формул проступает четче , если изменим обо-
значения, положив P (x) = R−1; Q(x) = R0, опуская в записи пере-
менную x:

R−1 = R0S1 +R1,

R0 = R1S2 +R2,

. . . . . . . . . . . .

Rk = Rk+1Sk+2 +RK+2, (4.4)
. . . . . . . . . . . .

Последовательность этих однотипных равенств конечна, ибо сте-
пени полиномовRk убывают. Как следствие существует такое число p,
что Rp = 0, и таблица (4.4) заканчивается строкой:

Rp−2 = Rp−1Sp.

Осмыслим факты, которые нам поставляет таблица (4.4). В частно-
сти наблюдаем: наибольший общий делитель (НОД) пар (Ri, Ri+1)
является инвариантом ряда строк (4.4):

НОД(R−1, R0) = НОД(R0, R1) = · · · = НОД(Rk, Rk+1) = · · · =
= НОД(Rp−2, Rp−1) = Rp−1.

Таким образом, проведенная итерация дает алгоритм получения
наибольшего общего делителя двух многочленов — алгоритм Евкли-
да. (Алгоритм назван так, поскольку нахождение НОД двух нату-
ральных чисел организовано точно так же).

Опять же: какие рассуждения могут быть проведены над алгорит-
мом Евклида — схемой (4.4).Можно, например, организовать новые
итерации, которые будут конструировать новые последовательности
формул. Снова наступил экспериментальный момент, момент осозна-
ния ситуации и представляемых ею возможностей.
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Обратим внимание (рефлексия!), что величина Rk стоит в левой
части равенства Rk−2 = Rk−1Sk + Rk отдельным слагаемым. Этот
факт (в своем идеальном бытии!) есть возможность ≪восхождения
индекса k≫ к меньшим значениям, есть возможность ≪обратной≫ ите-
рации, рекурсии:

Rk

↙ ↘
Rk−2 Rk−1

↙ ↘ ↙ ↘
Rk−4 Rk−3 Rk−3 Rk−2

. . . . . . . . . . . .

В итоге мы получаем, что

Rp−1(x) = T (x)R−1(x) + L(x)R0(x),

где T (x) и L(x) — определенные полиномы от x.
Фиксируем проведенные рассуждения.

Теорема 4.2. Для заданных полиномов P (x) и S(x) существу-
ет полиномы T (x) и L(x), что

НОД(P (x), S(x)) = T (x)P (x) + L(x)S(x).

4. Еще мотивы перевоплощения.
≪Разнообразие интерпретаций, представлений необходимо, ибо

некоторые из них ≪вырастут≫ в дальнейшем.≫
Деление ≪столбиком≫ в случае деления на двучлен x − c мо-

жет быть оформлено по-другому, таблицей (схема Горнера). Начнем
опять с (1.6) . Пусть многочлен Rn(x) делится на двучлен x − c с
остатком R:
anX

n+an−1X
n−1+. . .+a1X+a0 = (x−c)(bn−1Xn−1+. . .+b1X+b0)+R.

Приравняв коэффициенты при Xk обеих частей равенства, получим:

ak = bk−1 − cbk, k = 0, 1, . . . , n, b−1 = bn = 0. (4.5)

Рекурентное вычисление коэффициентов bk, k = 0, . . . , n − 1,
организуется формулой

bk−1 = ak + cbk, k = n, . . . , 1.
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Вычисления можно представить как действие над следующей таб-
лицей (схема Горнера)

an an−1 . . . ak . . . a1 a0
c an

Пустые клетки последовательно заполняем: (заметим,что an = bn−1)
под an−1 пишем can−1 + an; когда доходим до клетки ak, выписываем
сумму ak и числа, стоящего в соседней левой клетке и умноженного
на c : ak + cbk(= bk−1). Под a0 получаем Pn(c) = R.

an an−1 . . . ak . . . a1 a0
c bn−1 bn−2 bk−1 b0 R

≪Работу≫ таблицы можно пояснить представлением многочлена
Pn(x) в виде

Pn(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + xan ) · · · )︸ ︷︷ ︸
n−1

(4.6)

Сначала производится вычисления в последней вложенной паре ско-
бок, затем в предшествующей паре и т. д. Тот же порядок действий
диктует и схема Горнера.

5. Обзор следствий из полученных результатов.
Оценка силы и возможностей результатов.
Оценим в этом плане схему Горнера. Покажем, что так ≪про-

сто≫ описываемый алгоритм деления порождает удивительные след-
ствия (≪схема раскрывает свою силу≫).

Рассмотрим к примеру многочлен

P4(x) = 4x4 − 29x3 + 80x2 − 99x+ 43.

С помощью схемы Горнера ( итерируя его) можно получить разложе-
ние P4(x) по степеням, например, двучлена (x− 2), т. е. ряд Тейлора
для функции P4(x) в окрестности точки x = 2.

Разложение определяется матрицей Γ = {aij}6i,j=1
1 4 −29 80 −99 43
2 4 −21 38 −23 −3
2 4 −13 12 1 0
2 4 −5 2 0 0
2 4 3 0 0 0
2 4 0 0 0 0

 .
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Первые две строки представляют схему Горнера вычисления коэффи-
циентов частного и остатка деления P4(x) на (x−2). Вторая и третья
строка повторяют схему Горнера, но уже для частного, полученного
выше, и двучлена (x−2), и т. д. Подобно (4.6) представляем P4 в виде

P4 = d0 + (x− 2)(d1 + (x− 2)(d2 + (x− 2)(d3 + d4(x− 2)))).

Обзор этой формы убеждает нас, что диагональ, лежащая под глав-
ной диагональю, т. е. последовательность {ai,6−i+2}, i = 2, 3, . . . , 6;
т. е. {−3; 1; 2; 3; 4} суть последовательность {d0, d1, d2, d3, d4}. Соот-
ветственно, разложение P4 в ряд Тейлора есть

P4(x) = −3 + (x− 2) + 2(x− 2)2 + 3(x− 2)3 + 4(x− 2)4.

6. Бином Ньютона как следствие схемы Горнера.
Рассмотрим, к примеру, полином x5 и разложим его в ряд Тейлора

по степеням x− 1. Разложение дается матрицей Горнера {aij}7i,j=1

1 1 0 0 0 0 0
1 1 1 1 1 1 1
1 1 2 3 4 5 0
1 1 3 6 10 0 0
1 1 4 10 0 0 0
1 1 5 0 0 0 0
1 1 0 0 0 0 0


.

Диагональ {ai,7−i+2}, i = 2, . . . , 7, есть {1; 5; 10; 10; 5; 1}, и потому
соответствующее разложение есть

x5 = 1 + 5(x− 1) + 10(x− 1)2 + 10(x− 1)3+

+ 5(x− 1)4 + (x− 1)5. (4.7)

Подставив y вместо x− 1 , получим

(y + 1)5 = y5 + 5y4 + 10y3 + 10y2 + 5y + 1.

Приходим к биному Ньютона, взяв y = a/b:

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5.

В силу специфики первых двух столбцов в каждой i-ой строке (i > 2),
в j-столбце (j > 2) матрицы Горнера стоит сумма элементов преды-
дущей строки от 2-го столбца до j-го. Кроме этого замечаем, что под-
матрица (aij), i, j = 2, . . . , 7 симметрична. Вследствие этого, располо-
жив диагонали матрицы Горнера по строкам, получим треугольник
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Паскаля.
1

1 1
1 2 1

1 3 3 1
1 4 6 4 1

1 5 10 10 5 1

7. Возможности развития.
Итак, мы убедились, что простой алгоритм деления ≪столби-

ком≫, — геометрическая схема деления многочлена на многочлен, —
имеет возможность развития в очень интересные математические ре-
зультаты. Анализируя postscriptum этот алгоритм, заключаем, что
организуют его естественная упорядоченность одночлена xn по степе-
ням, при этом любая последовательность одночленов с убывающими
степенями конечна.

При переходе к многочленам от переменных x1, x2, . . . , xn, следо-
вательно, надо сохранить этот факт, надо так упорядочить мономы ,
чтобы порядок по убыванию был вполне упорядочен.

Упорядочение мономов xα1
1 x

α2
2 . . . xαn

n равносильно упорядочению
n-наборов (n-векторов) показателей степеней α = (α1, . . . , αn) ∈ Zn,
где Z — множество неотрицательных целых чисел. Анализируя все
проведенные рассуждения с одночленами, приходим к условиям на
порядок α > β:

(i) > — линейный порядок на Z;

(ii) если α > β и γ ∈ Zn ,то α+ γ > β + γ;

(iii) порядок > вполне упорядочивает, т. е. любое непустое подмно-
жество Zn имеет наименьший элемент.

Порядков, удовлетворяющих (i), (ii), (iii) много, и каждый из них
может быть использован и может привести к интересным результа-
там.

Примеры упорядочения.
Лексикографическое упорядочение. Пусть α = (α1, . . . , αn) и

β = (β1, . . . , βn) ∈ Zn. Положим α > β , если самая левая ненуле-
вая координата вектора α− β положительна.

Градуированное лексикографическое упорядочение. Говорим ,
что α > β , если

|α| =
n∑
i=1

αi > |β| =
n∑
i=1

βi, или |α| = |β| и α больше β в лексикографи-
ческом порядке.
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Пусть f =
∑
α
aαx

α, где xα = xα1

1 · · ·xαn
n , есть ненулевой по-

лином в кольце K[x1, . . . , xn], и пусть порядок мономов определен
согласно условиям (i)–(iii). Мультистепень полинома f есть макси-
мальное из степеней α его членов и обозначается multideg(f). Стар-
ший коэффициент LC(f) есть коэффициент aα с α = multideg(f).
Старший моном LM(f) — это xmultideg(f). Старший член полинома
LT (f) = LC(f) · LM(f).

Теперь надо определить операцию деления полинома

f ∈ K[x1, . . . , xn]

на полиномы f1, . . . , fs ∈ K[x1, . . . , xn], т. е. представление f в виде

f = a1f1 + . . .+ asfs + r,

где a1, . . . , as, r ∈ K[x1, . . . , xn], и r уже не ≪поддается≫ аналогичному
представлению.

Алгоритм деления будет изложен на двух примерах, взятых
из [29, с. 25–28].

Основная идея алгоритма та же, что и в случае одной переменной:
мы должны уничтожать старший член полинома f (определенный
заданным мономиальным упорядочением), умножая некоторый fi на
подходящий моном и вычитая. Этот моном будет членом соответству-
ющего ai. Поясним работу алгоритма на примерах.

Пример 1. Поделим f = xy2 + 1 на f1 = xy + 1 и f2 = y + 1 при
лексикографическом упорядочении с x > y. Будем записывать дели-
тели f1, f2 и частные a1, a2 в столбец слева, т. е. мы имеем следующую
схему:

a1 :
a2 :

xy + 1
y + 1

√
xy2 + 1

Старшие члены LT (f1) = xy и LT (f2) = y оба делят старший
член LT (f) = xy2. Так как f1 является первым в списке делите-
лей, то на первом шаге мы будем работать с ним, т. е. мы делим
xy2 на xy, записывая y как член полинома a1 и вычитая yf1 из f :

a1 :
a2 :

xy + 1
y + 1

y√
xy2 + 1
xy2 + y
−y + 1
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Теперь на следующем шаге мы работаем в f2, так как LT (f1) = xy
не делит LT (−y + 1) = −y. Имеем

a1 :
a2 :

xy + 1
y + 1

y
-1√
xy2 + 1
xy2 + y
−y + 1
−y − 1

2

Так как LT (f1) и LT (f2) не делят 2, то r = 2 и процесс деления
окончен, т. е. мы можем записать f = xy2 + 1 в виде

x2y + 1 = y(xy + 1) + (−1)(y + 1) + 2.

Пример 2. Мы будем делить f = x2y + xy2 + y2 на f1 = xy − 1
и f2 = y2 − 1. Как и в предыдущем примере, мы используем lex-
упорядочение с x > y. Первые два шага алгоритма деления выполня-
ются, как выше. Вот их результат (напомним, что если оба старших
члена являются делителями, то мы работаем с первым):

a1 :
a2 :

xy − 1
y2 − 1

x+ y√
x2y + xy2 + y2

x2y − x
xy2 + x+ y2

xy2 − y
x+ y2 + y

Теперь обратим внимание на то, что ни LT (f1) = xy, ни LT (f2) =
y2 не делят LT (x + y2 + y) = x. Но x + y2 + y — не остаток, так как
LT (f2) делит y2, т. е. если мы отправим x в остаток, то деление можно
продолжить.

Чтобы реализовать эту идею, мы создадим новый столбец в за-
писи процесса деления, справа от радикала, куда будем записывать
члены, принадлежащие остатку. Полином, расположенный ниже ра-
дикала, который мы делим, будем называть промежуточным дели-
мым. Процесс деления продолжается до тех пор, пока промежуточное
делимое не обратится в нуль. На следующем шаге нашего примера мы
перемещаем x в колонку остатка (это показано стрелкой).
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a1 :
a2 :

xy − 1
y2 − 1

x+ y
r√

x2y + xy2 + y2

x2y − x
xy2 + x+ y2

xy2 − y
x+ y2 + y

y2 + y −→ x

Теперь мы продолжаем деление. Если мы можем поделить стар-
ший член промежуточного делимого на LT (f1) или на LT (f2), то
делаем обычный шаг деления, если нет, то мы перемещаем старший
член в колонку остатка и т. д. Вот — полная запись решения этого
примера:

a1 :
a2 :

xy − 1
y2 − 1

x+ y
1 r√
x2y + xy2 + y2

x2y − x
xy2 + x+ y2

xy2 − y
x+ y2 + y

y2 + y −→ x
y2 − 1

y + 1
1 −→ x+ y
0 −→ x+ y + 1

Таким образом, остаток x+ y + 1, и мы имеем

x2y + xy2 + y2 = (x+ y)(xy − 1) + 1(y2 − 1) + x+ y + 1.

Следует отметить, что остаток есть сумма мономов, ни один из кото-
рых не делится ни на LT (f1), ни на LT (f2).

Этот пример дает довольно полное представление о работе ал-
горитма деления. Он также показывает, каким свойством обладает
остаток: ни один член остатка нельзя поделить на старший член хо-
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тя бы одного делителя. Алгоритм единственным образом определяет
частное.

8. Доказательство теоремы Гильберта
Снова деление ≪столбиком≫ поможет получить интересный ре-

зультат, доказать теорему Гильберта. Но вначале установим следую-
щий результат.

Лемма 4.1 (Р.Р. Шагидуллин). Пусть дано бесконечное мно-
жество попарно различных мультииндексов αi = (αi1, αi2, . . . , αin),
i = 1, 2, . . . Для любого натурального числа p найдется в этой по-
следовательности p мультииндексов αi1, . . . , αip таких, что αi1 <
αi2 < · · · < αip, где неравенство α ≤ β означает, что каждая коор-
дината α не больше соответствующей координаты β, т. е.

αk ≤ βk, k = 1, 2, . . . , n.

Доказательство. Проведем его сначала для p = 2. Предпо-
ложим, что соответствующей пары мультииндексов нет. Фиксируем
произвольно мультииндекс, например, αi. Рассмотрим αj,где j > i.
Индексы координат αj (т.е. множество {1; 2; . . . ;n}, разобьем на два
непустых подмножества Aij и Bij. В Bij входят индексы тех коорди-
нат αj, которые меньше соответствующих координат αi. Оставшиеся
индексы образуют множество Aij. Поскольку координаты αj с индек-
сами из Bij ограничены независимым от j числом, существует бес-
конечное множество значений индекса j, а именно, {jk}, k = 1, 2, . . .,
при которых множества Bijk, k = 1, 2, . . . совпадают, а координаты
αjk с индексами из Bijk не меняются. Если Bijk ̸= ∅, то рассмотрим
мультииндексы γk = (αjkl), l ∈ Aijk, k = 1, 2, . . .. Они попарно
различны, их бесконечное число, можем считать (применяя матема-
тическую индукцию по размерности мультииндекса), что существует
r и s такие, что γr < γs. Соответственно тогда αjr < αjs. Для p = 2
лемма доказана, поскольку она очевидна, если не существует i такого,
что все Bijk ̸= ∅.

Пусть она доказана для p = q. Рассмотрим случай, когда p =
q + 1. По индукционному предположению можно построить беско-
нечную последовательность конечных последовательностей (α1,1 <
α1,2 < · · · < α1,q), (α2,1 < α2,2 < · · · < α2,q), . . . При этом для k < l
выполняется: αk,s предшествует αl,σ в исходном порядке α1, α2, . . . при
любых значениях s, σ ∈ {1; 2; . . . ; q}.

Рассмотрим последовательность α1,1, α2,1, . . ..Опять по индукци-
онному предположению найдется пара αi1,1 < αi2,1, i1 < i2. Искомая
последовательность есть αi1,1 < αi2,1 < αi2,2 < . . . < αi2,q. �
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Лемма 4.2 (Диксон). Пусть идеал I в кольце K[x1, x2, . . . , xn]
порожден мономами xα1 = xα11

1 xα12

2 . . . xα1n
n , xα2, . . . , xαk, . . .. Тогда он

порождается конечным подмножеством этих мономов.
Доказательство. Из исходной последовательности мономов,

применяя математическую индукцию, выделим подпоследователь-
ность, порождающую тот же идеал, но имеющую свойство: xαm не
делится на xαk при m ̸= k. Такая последовательность по лемме один
конечна. �

Доказательство теоремы Гильберта. Пусть LT (I) — множе-
ство старших членов полиномов, составляющих I. Возьмем идеал
< LT (I) >, порожденный этими мономами. По лемме Диксона су-
ществуют полиномы g1, . . . , gs, принадлежащие идеалу I, такие что

< LT (I) >=< LT (g1), LT (g2), . . . , LT (gs) > .

Пусть f произвольно взятый из I многочлен. Согласно рассмотрен-
ному алгоритму деления ≪столбиком≫ f на g1, . . . , gs имеем

f = a1g1 + . . .+ asgs + r, (4.8)

где ни один член полинома r не делится ни на один из

LT (g1), LT (g2), . . . , LT (gs).

Но из (4.8) следует, что r ∈ I. Следовательно, имеем

LT (r) ∈< LT (g1), . . . , LT (gs) >,

а потому r ≡ 0, идеал I порождается многочленами g1, . . . , gs. �



Глава 3
Дедукция. От общего к частному

§ 1. Переход от индивида к роду и многообразию

Рассмотрим теперь принцип обращения к более общей задаче. Ес-
ли при рассмотрении частной задачи мы имеем больше информации,
подробностей, то при обращении к общему случаю убираются ≪засло-
няющие≫ частности, и мы ≪выходим на оперативный простор≫.

Близко стоят к методу обобщения принципы абстрагирования,
усложнения.

Идея обобщения может состоять в обращении к виду или роду
объекта.

≪Вид — в логическом смысле представляет собой понятие, кото-
рое образуется посредством выделения общих признаков в индиви-
дуальных понятиях и само имеет общие признаки с другими видами
понятий; из понятия вида может быть образовано еще более широкое
понятие — понятие рода.≫

"Философский словарь".Перевод с немецкого. М.: Республика, 2003 г.

≪Род (в логике) — термин, который в нематематической фор-
мальной логике обозначает объем понятия, являющегося более общим
(широким), как говорят, родовым по отношению к некоторому дру-
гому (видовому) понятию. Объем видового понятия входит в данный
род и называется его видом. Термин ≪род≫ и ≪вид≫ употребляются
также как равнозначные собственно терминам ≪родовое понятие≫ и
≪видовое понятие≫. Отношение между понятиями, объемы которых
относятся друг к другу как род к виду, подчиняется закону обратного
отношения между содержанием и объемом понятия.≫

≪Философская энциклопедия≫. т. 4. М.: Советская энциклопедия, 1967 г.

Пример 1.1. Сосчитать сумму σn =
n∑
k=1

k2.

Итак, нам нужно получить аналитическое выражение для кон-
кретной суммы σn. Сделаем упор на понятие ≪сумма≫ и обратимся
к многообразию тех понятий, которые обобщают так или иначе на-
чальное понятие суммы, — к роду. В анализе непосредственно следу-
ющим видом являются кратные ряды. Объем содержания последнего
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понятия больше и поэтому больше возможностей для продуктивных
рассуждений и действий.

Представим σn в виде σn =
n∑
k=1

k∑
i=1

k. Далее следует интерпрета-

ция: двойная сумма есть последовательное суммирование по рядам
следующей таблицы ∣∣∣∣∣∣∣∣∣

1 . . . . . . . . . . .
2 2 . . . . . . . .
3 3 3 . . . . .
. . . . . . . . . . . . . .
n n n . . . n

∣∣∣∣∣∣∣∣∣
Изменив порядок суммирования, т. е. суммируя по столбцам, по-

лучим, что

σn =
n∑
j=1

n∑
k=j

k =
n∑
j=1

1

2
(n+ j)(n− j + 1) =

1

2

n∑
j=1

nj +
1

2
n3 − 1

2

n∑
j=1

j2 −

−n
2

n∑
j=1

j +
1

2

n∑
j=1

j +
1

2
n2 = −1

2
σn +

1

2
(n3 +

n(n+ 1)

2
+ n2).

Отсюда следует, что σn = n3/3 + n2/2 + n/6.
В другом ракурсе, при другой интерпретации исходная задача

может быть представлена рекуррентной формулой: σn = σn−1 + n2.
Пусть α, β, γ, δ — постоянные числа, а последовательность rn опре-
деляется рекуррентно, поэтому обратимся к классу подобных рекур-
рентных соотношений (к виду)

r0 = α

rn = β + γn+ δn2 + rn−1. (1.1)
Несколько последовательных вычислений убеждают нас, что имеет
место следующее представление:

rn = a(n)α + b(n)β + c(n)γ + d(n)δ, (1.2)

где a, b, c, d — определенные функции (полиномы) от n и не зависят
от α, β, γ, δ. Отметим, что здесь появляется (как и раньше в зада-
че, например, о трехцветной раскраске точек плоскости) тема инва-
риантов (как правило, инварианты скрыты в начальных условиях
задачи). Воспользуемся указанной независимостью, выбирая после-
довательно rn ≡ 1, rn ≡ n, rn ≡ n2, rn ≡ n3. Пусть rn ≡ 1, тогда в
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(1.1) α = 1, β = γ = δ = 0, и, следовательно, в (1.2) a(n) = 1. Пусть
rn ≡ n, тогда в (1.2)β = 1, α = γ = δ = 0, тогда из (1.2) определяем,
что b(n) = n. Пусть rn ≡ n2. Имеем n2 = [(n−1)+1]2 = 2n−1+(n−1)2.
Отсюда в (1.1) для данной функции rn получаем β = −1, γ = 2, α =
δ = 0. Из (1.2) следует rn = −n + 2c(n), c(n) = 1

2(n
2 + n). Нако-

нец, рассмотрим рекуррентное соотношение для функции rn = n3 =
3n2−3n+1+(n−1)3. Сравнивая последнее выражение с (1.1), полу-
чаем, что α = 0, β = 1, γ = −3, δ = 3. Подставляя эти числа в (1.2),
находим n3 = n−3n

2+n
2 +3d(n). Следовательно d(n) = 1

3n
3+ 1

2n
2+ 1

6n.
Вернемся к исходной задаче — нахождению δn. В отношениях (1.1)

для δn коэффициенты α, β, γ равны нулю, а δ = 1. Поэтому (1.2)
дает следующее значение для δn.

σn = d(n) =
1

3
n3 +

1

2
n2 +

1

6
n.

В следующей задаче (лемма Шпернера) обобщение можно трак-
товать как абстрагирование, отход от конкретики в определении сто-
роны треугольника.

1. Лемма Шпернера.

Рассмотрим на плоскости треугольник, вершины которого поме-
чены цифрами 0, 1, 2. Этот треугольник разбит на несколько тре-
угольников таким образом, что никакая вершина одного треуголь-
ника не лежит внутри стороны другого. Вершинам исходного тре-
угольника оставлены старые пометки, а дополнительные вершины
получают номера 0, 1, 2, причем любая вершина не стороне исход-
ного треугольника должна быть помечена одной из пометок вершин
этой стороны (рис 1.). Такое разбиение исходного треугольника на-
зывается триангуляцией, малые треугольники называются гранями
триангуляции, стороны малых треугольников — ее ребрами.

Лемма 1.1 (Шпернера). Пусть имеется триангуляция тре-
угольника T . Тогда имеется хотя бы одна грань с тремя разны-
ми отметками вершин (с невырожденной нумерацией). Более того,
имеется нечетное число таких граней.

Чтобы оценить последующее доказательство через обобщение,
рассмотрим доказательство, обычно излагаемое в учебниках, мето-
дом подсчета двумя способами.

Сначала докажем, что всегда найдется нечетное число отрезков
с полной нумерацией, если отрезок [0;1] разбивается на интервалы, и
внутренние узлы произвольно помечаются через 0 и 1.
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Рис. 1. Разбиение треугольника

Рис. 2. Разбиение отрезка

Подсчитаем число вершин, имеющих обозначение 0 двумя спосо-
бами, при этом внутреннюю вершину будем считать дважды.

1 способ. На краю отрезка 1 одна такая вершина, а внутри от-
резка их четное число, т. к. каждую считаем по два раза, т. е. 2m,
всего получаем 1 + 2m вершину, помеченную 0.

2 способ. Пусть k — число отрезков, имеющих полную нуме-
рацию, а l — число остальных отрезков. Всего отрезков k + l. Если
рассматривать отрезок с полной нумерацией, то в нем 0 встретится
один раз, а k таких отрезков дадут k нолей. В отрезках с неполной
нумерацией 0 либо не встречается, либо встречается 2 раза, следова-
тельно, встречается 2j раз. Поэтому 1 + 2m = k + 2j
k = 1 + 2m− 2j — нечетное число, поэтому отлично от нуля.

Рассмотрим двумерное пространство (плоскость). Будем считать
число ребер, помеченных 0, 1. Причем считаем ребро столько раз,
скольким треугольникам оно принадлежит.

1 способ. Число ребер, лежащих на границе треугольника, име-
ющих невырожденную нумерацию, как доказали выше, нечетное чис-
ло. На границе таким образом лежит 2i + 1 ребро, 2m ребер лежат
внутри.
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2 способ. Пусть k — число треугольников с полной нумерацией.
В таких треугольниках ребро [0,1] встречается k раз. А у остальных
треугольников ребро [0, 1] либо вообще не встречается, либо встре-
чается 2 раза. Итого их k + 2p. Получаем 2i + 1 + 2m = k + 2p.
k = 2i + 2m − 2p + 1 — нечетное число, отлично от нуля, и поэтому
лемма Шпернера доказана.

Обобщим теперь задачу, считая, что у треугольника стороны мо-
гут быть ломаными линиями без самопересечений (рис 1.). Доказа-
тельство леммы Шпернера будем вести индукцией по числу треуголь-
ников разбиения. ≪Идем≫ вдоль BC, у примыкающего к BC тре-
угольника сторону [2, 3] выкидываем из всей совокупности представ-
ленных на рисунке ≪сторон≫ треугольников разбиения, если соответ-
ствующий треугольник имеет третьей вершиной 2 или 3. Получаем
≪в остатке≫ треугольник, который по индукционному предположе-
нию обладает треугольником с невырожденной нумерацией.

Довольно простым методом обобщения является введение пере-
менного параметра вместо какого-то характерного конкретного числа
в условиях задачи.

Пример 1.2. Доказать, что число, состоящее из 243 единиц де-
лится на 243.

Решение. Внимательно изучаем условия. Что замечательно-
го в них? Имеем 243 = 35. Это преобразование формы дает воз-
можность высказать предположение, что 3n делит число, записан-
ное 3n единицами подряд. Ввели параметр — n. В свою очередь
это позволяет применить математическую индукцию. При n = 1
предположение оправдывается: 111 делится на 3. Пусть оно верно
при n = k. Рассмотрим число, записанное 3(k+1) единицами. Имеем
1 . . . 1︸ ︷︷ ︸
3k+1

= (1 . . . 1︸ ︷︷ ︸
3k

) × (1 0 . . . 0︸ ︷︷ ︸
3k−1

1 0 . . . 0︸ ︷︷ ︸
3k−1

1). По предположению индукции

первый сомножитель справа делится на 3k, второй — на 3 (по извест-
ному критерию — сумма цифр делится на 3). Итак, предположение
верно и для 3k+1 единиц.

Пример 1.3. Докажите, что число 12345678987654321 является
полным квадратом.

Пример 1.4. Вычислить интеграл
π∫
0

ln(1 + 2a cosα + a2)dα.

Легко показать, что мы сумеем вычислить заданный интеграл
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если вычислим более общий

ϕ(a, b) =

π
2∫

0

ln(a2 sin2(x) + b2 cos2(x))dx,

a, b > 0, где появляются уже два параметра a и b.
Имеем

ϕ
′

a =

π
2∫

0

2a sin2(x)

a2 sin2(x) + b2 cos2(x)
dx.

ϕ
′

b =

π
2∫

0

2b cos2(x)

a2 sin2(x) + b2 cos2(x)
dx =

π
2∫

0

2b

a2 sin2(x) + b2 cos2(x)
dx−

−

π
2∫

0

2b sin2(x)

a2 sin2(x) + b2 cos2(x)
dx.

Эти равенства приводят к системе:

aϕ
′

a + bϕ
′

b = π,

bϕ
′

a + aϕ
′

b = 2ab

π
2∫
0

dx
a2 sin2(x)+b2 cos2(x)

= 2ab

π
2∫
0

dtg(x)
a2tg2(x)+b2 = π.

Последовательно получаем

ϕ
′

a =
π

a+ b
,

ϕ
′

b =
π

a+ b
,

ϕ(a, b) = π ln(a+ b) + c.

Чтобы вычислить константу c, полагаем a = b. Имеем

ϕ(b, b) =

π
2∫

0

ln(b2)dx = π ln(b) = π ln(2b) + c.

Отсюда c = −π ln(2). Окончательно

ϕ(a, b) = π ln

(
a+ b

2

)
.
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Обобщение может состоять также в расширении поля действия поня-
тий, участвующих в формулировке задачи или изменения содержания
этих понятий.

Пример 1.5. Представить число 10 как сумму двух чисел, про-
изведение которых равно 10.

Чтобы решить эту задачу надо перейти от вещественных чисел
к рассмотрению комплексных чисел. Другой пример представляет
теория уравнений в частных производных. Разрешимость некоторых
уравнений требует расширения классического определения функции
до определения функции как функционала на определенных тополо-
гических векторных пространствах.

Пример 1.6. Дана последовательность xn, которая определяется
рекуррентной формулой:

x0 = 1,

x1 = 1,

xn+2 = 2xn+1 + 3xn.

Необходимо получить явную формулу для xn.
Решение. Вместо последовательности xn рассмотрим последо-

вательность векторов (повышаем размерность задачи!):

U0 =

[
x1
x2

]
=

[
1
1

]
,

[
xn+1

xn

]
= Un.

Получим рекуррентную формулу для Un. Легко убедиться, что

Un+1 = AUn, A =

[
2 3
1 0

]
,

Un+1 =

[
2xn+1 + 3xn

xn+1

]
=

[
xn+2

xn+1

]
.

Применяя несколько раз рекуррентную формулу, получим:

Un+1 = A1un = A2un−1 = ... = An+1u0.

Найдем общий вид оператора An+1. Для этого вычислим собственные
вектора li и собственные числа λi матрицы A:

λ1 = 3, l1 = (3, 1),
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λ2 = −1, l2 = (−1, 1).
Матрицу A можно привести к диагональному виду, а именно пред-
ставить в виде A = BDB−1, где B−1 — матрица, столбцы которой
являются собственными векторами матрицы A:

B =

[
3 −1
1 1

]
, D =

[
3 0
0 −1

]
, B−1 =

1

4

[
1 1
−1 3

]
.

Учитывая такое представление, получим:

Un+1 = [BDB−1]n+1u0 = BDn+1B−1u0.

Un+1 =

[
3 −1
1 1

] [
3n+1 0
0 (−1)n+1

] [
1 1
−1 3

]
1

4

[
1
1

]
=

=
1

4

[
3n+2 (−1)n+2

3n+1 (−1)n+1

] [
2
2

]
=

1

2

[
3n+2 + (−1)n+2

3n+1 + (−1)n+1

]
.

Отсюда получаем явную формулу:

xn+1 =
3n+1 + (−1)n+1

2
.

Пример 1.7. Вектор a называется корневым вектором высоты h,
а число ρ— корнем линейного преобразования A, если (ρE−A)ha = 0.
Понятие корневого вектора является обобщением понятия собствен-
ного вектора, так как собственные векторы — это корневые векто-
ры высоты 1. Совокупность всех корневых векторов, принадлежа-
щих некоторому фиксированному корню ρ преобразованияA, есть ин-
вариантное подпространство Lp, называемое корневым подпростран-
ством преобразования A. Докажем последнее утверждение. Действи-
тельно, если x, y принадлежат Lp, и имеют высоты h1, h2, то при
h = max(h1, h2) имеем

(αx+ βy)(ρE − A)h(αx+ βy) = α(ρE − A)hx+ β(ρE − A)hy = 0,

(ρE − A)hAx = A(ρE − A)hx = 0.

Корневые векторы, принадлежащие различным корням, обяза-
тельно линейно независимы. Более того, справедлива и более сильная
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Теорема 1.1. Если сумма x1 + x2 + · · ·+ xm = x корневых век-
торов, принадлежащих различным корням ρ1, . . . , ρm преобразова-
ния A, содержится в инвариантном подпространстве M, то каж-
дое слагаемое в отдельности содержится в M.

Доказательство. Положим

φ(λ) = (λ− ρ1)h1(λ− ρ2)h2 · · · (λ− ρm−1)hm−1.

По условию, φ(A)x ∈M, и в то же время

φ(A)x1 = φ(A)x2 = · · · = φ(A)xm−1 = 0.

Следовательно, φ(A)xm ∈ M. Многочлены φ(λ) и (λ − ρm)
hm вза-

имно просты. Поэтому найдутся такие многочлены F (λ), G(λ) (см.
теорему 4.2, с. 42), что

1 = φ(λ)F (λ) + (λ− ρm)hmG(λ).

Тогда
E = φ(A)F (A) + (A− ρmE)hmG(A),

следовательно

xm = φ(A)F (A)xm + (A− ρmE)hmG(A)xm = φ(A)F (A)xm ∈M,

что и требовалось. �
Сформулированное выше утверждение о линейной независимости

векторов x1, . . . , xm получается из доказанной теоремы при M = 0.
В качестве следствия отметим также, что различные корневые под-
пространства имеют нулевое пересечение.

Принцип обобщения стоит рядом с принципом усложнения.
Усложняя задачу, мы часто получаем возможность привлечь хоро-
шо развитую технику и результаты из другой области математики,
отличной от той, где задача изначально сформулирована.

§ 2. Изменение интерпретации и контекста задачи

Поставьте поиск контекста проблемы, задачи как самостоятель-
ную задачу — от широкого поиска в разделах математики перейдите
к литературе, философии, искусству. Математика — это захват все
новых территорий, во всех областях есть отражение интересующего
вас вопроса.

На время ≪отодвиньтесь≫ от задачи и подумайте, что за область
математики вы ≪эксплуатируете≫.
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1. От алгебры к геометрии и обратно.

В самом широком смысле поле математических напряжений мож-
но разделить на геометрическое и алгебраическое видение задачи. Ал-
гебра и геометрия — вот две громадные территории, конечно, пере-
секающиеся, на которых возможно как ≪проживание≫ вашей задачи,
так и ее решение. Есть другие ≪страны≫, где, возможно, встречается
то, что вас интересует: вычислительная математика, комбинаторика,
теория алгоритмов и т. п.

Этот принцип характеризует широту восприятия задачи. Нуж-
но увеличить контекст, на котором воспринимается предмет. Можно
взглянуть, например, с позиции оперирования символами, а можно
ситуацию охватить геометрической схемой.

Пример 2.1. Пусть A и B — мухи на потолке, которые спуска-
ются до пола и поднимаются обратно. B спускается в k раз быстрее,
чем A и в k раз медленнее поднимается, k > 1. Спрашивается, какая
муха скорее вернется на свое место.

Вот алгебраическое решение:

tA =
2s

υ
, tB =

s

kυ
+
ks

υ
,

здесь tA(tB) - полное время, затраченное мухой A(B). Сравним tA и
tB

2s

υ
<

s

kυ
+
ks

υ
, ибо 2 <

1

k
+ k.

Муха A быстрее достигнет потолка, чем муха B.

Рис. 3. Маршруты мух
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А вот переход на геометрическую основу, и решение доступно уче-
нику третьего класса. Пусть в момент, когда муха B достигает пола в
точке C, муха A окажется в точке E. Когда муха A, достигнув пола
в точке D, поднимается вверх на отрезок DF , равный AE, где бу-
дет находиться муха B? Ответ в точке Γ: CΓ = AE = DF . Муха A
пройдет путь, равный высоте комнаты DF + ED, а муха B в k раз
меньший, т. е. CΓ = AE. ≪Стартуя≫ с уровня точек F и Γ, муха A
достигнет потолка раньше.

2. Смена размерности
Очень важно понятие размерности пространства (математическо-

го или физического). Понятие размерности имеет и глубокий фило-
софский смысл.

Приведем несколько примеров, когда решение достигается пере-
ходом на другую размерность пространства. Здесь важны советы:

(1) Осознайте размерность задачи, возможно, лучше ее повысить.

(2) Задача есть пространство взаимодействующих объектов. Поду-
майте, как четче определить это пространство. Есть самостоя-
тельная теория подобных пространств?

(3) «Правильный выход состоит в расширении границ исследуемое-
го объекта с целью использования информации о более крупной
системе, частью которой он является.»

Пример 2.2. Даны три окружности с центрами в точках O1, O2, O3

с радиусами r1, r2, r3 соответственно. К окружностям, взятым попар-
но, построены касательные. Касательные к окружностям с центрами
в точках O1, O2 пересекаются в точке A, к окружностям с центрами
в точках O1, O3 — в точке B, к окружностям с центрами в точках
O2, O3 — в точке C. Требуется показать, что точки A, B, C лежат
на одной прямой.

Решение. Задача поставлена на плоскости P , то есть простран-
стве размерности два. Мы же попробуем исходную задачу рассмот-
реть как стереометрическую. А именно на кждом круге радиусом ri
построим конус высоты ri с вершинами Si. Основания конусов лежат
в одной плоскости, плоскости P . Через вершины конусов также мож-
но провести некоторую плоскость P1. Эти две плоскости пересекаются
по некоторой прямой l. Покажем, что A,B,C ∈ l.

Предположим, что прямая S1S2 ∈ P1 пересекает плоскость P в
некоторой точке D. Рассмотрим проекцию конусов с вершинами S1S2

на плоскость, проходящую через S1 и S2 и перпендикулярную к P .
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Рис. 4. Иллюстрация к примеру 10

Рис. 5. Проекции конусов с вершинами S1, S2

Из подобия треугольников DS1O1 и DS2O2 следует соотношение:

DO2

DO1
=
r2
r1
. (2.1)

Теперь рассмотрим плоскость P снования конусов с центрами в
точках O1, O2, Опустим из центров окружностей перпендикуляры
O1E1, O2E2 к общей касательной. Проекция прямой S1S2 есть пря-
мая, проходящая через O1 и O2.

Теперь из подобия треугольников AO1E1 и AO2E2 следует соот-
ношение:

AO2

AO1
=
r2
r1
. (2.2)

Из полученных соотношений (2.1), (2.2) следует, что точка A совпа-
дает с точкой D, то есть лежит на прямой l.

Воспользовавшись аналогичными рассуждениями для пар кону-
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Рис. 6. Плоскость P

сов с вершинами S2, S3 и S1, S3 можно показать, что точки B, C
также лежат на прямой l. Задача решена.

Анализируя решение задачи, мы видим, что усложнение задачи,
а именно переход из пространства размерности 2 к пространству раз-
мерности 3, помогло нам найти простое и красивое решение.

Пример 2.3. В двадцатых годах прошлого века внимание мате-
матиков привлекла задача с элементарной формулировкой, решение
которой длительное время найти не удавалось. Вот эта задача. Част-
ный случай ее был рассмотрен нами в гл. 2, § 2. Нижеследующий
материал взят из книги [10] (см. также [57]).

Пусть множество целых чисел раскрашено в конечное число цве-
тов. Тогда найдется арифметическая прогрессия сколь угодно боль-
шой длины, члены которой окрашены в один цвет.

После упорных усилий задачу удалось решить молодому голланд-
скому математику Б.Л. Ван дер Вардену. Решение оказалось элемен-
тарным, но достаточно сложным. История этого доказательства при-
ведена в книге А.Я. Хинчина, а в изложении самого Ван дер Варде-
на — в дополнении к книге Р. Грэхема. В обеих книгах можно также
найти доказательство теоремы.

Кратко изложим идеи, приведшие к доказательству, потому что,
как часто бывает в математике, чтобы упростить решение задачи,
нужно сформулировать ее для более общего случая. Первым шагом
к доказательству, предложенному самим Ван-дер-Варденом (и, по ви-
димому, ко всем известным доказательствам), была догадка о том, что
доказывать нужно более сильное утверждение, а именно: предпола-
гать, что раскрашивается не вся числовая прямая, а лишь некоторый
ее конечный кусок, размер которого зависит от количества цветов
раскраски и длины прогрессии.

Далее задача обобщается сразу в нескольких направлениях, глав-
ным из которых будет выход из числовой прямой на плоскость. Вме-
сто раскраски множества целых чисел рассматривается раскраска це-
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лочисленной решетки на плоскости в конечное число цветов. Выбрав
в этой решетке конечную фигуру M (конечное множество точек), до-
казывается существование подобной ей одноцветной фигуры. Доказа-
тельство приобретет геометрическую наглядность, утерянную в вы-
рожденном одномерном случае.

Сформулируем другие обобщения. Во-первых, ясно, что перейдя
от размерности один к размерности два, можно двинуться и дальше
к случаю решетки в пространстве любой размерности. Во-вторых,
условие подобия можно заменить на более сильное — гомотетичность
с целым положительным коэффициентом. (В дальнейшем, говоря о
гомотетии, мы всегда будем иметь в виду гомотетию с целым по-
ложительным коэффициентом). Достаточно изящное доказательство
такого обобщения теоремы было приведено П. Андерсоном, который,
ссылаясь на Р. Радо, приписывает исходное доказательство Г. Грун-
вальду. Затем доказательство Андерсона было пересказано на рус-
ском языке В.В. Прасоловым.

Можно пойти дальше и предполагать, что ≪объектом раскрас-
ки≫ может служить не только решетка, но и все пространство (при
этом рассматриваемая фигура M может не вкладываться ни в ка-
кую решетку в этом пространстве). Вообще говоря, такое обобщение
можно вывести из теоремы для решетки.

Аналогично, уже упомянотому усилию исходной (одномерной)
теоремы Ван дер Вардена, можно предполагать в условии, что кра-
сится не все пространство, а лишь конечная фигура в нем (зависящая
от данной в условии фигуры и количество цветов раскраски).

Обозначим через L объект раскраски — либо пространство любой
размерности, либо целочисленную решетку в пространстве.

Определение 2.1. Будем говорить, что фигура M̂ ⊂ L яв-
ляется монохроматической накрывающей ранга k фигуры M ⊂ L,
если для любой раскраски пространства (или решетки) L в k цветов
существует одноцветная фигура F ⊂ M̂ , гомотетичная M .

Заметим, что образы монохроматической накрывающей при сдви-
ге и гомотетии также являются монохроматическими накрывающими
той же фигуры того же ранга. Теперь обобщенная задача звучит как

Теорема 2.1. Для любой конечной фигуры M ⊂ L и любого
натурального числа k существует ее конечная монохроматическая
накрывающая ранга k.

В итоге, мы можем привлекать к решению известные развитые
теории, и это типичное явление в математике, когда ситуация упро-
щается при правильном обобщении и усложнении.



Глава 4
Анализ и синтез. Принцип разложения и сборки

§ 1. Разложение и сборка

1. Элементарный пример.
Лист бумаги разлинован на клетки со стороной 1 см. Ученик поса-

дил кляксу на лист, площадь S кляксы меньше, чем 1 см2. Показать,
что можно лист разлиновать по новой, так что ни одна из вершин
клеток не попадет на кляксу.

Решение. Разрежем лист по исходным линиям и сложим все
квадратные клетки в виде столбика, не теряя ориентации клеток от-
носительно друг друга.

Рис. 1. Расположение кляксы

Заметим, что наложение клетки ABCD на клетку LKMN (A→
L, B → K) дает новую кляксу (считается, что после переноса клетка
ABCD очищается). Легко усмотреть, что если необходимую разли-
новку можно провести для нового случая, то она же годится и для
исходного положения кляксы. Когда все клетки “сложены” столби-
ком, мы увидим, что проекция всех “запачканных” участков на ниж-
нюю клетку займет площадь < 1см. Берем точку P , свободную от
проекции. На всех клетках точки, проектирующиеся на P занимают
одинаковое положение. Они и будут вершинами новых клеток.
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2. Пример из общей топологии
Определения касающиеся покрытий см. в приложении к этому

параграфу. Основные сведения о топологических пространствах см.
в главе 12.

Теорема 1.1. В каждое открытое покрытие метрического
пространства можно вписать открытое σ-дискретное покрытие.

Доказательство. Пусть A — произвольное открытое покрытие
метрического пространства с метрикой ρ(x, y). Разложим каждое от-
крытое множество U из покрытия на однотипные части, как если бы
мы разлагали круг на концентрические кольца. Для этого соберем в
множество Un точки из U , которые отстоят от границы не меньше
чем на 2−n :

Un = {x : x ∈ U, ρ(x,X − U) = inf
y∈X−U

ρ(x, y) ≥ 2−n}.

Итак, возникает разложение U на слои, или пояса An = Un+1 − Un,
для которых верна оценка ≪ширины≫ пояса

ρ(Un, X − Un+1) = inf
x∈Un,y∈X−Un

ρ(x, y) ≥ 2−n − 2−n−1 = 2−n−1

Как взаимодействуют пояса различных открытых множеств из по-
крытия A? Можно ли наблюдать какое-то ≪регулярное≫ отношение
между ними? Например, все Un вновь покрывают наше метрическое
пространство X. Но пояса An ≪мельче≫ , можно ожидать, что пе-
ресекаться они будут ≪реже≫ с поясамиBn для другого открытого
множества V из A. Добьемся того, что они не пересекаются, ≪переде-
лывая≫ стандартным образом An, Un.

Для этого семейства A вполне упорядочим отношением порядка
< и положим:

U ∗n = Un \
∪
{Vn+1 : V ∈ A и V < U}.

Удаляя Vn+1, мы удаляем из Un элементы, которые в V лежали ближе
чем на 2−n−1 от Vn, т. е возникает разделительная полоса между U ∗n
и Vn. Важно, что если x ∈ X и ρ(x, Vn) < 1

2n+1 , то x ∈ Vn+1. Поэтому
ρ(U ∗n, V

∗
n ) ≥ 2−n−1, ибо или U ∗n

∩
Vn+1 = ∅, или V ∗n

∩
Un+1 = ∅. Теперь,

покрыв каждые U ∗n шарами достаточно малого радиуса (< 2−n−3),
получаем открытые множества U ∗∗n такие, что ρ(U∗∗n , V ∗∗n ) ≥ 2−n−2.

Система открытых множеств {U ∗∗n : U ∈ A} дискретна, а система
{U∗∗n : U ∈ A, n = 1, 2, . . .} покрывает X. Если A — первый элемент
покрытия U , содержащий x, то x ∈ U ∗∗n для некоторого n. Теорема
доказана.
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Приведенное доказательство взято из книги Д. Келли [25].
Дадим другое изложение доказательства, отражающее идеи по-

иска доказательства.
Пусть A — произвольное открытое покрытие метрического про-

странства X, ρ. Стандартный путь получения из системы множеств
A непересекающихся множеств с той же общей суммой – это проин-
дексировать элементы A вполне упорядоченным множеством I, т.е
представить A в виде A = {Aα}α∈I , где I вполне упорядочено от-
ношением <, а затем брать вместо Aα множества A∗α = Aα −

∪
β<α

Aβ.

Однако, множества A∗α не являются в общем открытыми, если откры-
тыми являются Aα.

Если бы мы имели между A∗α и A∗β ≪хороший≫ промежуток, обес-
печивающий неравенство ρ(A∗α, A∗β) > ε > 0 для всех (α, β), α ̸= β, то
понятно, что взяли бы открытые множества A∗∗α =

∪
x∈A∗

α

B(x, ε4), где

B(x, ε4) — шар с центром в точке x и радиусом ε
4 , т.е {y : ρ(y, x) < ε

4}.
Типичный элементарный пример, когда два множества разделяют-
ся необходимым образом, дают ≪слои≫ над множеством B. Пусть
Bn = {x : ρ(x,B) ≤ 1

2n} где B — фиксированное подмножество
X,n = 1, 2, . . . Имеем

ρ(Bn+1, X −Bn) = inf
x∈Bn+1,y∈X−Bn

ρ(x, y) ≥ 2−n − 2−n−1 = 2−n−1.

Итак, ≪слой≫ Bn − Bn+1 разделяет Bn+1 и X − Bn необходимым об-
разом.

Пример подсказывает, что надо использовать и исследовать
≪слои≫ порожденные исходными множествами. ≪Слои≫ строим сле-
дующим образом: если

Aα,n = {x : x ∈ Aα, ρ(x,X − Aα) ≥ 2−n},

то роль слоя играет Aα,n+1 − Aα,n.
Варьируем также идею ≪вычета всех предыдущих≫ :

A∗α,n = Aα,n \
∪
{Aβ,n+1 : β < α}.

Поскольку имеет место A∗α,n
∩
Aβ,n+1 = ∅, если β < α, то

ρ(A∗α,n, A
∗
β,n) ≥ 2−n−1, α ̸= β. Достигнув такой разделенности, име-

ем возможность расширить каждое A∗α,n, не допуская пересечений.
Именно, полагаем A∗∗α,n =

∪
x∈A∗

α,n

B(x, 2−n−3), что влечет

ρ(A∗∗α,n, A
∗∗
β,n) ≥ 2−n−2.
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Итак, ≪сила полосы≫ в том, что она, во-первых, дает возмож-
ность расширения до необходимых открытых множеств, во-вторых,
дает дискретность семейства {A∗∗α,n}, α ∈ I, n = 1, 2 . . ..

≪Полоса конечных ширин≫ между множествами сыграла так же
роль ≪устранителя≫ препятствия, возникшего в начале доказатель-
ства. ≪Расплата≫ за введение ≪полос≫ — переход к счетному множе-
ству семейств {A∗∗α,n}, α ∈ I.

Отметим, что все идеи (вполне упорядочение с ≪вычетом преды-
дущих≫ и использование разделительных полос), ≪естественно≫ по-
явившиеся в первой половине доказательства, не были отброшены, но
подходящим образом были трансформированы. Так часто происходит
при поиске доказательства.

Мы проведем доказательство следующей теоремы, используя от-
ношения, аналогичные числовым отношениям уже изложенных до-
казательств. В математике удивительным образом можно обобщенно
интерпретировать уже известные отношения на совершенно другом
материале. На другой материал переносятся именно отношения, а не
объекты, которые связаны этими отношениями. Можно сказать и так,
что понятия ≪понимаются≫ по-новому, когда предметное бытие их де-
нотата устраивается иначе, а идеальное бытие сохраняется.

Применительно к нашим теоремам таким понятием является рас-
стояние (или метрика ρ(x, y)). То, что расстояние между элемента-
ми a и b не превосходит d, организует (≪целиком положено в≫) сле-
дующее рассуждение. Рассмотрим окрестность Vd диагонали ∆ (∆
есть собрание элементов вида (x, x) для всех x из X) в пространстве
X×X, определяемую соотношением (x, y) ∈ V тогда и только тогда,
когда ρ(x, y) < d. Тогда ρ(a, b) < d ∼ (a, b) ∈ V .

Окрестность диагонали в топологическом пространстве X × X
определяется, как множество W такое, что наряду с каждой точкой
(x, x) оно содержит множество O1 × O2, где O1 и O2 — окрестность
точки x. Метрика в определении не участвует, и это позволяет интер-
претировать те места проведенных доказательств, где рассуждения
основаны на неравенстве вида ρ(a, b) < d, через отношение (a, b) ∈ W ,
где W — окрестность диагонали, при рассмотрении общих топологи-
ческих пространств.

Доказательство следующей теоремы показывает, что можно ана-
логично пройти и остальные места доказательства, где появляют-
ся числа. Необходимые определения из теории топологических про-
странств даны в главе 12.

Теорема 1.2. Если каждое открытое покрытие топологиче-
ского пространства X однообразно, то в каждое открытое покры-
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тие пространства X можно вписать открытое σ – дискретное
покрытие.

Доказательство. Мы уже отметили, что аналог числового
неравенства ρ(a, b) < d есть отношение (a, b) ∈ V , где V окрестность
диагонали в пространстве X ×X.

Насколько далеко можно продвинуть эту аналогию? Пусть V —
окрестность диагонали ∆; a – произвольный элемент топологическо-
го пространства X. Через V [a] обозначим множество {x : (x, a) ∈
V }, V [A] =

∪
a∈A

V [a]. Конструкция V [A] есть аналог следующей

окрестности множества A в метрическом пространстве X : V [A] v
v
∪
a∈A

B(a, ra).

Нам нужно будет в дальнейшем, чтобы для определенных мно-
жеств A и B их окрестности V [A] и W [B] не пересекались. Исследуем
этот момент в рамках поиска соответствующих аналогий.

Пусть W [a] — аналог шара B(a, r) в метрическом простран-
стве; V [b] — аналог шара B(b, ρ). Если шары пересекаются (c ∈
B(a, r)

∩
B(b, ρ)), то по неравенству треугольника ρ(a, b) ≤ ρ(a, b) +

ρ(c, b) ≤ r + ρ, ρ(a, b) ≤ r + ρ.
Но r+ρ “соответствует” окрестности диагонали V ◦W , а ρ(a, b) ≤

r + ρ тогда “соответствует” (a, b) ∈ V ◦W . Если “целиком перевести”
на язык окрестностей диагонали ∆ предпоследнее предложение, то
получится утверждение:

V [a]
∩

W [b] ̸= ∅ → (V ◦W )
∩

(a, b) ̸= ∅, (1.1)

которое легко проверяется.
Таким образом за аналог неравенства треугольника при проводи-

мой нами последовательно интерпретации можно взять (1.1).
Поясним утверждение, что ρ+ r соответствует V ◦W на примере,

когда X есть плоскость {(x, y)}.
Как видно из чертежа, полоса V ◦W определяется отрезком MN

длины ρ+ r.
Теперь мы можем приступить собственно к доказательству тео-

ремы.
Пусть U — открытое покрытие пространства X. Сначала впишем

в U просто σ-дискретное покрытие. Пусть V — такая окрестность
диагонали ∆ пространства X × X, что семейство всех V [x], где x
пробегает X, вписано в покрытие U . ≪Запустим≫ процесс ≪послойно-
го≫ разложения V (а тем самым и любого множества V [x]).

Положим V0 = V , а Vn при n = 1, 2, . . . определим как симмет-
ричную окрестность диагонали такую, что Vn ◦ Vn ⊂ Vn−1. Вместо
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Рис. 2. Геометрические образы множеств V и W

взятия множеств Vn−1 − Vn ≪слои≫ будем создавать через множе-
ства Un, где: Un = V1, U2 = V2 ◦ V1, U3 = V3 ◦ (V2 ◦ V1), . . . Un =
= Vn ◦ (Vn−1 ◦ . . . (V2 ◦ V1) . . .). ≪Слой≫ внутри Un вокруг Un−1 “со-
здается” окрестностью Vn. Опять введем полный порядок. На этот
раз будем считать, что само X вполне упорядочено отношением <.
Определим множества

U ∗n(x) = Un[x]\
∪
{Un+1[y] : y < x}, n = 1, 2, . . . x ∈ X.

Множество U ∗n(x) не пересекается с Vn+1[U
∗
n(y)] при x ̸= y. Это при

y < x следует из определения U ∗n(x). При y > x U ∗n(y) не пересекается
с Vn+1[U

∗
n(x)], а значит ввиду симметричности Vn+1 множество U ∗n(x)

не пересекается с U∗n(y). Если для некоторой точки z ∈ X окрестность
Vn+1(z) пересекает U ∗n(y), то z ∈ Vn+1[U

∗
n(y)] – окрестность точки z, не

пересекающаяся с U ∗n(x) при x ̸= y. Следовательно, семейство Un =
= {U ∗n(x), x ∈ X} дискретно. Если x ∈ X и y - первая точка из X,
для которой x принадлежит множеству U ∗n(y), тогда x ∈ U ∗n(y). Итак
σ – дискретное вписанное покрытие получено.

Осталось ≪превратить≫ множества U ∗n(x) в открытые. Вместо них
возьмем множества Vn+k[U ∗n(x)], где k — фиксированное натуральное
число, большее 1. Если x > y и Vn+k[U

∗
n(x)]

∩
Vn+k[U

∗
n(y)] ̸= ∅, ∃a ∈

U ∗n(x), ∃b ∈ U ∗n(y), ∃z ∈ X, что имеют место включения:

(a, z) ∈ Vn+k, (b, z) ∈ Vn+k, (a, b) ∈ Vn+k ◦ Vn+k ⊂ Vn+k−1. (1.2)

Здесь мы применили обобщенное неравенство треугольника. Но
b ∈ U ∗n(y) ⊆ Un[y], (a, b) ∈ (Vn+k−1 ◦ Un) ⊂ Un+1, a ∈ Vn+k−1[Un[y]] ⊂
Un+1[y], хотя a /∈ Un+1[y]. Противоречие показывает, что множества
Vn+k[U

∗
n(x)], x ∈ X, попарно не пересекаются.
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Далее повторяем схему рассуждений, изложенную несколько вы-
ше. Для точки z ∈ X берем окрестность Vn+3[z], и пусть она пе-
ресекает Vn+3[U

∗
n(y)]. Тогда (Vn+3 ◦ Vn+3)[U

∗
n(y)] является окрестно-

стью z, вложенной в Vn+2[U
∗
n(y)], а потому не пересекающей ни од-

но Vn+2[U
∗
n(x)] при x ̸= y. То есть, система {Vn+2[U

∗
n(x)]}, n =

= 1, 2, . . . , x ∈ X есть σ-дискретная система открытых множеств.
Теорема доказана.

Доказательство интересно тем, что мы следовали доказатель-
ству аналогичной теоремы для метрических пространств, установив
нечисловые отношения, аналогичные основным числовым, участвую-
щим в доказательстве, и трансформируя все основные идеи доказа-
тельства теоремы 1.1. Усиливая напряжение этой мысли, процитиру-
ем Дж.Л. Келли [25]:

≪Путь, по которому эволюционировала общая топология, во мно-
гом характерен для математики. Сначала замечается сходство неко-
торых ситуаций, аналогии и повторения в рассуждениях. Затем пред-
принимаются попытки выделить понятия и методы, общие для раз-
личных примеров: при условии, что анализ достаточно глубок, есть
надежда найти теорию, которая охватывает многие или даже все на-
ши примеры и достойна самостоятельного изучения. Именно на этом
пути после длительного экспериментирования было получено понятие
топологического пространства. Оно — естественный продукт непре-
рывного процесса консолидации, абстрагирования и обобщения. Что-
бы избежать формализма в обобщении, каждую возникающую таким
образом абстракцию следует испытать с целью выяснения, действи-
тельно ли центральные идеи воплощены в ней. Это испытание обычно
заключается в сравнении абстрактно построенного объекта с объек-
тами, от которых он произошел.≫

3. Приложение. Необходимые определения теории топо-
логических пространств

Следуя книге [25], приведем необходимые нам определения о по-
крытиях метрического и топологических пространств. Базовые све-
дения об этих пространствах изложены в главе 12.

Семейство A называется покрытием множества B тогда и только
тогда, когда B является подмножеством объединения

∪
{A : A ∈ A},

т. е. когда каждая точка множества B принадлежит некоторому эле-
менту семейства A. Семейство A называют открытым покрытием
множества B, если каждый элемент из A является открытым мно-
жеством. Подпокрытие покрытия A — это такое его подсемейство,
которое само является покрытием.
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Семейство A подмножеств топологического пространства назы-
вается локально конечным тогда и только тогда, когда у каждой
точки пространства есть окрестность, пересекающаяся лишь с ко-
нечным множеством элементов семейства A. Из этого определения
немедленно следует, что точка является предельной для объединения∪
{A : A ∈ A} тогда и только тогда, когда, она является предель-

ной точкой для некоторого элемента семейства A. Следовательно, за-
мыкание этого объединения равно объединению замыканий слагае-
мых, т. е.

∪
{A : A ∈ A} =

∪
{A : A ∈ A}. Очевидно также, что

замыкание элементов семейства A образуют локально конечное се-
мейство. Семейство A называется дискретным, если у каждой точки
пространства есть окрестность, пересекающаяся самое большее с од-
ним элементом семейства A. Любое дискретное семейство локально
конечно. Если A дискретно, то семейство замыканий элементов из A
тоже дискретно. Наконец, скажем, что семейство A σ– локально ко-
нечно (σ-дискретно), в том и только в том случае, когда оно являет-
ся объединением счетного числа локально конечных (соответственно
дискретных) своих подсемейств.

Покрытие {Oα}α∈I ,
∪
α∈I

Oα = X, однообразно, если существует

такая окрестность V диагонали ∆, что для любого x из X множество
V [x] содержится в некоторомOβ, β ∈ I. (∃V ∀x ∃β V [x] ⊂ Oβ, β ∈ I).

§ 2. Выделение пространства однотипных объектов

1. Интерполяционная теорема.

При развитии теории на данный момент формируют определен-
ный багаж знания, фактов; багаж, который ≪всегда под рукой≫, и
используется почти ≪автоматически≫. Этот багаж подобен таблице
умножения для арифметики, и содержание багажа определяется со-
держанием курсов лекций по данному предмету в ведущих универси-
тетах.

Классическая логика есть ≪багаж≫ на дорогу при исследовании
диалектической логики. Уместно вспомнить по этому поводу Гегеля.

Поэтому, устанавливая свойство E для объекта C занимающего
≪промежуточное≫ положение между объектами A и B со свойствами
E , т. е. интерполируя E на C, полезно ≪перебрать≫ классические ин-
терполяционные теоремы. Одной из них является теорема Адамара
о трех окружностях, приводимая в любом университетском учебнике
по аналитическим функциям.
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Для ее доказательства используются следующие понятия. Функ-
ция f(z) называется целой, если она аналитическая на всей плоско-
сти комплексной переменной z = x + iy. Функция, аналитическая в
замкнутой области, принимает наибольшее и наименьшее значения
своего модуля только на границе, если она отлична от постоянной
(принцип максимума модуля).

Зафиксируем аналитическую однозначную ветвь функции zα, где
α — вещественное число, и рассмотрим функцию φ(z) = zαf(z),
где f(z) аналитична в круговом кольце 0 < r1 ≤ |z| ≤ r2, r1 < r2.
Пусть

M(r) = max
|z|=r
|f(z)|, r1 ≤ r ≤ r2.

По принципу максимума будем иметь

rαM(r) ≤ max{rα1M(r1), r
α
2M(r2)}. (2.1)

Выберем теперь α из условия rα1M(r1) = rα2M(r2) :

α =
log(M(r2)/(M(r1))

log(r1/r2)
.

Свобода выбора α позволяет нам избавиться от ≪max≫ в (2.1),
и логарифмируя (2.1), получаем (log берется по любому основанию
большему единицы) новую форму неравенства (2.1)

logM(r) ≤ logM(r1)
log(r/r2)

log(r1/r2)
+ logM(r2)

log(r/r1)

log(r2/r1)
. (2.2)

Теорема 2.1 (Адамар). Неравенство (2.2) имеет место для
трех произвольных окружностей с центром в начале координат и
с радиусами r1 < r < r2, если функция f(z) аналитична в обла-
сти r1 < |z| < r2.

Если в плоскости (x, y) построить кривую x = log r, y = logM(r),
то неравенство (2.2) показывает, что кривая выпукла в интервале
r ∈ [r1, r2] : y ≤ θy1 + (1− θ)y2, x = θx1 + (1− θ)x2.

Далее будем ≪эксплуатировать≫ этот частный случай интерполи-
рования (рассуждение от частного случая). В изложении мы следуем
книге Дж. Литлвуда [35].

Теорема 2.2 (Рисса). При α, β > 0 обозначим через Mα,β точ-
ную верхнюю грань выражения

|L(x, y)| = |
m∑
µ=1

n∑
ν=1

aµνxµyν| (2.3)
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с постоянными комплексными aµν и переменными комплексными
xµ, yν, подчиненными условиям

m∑
µ=1

|xµ|1/α ≤ 1,
n∑
ν=1

|yν|1/β ≤ 1, α, β > 0. (2.4)

Тогда lnMα,β является выпуклой функцией α, β в области α, β > 0.
Доказательство. Рассмотрим пространство однородных объ-

ектов — всех выпуклых функций в области α, β > 0. С точки зрения
взятия точной верхней грани важны следующие взаимодействия в
этом пространстве:

(a) точная верхняя грань семейства выпуклых функций выпукла;
(b) предел последовательности выпуклых функций является вы-

пуклой функцией;
(c) находя точную верхнюю грань чего-либо при ряде независи-

мых условий, наложенных на переменные, мы можем эти условия
принимать во внимание в любом порядке (или одновременно). На-
пример,

sup
0≤x,y≤1

|f(x, y)| = sup
0≤x≤1

(
sup
0≤y≤1

|f(x, y)|
)
.

Таким образом, если мы можем представить Mα,β в виде

(sup (sup( . . . (sup |L(x, y)|) . . . ))
так, что если ≪самая внутренняя≫ точная верхняя грань (при фик-
сированных значениях всех переменных во внешних точных верхних
гранях) выпукла относительно α и β, то из (a) и (c) будет вытекать,
что наша теорема верна.

Положим в (2.3)

xµ = εαµe
iφµ, yν = ηβν e

iψν ; εµ, ην ≥ 0; α, β > 0.

При этом считаем, что выполняются условия (2.4):
m∑
µ=1

εµ ≤ 1,
n∑
ν=1

ην ≤ 1.

Вводя четыре семейства переменных (ε, µ, φ, ψ) вместо двух
(x, y), мы ≪работаем≫ на замечание (c).

Обсуждаемая величина Mαβ примет вид

Mαβ = т.в.г.
(φ,ψ,ε,η)

|
m∑
µ=1

n∑
ν=1

aµνε
α0+λ1σ
µ ηβ0+λ2σν ei(φµ+ψν)|, (2.5)



§ 2. Выделение пространства однотипных объектов 75

где положено
α = α0 + λ1σ, β = β0 + λ2σ,

и нам, следовательно, надо доказать выпуклость lnMαβ при любых
λ1, λ2. Нетривиально вводим свободный параметр в подмодульное вы-
ражение (2.5), полагая вместо σ комплексное число s = σ+it с произ-
вольным действительным t. Важное наблюдение: Mαβ не изменится,
ибо замену можно интерпретировать как простой сдвиг аргументов
φµ и ψν ! Добавляем к Mαβ операцию взятия т.в.г. по t, при этом сре-
ди всех подобных операций над Mαβ взятие точной верхней грани по t
будем выполнять первой. Согласно (c) это не изменит Mαβ. Функция

f(x) = f(s, φ, ψ, ξ, η) =
m∑
µ=1

n∑
ν=1

aµνξ
α0+λ1sηνβ0+λ2sei(φµ+ψν) является це-

лой функцией комплексного переменного s. Поэтому применяем тео-
рему Адамара (роль r играет eσ), а также правила (a)–(c), получаем,
что

lnMαβ = sup
(φ,ψ,ε,η)

lnm(σ, φ, ψ, ξ, η), m(σ, φ, ψ, ξ, η) = sup
(t)

|f(s)|

являются выпуклыми функциями σ. �
Оценить роль теоремы Рисса можно по применениям ее в функ-

циональном анализе. Так, она позволяет установить истинность нера-
венства Юнга — Хаусдорфа

( ∞∑
n=1

|cn|
p

p−1

)p−1
p ≤

( 1

2π

π∫
−π

|f |pdθ
) 1

p

для коэффициентов Фурье cn функции f(θ) ∈ Lp при 1 ≤ p ≤ 2, если
неравенство справедливо при p = 1 и при p = 2.

2. Свободный параметр.
Поскольку введение свободных параметров сыграло исключи-

тельную роль в доказательстве, приведем еще один пример ≪порази-
тельного≫ появления свободных параметров. Можно установить, что
имеет место равенство

sin

(
n∑
j=1

xj

)
=

n∑
i=1

 n∏
j=1,j ̸=i

sin(xj + αj − αi)
sin(αj − αi)

 sinxi,

для произвольных вещественных чисел αi с условием sin(αj−αi) ̸= 0
при j ̸= i и любых вещественных чисел x1, x2, . . .xn.
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Введение свободного параметра превращает объект с этим пара-
метром в элементарное пространство.

Итак, ведущие идеи доказательства в примерах этого параграфа
следующие: 1) введение в рассмотрение системы однотипных (род-
ственных) объектов; 2) исследование частного случая, несущего в се-
бе узловые моменты рассуждения, необходимые в общем случае. (Из
ничего ничего не рождается!)



Глава 5
Элементарное пространство и предельный переход

§ 1. Задача как элементарное пространство

Рассмотрением однородного пространства однотипных объектов
мы подготовили принцип элементарного пространства, который неяв-
но располагается в математических рассуждениях ≪всюду плотно≫.
Пространство является фундаментальным понятием философии, фи-
зики, математики, но введением элементарного пространства мы пе-
реходим с глобального аспекта рассмотрения этого понятия на ло-
кальный.

Элементарное пространство — это совокупность родственных в
каком-то плане объектов, родство которых обеспечивается условиями
задачи. Общий представитель пространства участвует в организации
определенной интерпретации задачи и обуславливается интерпрета-
цией этой задачи. Материал задачи всегда поставляет нам сообщество
определенных однотипных объектов, которое необходимо воспринять
как определенную структуру, изучение которой эквивалентно реше-
нию задачи.

В отличие от канторового множества обезличенных элементов
элементарное пространство рассматривается как собрание индивиду-
умов, определенные свойства которых варьируются и определяются
ролью элементов в задаче. Можно сказать в первом приближении, что
элементарное пространство есть канторово множество плюс опреде-
ленная интерпретация задачи, которая воспринимается как уравне-
ние, определяющее элемент из этого множества, реализующий опре-
деленное взаимодействие в интерпретации.

Помимо этого математического аспекта определение элементар-
ного пространства имеет философский и физический аспекты обос-
нования. С точки зрения философии побуждающим к размышлениям
является, как отметил Мамардашвили [36], вопрос: ≪почему всегда не
одно, а много одного?≫. Не один электрон — много электронов. Солн-
це не одно — много звезд (даже в донаучную эпоху Солнце — один из
богов), и т. д. Понимание этого в том, что каждый объект двойстве-
нен: имеет предметное бытие и идеальное. Элементарное простран-
ство есть отражение этой двойственности, есть самая экономная реа-
лизация ее в бытие (осуществляет выбор объекта и его функциональ-
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ную роль через множество себе подобных применительно к конкрет-
ной задаче). Внутреннее или предметное бытие элементарного про-
странства есть канторово множество. Внешнее идеальное бытие есть
взаимодействие, организуемое элементом из пространства в контек-
сте задачи и выявляющее решение. Отметим в связи с этим, что под
контекстом можно понимать всю совокупность интерпретаций зада-
чи, а не только ее конкретную формулировку; причем, совокупность
не актуально завершенную, а потенциально становящуюся.

Элементарное пространство, следуя сказанному, мы будем обо-
значать символом ≪1→∞≫.

Со стороны физики понятие элементарного пространства отража-
ет квантованность всех процессов. ≪Много одного≫ — кванты реали-
зуют поля, излучения, волны (кстати, квант мышления — кларитон).

Итак, элементарное пространство — это та же самая задача, схе-
матизированная как пространство; абстракция, эквивалентная по це-
ли (решению) исходной формулировке. Задача целиком положена в
элементарном пространстве которое есть инобытие задачи. Если за-
дача есть модель, то ≪1 → ∞≫ есть модель модели. Каждая задача
имеет свое элементарное разрешающее пространство, и в этом ло-
кальный характер обсуждаемого понятия пространства.

1. Примеры.

«Вот тут-то все и объясняется».

Дигаш.

Во многих ≪олимпиадных≫ задачах для младшеклассников типа
≪задача о ханойской башне≫, ≪задача о волке, козе и капусте≫, задачи
нахождения фальшивой монеты взвешиванием и т. п. элементарное
пространство появляется очевидным образом как перечисление воз-
можных действий. Главное здесь — полнота перечисления, не пропу-
стить ключевое, решающее задачу действо. В то же время отметим,
что в совокупности действия, как группа преобразований, являются
основой многих теорий. Перейдем к примерам, где выбор простран-
ства само представляет задачу, где для проявления элементарного
пространства нужно приложить усилия. Задача проявления имеет
свои принципы, некоторые из которых мы формулируем после со-
ответствующих примеров.

Пример 1.1. Задача рассмотрена В. Арнольдом в его книге
«Обыкновенные дифференциальные уравнения».
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Из города в город ведут две дороги. Известно, что две машины,
выезжающие из в по разным дорогам, и связанные веревкой длины,
меньшей 2L, смогли проехать из в , не порвав веревки. Могут ли
разминуться, не коснувшись, два круглых воза радиуса L, которые
движутся по этим дорогам навстречу друг другу?

Решение. В. Арнольд предлагает решение, основанное на поня-
тии фазового пространства. Мы получим решение через элементар-
ное пространство. Пусть машина М1 двигалась по дороге D1, машина
М2 — по дороге D2. Каков бы ни был график S = S1(t) движения
М1, где t — время, а S — путь, пройденный за время t по соответ-
ствующей дорогое, можно подобрать график S = S2(t) движения
М2, которое не разрывает веревку. Действительно, если G = G1(t)
и G = G2(t) графики уже реализованного движения машин, то
S2(t) = G2(G

−1
1 )(S1(t))). Элементарным пространством является мно-

жество всевозможных графиков движения М1. Пусть М1 движется
по графику S = S1(t) движения обоза, вышедшего из А (разрешаю-
щий элемент пространства!). Вторая машина М2 пусть движется по
соответствующему графику S2(t). В момент τ встречи машины М2 и
обоза, вышедшего из В по дороге D2, обозы столкнутся.

Резюме к этому примеру. В задаче часто элементарное простран-
ство порождается элементом, обладающим свободой выбора.

Пример 1.2. Рассмотрим три величины: b =
a+ c

2
— среднее

арифметическое, b =
√
ac — среднее геометрическое, b =

2ac

a+ c
—

среднее гармоническое. Исследовать отношения между ними, пред-
полагая, что a, b, c > 0.

Решение. Величины мало связаны по форме, и трудно уловить,
что здесь представлено нечто одно с вариацией определенного свой-
ства. Попытаемся представить величины другими выражениями. Для
определенности пусть a > c > 0. После некоторой работы мы прихо-
дим к наблюдению, что число b, определенное из неравенств:

(1)
a− b
b− c

=
a

a
, (2)

a− b
b− c

=
a

b
, (3)

a− b
b− c

=
a

c
,

соответственно, определяет среднее арифметическое, среднее гео-
метрическое и среднее гармоническое. Формулы (1)–(3) однотипны
и приводят к рассмотрению элементарного пространства равенств

ϕ(b) = const с заданной функцией ϕ(b) =
a− b
b− c

; a, c предполагают-
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ся фиксированными. Проблема сводится теперь к изучению свойств
функции ϕ(b). По предположению c < a, поэтому ϕ′b < 0, т. е. функ-
ция ϕ монотонно убывающая. Поскольку

a

a
<
a

b
<
a

c
, то значения b,

соответствующие этим значениям функции ϕ последовательно убы-
вают:

a+ c

2
>
√
ac >

2ac

a+ c

Резюме. Мы часто приходим к элементарному пространству че-
рез изменение формы данных задачи и затем выявление общего пред-
ставления элемента пространства.

Пример 1.3. Угол, вершина которого лежит на окружности, а
стороны пересекают эту окружность, называется вписанным в окруж-
ность.

Теорема 1.1. Уrол, вnисанный в окружность, равен половине
соответствующего центрального угла.

Доказательство. Теорема доказывается особенно просто. Рас-
смотрим возможные варианты положения вершины на окружности
(элементарное пространство).

≪Мутантом≫ будет случай, когда одна из сторон угла проходит
через центр окружности.

Рис. 1. Сингулярный элемент пространства

Треугольник равнобедренный, так как у негo стороны OA и OB
равны как радиусы. Поэтому углы и треугольника равны. А так
как их сумма равна внешнему углу треугольника при вершине O, то
угол B треугольника равен половине угла AOC, что и требовалось
доказать.

Пример 1.4. ≪Задача о миссионерах и туземцах≫. Имеется река
и лодка, в которую можно уместить максимум двух людей. На одном
берегу реки находятся 3 миссионера и 3 туземца. Важным условием
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организации переправы является то, что на одном берегу ни в какой
момент времени не должно оказаться туземцев больше, чем миссио-
неров.

Решение. Задача, на первый взгляд, кажется довольно простой,
но в ходе решения возникают проблемы из-за того, что нужно пом-
нить довольно большое количество информации: как нельзя совер-
шать транспортировку, какие шаги были сделаны и отвергнуты и
многое другое. Как можно от них избавиться? Можно заметить, что
состояние дел на реке в каждый момент времени может быть пред-
ставлено в виде тройки: ⟨M,T, L⟩, где M — число миссионеров на
выбранном берегу, T — число туземцев, L — положение лодки. Для
простоты, за исследуемый берег можно взять начальный, пусть вы-
бран левый. Состояние будет записано в виде ⟨3, 3, L⟩. Такая короткая
запись отражает положение дел на реке и берегах, мы легко можем
узнать сколько представителей обеих групп на другом берегу и прове-
рить, выполняется ли условие, что миссионеров на выбранном берегу
должно быть не меньше. Стоит заметить, что нет смысла рассматри-
вать выполнение обязательных условий задачи в момент, когда лодка
посреди реки: проблемы на берегу назначения можно было уловить
на предыдущей проверке, а на берегу, с которого уплыли, мы про-
верим как только лодка остановится у берега. Задача будет решена,
когда мы достигнем состояния ⟨0, 0, R⟩. Лодка будет на правом берегу,
так как последняя партия переедет на ней и оставит ее там. Мы по-
строим модель задачи — элементарное пространство троек ⟨M,T, L⟩.
Рассмотрим, какие перемены могут произойти за один шаг. Пусть мы
находимся в состоянии ⟨M,T, L⟩. За шаг берег меняется на противо-
положный, а раз лодка рассчитана на двух человек, то и уменьшиться
сумма и может на два или на один. За первый шаг мы можем перейти
в 5 состояний: ⟨1, 3, R⟩, ⟨3, 1, R⟩, ⟨2, 2, R⟩, ⟨3, 2, R⟩, ⟨2, 3, R⟩. Затем из
каждого в еще несколько. Таким образом, получим дерево всех воз-
можных переездов. Часть из них не будут удовлетворять условиям
задачи, поэтому, дабы избежать лишних действий, лучше проверять
состояние в момент его генерации. Кроме того, нужно учесть, что
в некоторое состояние система может прийти разными путями, есть
смысл рассматривать дальнейшее развитие только один раз, но лучше
не забывать об этих путях, если необходимо найти как можно больше
решений. По такой схеме задачу можно свести к перебору состояний
и довольно быстро найти все возможные решения.
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§ 2. Аспекты представления элементарного пространства

Эти аспекты следующие.

1) Трудность построения элементарного пространства по явленно-
му объекту.

2) Трудность перечисления объектов элементарного пространства.

3) Элементарное пространство как вариативный ряд: каждый член
ряда есть одно то же по сути, что и другой член ряда, и в то же
время варьируется. Умение варьировать через интерпретацию и
абстрагирование

4) Элементарное пространство — это формализованное представле-
ние системы, задающей проблему и рассматриваемой как единое
целое, с целью удобства ее исследования. В нем поэтому очень
много от формальной системы.

≪Формальная система — это совокупность абстрактных объ-
ектов, не связанных с внешним миром, в которой представлены
правила оперирования множеством символов в строго синтакси-
ческой трактовке без учета смыслового содержания, то есть се-
мантики. Является результатом строгой формализации теории,
предполагающей полную абстракцию от смысла слов используемого
языка, причем все условия, регулирующие употребление этих слов в
теории, явно высказаны посредством аксиом и правил, позволяющих
вывести одну фразу из других≫ С.К. Клини [28].

Таким образом, формальная система — это элементарное про-
странство выделенных путем абстракции отношений, представлен-
ных затем символьно (для рассматриваемой теории).

Но элементарное пространство можно рассматривать как систему
на физической основе.

Если физическая система устойчива, то ее энергия минимальна.
Выражение инвариантности и всеобщности энергии состоит в прин-
ципе минимализма. Любая система стремится к равновесию — состоя-
нию, когда ее энергия минимальна. Система должна организовывать-
ся так, чтобы затрачивать минимум энергии. Применяем принцип
аналогии к исследуемой системе и получаем принцип экономии дей-
ствующих лиц в элементарном пространстве, который состоит в том,
что, исследуя взаимодействие, мы избавляемся от лишних элементов,
сохраняя сущность, скрывающуюся за элементарным пространством.
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Как и в физической системе, выражение инвариантности и все-
общности главной сущности будет состоять в принципе минимализ-
ма. Зная, как стремится организоваться система, мы опять придем
к принципу экономии действующих лиц в элементарном простран-
стве. Так было организовано доказательство элементарной теоремы о
компактности. Принцип минимализма также может проявиться как
выбор модели, упрощающей элементы задачи.

5) В изложенном материале постоянно затрагивается дуальная
пара: явление — сущность. Собственно, элементарное пространство,
выражаясь философским языком, проявляет сущность, явленную
описанием задачи, контекстом задачи. На математическом языке эле-
ментарное пространство есть нечто вроде формулы, приводящей к
решению уравнения — задачи. Часто к сущности, а, следовательно,
и к решению подводит в элементарном пространстве член — ≪му-
тант≫ или ≪исключительный по положению≫ член, или член ≪сингу-
лярный≫ в каком-либо отношении, или нечто абстрактно — всеобщее
для всех систем, представленное в данной конкретной задаче через
общий элемент элементарного пространства.

Если отношения элементов в элементарном пространстве берутся
максимально абстрагированными от конкретики, то отношения пред-
ставляются подмножествами декартовых произведений множеств (ка-
кие произведения необходимо брать определяется задачей) и прини-
мается какая-то общая система аксиом и правил вывода теории мно-
жеств. Так возникают структуры Бурбаки. Однако, для такого по-
строения теории все равно нужна иерархия: получаемые на одном
уровне развития теории теоремы далее не воспринимаются как фор-
мальные образования, сами становятся опорными исходными предпо-
сылками для последующих выводов. А ходом сложного рассуждения
все равно руководит какая-то содержательно воспринимаемая идея
— принцип. Ибо, в гнесеологическом плане иерархия в математике —
это оформление, форма понимания. Тогда как в физике иерархия как
нечто объективно — реальное есть антиэнтропийный процесс.

6) В сложных пространствах от элементарного пространства под-
нимаемся на уровень взаимодействующих между собой нескольких
элементарных пространств, — уровень иерархии математических про-
странств, требующий специального изучения. На этом уровне лежат
все функциональные пространства математической физики.

7) Наконец, отметим, что на элементарное пространство мож-
но смотреть, как на член эволюционного ряда ≪величина≫: чис-
ло — тензор — оператор — . . . Действительно, взаимодействие меж-
ду ≪1 → ∞≫ и контекстом задачи есть функциональное отноше-
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ние — оператор. Каждому элементу из ≪1→∞≫ ставится в соответ-
ствие претендующая на решение интерпретация задачи. Роль крити-
ческих точек числовых функций играют особые элементы элементар-
ного пространства.

По сути, элементарное пространство есть начальный член эволю-
ционного ряда для понятия ≪пространство≫.

§ 3. Элементарное пространство. Уровни схематизации и
абстракции

В главе 11 вводим понятия эволюционного и вариативного рядов,
в движении по которым обнаруживает себя математическая теорема
как нечто более сущностное, чем фиксированная формулировка ее.
Это более широкий, чем принятый, взгляд на теорему, к которому
мы приходим, если подвергаем метаматематическому анализу отно-
шения, в которые теорема вовлечена. В данном параграфе мы хотим
по-новому в рамках рациональных метаматематических размышле-
ний с привлечением категории ≪иерархия≫ взглянуть на математиче-
ское доказательство и, соответственно, понятие элементарного про-
странства.

Сделаем общее замечание. ≪Освобождение≫ математического
объекта размышлений от частных, ≪лишних≫ отношений приводит
либо к формализации его отношений в рамках математической логи-
ки, либо к организации его отношений философскими категориями.

Для человеческого мышления математическое доказательство по-
истине иерархически организованная система. Поясняют высказанное
примеры решения проблемы Бернсайда и проблемы четырех красок
(см. главу 1).

Читатель может убедиться в необходимости структурирования
доказательства как иерархической системы идей и на более простых
примерах. Например, решение задач теории шахматной компози-
ции требует предварительной разработки каких-то общих концепций,
принципов и утверждений в виде ≪маленьких≫ теорем. Концепции и
nрuнцunы ужe выделяют с какой-то неоnределенностью схему ре-
шения задачи. Остается определить эти ≪неопределенности≫ (сравни
с уравнением ax2 + b+ c = 0 для арифметической задачи).

Предложив возможную формализацию для всех современных ма-
тематических структур в первом томе своей энциклопедии, Бурбаки
затем в последующих томах переходит к ≪обычному≫ изложению ма-
териала. Для этого формируется запас ключевых результатов, фор-
мально доказуемых, и на основе которых можно проводить последу-
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ющие доказательства, не обращаясь к формализму первого тома. Та-
ким образом, эти результаты — новые элементарные объекты следу-
ющего уровня организации математического мышления. Формализм
присутствует здесь как ≪тень≫ доказательства.

Заметим, что пониманию схемы доказательства в целом часто по-
могают не силлогистические утверждения, а пространственное вооб-
ражение, общие аналогии (см. в этом отношении прекрасную книгу
В.В. Прасолова [43]), все то, что ведет, в конце концов, к философ-
ским размышлениям.

Трактуя доказательство как иерархическую систему, выделим
для рассмотрения основной элемент иерархической системы — его
уровни [53]. Мы воспринимаем уровень как собрание элементов, орга-
низованных взаимодействием. Возможно, взаимодействие обусловле-
но взаиморасположением. Мы воспринимаем поэтому уровень иерар-
хической структуры на уровне философской категории ≪простран-
ство≫.

Для ≪математизации≫ понятия ≪уровень≫ нам необходимо наи-
большее абстрагирование от конкретности в отношениях элементов.
Это выливается в построение пространства с элементарными объек-
тами и простейшими отношениями — элементарного пространства.
Поэтому отправимся от того, что первичная организация — это орга-
низация себе подобных; одного, взятого во многих экземплярах. И тут
мы сталкиваемся с двумя возможными линиями обсуждения пробле-
мы элементарного пространства.

Первая линия — философская, намеченная вопросом Мамарда-
швили: ≪Почему есть многое, а не одно?≫. При осмысливании во-
проса завязываются отношения этого факта практически со всеми
центральными категориями философии, например, с дуальной парой:
тождество и различие. ≪Одно и то же≫ проявляется через различие.
Различие есть различение ≪одного и того же≫. Мы отождествляем
потому, что умеем различать; отождествление и различие ≪за спи-
ной≫ имеют ≪многое одного выделенного≫. Отождествление опера-
ционально: нет равенства, а есть то, что устанавливает равенство:
операция или преобразование. В философском содержании проблемы
≪одно — много одного≫ можно выделять и законы; такой, например:
этих одно качественно одинаковых не может быть бесконечно много.
По сути этот закон эквивалентен закону перехода количества в каче-
ство, а в приведенной формулировке им владел, по-видимому, Зенон
Элейский.

Рассмотрим, однако, как проявляется пространство ≪одно — мно-
го одного≫ в математике. a) Каждое топологическое векторное про-
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странство, в частности, все функциональные пространства матема-
тической физики есть ≪сцепление≫ одного и того же — евклидового
пространства размерности n, где n может быть любым натуральным
числом, взятого в бесконечном числе экземпляров. Таким образом,
обсуждаемые пространства есть ≪переплетение≫ пространств En. Это
похоже на то, как разные здания построены из одного — кирпича.
б) Каждая алгебраическая структура (модель) конечной сигнатуры
≪составлена≫ из экземпляров конечного числа диаграмм для n эле-
ментов, где n фиксировано. Диаграммы определяются предикатами и
аксиомами. То, что конечное число объектов дает несравненно боль-
шее число разнообразных структур, которые данная теория изучает,
можно сравнить с тем, что конечное число элементов таблицы Мен-
делеева в своих взаимодействиях порождает весь макромир.

≪Много этих одно≫ проявляется в математике и как сопряженное
пространство функционалов к данному векторному пространству; и
как множество ультрафильтров в стоуновском пространстве для бу-
левой алгебры. Примеров много.

Обратимся непосредственно к доказательствам, где очень часто,
если не всегда, основное — это выделение ≪одного≫ и организация
отношений между ≪многими≫ в пространстве ≪одно — много одного≫.
В приведенных ниже примерах выделено ≪одно≫ для пространства
≪много одного≫ и подчеркнуто. Примеры.

a) ≪Кварталы города≫ в решении 13-ой проблемы Гильберта Ар-
нольдом и Колмогоровым [5]. б) Конечные арифметические прогрес-
сии, взаимодействием которых решает Ван дер Варден одну проблему
из теории чисел [57]. в) Ультрафильтры, их организация путем ран-
жирования через несколько простых теорем общей топологии таких
как теорема Кантора — Бенедиксона в доказательстве Морли [69] ка-
тегоричности теории в несчетных мощностях, если она категорична
в мощности действительных чисел. г). в качестве элементарного про-
странства ≪одно — много одного≫ можно рассматривать строки из
конечного числа символов в доказательстве элементарной теоремы
компактности [58]. Это пространство — фундамент доказательства
теоремы Тихонова о компактности произведения компактных топо-
логических пространств и теоремы Геделя — Мальцева из теории мо-
делей.

Итак, мы берем как элементарное пространство множество,
≪noвmоряющих одно≫ элементов, — пространство ≪одно — много
одного≫. Важнейшей проблемой становится выбор научного контек-
ста, в рамках понятий которого, описываются закономерности отно-



§ 3. Элементарное пространство 87

шений между элементами пространства ≪одно — много одного≫, за-
кономерности организации элементарного пространства. Возможны
два подхода к решению этой проблемы.

Первый путь проглядывает через схемы рассуждений и диаграм-
мы Э.М. Хакимова Он состоит в том, что берутся простейшие гео-
метрические объекты; точки, линии, сферы, квадраты и т.п. Опреде-
ляется их простейшее взаиморасположение (параллельность, перпен-
дикулярность). Ситуация геометрического взаимодействия ≪снима-
ется≫ затем в числовых отношениях. Геометрия идеально полагается
в числовых последовательностях, например, Фибоначчи, в числовых
пропорциях (золотое сечение и т. п). Этот этап организации простран-
ства — своеобразное отражение пифaгореизма. Изучение числoвых
отношений ≪снятого≫ пространства задает направление усложнения
геометрических объектов и их взаиморасположения исходного про-
странства. Затем следует новое ≪снятие≫ картины в целом числовы-
ми отношениями и т.д. Это путь эволюционного моделирования очень
перспективен для математической разработки.

Другой подход связан с анализом того, как организуются отно-
шения элементов пространства ≪одно — много одного≫ в известных
математических доказательствах. Анализ показывает, что основной
инструмент организации в нетривиальных случаях есть индивидуа-
лизация и ранжировка объектов элементарного пространства через
их роль в отношениях ≪внешней≫ теории, ≪внешней среды≫. В со-
временной математике этот необходимый выход за пределы того кон-
текста, в котором проблема родилась, совершается как ≪подъем≫ на
другой уровень схематизации и абстракции — на уровень теории ка-
тегорий и схем. Особенно ярко это показывает пример [69]. В бо-
лее простых случаях организатором выступают несколько (или одна)
≪внешних≫ теорем, или какой-то рациональный принцun мышления.
В любом случае мы выходим в область ≪инобытия≫ объекта — того
одного, что образует элементарное пространство, выходим на его иде-
альное существование. И с этой стороны вновь обнаруживается связь
проблемы с такими категориями философии как ≪объект≫, ≪идеаль-
ное≫.

Нам важно было изменить точку зрения на математическое до-
казательство, войдя в более широкий контекст, чем тот, который со-
ставляет современная математика. Но предстоит еще проявить раци-
ональные принципы организации доказательства как иерархической
системы идей до такой четкости, когда станет возможным соотнести
доказательству определенную новую математическую структуру.
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§ 4. Принцип проведения предельного процесса

Принцип предельного перехода сопровождает элементарное про-
странство и является дуальным к нему, позволяя подняться к элемен-
ту более высокого уровня, чем элементы указанного пространства.

Теорема 4.1 (элементарный вариант теоремы Намиoки).
Пусть в квадрате задана функция раздельно непрерывная по пере-
менным x и y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Тогда найдется точка квадра-
та, в которой функция f непрерывна по обеим переменным.

Доказательство. Берем внутреннюю точку квадрата (x0, y0),
проводим прямые, параллельные осям x, y и введем новую систему
координат, приняв (x0, y0) за начало, а упомянутые прямые за соот-
ветствующие оси. Это равносильно замене:

x′ = x− x0, y′ = y − y0.

Достаточно доказать теорему, предполагая f функцией от(x′, y′) (в
дальнейшем эти переменные вновь обозначаются через x и y). Не те-

Рис. 2. Представление исходных данных

ряя общность, примем, что f(0,y) ≡ 0. Произвольно берем интервал
(c, d). Фиксируем положительное число δ > 0 и для каждой точки
y ∈ (c, d) построим отрезок длины ∆y с началом в точке (0, y), па-
раллельный оси X, такой, что для всех 0 ≤ x ≤ ∆ , |f(x, y)| < ε, а
|f(∆y, y)| = ε. Число ε фиксируем заранее.

Если для всех x f(x, y) < ε полагаем ∆y равным наибольшему
значению x. Предположим, что для произвольно взятого (c, d) в лю-
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бом замкнутом интервале [a, b] ⊂ (c, d) существует значение y для
которого ∆y сколько угодно мало. Далее поступим следующим обра-
зом. На первом шаге произвольно выберем y1 ∈ (c, d) и соответствую-
щее ∆y1, которое помещается в квадрате, ∃δ1 > 0 со свойством: если
y ∈ [y1 − δ1, y1 + δ1], то f(∆y1, y) ≥ ε/2.

Делаем второй шаг. Выбираем в открытом интервале (y1−δ1, y1+
δ1) точку y2, для которой ∆y2 ≤ 1

2∆y1. Это возможно согласно
предположению. Существует положительное число δ2, со свойства-
ми: [y2 − δ2; y2 + δ2] ⊂ (y1 − δ1, y1 + δ1), |f(y2,∆y2)| ≥ ε

2 для всех
y ∈ [y2−δ2, y2+δ2]. Продолжая рассуждать подобным образом, полу-
чаем последовательность замкнутых интервалов Di ≡ [yi− δi, yi+ δi],
i = 1, 2, 3, . . . , для которых выполнены условияDi ⊆ Di−1, δi ≤ 1

2δi−1,
|f(∆yi, y)| ≥ ε

2 , если y ∈ Di.
Согласно известной теореме из анализа последовательность вло-

женных друг в друга интервалов Di имеет общую точку y∗. Последо-
вательность f(∆y1, y∗), f(∆y2, y∗), . . . , f(∆yn, y∗), . . . стремится к ну-
лю, поскольку ∆yn → 0 при n → ∞. С другой стороны y∗ ∈ Ḋk

для любого натурального k и потому по построению Dk выполняется
неравенство |f(∆yk, y∗)| ≥ ε

2 . Противоречие опровергает предположе-
ние.

Поэтому во взятом интервале [c, d] = D0 существуют интервал
[c1, d1] ⊆ (c, d) и число δ ≥ 0, такие, что ∆y ≥ δ > 0,∀y ∈ (c1, d1).

Повторяя рассуждения с отрезками ∆y, построенными слева от
оси Y в точках [c1, d1], найдем прямоугольник Ω1 = {−δ1 ≤ x ≤
δ1, a1 ≤ y ≤ b1}, δ1, a1, b1 > 0, в котором колебание функции f(x, y)
оценивается так:

ωf(Ω1) = sup
P,Q∈Ω1

|f(P )− f(Q)| ≤

≤ sup
P,Q∈Ω1

(|f(P )− f(P1)|+ |f(P1)− f(Q1)|+ |f(Q1)− f(Q)|) ≤

≤ ε+ ε+ ε = 3ε.

Аналогично находим прямоугольник Ω2 = −δ2 ≤ x ≤ δ2, a2 ≤ x ≤
b2 ⊂ Ω̇1, в котором колебание функции f(x, y) ≤ 3ε1, ε1 =

ε
2 . Продол-

жая подобные построения, находим последовательность прямоуголь-
ников Ω1,Ω2, . . . ,Ωn, . . . , таких, что Ωn+1 ⊆ Ω̇n и ωf(Ωn) ≤ 3ε/2n.
имеют общую точку

Вложенные друг в друга замкнутые прямоугольники Ωn имеют
общую точку (0, y∗), в которой функция f(x, y) непрерывна по обеим
переменным. �
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Рис. 3. Представление промежуточных данных

Из доказательства следует, что если функция f(x, y) непрерывна
отдельно по x, отдельно по y в квадрате [0 ≤ x, y ≤ 1], то она непре-
рывна по обеим переменным на множестве [0; 1] × D или D × [0; 1],
где D — множество всюду плотное на отрезке [0; 1].

Теорема Намиоки утверждает подобное для функции f(x, y),
определенной на произведении компактных множеств X × Y , при
этом дополнительно устанавливается (в нашем доказательстве это
тоже можно сделать), что D есть в X или Y множество типа Gδ

(пересечение счетного числа открытых множеств).
Теорема 4.2 (Бернштейн). Два множества, каждое из кото-

рых эквивалентно некоторому подмножеству другого, эквивалент-
ны.

Доказательство. Следуем Хаусдорфу [56]. Два множества A и
B эквивалентны, если существует взаимно однозначное отображение
одного на другое. Эквивалентность A и B будем обозначать так: A ∼
B. Итак, пусть A ∼ B1, B1 ⊂ B, и B ∼ A1, A1 ⊂ A.

Следующим образом ≪запускаем≫ процесс, исходя из указанных
отношений. При взаимно однозначном отображении φA(A) на B1 под-
множество A1 отобразится на B2 ⊂ B1, а при отображении φB(B) на
A1 подмножество B1 отобразится на A2 ⊂ A1. Таким образом, полу-
чается последовательность:

A ⊃ A1 ⊃ A2 ⊃ . . . ⊃ An ⊃ . . . ,
B ⊃ B1 ⊃ B2 ⊃ . . . ⊃ Bn ⊃ . . . ,
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где A2i+1 = φB(B2i), . . . , B2i+1 = φA(A2i), i = 1, 2, 3, . . .
Следующий рисунок-схема (рис. 1) наглядно представляет распо-

ложение этих множеств:

Рис. 4. Расположение множеств

Легко усматриваем:
A− A1 ∼ B1 −B2;A2 − A3 ∼ B3 −B4; ... (1)
B −B1 ∼ A1 − A2;B2 −B3 ∼ A3 − A4; ... (2)

Определим D =
∞∩
i=1

Ai, C =
∞∩
i=1

Bi. Из (1) и (2) следует A −D ∼

B−C. В то же время простым рассуждением устанавливаем φA(D) =
C,φB(C) = D. Конец доказательства.

Используется ≪идеально≫ что ≪часть равно целому≫ в случае бес-
конечных множеств.

Заключительные замечания.
1. Если объект порождает процесс порождения однотипных объ-

ектов, то объект обладает творческой силой: он проявляет свое ино-
бытие.

2. Последовательные шаги однородного процесса подчиняются за-
кону перехода количества в качество.

3. Мы выходим на новый уровень доказываемых фактов, исполь-
зуя либо ≪сингулярный≫ элемент самого элементарного простран-
ства, либо предельную экстраполяцию к общему члену пространства.



Глава 6
Принцип ε-поправки. Большое-малое в

математике

§ 1. Рассуждения с натуральным рядом

Если развитие математической идеи ≪идет непрерывно≫, то сле-
дующий глубокий математический результат должен на какую-то
≪малость≫ отличаться от уже достигнутых результатов. Какое-то
ближайшее и естественное развитие математической темы в ≪неболь-
ших≫ изменениях форм сформулированных результатов может до-
стигнуть нового по качеству содержания.

Рассмотрим такие ε-изменения формы со сменой содержания на
примере следующего утверждения.

Теорема 1.1. Следующий (натуральный) ряд

S = 1 +
1

2
+

1

3
+ . . .+

1

n
+ . . .

расходится.
Доказательство. Если бы существовал предел:

lim
n→∞

Sn = lim
n∑
i=1

1

i
,

то последовательность частичных сумм Sn была бы фундаменталь-
ной, т.е. для заданного ε > 0 существовал бы номер N, такой что
|Sk − Sm| ≤ ε для любых k,m ≥ N . Однако

1

n
+

1

n+ 1
+ · · ·+ 1

n+ (n− 1)
>

n

2n− 1
>

1

2
,

и условие фундаментальности не выполняется, следовательно, нату-
ральный ряд расходится. �

Но в ≪окрестности≫ обсуждаемого наблюдается следующая ≪не-
ожиданная≫.
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Теорема 1.2. В натуральном ряду
∞∑
n=1

1

n
опустим члены, в за-

писи которых присутствует цифра 9. Полученный ряд сходится.
Доказательство. Сложим члены, у которых в записи знаме-

нателя участвуют n цифр, исключая 9. Каждое слагаемое в такой
сумме допускает оценку:

1

a1a2 . . . an
≤ 1

1 0 . . . 0︸ ︷︷ ︸
n−1

=
1

10n−1
,

но их общее число не превосходит 9n. Поэтому обсуждаемая сумма
δn ≤ 9n/10n−1 = 10(0, 9)n.

Определенный в формулировке теоремы (1.2) ряд имеет ту же
сумму, что и ряд

δ1 + δ2 + . . .+ δn + . . . ,

мажорируемый рядом бесконечной убывающей геометрической про-
грессии со знаменателем 0, 9 < 1. Теорема доказана.

Среди «окружающих» натуральный ряд утверждений, допуска-
щих «малое» изменение основной обсуждаемой формы — натурально-
го ряда, очень впечатляет своим содержанием следующий результат
из функционального анализа [63].

Теорема 1.3. Пусть f : X → [0,∞] — µ-измеримая функция.
Тогда существуют µ-измеримые множества {Ak}∞k=1 в X такие,
что

f =
∞∑
k=1

1

k
χAk

. (1.1)

Доказательство. Сначала поясним понятия, участвующие в
формулировке теоремы. Здесь X — множество, 2X — семейство под-
множеств множества X. Отображение µ : 2X → [0,∞] называется ме-

рой, если (i) µ(∅) = 0, (ii) µ(A) ≤
∞∑
k=1

µ(Ak), где A ⊂
∞∪
k=1

Ak. В кни-

ге [63], откуда взято доказательство, под мерой понимается внешняя
мера из принятого классического изложения [54]. Множество A ⊂ X
называется µ-измеримым, если µ(B) = µ(B

∩
A) +µ(B−A) для лю-

бого множества B ⊂ X. Наконец, функция f, отображающая X в
топологическое пространство X, называется µ-измеримой, если для
любого открытого множества U ⊂ Y множество f−1(U) µ-измеримо.
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После этого предварительного напоминания основных определе-
ний из теории меры приступаем собственно к доказательству. По-
ложим A1 = {x ∈ X | f(x) ≥ 1} и определим по индукции для
k = 2, 3, . . .

Ak = {x ∈ X | f(x) ≥
1

k
+

k−1∑
j=1

1

j
χAj
}.

Здесь χAj
— это характеристическая функция множества Aj:

χAj
(x) =

{
1, x ∈ Aj,

0, x /∈ Aj.

Очевидно, что f ≥
∞∑
k=1

1
kχAk

. Действительно, если элемент x при-

надлежит бесконечному числу множеств Akp, p = 1, 2, . . ., то f(x) ≥
kp−1∑
j=1

1
jχAj

, отсюда при kp →∞ получаем f(x) ≥
∞∑
k=1

1
kχAk

.

Если x принадлежит конечному числу Aj, то пусть j1 максималь-
ное из индексов j с этим свойством. Имеем

∀i > j1 x /∈ Ai → χAi
(x) = 0, поэтому

f(x) ≥ 1

j1
+

j1−1∑
j=1

1

j
χAj

=

j1∑
j=1

1

j
χAj

=
∞∑
j=1

1

j
χAj

.

Если f(x) = ∞, то x ∈ Ak для всех k. С другой стороны, если
0 < f(x) < ∞, то x /∈ An для сколь угодно большого числа n. Это
следует из расходимости гармонического ряда (теорема 1.1).

Поэтому для сколь угодно большого числа n имеем

0 ≤ f(x)−
n−1∑
k=1

1

k
χAk
≤ 1

n
. �

§ 2. Введение малого параметра ε

Очень часто в исследуемой области удается добиться лучшего ре-
зультата, изменяя что-то ≪всего на чуть-чуть≫, ≪на ε≫, или вводя в
рассмотрение новую, но малую величину, которая «перестраивает»
материал, вводит ≪новый ракурс≫ видения перспективы.
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Уместна такая аналогия. За глухим забором скрывается нечто ин-
тересное. Человек, которому хочется узнать, что же представляет со-
бой это нечто, может подтянуться до верхнего края забора макушкой
головы. Всего-то нужно еще сантиметров двадцать, чтобы его глаза
смогли увидеть мир за забором. Вот эти-то двадцать сантиметров и
есть та ε-поправка, которая иногда важна для достижения результата
в математике.

Яркий пример «ε-поправки» представляет теорема Лузина, к из-
ложению которой мы и переходим (по упомянутой книге Эванса и
Гариепи [63]).

Теорема 2.1. Предположим, что K ⊂ Rn компактно и функ-
ция f : K → Rm непрерывна. Существует непрерывное отображе-
ние f̄ всего евклидового n-мерного пространства f̄ : Rn → Rm такое,
что f̄ = f на K.

Доказательство.

1) При m > 1 требуемое утверждение легко следует из случая m =
1. Поэтому рассмотрим f : K → R.

2) Пусть U ≡ Rn −K. При x ∈ U и s ∈ K полагаем

us(x) = max

{
2− |x− s|

dist(x,K)
, 0

}
,

откуда

x 7→ us(x) непрерывна на U, 0 ≤ us(x) ≤ 1,

us(x) = 0, если |x− s| ≥ 2dist(x,K).

Пусть {sj}∞j=1 — счетное плотное подмножество K. Определим

σ(x) ≡
∞∑
j=1

2−jusj(x), x ∈ U.

Заметим, что 0 < σ(x) ≤ 1 при x ∈ U . Положим

vk(x) ≡
2−kusk(x)

σ(x)

при x ∈ U , k = 1, 2, . . . Функции {vk}∞k=1 образуют разбиение
единицы на U . Положим, что

f̄(x) =

f(x), x ∈ K,
∞∑
k=1

vk(x)f(sk), x ∈ U .
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Согласно критерию Вейерштрасса равномерной сходимости ряда
функция f̄ непрерывна на U .

3) Надо показать, что lim f̄(x) = f(a) при x → a для x ∈ U и
всех a ∈ K. Фиксируем ε > 0. Сущестует δ > 0 такое, что
|f(a)− f(sk)| < ε для всех sk таких, что |a− sk| < δ. Пусть
x ∈ U , |x− a| < δ/4. Если |a− sk| ≥ δ, то δ ≤ |a− sk| ≤
|a− x|+ |x− sk| < δ

4+ |x− sk|, откуда |x− sk| ≥ 3
4δ > 2 |x− a| ≥

2dist (x,K). Таким образом, vk(x) = 0, если |x− a| < δ/4 и
|a− sk| ≥ δ. Так как

∞∑
k=1

vk(x) = 1, x ∈ U,

при |x− a| < δ/4 и x ∈ U имеем

∣∣f̄(x)− f(a)∣∣ ≤ ∞∑
k=1

vk(x) |f(sk)− f(a)| < ε. �

Покажем, что измеримая функция на ε-малом множестве отли-
чается от непрерывной функции.

Теорема 2.2 (Лузин). Пусть µ — регулярная мера Бореля на
RN и f : Rn → Rm — µ-измеримая функция. Педположим, что A ⊂
Rn µ-измеримо и µ(A) < ∞. Фиксируем ε > 0. Тогда существует
компактное множество K ⊂ A такое, что

(i) µ(A−K) < ε,
(ii) f |K непрерывна.
Доказательство. Для каждого положительного целого i рас-

смотрим попарно непересекающиеся борелевские множества

{Bij}∞j=1 ⊂ Rm

такие, что Rm =
∞∪
j=1

Bij и diamBij < 1/i. Положим Aij ≡ A∩f−1(Bij).

Тогда Aij µ-измеримы и A =
∞∪
j=1

Aij.

Положим ν = µ⌊A. Заметим, что ν — мера Радона, поэтому су-
ществует компактное множество Kij ⊂ Aij такое, что ν(Aij −Kij) <
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ε/2i+j. Тогда

µ

(
A−

∞∪
j=1

Kij

)
= ν

(
A−

∞∪
j=1

Kij

)
= ν

(
∞∪
j=1

Aij −
∞∪
j=1

Kij

)

≤ ν

(
∞∪
j=1

(Aij −Kij)

)
<

ε

2i
.

Так как lim
N→∞

µ

(
A−

N∪
j=1

Kij

)
= µ

(
A−

∞∪
j=1

Kij

)
, существует

N(i) такое, что

µ

A− N(i)∪
j=1

Kij

 <
ε

2i
.

Положим Di ≡
N(i)∪
j=1

Kij. Заметим, что Di компактны. Для произ-

вольных i и j фиксируем bij ∈ Bij и затем определим gi : Di → Rm,
полагая gi(x) = bij при x ∈ Kij, j ≤ N(i). Так как Ki1, . . . , KiN(i) —
компактные попарно непересекающиеся множества и, следователь-
но, отстоят на положительном расстоянии друг от друга, функции gi
непрерывны. Более того, |f(x)− gi(x)| < 1/i при всех x ∈ Di.

Положим K ≡
∞∩
i=1

Di. Множество K компактно и справедлива
оценка

µ (A−K) ≤
∞∑
i=1

µ (A−Di) < ε.

Так как |f(x) − gi(x)| < 1
i в каждой точке x ∈ Di, заключаем,

что gi → f равномерно на K. Таким образом, f |K непрерывна, что
и требовалось доказать. �

Теорема 2.3 (Меньшов). Пусть µ — регулярная мера Бо-
реля на RN и f : Rn → Rm — µ-измеримая функция. Предполо-
жим, что A ⊂ Rn µ-измеримо и µ(A) < ∞. Фиксируем ε > 0.
Тогда существует непрерывная функция f̄ : Rn → Rm такая, что
µ{x ∈ A | f̄(x) ̸= f(x)} < ε.

Доказательство. По теореме Лузина существует компактное
множество K ⊂ A такое, что µ(A − K) < ε и f |K непрерывна. По
теореме (2.1) существует непрерывная функция f̄ : Rn → Rm такая,
что f̄ |K= f |K и

µ{x ∈ A | f̄(x) ̸= f(x)} ≤ µ(A−K) < ε.
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Теорема доказана.
Теорема Меньшова сама является ≪ε-вариацией≫ теоремы Лузи-

на.

§ 3. О множествах первой категории

Обсуждаемый выше материал касается понятия ≪малость≫ в ма-
тематике. Результаты получались с поправкой на эту малость. Одно
понимание, как мы видели, формируется в рамках теории меры; это
множества меры нуль или меры меньше, чем ε. Другое понимание ма-
лости множества даст общая топология — это ≪множества первой ка-
тегории≫. Обсудим последнее понятие для метрических пространств.

Определение 3.1. Множество M ⊆ X, ρ называется нигде
не плотным, если дополнение к его замыканию всюду плотно, т.е.
X −M = X, здесь ρ(x, y) — метрика на X.

Теорема 3.1. Множество M нигде не плотно тогда и толь-
ко тогда, когда в любом открытом множестве содержится шар
ненулевого радиуса, не содержащий точек из M .

Доказательство. Пусть M нигде не плотно по определению.
Пусть O любое открытое множество, тогда множество O

∩
(X −M)

тоже открыто (т. к. пересечение двух открытых множеств — мон-
жество открытое), не пусто (в O есть элемент из X − M , либо в
O есть предельная точка для X − M , для последней O есть её
окрестность, и потому в ней по-прежнему есть точка из X − M .
∃Br(b) ⊆ O

∩
(X − M), r > 0 ⇒ Br(b) ⊆ O и в Br(b) нет элемен-

тов из M .
Обратно: Пусть в любом открытом множестве есть шар, не содер-

жащий элементов из M . Пусть a ∈ X и Va произвольная окрестность
точки a. ⇒ ∃Br(b) ⊆ Va, r > 0, Br(b)

∩
M = ∅.

Тогда Br(b) ⊆ X −M ⇒ Va
∩
(X −M) ̸= ∅ ⇒ a ∈ X −M ⇒

X −M = X. Теорема доказана.
Определение 3.2. Множество M ⊆ X, ρ называется мно-

жеством первой категории, если M есть счётная сумма нигде не
плотных множеств. В противном случае M есть множество вто-
рой категории.

Теорема 3.2 (Бэра о категориях). Пусть X, ρ — полное мет-
рическое пространство, M — множество первой категории в нём,
тогда множество X −M всюду плотно, т. е. X −M = X.



§ 3. О множествах первой категории 99

Доказательство. Напомним, что метрическое пространство
называется полным, если любая его фундаментальная последователь-
ность имеет предел.

M =M1

∪
M2

∪
M3

∪
. . . , где Mi нигде не плотны, i = 1, 2, . . .

Берем любую точку a ∈ X, любой шар радиуса r0 > 0: надо
доказать, что в Br0(a) есть элементы из X −M .

Поскольку M1 нигде не плотно, то по только что установленной
теореме существует Br1(a1) ⊆ Br0(a), r1 < r0/2, который не содержит
элементов из M1, т. е. Br1(a1)

∩
M1 = ∅.

Поскольку M1 нигде не плотно ⇒ существует шар Br2(a2) ⊆
Br1(a1), 0 < r2 < r1

2 , Br2(a2)
∩
M2 = ∅ и т.д. каждому Mn соот-

ветствует шар Brn(an) такой, что Brn(an) ⊆ Brn−1
(an−1), 0 < rn <

rn−1

2 , Brn(an)
∩
Mn = ∅.

Таким образом, построили систему вложенных шаров Br0(a) ⊇
Br1(a1) ⊇ Br2(a2) ⊇ . . . ⊇ Brn(an) ⊇ . . ., rn < r0

2n , Brn(an)
∩
Mn = ∅.

Мы можем считать, не теряя общности, множества Mn, n =
1, 2, . . . замкнутыми (т. к. Mi нигде не плотно, то и Mi нигде не плот-
но, и множество M̂ =M1

∪
M2

∪
. . . остается множеством 1-й катего-

рии. Если докажем, что X − M̂ = X, то отсюда следует и равенство
X −M = X).

Для каждого Brn выбираем точку an ∈ Brn. Последовательность
a0, a1, . . . , an, . . . фундаментальна, т. к.

{an, an+1, . . .} ∈ Brn ⇒ ρ(ai, aj) ≤ 2rn → 0, n→∞.

Так как метрическое пространство полно, то последовательность
a0, a1, . . . , an, . . . имеет предел

∃ lim
n→∞

an = b.

Так как каждое множество Mn замкнуто, то

b ∈
∞∩
n=0

Brn ⇒ ∀n b /∈Mn ⇒ b ∈ X −
∞∪
n=1

Mn,

Brn(a) ∋ b /∈
∞∪
n=1

Mn, b ∈ X −
∞∪
n=1

Mn.

Итак, точка a является предельной для X −
∞∪
n=1

Mn. �
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Теорема Бэра говорит нам, что определение малости множества
через категорию корректно в том плане, что дополнение обсуждаемо-
го множества до всего пространства велико в определенном смысле,
большое (всюду плотно и не является множеством первой категории).

Понятие малости определяется контекстом, в котором обсужда-
ется проблема. Например, множество меры нуль может не быть мно-
жеством первой категории и наоборот. Это подтверждает

Теорема 3.3. Прямую можно разбить на два дополняющих
друг друга множества A и B так, что A есть множество первой
категории, а B имеет меру нуль.

Доказательство. Пусть {x1, x2, . . .} — счетное плотное в R
множество. Через Iij обозначим интервал (xi−2−i−j, xi+2−i−j). Пусть

множество Aj =
∞∪
i=1

Iij, j = 1, 2, . . . , B =
∞∩
j=1

Aj. Тогда B ⊂
∪
i

Iij и

µ(B) ≤
∑
i

1
2i+j−1 = 1

2j−1 для любого j, что означает µ(B) = 0. По-

скольку Aj содержит все числа xi, то Aj — открытое всюду плотное
множество. Следовательно, R − Aj — множество замкнутое и нигде

не плотное. Имеем искомое разложение R =

(∪
j

(X − Aj)

)∪
B. Тео-

рема доказана

§ 4. Заключительные замечания

1) Необходимые сведения по теории меры можно взять из прило-
жений в книге [61].

2) Принцип ε-поправки требует ≪обостренного чувствования≫, ин-
туиции; ощущения, что что-то значительное ≪стоит рядом≫ с уже
нам известным. ≪Прозрение≫ этого ≪стоящего рядом≫ сопровож-
дается всегда радостным чувством удивления. Например, легко
доказать, что (n + 1)(n + 2) . . . (n + k) делится на k. А ≪рядом
стоит≫ удивительное: (n+ 1)(n+ 2) · · · (n+ k) делится на k!
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Удивление

Как благодатно удивление! Как оно безумно!
Как оно благотворно! Как прекрасен
Удивляющийся человек, хотя несколько и нелеп!
Удивление патетично. Это большое и сложное искусство.
Не каждому оно дано.
Способность удивляться — это дар.
Не каждый достоин его. Оно — героично.
Что может быть на свете лучше, чем быть удивленным?
Сколько пользы можно добыть
Из ее великой бесцельности!
Оно в то же время и могуче:
Оно потрясает, как электрический разряд.
Оно обильно, как тропический ливень.
Прихотливо, как ручей.
Сколько нужно наивности для того,
Чтоб извлечь из удивления
Всю его бесконечную мудрость?
Оно в каком-то смысле и трагично, — оно беззащитно.
Есть недруги удивления.
У них в глазах мертвая роговица.
Они подстерегают удивление,
Чтобы настигнуть и тут же на месте убить его.
Бойтесь их!..
Есть иерархия удивлений!
Кто знает, может, мы живем
Для некоего Великого Удивления?
Я удивляюсь — значит, я жив.
Слава богу, нет, слава богу, я ещё способен удивляться!
Я не раз удивлялся в жизни. Как я удивлялся!
Я помню каждое свое удивление.
Ни одно из них не похоже на другое.
О мои удивления! Вы бескорыстны!
Я копил вас, как скряга.
Я собирал вас, я дрожал над вами.
Я ведь чувствовал, что когда-нибудь,
Раздавив ваши тяжелые и обильные грозди,
Я добуду из них немного поэзии.

Евгений Винокуров, 1962
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3) Есть непрерывность мышления в ее абстрактно-философском
смысле, и есть ≪пограничные слои≫ перехода при этом процессе
мышления количества в качество. Собственно денотат понятия
≪ε-поправка≫ и есть этот ≪пограничный слой≫.



Глава 7
Принцип компактности

Принцип компактности (касается дуальности: конечное — беско-
нечное) — это совокупность утверждений, устанавливающих справед-
ливость определенных отношений для элементов бесконечного мно-
жества, исходя из их справедливости для конечных множеств(для
всех конечных, или только из определенного класса); а также наобо-
рот: позволяющих установить свойство, известное для бесконечного
множества, для определенного конечного. Эти две формы принципа
компактности внутренне взаимосвязаны.

Часто пользуются принципом компактности, не формулируя его
явно как условие компактности. Например, известная теорема, что
полином n-ой степени Pn(x) полностью определяется своими зна-
чениями в точках x1, . . . , xn+1 (попарно различные точки), может
быть переформулирована так: если на конечном множестве точек
x1, . . . , xn+1 для полинома Pn(x) выполняется равенство Рn(xi) = 0,
i = 1, . . . , n+ 1, то для всех x Рn(x) = 0.

Или, вот такое утверждение: если любые три точки из данного
набора лежат на одной прямой, то все точки лежат на одной прямой.

В этой главе основное внимание будет уделено теореме Хелли и
теореме Лебега о размерности. Их противополагание вскрывает каж-
дое из них как обратное к другому во взаимодействии: конечное-
бесконечное. Но вначале рассмотрим следующую теорему.

§ 1. Элементарная теорема компактности

Теорема 1.1 (Р.Р. Шагидуллин). Пусть дано бесконечное
число конечных строк символов aij:

a11, a12, a13, . . . , a1n1
a21, a22, a23, . . . , a2n2
. . . . . . . . . . . . . . .
ak1, ak2, ak3, . . . , aknk

. . . . . . . . . . . . . . .

Символы представляют буквы латинского алфавита, индексирован-
ные натуральными числами; возможно подчеркнутые сверху, на-
пример, A1, B10, C9. Для любого конечного числа строк возможно
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выбрать по одному символу в строке таким образом, что в целом
выборка не будет содержать какую-либо букву вместе с ее ≪отри-
цанием≫ (подчеркиванием), например, D101 и D101. Тогда описанную
выборку можно осуществить сразу для всей системы строк.

Доказательство. Рассмотрим элемент a11. Для него возможны
два случая:

1. После отбрасывания символа a11 условия теоремы сохраняются.
В этом случае переходим к новой таблице — без a11.

2. Пусть этот символ a11 нельзя отбросить без нарушения усло-
вий теоремы. В этом случае есть конечное число строк, содержащих
первую строку, и таких что если а11 убрать, то выборку сделать нель-
зя. Получается, что первоначально все необходимые выборки в этой
конечной системе содержат а11. Тогда в первой строке оставляем толь-
ко один элемент а11 и переходим к другой строке. Рассуждения по-
следовательно проводим для второй строки и т. д. В итоге получаем
по одному элементу из каждойстроки — искомую выборку. В случае
если строк несчетное число, их вполне упорядочиваем и применяем
трансфинитную индукцию. �

Доказательство этой теорема составляет ядро доказательства тео-
ремы Гёделя — Мальцева в теории моделей и теоремы Тихонова в
общей топологии.

Пример обратной формы принципа компактности приведем без
доказательства.

Теорема 1.2 (Гейне — Бореля). Если совокупность откры-
тых множеств покрывает интервал [a, b], то из этой совокупно-
сти можно выделить конечное число открытых множеств, покры-
вающих [a, b].

Напомним, что множество О (подмножество евклидового про-
странства Еn) называется открытым, если вместе с каждой своей точ-
кой а оно содержит и шар Вr(а) не нулевого радиуса r с центром в
этой точке. Система множеств {Mα}α∈I покрывает множество D, если
D⊆

∪
α∈I

Mα.

Приведем теперь пример, когда для установления свойства систе-
мы из бесконечного числа элементов достаточно наличие этого свой-
ства для конечных подсистем с определенным числом элементов.
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§ 2. Теорема Хелли

Теорема 2.1. Пусть {Mα}α∈I — семейство выпуклых замкну-
тых ограниченных множеств евклидового пространства En. Если
каждые n+1 множеств семейства имеют общую точку, то суще-
ствует точка, общая всем множествам семейства.

Прежде чем приступим к доказательству, ≪поиграем≫ с примера-
ми, ≪действуя в контексте проблемы и рефлексируя над действием≫.

Сначала рассмотрим множество интервалов [aα,bβ], α ∈ I на чис-
ловой прямой. Отрефлексируем на ситуацию, что [a1

∩
b1]
∩
[ai, bi]̸= ∅.

Как можно общую точку пересечения представить? Процесс понима-
ния приводит к установлению факта: min{b1, bi} (а также max{a1, ai})
есть общая точка.

Эта интерпретация исходного условия имеет продолжение: в ка-
честве общей точки конечного множества интервалов

{[a1, b1], [a2, b2], ...[an, bn]}

можно взять min{b1, . . . , bn} или max{a1, . . . , an}. А как быть с бес-
конечным семейством {[aα, bα]}? Строим новое семейство, фиксируя
один из интервалов {[a1, b1]

∩
[aα, bα]}α∈I . И здесь min{b1 . . . , bn, . . . }

будет общей искомой точкой.
Обратимся теперь к плоскости Е2. И опять рассмотрим частный

случай: дано четыре выпуклых замкнутых ограниченных множества
A1, A2, A3, A4, любые три Ai, Aj, Ak из которых имеют общую точ-
ку аijk. Расставим на плоскости точки a123, a124, a234, a134. Пусть они
образуют выпуклый четырехугольник (рис. 1).

Рис. 1. Выпуклый четырехугольник

Здесь отрезок akm принадлежит Ak

∩
Am, так что точка Т —

общая для всех A1, A2, A3, A4. Случай выпуклого четырехугольника
оставляем как упражнение.
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Рис. 2. Невыпуклый четырехугольник

Установив теорему для четырех множеств, выводим её справед-
ливость для n множеств A1, A2, . . . , An методом индукции, переходя
к системе из n − 1 множеств: A1, A2, ...An−1

∩
An. При этом пользу-

емся уже доказанным фактом о четырех множествах: три множества
Ak, Al, An−1

∩
An имеют общую точку.

Рассуждения апостериори. Можно ли общую точку в последнем
случае выразить через операторы supremum, infimum?

Можно ли развить проведенные рассуждения на плоскости в слу-
чае бесконечного числа множеств?

Упражнения.
1. Рассмотрите в пространстве пять выпуклых замкнутых мно-

жеств, каждые четыре из которых имеют общую точку. Используйте
точки aijkm, отрезки aijk, плоскости aij и организуйте рассуждение
подобно случаю плоскости. Что это даёт?

2. На плоскости Дано n точек, причем известно, что каждые три
из них можно заключить в круг радиуса 1. Докажите, что все эти
точки могут быть заключены в круг радиуса 1.

3. Пусть J — конечное семейство параллельных отрезков в R2, для
каждых трех из которых существует прямая, имеющая общие точки
с ними. Доказать, что существует прямая пересекающая все отрезки
из J .

Доказательство теоремы Хелли в общем случае проведем ин-
дукцией по числу измерений в пространстве. Пусть она верна для
En−1, и рассмотрим семейство {Mα}α∈I , где каждые n + 1 множеств
пересекаются. Предполагая, что

∩
α∈I

Mα = ∅, выделим подсемейство

{Mβ}β∈J , J⊆ I, и множество Mγ, γ ∈ I со свойствами:

M ≡
∩
β∈J

Mβ ̸= ∅, Mγ

∩
M = ∅. (2.1)
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То, что такое семейство можно выделить и свойства (2.1) имеют ме-
сто, следует из теоремы 7.1, гл 9.

Очевидно, М выпукло. Пусть точка x∈ Mγ, y ∈ M , и расстоя-
ние r(x, y) есть расстояние между Mγ и M . Через середину отрезка
xy проведём гиперплоскость Γ, перпендикулярную к этому отрезку.
Множества Mγ и M лежат по разные стороны Γ и не пересекают её
(докажите). Рассмотрим n множеств Mβ1,Mβ2, . . . ,Mβn, β1, . . . , βn ∈
J . ПересечениеMβ1

∩
Mβ2

∩
· · ·
∩
Mβn

∩
Mγ не пусто по условию, вы-

пукло, имеет точки общие как с Mγ так и c M . Поэтому множества
Dβ = Mβ

∩
Mγ

∩
Γ, β ∈ J , выпуклы, ограничены, замкнуты, не пу-

сты, и любые n из них имеют непустое пересечение. По индукционно-
му предположению

∩
β∈J

Dβ ̸= ∅. Точка из этого пересечения будет об-

щей для Mγ и M . Это опровергает предположение, что Mγ

∩
M = ∅,

а следовательно и предположение
∩
α∈I

Mα = ∅. �

Заметим, что любой математический объект имеет конечное чис-
ло реальных прообразов. Например, если рассмотреть треугольники,
реализованные ≪материально≫, то их конечное число (даже атомов в
нашей Вселенной конечное число). В философском аспекте получа-
ется, что математическую теорему относительно треугольника доста-
точно проверить (если мы имеем в виду практические применения)
для конечного числа треугольников. На самом деле предыдущая фра-
за ≪рассмотрим все треугольники . . . ≫ столько же непонятна (или по-
нятна) сколько непонятна (или понятна) аксиома выбора. Действие
определяет понимание.

Изложим теперь теорему компактности, имеющую обратную к
теореме Хелли форму, а именно, теорему Лебега.

§ 3. Теорема Лебега

1. Размерность метрических пространств.
Теорема Лебега нам нужна как замечательный пример реализа-

ции принципа компактности, имеющей глубокую связь с теоремой
Хелли. Предварительно, нам необходимо изложить основные сведе-
ния из теории размерности метрических пространств. В изложении
следуем книге [17].

Здесь и далее под X будем понимать метрическое пространство
со счетной базой. Необходимые сведения о них изложены в гл. 12, § 1.

Определение 3.1. Пространство X имеет размерность 0 в
точке p, если для каждой окрестности U точки существует
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окрестность V точки такая, что V ⊆ U, δV = ∅ Здесь ∅ — пустое
множество, ∂V = V

∩
X − V — граница V , V — замыкание V .

Границу можно охарактеризовать также как множество точек,
являющихся предельными и для V и для дополнения X − V .

Непустое пространство X имеет размерность 0 (dimX = 0), если
в каждой своей точке имеет размерность 0. Пустому пространству X
приписывается размерность (−1), dim ∅ = −1.

Упражнение 1. Доказать, что непустое счетное пространство
всегда нульмерно.

Упражнение 2. Непустое подмножество нульмерного простран-
ства нульмерно.

Определение 3.2. Пусть A1, A2, B — попарно непересекающи-
еся подмножества пространства X. Множества A1 и A2 отделя-
ются множеством (отделены множеством B) в пространстве X,
если X−B = O1

∪
O2, A1 ⊆ O1, A2 ⊆ O2, O1, O2 — непересекающиеся

открытые в X − B множества. Если A1 и A2 отделены пустым
множеством, говорят просто, что A1 и A2 отделены.

Упражнение 3. Доказать, что A1 и A2 отделены в том и только
в том случае, если существует множество C одновременно открытое
и замкнутое, что A1 ⊆ C,C

∩
A2 = ∅.

Теорема 3.1. Пространство X нульмерно тогда и только то-
гда, когда его любые два замкнутые непересекающиеся множества
могут быть отделены.

Доказательство. Если X нульмерно, то легко показать, (см.
упражнение 3) что любая точка p ∈ X может быть отделена от любо-
го замкнутого множества, не содержащего p. Пусть F1 и F2 — непере-
секающиеся замкнутые множества. В силу вышеприведенного выска-
зывания точка p обладает окрестностью U(p) одновременно откры-
той и замкнутой, которая либо F1, либо F2 не пересекает. Поскольку∪
p∈X

U(p) = X, aX обладает счетной базой, то в сумме можно оставить

только счетное число слагаемых Ui, i = 1, 2, . . . ,
∞∪
i=1

Ui = X. ≪Пе-

ределаем≫ Ui в попарно непересекающиеся множества, по-прежнему
покрывающие X. Положим

V1 = U1, Vi = Ui −
i−1∪
k=1

Uk, i=2, 3, . . .

Свойства Vi:
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Vi
∩
Vj = ∅, если i ̸= j; Vi открыто; Vi

∩
F1 = ∅, либо Vi

∩
F2 = ∅.

Пусть Φ1 — сумма всех Vi, для которых Vi
∩
F1 = ∅, Φ2 — сумма

остальных Vi. Имеем:

Ф1

∪
Ф2=X, Ф1

∩
Ф2 = ∅,

Φ1, Φ2 открыты, F1 ⊆, Φ1, F2 ⊆ Φ2. Таким образом, Φ1 и Φ2 отделяют
F1 и F2. �

Следующая теорема есть ε-поправка (усиление) только что дока-
занной.

Теорема 3.2. Если F1и F2 — непересекающиеся замкнутые
множества пространства X, а — нульмерное множество, то су-
ществует замкнутое множество , отделяющее F1 от F2 и не пе-
ресекающее A.

Доказательство. Так какX нормально, существуют открытые
множества U1 и U2 для которых

F1 ⊆ U1, F2 ⊆ U2, U1

∩
U2 = ∅.

По предыдущей теореме существуют множества Φ1 и Φ2 одновремен-
но открытые и замкнутые в A и такие, что

A = Φ1

∪
Φ2, Φ1

∩
Φ2 = ∅, U 1

∩
A ⊆ Φ1, U2

∩
A ⊆ Φ2.

Легко усмотреть, что множества F1

∪
Φ1 и F2

∪
Φ2 не пересекаются

и никакое из них не содержит предельной точки другого. Так как X
вполне нормально, то существует открытое множество W такое, что

F1

∪
Φ1 ⊆ W,W

∩
(F2

∪
Φ2) = ∅.

Следовательно, граница ∂W = W − W отделяет F1 от F2 и не
пересекает A. �

Теорема 3.3. Пространство, являющееся суммой счетного
числа нульмерных замкнутых множеств нульмерно.

Доказательство. Предположим, что X =
∞∪
i=1

Ci, где каждое Ci
замкнуто и нульмерно. Пусть F и Ф — два непересекающихся замкну-
тых множества. Начинаем с C1. По доказанной теореме существуют
замкнутые в X множестве F1,1 и F1,2 со свойствами

C1 = F1,1

∪
F1,2, F1,1

∩
F1,2 = ∅, F

∩
C1 ⊆ F1,1, Ф

∩
C1 ⊆ F1,2.

В силу нормальности пространства X существуют открытые множе-
ства O1,1 и O1,2, для которых
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F
∪
F1,1 ⊆ O1,1, Ф

∪
F1,2 ⊆ O1,2, O1,1

∩
O1,2 = ∅, C1 ⊆ O1,1

∪
O1,2.

Аналогичные построения проводим для последующих Ci, i=2, . . . По
индукции получаем последовательности Oi,1, Oi,2, i=1, 2, . . . , со свой-
ствами:

Ci ⊆ Oi,1

∪
Oi,2, Oi−1,1 ⊆ Oi,1, Oi−1,2 ⊆ Oi,2,

Oi,1

∩
Oi,2 = ∅.

Пусть O1 =
∞∪
i=1

O1,i, O2 =
∞∪
i=1

O2,i. Тогда O1 и O2 суть непересекающи-

еся открытые множества, отделяющие F и Ф:

O1

∪
O2 ⊇

∪
i

Ci = X,F ⊆ O1, Ф⊆ O2. �

Рассмотрим следующие четыре свойства пространства X.
1. X вполне несвязно.
2. Любые две различные точки в X могут быть отделены.
3. Любая точка может быть отделены от любого замкнутого мно-

жества, не содержащего рассматриваемую точку.
4. Любые две замкнутые не пересекающиеся множества могут

быть отделены.
Из вышедоказанных результатов следует импликация 4⇒ 3 ⇒

2⇒ 1.
Обратные импликации 1⇒ 2⇒ 3⇒ 4 справедливы, если X ком-

пактно. Однако доказывать их здесь не будем.
Определение размерности n.
Определение 3.3. Пространство X имеет размерность ≤ n

(n ≥ 0) в точке p, если p обладает произвольно малыми окрестно-
стями, границы которых имеют размерность ≤ n−1, т. е. для лю-
бой окрестности U(p) существует окрестность V (p), V (p) ⊆ U(p),
dim ∂V (p) ≤ n− 1.

Определение 3.4. Пространство X имеет размерность ≤ n,
если в каждой своей точке оно имеет размерность ≤ n. Если при
этом сформулированное условие не выполняется для n− 1, то гово-
рят, что пространство Xимеет размерность n.

Теорема 3.4. Подпространство пространства размерности≤ n
имеет размерность ≤ n.

Доказательство. Проводится по индукции. Утверждение оче-
видно для n = −1. Предположим его справедливость для n − 1.
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Пусть X — пространство размерности ≤ n, X ′ — подпространство
X, p ∈ X ′.Пусть U ′ — окрестность точки в X ′, U ′ = U

∩
X ′, U —

открытое множество в X. Существует другое открытое множество V
со свойствами

p ∈ V ⊆ U, dim ∂V ≤ n− 1, ∂V = V − V .

Пусть V ′ ⊆ V
∩
X ′, B — граница V в X, B′ — граница V ′ в X ′. Легко

видеть, что B′ содержится B
∩
X ′. По индуктивному предположению

dimB′ ≤ n− 1. �
Теорема 3.5. Пространство X имеет размерность ≤ n, если

каждая точка из X может быть отделена от любого не содержа-
щего ее замкнутого множества замкнутым множеством размер-
ности ≤ n− 1.

Доказательство легко следует из определений и уже установ-
ленных фактов. Излагать его здесь не будем.

Теорема 3.6. Подпространство X ′ пространства X имеет
размерность ≤ n в том и только в том случае, если каждая точ-
ка из X обладает произвольно малыми окрестностями (фундамен-
тальной системой окрестностей), пересечение границ которых с X ′
имеет размерность ≤ n− 1.

Доказательство. То, что из условий теоремы следует, что
dimX ′ ≤ n, доказывается аналогично доказательству теоремы 3.4.
Допустим, дано, что dimX ′ ≤ n. Пусть ∈ X ′, U — окрестность в X.
Существует окрестность V ′ точки в X ′, для которой

V ′ ⊆ U ′, dimB′ ≤ n− 1, B′ — граница V ′ в X ′.

Существует такое открытое множество W , что

V ′ ⊆ W,W
∩
(X ′\V ′) = ∅.

Заменив, если нужно W на W
∩
U , полагаем W ⊆ U . Множество

W\W = ∂ W не содержит точек из X ′\V ′ и из V ′, следовательно,
пересечение X ′

∩
∂ W содержится в B′ и потому имеет размерность

не большую, чем n− 1. �
Теорема 3.7. Для любых двух подпространств A, B простран-

ства X имеем

dim (A
∪
B) ≤ 1 + dimA+ dimB.
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Доказательство. Проводится двойной индукцией по размерно-
стям A и B. Предложение очевидно для случая dimA = dim B = −1.
Пусть теперь dimA = m, dimB = n, а для пар (k, l) ≺ (m,n) (лек-
сикографический порядок), где k = dimA, l = dimB, утвержде-
ние теоремы считаем справедливым. Предположим, что p ∈ A, U —
окрестность p в X. По предыдущей теореме существует такое откры-
тое множество V , что

p ∈ V ⊆ U, dim (W
∩
A) ≤ m− 1,W = ∂ V .

Размерность W
∩
B не превосходит n, и по индуктивному предполо-

жению

dim [W
∩
(A
∪
B)] ≤ m+ n.

Опять в силу предыдущей теоремы отсюда следует, что

dim (A
∪
B) ≤ m+ n+ 1. �

Теорема 3.8. Пространство, являющееся суммой счетного
числа замкнутых множеств размерности ≤ n, имеет размер-
ность ≤ n.

Доказательство. Ведется индукцией по n. Утверждение тео-
ремы обозначим как высказывание Sn. Через Dn обозначим утвер-
ждение: любое пространство размерности ≤ n является суммой под-
пространства размерности ≤ n − 1 и подпространства ≤ 0. Предпо-
ложим, что Sn−1 доказано, а X — пространство размерности ≤ n.
Существует базис {Ui}, i=1,2, . . . , состоящий из открытых множеств,
границы которых {Bi} имеют размерность ≤ n− 1. По индукционно-

му предположению множество B =
∞∪
i=1

Bi имеет размерность ≤ n−1.

Каждое Bi не пересекается с X−B и по теоремам 3.6, 3.3 размерность
dimX −B ≤ 0. Из равенства X = B

∪
(X-B) следует Dn. Рассмотрим

сумму X =
∞∪
i=1

Ci, dimCi ≤ n,Ci = Ci, i=1,2, . . . ≪Переделаем≫ по-

следовательность множеств Ci в последовательность попарно не пе-
ресекающихся множеств Ki, тоже покрывающих X, полагая

K1 = C1, Ki = Ci\
i−1∪
j=1

Cj, i=2,3, . . . , dimKi ≤ n.

Легко показать, что каждое открытое множество в метрическом про-
странстве X со счетной базой можно представить как счетное объ-
единение замкнутых множеств (достаточно так представить любой
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шар). Так представимые множества обозначаются через Fσ. Все мно-
жества Ki имеют такое представление Fσ. Применяя Dn к каждому
Ki, получаем

Ki =Mi

∪
Ni, dimMi ≤ n− 1, dimNi ≤ 0.

Обозначим M =
∞∪
i=1

Mi, N =
∞∪
i=1

Ni. Каждое Mi является Fσ мно-

жеством, поэтому таковым будет M . Применяя Sn−1 и S0, имеем
dimM ≤ n − 1, dimN ≤ 0, что в силу теоремы 3.7 дает dimX ≤ n,
то есть Sn верно. �

Теорема 3.9. Пространство имеет размерность ≤ n, тогда и
только тогда, когда оно представлено в виде суммы n + 1 подпро-
странств размерности ≤ 0.

Доказательство проводится повторным применением утвер-
ждения Dk. Интересно представить интерпретацию, имеющую реаль-
ный физический смысл утверждения теоремы и провести аналогию с
теоремой Банаха — Тарского (см. гл. 8, § 2, а также [9]).

2. Теорема Лебега.

Определение 3.5. Если X =
∪
i∈I
Oi, где Oi — открытые мно-

жества, то порядком покрытия {Oi} называется наибольшее целое
число n такое, что существуют n+1 элементов покрытия с непу-
стым пересечением. Число n+1 называют кратностью покрытия.

Определение 3.6. Пусть {Dj}, j ∈ J другое покрытие X :
X =

∪
j∈J

Dj. Говорят, что {Dj}, j ∈ J вписано в {Oi}, i ∈ I, если

для каждого Dj найдется такое i, что Dj ⊆ Oi.
Теорема 3.10. Пусть M — подмножество X размерности ≤ 0,

а открытые (в X) множества U1 и U2 покрывают M . Существуют
не пересекающиеся открытые множества V1 и V2, V1 ⊆ U1, V2 ⊆ U2,
покрывающие M : M ⊆ V1

∪
V2.

Доказательство. Не теряя общности, полагаем X = U1

∪
U2.

В этом случае C1 = X − U2, C2 = X − U1 — два не пересекающихся
замкнутых множества. Применяя теорему 3.2, получаем открытые
множества V1 и V2 и замкнутое множество B со свойствами

V1 ⊃ C1, V2 ⊃ C2, V1
∩
V2 = ∅, X −B = V1

∪
V2, B

∩
M = ∅, B = B.

Отсюда можно заключить, что
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V1 ⊆ U1, V2 ⊆ U2, V1
∪
V2 ⊇M . �

Только что доказанную теорему . обобщает
Теорема 3.11. Пусть X — пространство, M — его подпро-

странство размерности ≤ 0, M ⊆
r∪
i=1

Or, Or — открытые мно-

жества. Существуют открытые множества V1, . . . , Vr, покрыва-
ющие M , такие, что Vi ⊆ Ui, i=1,2, . . .Vi

∩
Vj = ∅, если i ̸= j.

Доказательство проводим индукцией по r, используя теоре-
му 3.10. Предположим, что теорема доказана в случае r − 1 и рас-
смотрим r множеств покрытия. Объединив два последних множе-
ства Or−1, Or в одно, получаем покрытие O1, . . . , Or−2, Or−1

∪
Or.

По индуктивному предположению существуют открытые множества
V1, . . . , Vr−1 такие, что
r−1∪
i=1

Vi ⊇M ;Vi ⊆ Oi, i = 1, 2, . . . , r−2; Vr−1 ⊆ Or−1
∪
Or; Vi

∩
Vj = ∅,

если i ̸= j. В силу теоремы 3.10 существуют открытые множества
V ′r−1, Vr такие, что они покрывают M

∩
Vi−1 и

V ′r−1 ⊆ Or−1
∩
Vr−1, Vr ⊆ Or

∩
Vr−1, V

′
r−1
∩
Vr = ∅.

Множества V1, . . . , Vr−2, V ′r−1, Vr образуют требуемое покрытие. �
Теорема 3.12 (Лебег). Пусть X — пространство размерно-

сти ≤ n. Тогда в его любое конечное открытое покрытие можно
вписать открытое покрытие порядка ≤ n.

Доказательство. Пусть {Oi}i∈I — покрытие X. По теореме 3.9
множество X представимо в виде:

X = A1

∪
A2 . . .

∪
An+1,

где каждое Ai имеет размерность ≤ 0. По теореме 3.11 множество Ai

покрывается системой βi открытых множеств, вписанных в исходное:

βi = {V i
1 , . . . , V

i
r(i)}, i = 1, . . . , n+ 1, V i

j

∩
V i
k = ∅, если j ̸= k.

Множество β =
n+1∪
i=1

βi — искомое покрытие. �
В изложении доказательства теоремы Лебега мы не раз обнару-

жим сходства с рассуждениями, связанными с теоремой Хелли. На-
пример, принцип отделимости множеством двух других множеств;
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объединение двух последних множеств покрытия в одно и переход
благодаря этому к индукционному предположению и т. д.

Было бы интересно глубже проанализировать в плане сходства
доказательства обеих теорем. Далее, из открытого покрытия ком-
пактного множества всегда можно выделить конечное покрытие, но
теорема Лебега утверждает, что можно выделить не просто конеч-
ное подпокрытие, но и кратности n + 1 (в пространстве En). Таким
образом прослеживается и количественные совпадения между теоре-
мами Лебега и Хелли.



Глава 8
Комбинаторные принципы

§ 1. Произвол и порядок

Есть математические теоремы, которые служат богатым источ-
ником для филосовских размышлений и порождают целые разделы
математики.

Например, теория Рамсея. Если интерпретировать теоремы этой
теории в абстрактно-философском духе, абстрагируясь от математи-
ческой специфики объектов, в них учавствующих, то придем к за-
ключению, что абсолютного хаоса быть не может. Есть какая-то ана-
логия и связь этого утверждения с утверждением, что не может быть
концентрации энэргии без ее частичного рассеивания (второй закон
термодинамики).

Чтобы понять лучше смысл сказанного, приведем одну простую
теорему из комбинаторики, которая подтверждает тезис, что в ≪чи-
стом≫ виде произвола нет. ≪Полная≫ свобода (хаос, произвол) — это
предельные экстраполяции типа ≪ничто≫, ≪точка≫ . . .

Комбинаторные принципы интересны тем, что создают ≪нечто≫

из ≪ничего≫. В ≪произволе≫ выбора определенных подмножеств об-
наруживают некоторую закономерность. Таким образом, свобода и в
математике не может быть абсолютной.

Теорема 1.1 (принцип Дирихле). Если n предметов разме-
стить по r ячейкам, где r < n, то хотя бы в одну ячейку попадет
больше одного предмета.

Доказательство. На языке отображений принцип Дирихле за-
писывается следующим образом. Пусть N и R — два конечных мно-
жества,

|N | = n > r = |R|,
и f : N → R — отображение из N в R. Тогда найдется такой элемент
a ∈ R, что |f−1(a)| ≥ 2. Мы можем установить даже более сильное
неравенство: существует такое a ∈ R, что

|f−1(a)| ≥
[n
r

]
.
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В самом деле, в противном случае мы имели бы |f−1(a)| < n/r для
всех a ∈ R, и тогда выполнялось бы неравенство

n =
∑
a∈R

|f−1(a)| < r
n

r
= n,

что невозможно. �
Главное в применении принципа Дирихле — так сформировать

ячейки, что попадание в них двух или более элементов, равносильно
выполнению между элементами определенного отношения.

Рассмотрим примеры [2].
Пример 1. Если из множества {1,2,3,. . . ,2n} выбрать любые n+1

чисел, то среди них найдутся два взаимно простых. Это утверждение
следует из того, что среди выбранных должны найтись два числа,
которые отличаются на единицу; n + 1 число попадают в n ≪яче-
ек≫ {1, 2}, {3, 4}, . . . , {2n− 1, 2n}.

Пример 2. Пусть снова A ⊆ {1,2,. . . ,2n} и |A| = n+ 1.Тогда в A
найдутся такие два числа, что одно делит другое. Это утверждение
выделяет два числа свойствами, противоположными тем, что в при-
мере 1. Представим каждое число a ∈ A в виде a = 2km, где m —
нечетное число, 1 ≤ m ≤ 2n − 1. Поскольку в A содержится n + 1
чисел, а количество нечетных делителей m не превосходит n, то одно
из a делится на другое.

В следующем примере выбор чисел ограничен только их количе-
ством, но в этой выборке наблюдается некоторая структура.

Пример 3. Любая последовательность a1, a2, . . . , amn+1 из mn+1
различных действительных чисел содержит либо возрастающую под-
последовательность

ai1 < ai2 < . . . < aim+1
(i1 < i2 < . . . < im+1)

длины m+ 1, либо убывающую последовательность

aj1 > aj2 > . . . > ajn+1
(j1 > j2 > . . . > jn+1)

длины n + 1, либо обе такие последовательности. На этот раз при-
менение принципа Дирехле более сложно. Поставим в соответствие
каждому ai число ti равное длине наибольшей возрастающей под-
последовательности, которая начинается с ai. Если ti ≥ m + 1 для
некоторого i, то с ai начинается возрастающая подпоследовательность
длины m + 1. Поэтому предположим, что ti ≤ m для всех i. Для
функции f : ai 7→ ti, отображающей {a1, . . . , amn+1} в {1, . . . ,m}, в
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силу (1) существует такое s ∈ {1, . . . , m}, что f(ai) = s для mn
m + 1 =

n + 1 чисел ai. Пусть aj1, aj2, . . . , ajn+1
(j1 < j2 < . . . < jn+1) — эти чис-

ла. Рассмотрим теперь пары последовательных чисел aji, aji+1
. Если

aji < aji+1
хотя бы при одном i ∈ {1, . . . , n}, то существует возрастаю-

щая подпоследовательность длины s, начинающаяся с aji+1, что про-
тиворечит предположению f(aji) = s. Значит, aj1 > aj2 > . . . > ajn+1

,
т. е. существует убывающая подпоследовательность длины n+ 1.

Принцип Дирихле несмотря на свою простоту позволяет доказы-
вать известные теоремы теории чисел.

Пример 4. Малая теорема Ферма. Если p – простое число, a —
целое число, не делящееся на p, то ap − 1 при делении на p дает
остаток 1, т. е. ap−1 = 1(mod p).

Доказательство. Каждое из p−1 чисел a, 2a, . . . , (p−1)a дает
при делении на p ненулевой остаток (ведь a не делится p):

a = k1p+ r1,
2a = k2p+ r2,
· · · · · · · · · · · · · · · · · ·
(p− 1)a = kp−1p+ rp−1.
По принципу Дирихле, если число различных встречающихся

здесь остатков меньше p − 1, то среди них найдутся по крайней ме-
ре два одинаковых. Но это невозможно, так как при rn = rm число
(n−m)a = (kn− km)p делится на p, что невозможно, ибо |n−m| < p
и a взаимно просто с p. Значит, все остатки r1, . . . , rp−1 между собой
различны и образуют перестановку чисел 1, 2, . . . , p - 1. Перемножая
все предыдущие равенста, получаем

(p− 1)!ap−1 = N · p+ (p− 1)!,

где N — некоторое целое число. Следовательно (p − 1)! · (ap−1 − 1)
делится на p. �

Пример 5. Китайская теорема об остатках. Если числа a1, a2, . . .,
an попарно взаимно просты, то для любых остатков r1, r2, . . . , rn
таких, что 0 < ri < ai при всех i = 1, 2, . . . , n, существует чис-
ло M , дающее при делении на ai остаток ri.

Доказательство. Применим индукцию по n. При n = 1 утвер-
ждение теоремы очевидно. Пусть теорема справедлива при n = k−1,
т. е. существует число M , дающее остаток ri при делении на ai при
i = 1, 2, . . . , k − 1. Положим d = a1a2 · · · ak−1 и рассмотрим числа
M , M + d, M + 2d, . . . , M + (ak − 1)d. Покажем, что хотя бы од-
но из этих чисел дает остаток rk при делении на ak. Допустим, это



§ 1. Произвол и порядок 119

не так. Поскольку количество чисел равно ak, а возможных остат-
ков при делении этих чисел на ak может быть не более чем ak − 1,
то среди них найдутся два числа, имеющих равные остатки (прин-
цип Дирихле). Пусть это числа M + sd и M + td. Тогда и разность
(M+sd)−(M+ td) = (s− t)d делится на ak, что невозможно, так как
0 < |s − t| < ak и d = a1, a2, · · · , ak−1 взаимно просто с ak, ибо чис-
ла a1, a2, . . . , ak попарно взаимно просты (по условию). Полученное
противоречие опровергает сделанное предположение. Таким образом,
среди рассматриваемых чисел найдется числоN , которое при делении
на ak дает остаток rk. В то же время при делении на a1, a2, . . . , ak−1
число N дает остатки r1, r2, . . . , rk−1 соответственно. �

Организующая ≪сила≫ этой теоремы проявляется в рассуждениях
Гёделя о нумерической представимости арифметических высказыва-
ний (см. гл. 9, § 2). ≪Хаос отрицает≫ и знаменитая

Теорема 1.2 (Рамсей). Для каждого разбиения множества
всех k-элементных подмножеств бесконечного множества S на ко-
нечное количество классов найдется некоторое бесконечное подмно-
жество этого S, все k-эелемнтные подмножества которого ле-
жат в одном классе.

Доказательство. Достаточно рассотреть случай, когда S есть
последовательность a1, a2, . . . , an, . . . Пусть теорема доказана для слу-
чая k = m при любом разбиении m-элементных подмножеств S на
любое конечное число классов.

Предположим, что (m + 1)-элементные подмножества S разби-
ты на N классов: D1, D2, . . . , DN . Образуем итерационный процесс
построения последовательностей из элементов S.

Первый шаг. Выделяем a1 и у оставшейся последовательно-
сти a2, a3, . . . разобьем m элементные подмножества следующим об-
разом. Подмножество {ai1, ai2, . . . , aim} отнесем к классу ϵp, если
{ai1, ai2, . . . , aim} ∈ Dp. По индукционному предположению существу-
ет подпоследовательноть последовательности a2, a3, . . ., обозначим ее
так

a11, a12, . . . , a1k, . . . , (1.1)
что все ее m-элементные подмножества содержатся вместе с элемен-
том a1 в классе Dp1, p1 ≤ N .

Второй шаг. Повторяем проведенные выше рассуждения с после-
довательностью (1.1), выделив a11. Получаем подпоследовательность

a21, a22, . . . , a2k, . . .
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такую, что все ее m элементные подмножества вместе с a11, лежат в
одном классе Dp2, p2 ≤ N . Повторяя рассуждения для любого цело-
го q получаем последовательность

aq1, aq2, . . . , aqk, . . .

такую что все m-элементные подмножества ее вместе с элементом
aq−1,1 лежат в одном классе Dpq . При этом множество {aqi}∞i=1 есть
подмножество {ari}∞i=1 при r < q. Поскольку числа p1, p2, . . . , pq, . . .
все не превосходят N , то среди них одно число повторяется бесконеч-
ное число раз. Пусть

pm1
= pm2

= . . . = pms
=M ≤ N,S = 1, 2, . . .

Тогда все (m+ 1)-элементные подмножества последовательности
am1

= am2
= . . . = ams

, . . .

лежат в классе Dm. �
Так же, как и с теоремой Гёделя (см. теорему Гудстейна гл. 9, § 4),

можно с теоремой Рамсея связать абстрактно-всеобщее (философское
по духу) высказывание.

Если имеется декартово множество обезличенных элементов с на-
веденной на нем структурой (в слысле Бурбаки), то существует на-
туральное число N , такое, что при M1 ⊆ M и |M1| ≥ N на M1,
закономерно с необходимостью устанавливается некая подструктура,
индуцированная исходной структурой.

Отметим связь этого высказывания с философскими аспектами
синергетики.

§ 2. Истина и реальность

Прекрасно иллюстрирует взаимодействие противоположностей,
таких как ≪очевидное — не очевидное≫, ≪истина — не истина≫ теоре-
ма Банаха — Тарского: шар B допускает разбиение на конечное число
множеств B1, B2, . . . , Bk таких, что передвижением Dj как твер-
дых тел (переносами и повторами) из них можно составить шар
вдвое большего радиуса, чем исходный, или несколько шаров такого
же радиуса. Точная формулировка и полное доказательство приво-
дятся в [48].

Эта теорема дает яркий пример математического доказательства
существования явления, которое нельзя обнаружить эксперименталь-
но. Можно сказать и так: математически истинное разбиение не ре-
ализуется на практике — нельзя из одного арбуза получить реально
два таких же арбуза, из золотого шара — два таких же шара.



§ 2. Истина и реальность 121

Анализ доказательства показывает, что основным математиче-
ским объектом, который приводит к ≪парадоксу≫, является аксиома
выбора. Аксиому выбора очень трудно воспринять как неочевидную.

Поясним суть сказанного на упрощенном рассуждении, приведен-
ном в [9].

Пусть фигурные скобки обозначают остаточную часть числа. Це-
лая часть числа x, обозначается как [x], и есть наибольшее целое
число, не превосходящее x. Остаток (или остаточная часть x) есть
x− [x] ≡ {x}. Точки x и y назовем π-соизмеримыми, если

{x− y} = {mπ}

при некотором целом, положительном или отрицательном m.
≪Вживаясь≫ в задачу, установим первичные свойства ≪наблюда-

емых≫.
1.{a} = a− [a] ≥ 0.

2. Если |a| ≤ 1, то {a} =

{
a, a ≥ 0,

1 + a, a < 0.

Если b нецелое, то [−b] = −[b]− 1, {−b} = 1− {b}.

3. Если n — целое число, то [a± n] = [a]± n, {a+ n} = {a}.

4. [a+ b] =

{
[a] + [b] + 1, {a}+ {b} ≥ 1,

[a] + [b], {a}+ {b} < 1,

{a+ b} =

{
{a}+ {b} − 1, {a}+ {b} ≥ 1,

{a}+ {b}, {a}+ {b} < 1.

5. {a} − {b} =

{
{a− b}, {a} − {b} ≥ 0,

−{a− b}, {a} − {b} < 0.

6. {{a+ b} − a} = {b}.

7. {c+ a} − {c+ b} = {a} − {b}.
Установив 1–5, мы доказываем, что x, y есть отношение эквива-

лентности то есть:
1. x ∼ x;
2. x ∼ y ⇒ y ∼ x, ибо

{x− y} = {kπ} ⇒ {y − x} = 1− {x− y} = 1− {kπ} = {−kπ};
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3. x ∼ y, y ∼ z ⇒ x ∼ z, ибо

{(x−y)+(y−z)}=
{
{x− y}+ {y − z} − 1, {x− y}+ {y − z} ≥ 1,

{x− y}+ {y − z}, {x− y}+ {y − z} < 1,

=
{
{kπ}+ {lπ} − 1 = {(k + l)π}, {x− y}+ {y − z} ≥ 1,

{kπ}+ {lπ} = {(k + l)π}, {x− y}+ {y − z} < 1.

Отрезок [0,1] разобьем на непересекающиеся множества {Zα}α∈I ,
состоящие из π-соизмеримых чисел. В каждом Zα фиксируем по одно-
му элементу zα (аксиома выбора), из которых образуем множество Z,
и рассмотрим множества

Zk = {Z + kπ}, k — любое целое число.

Легко видеть, что Zk переходит в Zp(p > k) при сдвиге одной ча-
сти элементов Zk на расстояние {(p− k)π} вправо и другой части —
на расстояние 1−{(p− k)π} влево. Подобное имеет место и для слу-
чая p < k. Наконец очевидно, что Zk в сумме дают весь отрезок [0, 1].
Из сказанного следует, что любая подпоследовательность Zγk в сум-
ме тоже дает весь отрезок [0, 1] после предварительной перестройки
множеств Zγk как твердых тел. Поэтому, если семейство {Zk} разби-
то изначально на миллион бесконечных совокупностей {Zγk}, то по-
скольку из каждой такой совокупности можно сложить отрезок [0,1],
обсуждаемыми движениями из {Zγk}, k = 1, 2, . . . , 105, можно сло-
жить отрезок [0, 106].

Разумеется, это пока лишь счетная равносоставленность (кубов
неодинаковых размеров), представляющая собой первый шаг в на-
правлении результата Банаха — Тарского, который в начале прошло-
го века осуществил Хаусдорф. Но эта простая схема рассуждений
представляет в зародыше все идеи, необходимые для доказательства
теоремы Банаха — Тарского. Подробное изложение этих идей см. в
книге [18].

О соотношении ≪математических истин≫ и ≪реальных законов≫,
резюмируя можно сказать, что в математике числовая прямая (а в
реальном объективном мире, что представляет прямую?) часто ≪раз-
резается≫ на две части: часть, составленную из рациональных точек,
и часть из иррациональных точек. Но этот ≪разрез≫ не реализуем фи-
зически. Ни одно реальное физическое явление не представляет собой
этот ≪разрез≫, как не представляет точку, прямую, математическую
индукцию и т. д. Но все предельные эти математические абстракции
организуют рассуждения, которые приводят к продуктивным, резуль-
тативным действиям на практике (опять действие!).



Глава 9
Принципы и логика формализации

§ 1. Введение

.
Что нельзя формализовать, так это напряжение в голове, сопро-

вождающее мышление. Но математические теории (результат мыш-
ления) имеют определенную общую структуру. Это выяснилось уси-
лиями Аристотеля, Кантора, Бурбаки и многих других.

Максимальная абстракция от конкретных объектов теории и свя-
зей между ними приводит к представлению теории формальной си-
стемой . Это позволяет подняться над разнообразием математических
фактов исследуемой теории к ее целостности и тем самым выявить но-
вые по качеству понятия и результаты. Примерами является теорема
Гёделя о неполноте и ≪локальная≫ теория вокруг теоремы Гудстейна
(они будут обсуждаться в настоящей главе).

Следуя нашему правилу — использовать, по-возможности, двой-
ственный подход к рассмотрению проблемы, изложим в настоящей
главе два различных способа формализации, представленные, соот-
ветственно, книгами Клини [28] и Бурбаки [12].

Способы находятся в двойственности, подобной двойственности
≪предметное бытие — идеальное бытие≫. Это станет ясным после
краткого изложения формальной арифметики по Клини и теории
множеств по Бурбаки. Последний ≪формализует≫ предметные объ-
екты идеально через ≪квадрат Гильберта≫ �, а связи между объек-
тами через черту —. Тем самым в аксиоматике Бурбаки реализуется
своеобразный принцип компактности (в отличие, скажем, от аксио-
матики Цермело): можно не вводить бесконечный список объектов,
хотя бы потенциально.

На протяжении всей главы полезно проследить, как ≪соединяют-
ся≫ рациональная математика (исследуема нами) и метаматематика
как математика формальных систем.

При необходимости исследователь всегда может извлечь аксиома-
тику для своего предмета исследования из трактата Бурбаки (но это
трудоемкая работа).

Любую формальную систему образуют:

1) Формальные символы.
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2) Правила образования формул (определенных конечных последо-
вательностей символов). Перечень аксиом.

3) Правила вывода. Определение формального доказательства (оп-
ределенных конечных последовательностей формул).

§ 2. Арифметика как формальная система

1. Формальные символы. Определенные знаки, относительно ко-
торых утверждается, что мы можем различать и отождествлять их
вложения.

1) Символы переменных: x, y, z, . . . , x1, . . . , a, b, c, . . . , a1, . . . ;

2) Символы констант: 0;

3) Пропозициональные буквы A ,B,C , . . . ,A 12, . . . ,X , . . . (ис-
пользуем заглавные курсивные буквы латинского алфавита, ин-
дексируемые или нет натуральными числами).
Предикатные буквы с предикатными переменными:

A (a),A (a, b), . . . ,C12(a, b, c), . . .

(переменные в скобках различны). Символ конкретного преди-
ката := (равняется).

4) Логические символы: ⊃,&,∨,¬,∀, ∃;

5) Скобки: (,);

6) Символы арифметических операций: ′ (содержательно обознача-
ет взятие следующего натурального числа: a′ = a+ 1),+, ·

2. Формулы. Определенные конечные последовательности фор-
мальных символов выделяются как формулы. При интерпретации
формулы соответствуют обычным предложениям.

Другие последовательности формальных символов могут быть со-
держательно интерпретированы как числа. Такие выражения назы-
ваются термами.

Пример. Последовательность формальных символов ((a) + (b))
содержательно интерпретируется как число, т. е. — это терм.

Определение терма и формулы дается по индукции. Приведем
определение формулы.
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Определение 2.1.

1) Если t1, t2 — термы, то (t1) = (t2) является формулой; Ес-
ли P (x1, x2, . . . , xn) — предикатная буква с предикатными пе-
ременными, t1, . . . , tn — термы, то P (t1, t2, . . . , tn) — формула.

2) Если A,B — последовательности формальных символов, кото-
рые мы объявили формулами, то следующие последовательно-
сти тоже являются формулами:
(A) ⊃ (B), (A)&(B), (A)∨(B),¬(A), ∀x(A), ∃x(B), где x — любая
переменная.

3) Никаких других формул, кроме получаемых через 1) и 2) нет.

Формулы будем обозначать печатными заглавными латинскими
буквами A,B,C,X . . .

Перечень аксиом и правил вывода (вместе составляющих посту-
латы).

I. Постулаты исчисления высказываний:

1) A ⊃ (B ⊃ A).1)

2) (A ⊃ B) ⊃ ((A ⊃ (B ⊃ C)) ⊃ (A ⊃ C)),
1, 2 — аксиомы импликации.

3) A&B ⊃ A.
A&B ⊃ B.

4) A ⊃ (B ⊃ A&B),
3, 4 — аксиомы конъюнкции.

5) A ⊃ A ∨B.
B ⊃ A ∨B.

6) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ (A ∨ C ⊃ C)),
6, 7 — аксиомы дизъюнкции,

7) (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬A).

8) ¬(¬A) ⊃ A,
7, 8 — аксиомы отрицания.

1)Первую аксиому правильнее было бы записать так: ((A) ⊃ ((B) ⊃ (C))). Для простоты
записи примем соглашение: часть скобок опускать, если их можно однозначно восстановить. В
ряду символов⊃,&,∨,¬,∀,∃ каждый предшествующий символ обладает более высоким рангом,
чем последующий, и при восстановлении скобок, в первую очередь восстанавливаются скобки
для символа самого высокого ранга, приписывая ему самую большую зону действия.



126 Глава 9. Принципы и логика формализации

9) Правило вывода:
A,A ⊃ B

B
черточку можно интерпретировать

как слово ≪дает≫ (A и A ⊃ B дают B).

II. Постулаты исчисления предикатов (t — терм, x — переменная),
t свободен для x в Ax, то есть переменные входящие в t не попадают
под действие соответствующих кванторов, когда t заменяет x :

1) A(t) ⊃ ∃xA(x);

2) ∀xA(x) ⊃ A(t);

3) Правило вывода: если C не содержит x свободно 1), то

C ⊃ A(x)

C ⊃ ∀xA(x)
;

4) Правило вывода:
A(x) ⊃ C

∀xA(x) ⊃ C
, где C не содержит x свободно.

III. Постулаты формальной арифметики — аксиомы Пеано:

1) A(0)&∀x(A(x) ⊃ A(x′)) ⊃ ∀xA(x) (принцип математической ин-
дукции);

2) a′ = b′ ⊃ a = b;

3) ¬(a′ = 0);

4) a = b ⊃ ((a = c) ⊃ (b = c);

5) a = b ⊃ (a′ = b′);

6) a+ 0 = a;

7) a+ b′ = (a+ b)′;

8) a · 0 = 0;

9) a · b′ = a · b+ a.

3. Конечные последовательности формул. Выделим классы конеч-
ных последовательностей формул — формальные выводы и формаль-
ные доказательства.

1)Формула содержит x связно, если замена переменной на другую не влияет на смысл выра-
жения, например как в записи интеграла:

∫
f(x)dx ≡

∫
f(y)dy. Упрощая можно считать, что в

данном случае C не содержит x вообще.
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Пусть дано множество формул Г. Последовательность формул
A1, A2, . . . , An называется формальным выводом из Г и обозначается
следующим образом:

Γ ⊢ A1, A2, . . . , An, или короче: Γ ⊢ An, если каждая формула по-
следовательности является аксиомой, либо принадлежит Γ, либо сле-
дует из предыдущих формул последовательности по одному из трёх
правил вывода. Если множество Γ пусто, то последовательность на-
зывается формальным доказательством, а последняя формула An —
формальной теоремой и обозначается ⊢ An.

Пример (формального вывода).
Докажем формальную теорему: ⊢ a = a

1) (a = b) ⊃ ((a = c) ⊃ (b = c)) — аксиома III.4;

2) (0 = 0) ⊃ ((0 = 0) ⊃ (0 = 0)) — аксиома I.1;

3) ((a = b) ⊃ ((a = c) ⊃ (b = c))) ⊃ (((0 = 0) ⊃ ((0 = 0) ⊃ (0 =
0))) ⊃ ((a = b) ⊃ ((a = c) ⊃ (b = c)))) — аксиома I.1;

4) ((0 = 0) ⊃ ((0 = 0) ⊃ (0 = 0))) ⊃ ((a = b) ⊃ ((a = c) ⊃ (b = c)))

— правило вывода I.9:
1., 3.

4.
;

5) Используем три раза правило вывода II.3 для 4., каждый раз
подставляя вместо ∀x→ ∀a,∀b, ∀c. Тогда в итоге получим:
((0 = 0) ⊃ ((0 = 0) ⊃ (0 = 0))) ⊃ ∀a∀b∀c ((a = b) ⊃ ((a = c) ⊃
(b = c)))

6) ∀a∀b∀c ((a = b) ⊃ ((a = c) ⊃ (b = c))) — правило вывода I.9:
2., 5.

6.
;

7) Используем три раза аксиому II.2 и правило вывода I.9. В первый
раз в качестве t берем a+ 0 для формулы 6.
∀a∀b∀c ((a = b) ⊃ ((a = c) ⊃ (b = c))) ⊃ ∀b∀c (((a+0) = b) ⊃
(((a+ 0) = c ⊃ (b = c)));

8) ∀b∀c (((a+0) = b) ⊃ (((a+0) = c ⊃ (b = c))) — правило вывода

I.9:
6., 7.

8.
;

9) В качестве t подставляем a на места вхождений b в формуле 8:
∀b∀c (((a+0) = b) ⊃ (((a+0) = c ⊃ (b = c))) ⊃ ∀c (((a+0) =
a) ⊃ (((a+ 0) = c) ⊃ (a = c));
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10) ∀c (((a+ 0) = a) ⊃ (((a+ 0) = c) ⊃ (a = c)) — правило вывода

I.9:
8., 9.

10.
;

11) В качестве t подставляем a на места вхождений c в формуле 10,
используем аксиому II.2:
∀c (((a + 0) = a) ⊃ (((a + 0) = c ⊃ (a = c))) ⊃ (((a + 0) =
a) ⊃ (((a+ 0) = a) ⊃ (a = a)));

12) ((a + 0) = a) ⊃ (((a + 0) = a) ⊃ (a = a)) — правило вывода I.9:
10., 11.

12.
;

13) a+0 = a — аксиома III.6; дважды используя правило вывода I.9,
получаем:

14) a = a.

Мы сформулировали конкретную формальную систему-арифме-
тику. В самом общем плане формальная система — это система под-
чиненная неким жестким, однозначно заданным правилам. Соответ-
ственно, ≪формализацию≫ можно определить как процедуру, цель ко-
торой — дать предельно четкое, однозначное и исчерпывающее опи-
сание объекта, подлежащего формализации. Для достижения этой
цели, прежде всего, используется символическая форма записи тех
правил, которым подчинена данная система. Сформулируем несколь-
ко общих требований к формализациям.

I. Необходимо, чтобы было формализовано как можно больше со-
держательных утверждений.

Проверим, что в формальной арифметике могут быть формали-
зованы отношение порядка и отношение ≪быть остатком от деления
a на b≫. Действительно, a < b⇔ ∃c(a+ c = b&¬(c = 0)), rm(a, b) =
c⇔ ∃d(bd+c = a&c < b), где rm(a, b) — остаток от деления a на b. На-
помним, что a, b, c . . . интерпретируются как целые положительные
числа. Насколько сильна наша формализация показывает следующая

Теорема 2.1. Существует такое арифметическое высказыва-
ние β(c, d, i), представимое формулой нашей формализованной ариф-
метики, что для всякой последовательности {ai}ni=0, ai ∈ N, най-
дутся c, d, такие, что β(c, d, i) = ai при i = 0, 1, . . . , n.

Доказательство. Введем в рассмотрение следующие функции:

S = max{n, a0, a1, . . . , an}; d = S!;

δ(d, i) = (i+ 1)d+ 1, i ∈ {0, 1, . . . , , n}.
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Отметим свойства этих функций:
1) δ(d, i) ≡ di > ai;
2) di — взаимно простые числа.
Если p делит di, dj i ̸= j, j > i, то p | (dj − di) = ((j − i)S!).

Следовательно, p делит d, что невозможно.
Рассмотрим наборы из n+ 1 значений функции rm(c, d), когда c

фиксировано, а d пробегает множество из n+1 попарно простых чисел
d0, ..., d1. Пусть c последовательно принимает значения 0,1,2,3,... Для
примера берём n = 1, d0 = 3, d1 = 4, получим следующие наборы:

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .
rm(c, 3) 0 1 2 0 1 2 0 1 2 0 1 2 0 1 . . .
rm(c, 4) 0 1 2 3 0 1 2 3 0 1 2 3 0 1 . . .

Мы видим, что когда c изменяется от 0 до 11, пара остатков
rm(c, 3), rm(c, 4) пробегает всевозможные 12 упорядоченных пар чи-
сел a0, a1, где a0 < 3, a1 < 4. Чтобы установить это в общем случае,
допустим, что rm(c, d0), rm(c, d1), . . . , rm(c, dn) принимают соответ-
ственно значения a0, a1, . . . , an при c = j и еще при c = j + k(k > 0).
Так как j и j + k дают один и тот же остаток ai при делении на
di(i = 0, ..., n) их разность k должна делиться на di; пусть k = bidi.
Итак k = b0d0 = b1d1 = . . . = bndn, то есть k содержит в качестве
множителя каждое из d0, d1, . . . , dn. Так как по условию d0, d1, . . . , dn
попарно просты, то, по основной теореме арифметики, k должно де-
литься на их произведение d0 · d1 · · · dn.

Поэтому упорядоченный набор чисел rm(c, d0), rm(c, d1), . . . ,
rm(c, dn) может снова совпасть с любой данной последовательностью
чисел a0, a1, . . . , an, не раньше, чем c возрастет на d0 · d1 · · · dn. При
этом получается как раз d0 · d1 · · · dn различных последовательно-
стей чисел a0, a1, . . . , an. Но последовательностей a0, a1, . . . , an таких,
что a0 < d0, a1 < d1 · · · an < dn тоже d0 · d1 · · · dn. Поэтому каж-
дая такая последовательность должна встретиться однажды в на-
шей таблице. В качестве требуемой теоремой формулы можно взять
β(c, d, i) = rm(c, δ(d, i)).

Пример.

ab = c⇔ ∃p∃q(β(p, q, 0) = 1)&∀i(b ≥ i ≥ 1 ⊃ β(p, q, i+ 1) =

= β(p, q, i) · a& β(p, q, b) = c)

II. Формальная система должна быть непротиворечива. Замкну-
тые формулы (это формулы, которые не имеют свободных перемен-
ных) могут быть истинными или ложными (с содержательной точки
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зрения). Естественно потребовать, чтобы формализованная матема-
тическая теория включала в себя только содержательно истинные
формулы в качестве формальных теорем. Если ограничиться только
постулатами группы I, получаем формальную систему, называемую
исчислением высказываний.

Имеет место
Теорема 2.2. Формула исчисления высказываний формально до-

казуема тогда и только тогда, когда отвечающая ей пропозицио-
нальная функция равна тождественно единице.

Доказательство опускаем.
Пропозициональная функция получается естественным образом,

если интерпретировать значения букв как 1 (истина) или 0 (ложь).
При этом значение формулы есть ее истинность как обычного пред-
ложения.

III. Формальная система должна быть богата теоремами.

§ 3. Теорема Гёделя

Определение 3.1. Формальная система называется полной,
если для всякой ее формулы А, не содержащих свободных перемен-
ных либо сама А доказуема, либо ¬A доказуема.

Следующий результат принципиально важен.
Теорема 3.1 (Гёдель). Всякая формальная система, кото-

рая содержит в себе как часть формальную арифметику, являет-
ся неполной. Всегда существуют высказывания, представляемые в
этой формальной системе, которые содержательно истинны, но не
доказуемы.

Рассмотрение общей схемы доказательства теоремы Гёделя нач-
нем с описания понятия гёделевской нумерации.

Гёдель изобрел способ, который позволил однозначным образом
приписать некоторый номер (натуральное число) каждому элемен-
тарному символу, формуле или доказательству данной формальной
системы, при этом соответствующий формальный объект однозначно
восстанавливается по номеру.

1-я группа. Формальные символы.
k-му символу ставится в соответствие k−е простое число:

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

⊃ & ∨ ¬ ∀ ∃ + · ′ = 0 ( ) a b , . . . , x, y, z, . . . ,
)
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2-я группа. Формулы.
Берется произведение последовательных простых чисел в степе-

нях, которые являются номерами символов, составляющих формулу.
Например: пусть A есть формула: (a = b) ∨ (a = 0). Тогда ее номер
есть
n(A) = 237 · 343 · 529 · 747 · 1141 · 135 · 1737 · 1943 · 2329 · 2931 · 3141.

3-я группа. Формальные доказательства. Доказательство, пред-
ставленное последовательностью формул A1, . . . , Ap получает в со-
ответствие число:

2n(A1) · 3n(A2) · 5n(A3) · · · pn(Ap)
p , где n(Ai) — номер, поставленный в

соответствие формуле Ai.
Если даны натуральные числа n и m, можно конструктивно про-

верить истинность A(n,m), утверждающего, что m — это номер до-
казательства формулы с номером n. Продвигаемся далее к доказа-
тельству теоремы Гёделя.

Рассмотрим предикат A (a, b) : a — гёделевский номер форму-
лы, обозначенной далее как Aa(x), b — гёделевский номер доказа-
тельства этой формулы, где вместо x подставлено a, т. е. формулы
Aa(a). Предикат A (a, b) — арифметическое высказывание о числах a
и b.

1. A (a, b) — нумерически выразимое суждение, что означает су-
ществование формулы A(a, b) со свойствами:
A (a, b) =И⇒7→ A(a, b),
A (a, b) =Л⇒7→ ¬A(a, b).
Для доказательства этого факта включим рассматриваемое арифме-
тическое высказывание в более организованный и более общий класс
объектов, как рядовой элемент. Это удастся, если мы на более вы-
соком уровне откроем свойство исследуемого объекта, которое как
родство повяжет элементы будущего класса. Так, формулу A(a, b)
рассмотрим как числовую функцию φ(a, b) ∈ {0, 1} и определим сле-
дующий класс функций.

Определение 3.2. Функция φ(x1, x2, . . . , xn) называется при-
митивно рекурсивной, если она имеет один из следующих видов:

1) x′ ≡ x+ 1,

2) φ(x1, x2, . . . , xn) = const,

3) φ(x1, x2, . . . , xn) = xi, i ∈ {1, . . . , n},

4) φ(x1, x2, . . . , xn) =
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= χ(x1, x2, . . . , xn, g1(x1, x2, . . . , xn), . . . , gn(x1, x2, . . . , xn)),
где χ, g1, . . . , gn уже определены как примитивно рекурсивные.

5) φ(0, x2, . . . , xn) = g(x2, . . . , xn), и для любого y выполняется ра-
венство φ(y, x2, . . . , xn) = χ(φ(y−1, x2, . . . , xn), x2, . . . , xn), g, χ
примитивно рекурсивны.

Пошаговое описание класса дает возможность параметризации
каждого элемента класса, сопоставляя каждой функции число так,
как, например, мы получаем гёделевский номер для формального
доказательства. Для доказательства свойств идивида, можем приме-
нить метод математической индукции по этому параметру. В част-
ности показывается, что описанный выше предикат A (a, b) опре-
деляет примитивно рекурсивную функцию φ(a, b). А для прими-
тивно рекурсивных функций φ(x1, x2, . . . , xn) по шагам их построе-
ния индукцией доказывается нумерическая представимость предика-
та φ(x1, x2, . . . , xn) = y при этом существенно используется функция
Гёделя β(c, d, i).

Замечание 3.1. Сокращая излагаемый материал книг Клини и
Бурбаки мы руководствуемся высказыванием П. Рентелн и А. Дан-
деса (см. с. 17).

2. Рассмотрим формулу ∀b¬A(a, b), пусть эта формула имеет гё-
делевский номер p↔ Ap(a) ≡ ∀b¬A(a, b). Содержательная интерпре-
тация означает, что Ap(p) утверждает о своей недоказуемости.

Дадим несколько определений.
Определение 3.3. Формальная система непротиворечива, ес-

ли в ней не доказуемы одновременно A и ¬A.
Формальная система ω-непротиворечива, если в ней не доказуемы

одновременно 7→ A(0); 7→ A(1); . . . ; 7→ A(n); . . . ; 7→ ¬∀xA(x) ни для
какой формулы A.

Теорема 3.2. Если формальная система, содержащая фор-
мальную арифметику в качестве подсистемы непротиворечива и
ω-непротиворечива, то найдется геделевский номер формулы q та-
кой, что в этой системе одновременно недоказуемы Aq(q) и ¬Aq(q).

Доказательство. Рассмотрим Ap(p), построенную по высказы-
ванию A (a, b) выше. Пусть 7→ Ap(p)⇒ ∃ гёделевский номер доказа-
тельства этой формулы есть q. Следовательно, A (p, q) = true, так как
A(p, q) нумерически выражает наше высказывание ⇒7→ A(p, q)⇒7→
∃bA(p, b) ⇒7→ ¬∀b¬A(p, b) ≡7→ ¬Ap(p). Получается, что доказуемы
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одновременно и Ap(p) и ¬Ap(p), т. е. система оказывается проти-
воречивой. Допущение 7→ Ap(p) неверно. Поскольку ∀b¬A (p, q) ис-
тинно, то по определению нумерической выразимости: 7→ ¬Ap(0), 7→
¬Ap(1), 7→ ¬Ap(n), . . . , ∀n ∈ N . В силу ω-непротиворечивости невер-
но, что 7→ ¬∀b¬A(p, b) ≡7→ ¬Ap(p), т. е. недоказуема и форму-
ла ¬Ap(p). �

Замечание 3.2. Немного усложняя доказательство, можно
условие ω-непротиворечивости из предпосылок теоремы убрать.

§ 4. Ретроспективный взгляд на проведенные рассуждения

Мы можем интерпретировать теорему Гёделя следующим аб-
страктно-всеобщим высказыванием. Пусть у нас есть какое-то прави-
ло или конструкция, систематическое (т.е. оформлена система) при-
менение которого приводит к неоспоримому справедливому утвер-
ждению, тогда столь же неоспоримо, что существует справедливое
утверждение, которое нельзя доказать при помощи этого правила.

Например, возьмем за правило метод математической индукции.
Тогда рассуждения, сходные с проведенными при доказательстве тео-
ремы Гёделя показывают, что существует теорема, которая не доказу-
ема математической индукцией, и которой, например, является уди-
вительная теорема Гудстейна, подробно рассматриваемая далее в § 9.

Теорема Гёделя тесно связана с вопросом алгоритмической разре-
шимости (а так же с тем, что с понятием истины не формализуемо).
Допустим, что для формальной системы отсутствует алгоритм, ко-
торый для любой формулы показывает доказуемость формулы или
доказуемость ее отрицания (система алгоритмически неразрешима).

Если эта система полна: ∀A, 7→ A, либо 7→ ¬A, то расположим
все формальные доказательства в виде последовательности (в си-
лу счетности множества формальных доказательств). Перебирая все
формальные доказательства, найдем то, которое заканчивается либо
на A либо на ¬A. Так получаем алгоритм распознавания: доказуема
формула или нет, в противоречии с предположением. Следовательно,
система не полна.

§ 5. Формализация теории множеств по Бурбаки

В нижеследующем сохраняются обозначения и способы нумера-
ции Н. Бурбаки, с тем чтобы было легко найти необходимый пропу-
щенный материал.
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1. Формальные символы, формативные конструкции. Следующие
формальные символы используются, и предполагается относительно
них только то, что мы умеем различать и отождествлять их вхожде-
ния в наших конструкциях:

1) Логические знаки: �, τ,∨,¬.
2) Прописные заглавные и строчные латинские буквы, со штрихами

или без них: A,A′,A”, . . . , a, b, . . . , x, y, . . .

3) Специальные знаки: =,∈,A,−.

Знакосочетание теории есть последовательность знаков этой тео-
рии, написанных рядом друг с другом, причем некоторые знаки, от-
личные от букв, могут быть соединены линиями, идущими над стро-
кой и называемыми связями. Пример знакосочетания:

τ ∨ ¬ ∈ �A′ ∈ �A′′.

Таким образом, знакосочетание не есть простая последователь-
ность, а есть структурированная связями последовательность (что-то
близкое к графу).

Для часто употребляемых знакосочетаний используются специ-
альные обозначения, которые являются уже не символами формаль-
ной системы, а сокращающими запись содержательно понимаемыми
метасимволами. Например, метасимвол ⇒ есть обозначение знакосо-
четания ∨¬, своего рода имя для этого знакосочетания.

Далее теория строится путем выделения определенных классов
знакосочетаний: термов, соотношений, теорем. Чтобы описать эти
классы, примем соглашения:

1) Произвольно взятые знакосочетания и буквы будем обозначать
прямым шрифтом (или ≪прямыми≫ буквами латинского алфа-
вита).

2) Пусть A - знакосочетание, x — буква. В последовательности зна-
ков τA соединяем связью каждый экземпляр буквы x в A со зна-
ком τ и, убирая x из A, каждое вхождение x заменяем символом
�. Так получаем новое знакосочетание, которое обозначается че-
рез τx(A) и не содержит x. Пример: символ τx(∈ xy) изображает
знакосочетание τ ∈ �y.

3) Знакосочетание (B|x)A получается заменой всех экземпляров
буквы x в знакосочетании A на знакосочетание B.
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4) Символ A[x, y] означает знакосочетание A, в котором выделены
вхождение букв x, y. Символ A[B,C] обозначает знакосочетание,
получамое при одновременной замене буквы x знакосочетанием
B и буквы y знакосочетанием C во всех местах их появления в A.

Специальные знаки подразделяются на субстантивные и реляци-
онные. Каждому специальному числу приписывается целое число, на-
зываемое его весом. Знаки =,∈,A имеют вес 2.

Знакосочетание называется знакосочетанием первого рода, если
оно начинается со знака τ или с субстантивного знака или сводится
к одной букве; в противном случае знакосочетание называется знако-
сочетанием второго рода.

Формативная конструкция теории T есть последовательность
знакосочетаний, обладающая следующим свойством: для каждого
знакосочетания A из последовательности выполняется одно из ука-
занных ниже условий:

1) A есть буква;

2) В последовательности существует знакосочетание второго рода
B, предшествующее A, такое, что A есть ¬B;

3) Существуют два знакосочетания второго рода B и C, предше-
ствующие A (различные или нет), такие, A есть ∨BC;

4) Существует знакосочетание второго рода B, предшествующее A
и буква x, такие, что A есть τx(B);

5) Существует специальный знак s веса n из τ и n знакосочетаний
первого рода A1, A2, ..., An, предшествующие A, такие, что A есть
sA1A2, . . . , An.

Мы называем термами (соответственно соотношениями) тео-
рии T знакосочетания первого рода (соответственно второго рода),
встречающиеся в формативных конструкциях теории T .

Пример. В теории множеств, в которой ∈ есть реляционный знак
веса 2, следующая последовательность является формативной кон-
струкцией:

A
A′

A′′

∈ AA′
∈ AA′′
¬ ∈ AA′′
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∨¬ ∈ AA′ ∈ AA′′

τ ∨ ¬ ∈ �A′ ∈ �A′′

Чтобы облегчить чтение дальнейшего, мы будем писать отныне в
случае когда A — соотношение ≪Не (A)≫ вместо ¬A. Если A и B — со-
отношения, мы будем писать ≪(A) или (B)≫ вместо ∨AB и (A)⇒ (B)
вместо ⇒ AB. Иногда мы будем опускать скобки. Читатель сможет
без труда определить в каждом случае, о каком знакосочетании идет
речь.

Задание специальных знаков определяет термы и соотношения
теории T . Чтобы завершить построение теории T , делают следую-
щее:

1) Записывают сначала некоторое количество соотношений теории
T ; эти соотношения называются явными аксиомами теории T ;
буквы, встречающиеся в явных аксиомах — константами тео-
рии T .

2) Задают одно или несколько правил, называемых схемами теории
T , которые должны обладать следующими особенностями:

a) применение каждого такого правила R дает соотношение
теории T ;

b) если T — терм теории T , x — буква, R — соотношение тео-
рии T , построенное применением схемы R, то соотношение
(T |x)R так же может быть построено применением схемы R.

Всякое соотношение, образованное применением какой-либо схе-
мы теории T , называется неявной аксиомой теории τ .

Всякий доказательный текст теории T состоит из:

1) вспомогательной формативной конструкции из соотношений и
термов теории T .

2) доказательства теории T , т. е. последовательности соотношений
теории T , встречающихся во вспомогательной формативной кон-
струкции, таких, что для каждого соотношения R этой последо-
вательности выполняется по крайней мере одно из следующих
условий:

a) R есть явная аксиома теории T ; или
R получается применением схемы теории T к термам или
соотношениям, встречающимся во вспомогательной форма-
тивной конструкции;
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b) в упомянутой последовательности существует два отноше-
ния S, T, предшествующие R, такие, что T есть S ⇒ R.

Теорема теории T есть соотношение, встречающееся в каком-
нибудь доказательстве теории T .

Вместо ≪теорема теории τ≫ говорят так же ≪соотношение, ис-
тинное (верное, справедливое) в T ≫ или (≪предложение≫ , ≪лемма≫ ,
≪следствие≫ и т. д.) Пусть R — соотношение теории T , x — буква,
T — терм теории T , если (T |x)R есть теорема теории T , говорят, что
T удовлетворяет в T , соотношению R (или что T есть некоторое ре-
шение соотношения R), когда R рассматривается как соотношение
по (относительно) x.

Соотношение называется ложным в T , если его отрицание есть
теорема теории T . Говорят, что теория T противоречива, когда мож-
но написать соотношение, одновременно истинное и ложное в T .

2. Схемы аксиом, классы теорем. Нижеследующие схемы S1-S4
есть неявные аксиомы (мы будем рассматривать в качестве T только
теорию множеств):

S1. Если A — соотношение теории T , то соотношение (A или A)⇒
A есть аксиома теории T .

S2. Если A и B — соотношения теории T , то соотношение A⇒ (A
или B) есть аксиома теории T .

S3. Если A и B — соотношения теории T , то соотношение (A или
B)⇒ (B или A) есть аксиома теории T .

S4. Если A, B или C — соотношения теории T , то соотношение

(A⇒ B)⇒ ((C или A)⇒ (C или B))

есть аксиома теории T .

Если R — знакосочетание и x — буква, то знакосочетание
(τx(R)|x)R обозначается через ≪существует такое x, что R или че-
рез (∃x)R. Знакосочетание ≪не (∃x)(неR) обозначается через ≪для
всякого xR≫, или через ≪каково бы ни было x,R≫ или через (∀x)R.
Сокращающие символы ∃ и ∀ называются соответственно квантором
существования и квантором всеобщности. Буква x не встречается
в знакосочетании, обозначаемом символами (∃x)R и (∀x)R.

В дальнейшем буквой C и следующим за ним натуральным чис-
лом будем обозначать дедуктивные критерии, которые устанавлива-
ют общий вид для того или иного класса теорем.
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C2. Пусть A — теорема теории T , T — терм теории T , x — буква.
Тогда (T |x)A есть теорема теории (T |x)T .

C26. Пусть τ — логическая теория, R — соотношение, x — буква.
Соотношения (∀x)R и (τx(¬R)|x)R эквивалентны в T .
В самом деле, (∀x)R тождество с ≪не (τx(не R)|x)(не R)≫ , а
следовательно, и с ≪не не (τx(не R)|x)R≫.

C27. Если R — теорема логической теории T и буква x не является
константой этой теории, то (∀x)R есть теорема в T .
В самом деле, (τx(не R)|x)R есть теорема в T , согласно С2.

C28. Пусть T — логическая теория, R — ее соотношение и x — бук-
ва. Соотношения ≪не (∀x)R≫ и (∃x)(неR) эквивалентны в T .
В самом деле, ≪не (∀x)R≫ тождественно с ≪не не (∃x)(неR)≫.
Напомним, что буквой S обозначаются схемы аксиом.

S5. Если R — соотношение теории T , T — ее терм и x — буква,
то соотношение (T |x)R⇒ (∃x)R есть аксиома.

C29. Пусть R — соотношение теории T , а x — буква. Соотношения
≪не (∃x)R≫ и (∀x)(неR) эквивалентны в T .

C30. Пусть R — соотношение теории T , T — ее терм и x — буква.
Соотношение (∀x)R⇒ (T |x)R есть теорема в T .

Если T и U — термы теории τ , то знакосочетание = TU есть
соотношение теории T (называемое соотношением равенства). Это
соотношение обозначается через T = U или (T ) = (U).

S6. Пусть x — буква, T и U — термы теории T и R[x] — соотно-
шение T . Тогда соотношение (T = U) ⇒ (R[T ] ⇔ R[U ]) есть
аксиома.

S7. Если R и S — соотношение теории T , а x — буква, то соот-
ношение ((∀x)(R⇔ S))⇒ (τx(R) = τx(S)) есть аксиома.

Отрицание соотношения = TU обозначается через T ̸= U или
через (T ) ̸= (U) (где знак ̸= читается: ≪не равно≫, ≪отлично от≫).

Теорема 5.1. Соотношение x = x, где x — буква есть теорема
теории множеств.

Доказательство. Обозначим через S соотношение x = x тео-
рии τ . Согласно С27 при всяком соотношении R из τ соотношение
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(∀x)(R ⇔ R) есть теорема в τ ; следовательно, согласно S7, соотно-
шение τx(R) = τx(R), т. е. (τx(R)|x)S есть теорема в T . Принимая
за R соотношение ≪не S≫ и учитывая С26, получим что (∀x)S есть
теорема в T . Согласно С30, S поэтому есть теорема теории T . �

Если соотношение (∀y)(∀z)(((y|x)R и (z|x)R)⇒ (y = z)), где R —
соотношение теории J, x — буква, y, z — буквы, отличные друг от
друга и от x и не встречающиеся в R, есть теорема, то говорят, что
R однозначно по x.

C45. Пусть R — соотношение теории τ , а x — буква, не являюща-
яся константой теории T . Если R — однозначно по x в T , то
R ⇒ (x = τx(R)) есть теорема теории T . Обратно, если для
некоторого терма T теории T , не содержащего x, R⇒ (x = T )
есть теорема в T , то R однозначно по x.

Пусть R — соотношение в T . Соотношение ≪(∃x)R и существует
самое большое одно x, такое, что R≫ обозначается словами ≪суще-
ствует единственное x, такое, что R≫. Если это соотношение является
теоремой в T , то говорят, что R есть соотношение, функциональное
по x в T .

Напомним, что теория множеств представляет собой теорию, в
которой имеются реляционные знаки=,∈ и субстантивный знак A
(все они имеют вес 2); кроме с хем S1-S7 она содержит так же схему
S8, которая вводится далее, и явные аксиомы А1, А2, А3, А4 и А5
(перечисляются далее).

Эти явные аксиомы не содержат букв; иначе говоря, теория мно-
жеств является теорией без констант.

Определение 5.1. Соотношение (z)((z ∈ x) ⇒ (z ∈ y)), в
котором встречаются только буквы x и y, записывается одним из
следующих способов: x ⊂ y, y ⊃ x, ≪x содержится в y≫ , ≪x есть
часть (от) y≫. Соотношение ≪не (x ⊂ y)≫ записывается как x * y
или y + x.

Аксиомой экстенсиональности называется следующая аксиома.
А1. (∀x)(∀y)((x ⊂ y) и (y ⊂ x)⇒ (x = y)).

Интуитивно эта аксиома означает, что два множества, имеющие
одни и те же элементы, равны.

Для того,чтобы доказать x = y, достаточно, стало быть, доказать
z ∈ y в теории, получаемой присоединением гипотезы z ∈ x, и z ∈ x
в теории, получаемой присоединением гипотезы z ∈ y, где z буква,
отличная от x и y и от констант.
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C48. Пусть R — соотношение, x — буква, y — буква, отличная от
x и не встречающаяся в R. Соотношение (∀x)((x ∈ y) ⇔ R)
однозначно по y.

В самом деле, пусть z — буква, отличная от x и не встречающаяся
в R. Присоединим гипотезы (∀x)((x ∈ y)⇔ R) и (∀x)((x ∈ z)⇔ R).
Тогда последовательно получаются теоремы:

(∀x)(((x ∈ y)⇔ R) и ((x ∈ z)⇔ R)),

(∀x)((x ∈ y)⇔ (x ∈ z)), ⊂ z, z ⊂ y.

Согласно А1, y = z. Это доказывает С48.
3. Коллективизирующие соотношения.
Пусть R — соотношение, x— буква. Если y и y′ обозначают буквы,

отличные от x и не встречающиеся в R, то соотношения (∃y)(∀x)((x ∈
y) ⇔ R), (∃y′)(∀x)((x ∈ y′) ⇔ R) тождественны. Так определенное
соотношение (которое не содержит x) обозначается символом CollxR.

Если CollxR. — теорема теории T , то мы говорим, что соот-
ношение R является коллективизирующим по x и τ . В этом слу-
чае можно ввести вспомогательную константу, отличную от констант
теории T и не встречающуюся в R, с помощью вводящей аксиомы
(∀x)((x ∈ a) ⇔ R), или, что то же самое, когда a не является кон-
стантой в T , — с помощью аксиомы (x ∈ a)⇔ R.

С интуитивной точки зрения сказать, что R — коллективизиру-
ющее по x соотношение, значит сказать, что существует такое мно-
жество, что объекты, обладающие свойством R, суть в точности эле-
менты из a.

Примеры.

1) Соотношение x ∈ y очевидным образом является коллективизи-
рующим по x.

2) Соотношение x /∈ x не является коллективизирующим по x.

C49. Пусть R — соотношение, x — буква. Если R является коллек-
тивизирующим по x, то соотношение (∀x)((x ∈ y)⇔ R), где y
есть буква, отличная от x и не встречающаяся в R, является
функциональным по y.

Это сразу же вытекает из С48.
Очень часто в дальнейшем мы будем располагать теоремой ви-

да CollxR. Тогда для изображения терма τy((∀x)((x ∈ y) ⇔ R)), не
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зависящего от выбора буквы y (отличной от x и не встречающейся
в R), будет вводиться функциональный символ; мы будем использо-
вать для этой цели символ Ex(R) соответствующий терм не содер-
жит x. Именно об этом терме будет идти речь, когда мы будем гово-
рить о ≪множестве (всех) таких x, что R≫. По определению соотно-
шение (∀x)((x ∈ Ex(R))⇔ R) тождественно с CollxR; таким образом,
соотношение R эквивалентно в этом случае соотношению x ∈ Ex(s).
C50. Пусть R, S — два соотношения, а x — буква. Если R и S явля-

ются коллективизирующими по x, то соотношение (∀x)(R ⇒
S) эквивалентно с Ex(R) ⊂ Ex(S), а соотношение (∀x)(R ⇔ S)
эквивалентно с Ex(R) = Ex(S).

Аксиома двухэлементного множества.
А2. (∀x)(∀y)Collz(z = x или z = y).

Определение 5.2. Множество Ex(z = x или z = y), един-
ственными элементами которого являются x и y, обозначается
символом {x, y}.

Таким образом, соотношение z ∈ {x, y} эквивалентно ≪z = x или
z = y≫.

Множество {x, x}, обозначаемое просто символом {x}, называ-
ется множеством, единственный элемент которого есть x (или мно-
жеством, состоящим из единственного элемента x, или множеством,
сводящимся к единственному элементу x), соотношение z ∈ {x} эк-
вивалентно z = x, соотношение x ∈ X эквивалентно {x} ⊂ X.

Схемой отбора и объединения называется следующая схема:
S8. Пусть R — соотношение, x и y — различные буквы, X и Y —

буквы, отличные от x и y и не встречающиеся в R.
Соотношение

(∀y)(∃X)(∀x)(R ⇒ (x ∈ X)) ⇒ (∀Y )Collx((∃y)((y ∈ Y ) и R)) есть
аксиома.

С51. Пусть P — соотношение, A — множество и x — буква, не
встречающаяся в A. Соотношение ≪P и x ∈ A≫ является коллек-
тивизирующим по x.

Теорема 5.2. Соотношение (∀x)(x /∈ X) является функцио-
нальным по X.

Доказательство. В самом деле соотношение (∀x)(x /∈ X) вле-
чет (∀Y )(X ⊂ Y ); стало быть, в силу аксиомы экстенсиональности
соотношение (∀x)(x /∈ X) является однозначным по X. С другой сто-
роны, соотношение (∀x)(x /∈ CY Y ) верно, а это доказывает, что соот-
ношение (∃X)(∀x)(x /∈ X) верно. �
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Символ CAB означает дополнение B в A.
Терм τX((∀x)(x /∈ X)), соответствующий этому функционально-

му соотношению, изображается функциональным символом ∅, кото-
рый называется пустым множеством.

Соотношение (∀x)(x /∈ X), эквивалентное X = ∅, читается так:
≪множество пусто≫. Таким образом, терм, обозначаемый символом ∅,
есть

τ¬¬¬ ∈ τ¬¬ ∈ ���
Знак A является в теории множеств субстантивным знаком веса 2.

Если T, U — термы, то, стало быть знакосочетание A TU есть терм;
этот терм обозначается обычно через (T, U). При таких обозначениях
аксиомой пары называется следующая аксиома.

Аксиома пары.
А3. (∀x)(∀x′)(∀y)(∀y′)((x, y) = (x′, y′)⇒ (x = x′ и y = y′)).

Соотношение (∃x)(∃y)(z = (x, y)) обозначается словами ≪z есть
пара≫. Если z — пара, то соотношение (∃y)(z = (x, y)) и (∃x)(z =
(x, y)) являются функциональными по x и y соответственно. Термы
τx((∃y)(z = (x, y))) и τy((∃y)(z = (x, y))) обозначаются соответствен-
но символами pr1z и pr2z и называются соответственно первой и вто-
рой координатами z.

Определение 5.3. Говорят, что g есть график, если каждый
элемент g есть пара, или, иначе говоря, если справедливо соотно-
шение:

(∀z)(z ∈ g)⇒ (z есть пара)).

Пусть R[x, y] — соотношение, x и y — различные буквы. Пусть g —
буква, отличная от x и y и не встречающиеся в R . Если соотношение

(∃g)(g есть график и (∀x)(∀y)(R⇔ ((x, y) ∈ g)))

верно, то мы говорим, что R обладает графиком по буквам x и y.
Тогда график g единственный в силу аксиомы экстенциональности и
называется графиком соотношения R по x и y.

Еще одно важное в построении формализации теории множеств
определение. Соответствием между множеством A и множеством B
называется тройка Γ = (g, A,B), где g — график, такой что pr1g ⊂ A
и pr2g ⊂ B. Мы говорим, что g есть график соответствия Γ, A —
область отправления и B — область прибытия соответствия.

Важно так же следующее
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Определение 5.4. График F есть функциональный график, ес-
ли для каждого x существует не более чем один объект, соответ-
ствующий этому x относительно F . Соответствие f = (F,A,B)
есть функция, если его график F есть функциональны график, а его
область отправления A равна его области определения pr1F .

В некоторых случаях функциональный график называется так-
же семейством; область определения называется тогда множеством
индексов, а область значений — множеством элементов семейства.

Вот как, например, используется определение семейства.
Пусть (Xi)i∈I — семейство множеств. Множество Ex((∃i)(i ∈ I и

x ∈ Xi)) называется объединением этого семейства и обозначается
символом Ui∈IXi.

Сильно сжатое описание формализации теории множеств, данной
Бурбаки, закончим приведением последних аксиом.

Аксиома множества частей
А4. (∀X)CollY (Y ⊂ X).
Говорят, что множество X равномощно множеству Y, если суще-

ствует взаимнооднозначное отображение множества X на Y . Описан-
ное соотношение между X и Y обозначается через Eq(X, Y ). Множе-
ство τz(Eq(X,Z)) называется кардинальным числом множества X,
или мощностью множества, обозначается Card(X).

Натуральным числом называется кардинальное число n, для ко-
торого n ̸= n + 1. Множество E конечно, если Card(E) конечное
(натуральное) число.

Последняя аксиома
А5 (аксиома бесконечности). Существует бесконечное (не явля-

ющееся конечным) множество.
4. Общие замечания.
По сравнению с ≪привычными≫ нам аксиоматизациями (напри-

мер, формальной арифметики) у Бурбаки в формальных предложе-
ниях, полностью расписанных, а не обозначенных с использованием
принятых соглашений, нет:

()) Скобок. Сама последовательность знаков восстанавливает струк-
туру получения формулы-предложения. Структура самого пред-
ложения ≪определяет скобки≫.

()) Предикатных букв с приданными переменными, типа A(x, y), . . .
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()) Кванторов ∀,∃ как исходных формальных символов. Вместо них
символы τ и � своим ≪взаимодействием≫ порождают кванторы
неявно.

()) Соответственно, нет связанных переменных.

()) Есть всего одно правило вывода.

Бурбаки шаг за шагом показывает, что в его формализации тео-
рии множеств знакомые нам по каноническому изложению теории
теоремы и принципы рассуждения представимы формальными тео-
ремами. Интересно, как интерпретируется в его формализации ма-
тематики гёделевкая формула Ap(p), истинная при содержательной
интерпретации, но недоказуемая и неопровержимая при данной фор-
мализации?

Руководящей идеей изложения Бурбаки можно считать стремле-
ние не представлять математические объекты предметно, а представ-
лять их идеально, через их организующую математический материал
роль. Сравните с замечанием Трусделла: ≪мы не знаем, что такое
сила,но знаем, что с ней можно делать≫.

§ 6. Аксиомы теории множеств по Цермело — Френкелю

В литературе эта аксиоматика наиболее употребительна. Мы при-
водим её почти дословно из книги [55]. При этом сохранены её логи-
ческие знаки. Определение формальных объектов близко к соответ-
ствующему определению Клини.

Прежде чем изложить аксиомы системы, мы опишем интуитив-
ную модель этой теории. С этой целью рассмотрим сначала в каче-
стве исходных понятий нулевое (пустое) множество ∧ и операцию P,
порождающую множество всех подмножеств. Из определения P непо-
средственно следует, что

P (∧) есть {∧}, P ({∧}) есть {∧, {∧}},

P{∧, {∧}} есть {∧, {∧}, {{∧}}, {∧, {∧}}} и т. д.,

где {x} есть единичное множество, образованное объектом x, {x, y}
есть множество, единственными элементами которого являются x и y
и т.д. Пусть p(k) обозначает k-е множество, полученное таким обра-
зом, отправляясь от ∧, причем p(0) есть ∧, а p(m) есть множество под-
множеств p(m− 1). Продолжая этот процесс, для каждого конечного
числа n можно получить множество с большим чем n числом членов,
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но никогда нельзя получить бесконечное множество. Поскольку для
построения теории множеств необходимо наличие бесконечных мно-
жеств, мы введем новое предположение, что существует бесконечное
множество I, которое содержит все входящие в p(k), (k — конечное
число) множества:

I = {∧, {∧}, {{∧}}, {∧, {∧}}, . . .}.

Теперь к этому множеству мы можем применить операцию P и полу-
чить классы P (I), P (P (I)) и т. д. Мы будем обозначать k-е множество
в этой последовательности множеств посредством p(ω + k), где p(ω)
есть I, а p(ω+ k) есть P (p(ω+ k− 1)). Мы получаем, таким образом,
бесконечную иерархию бесконечных множеств, упорядоченных по
возрастанию их кардинальных чисел. Далее определяется простран-
ство S как совокупность всех множеств p(g)(g = 0, 1, . . . , ω, ω+1, . . .).
Пространство S дает модель теории множеств Цермело.

Формальная система Цермело Z может быть описана следующим
образом. Имеется только один вид переменных x, y, . . . , представля-
ющих множества, и первичный предикат ∈, указывающий на отноше-
ние члена к классу (≪принадлежит≫). Атомарные предложения име-
ют только следующий вид:x ∈ y, z ∈ ω. Отправляясь от них, по-
средством связок элементарной логики и кванторов строятся другие
предложения; предполагается, что принимаются аксиомы и правила
вывода элементарной логики. Собственно аксиомами системы Z яв-
ляются следующие:

Z1. Аксиома объемности. Всякое множество определяется
своими элементами, т. е. если два множества имеют одни и те
же члены, то все, что выполняется для одного множества, выпол-
няется и для другого: x = y определяется как более краткая запись
выражения (z).(z ∈ x ≡ z ∈ y), и аксиома тогда записывается сле-
дующим образом:

x = y ⊃ (ω).(x ∈ ω ⊃ y ∈ ω).

Z2. Аксиома объединения. Если даны два множества x
и y, то {x, y} также является множеством, т. е.

(Eω).(z).[z ∈ ω ≡ (z = x ∨ z = y)].

Z3. Аксиома выделения. Для любого множества z и предло-
жения F (x) системы Z существует подмножество z, содержащее
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все те и только те множества x, для которых F (x) истинно. Сим-
волически:

(z).(Ey).(x).(x ∈ y ≡ [x ∈ z&F (x)]),

где y не входит в F (x).
Z4. Аксиома множества подмножеств.Для любого мно-

жества существует множество его подмножеств:

(z).(Ey).(x).[x ∈ y ≡ (ω).(ω ∈ x ⊃ ω ∈ z)].

Z5. Аксиома множества-суммы Для каждого множества
существует его множество-сумма:

(z).(Ey).(x).[x ∈ y ≡ (Eω).(x ∈ ω&ω ∈ z)].

Z6. Аксиома выбора (аксиома умножения). Если x есть
множество, элементы которого не пусты и не имеют общих чле-
нов, то его множество-сумма содержит по крайней мере одно под-
множество и, имеющее в точности один общий элемент с каждым
его членом:

(x).[(y).(z).((y ∈ x& z ∈ x) ⊃ [(Eω).ω ∈ y& ∼ (Eω).(ω ∈ y&ω ∈ z)])

⊃ (Eu).y.(y ∈ x ⊃ (Ev).(t).[t = v ≡ (t ∈ u& t ∈ y)])].

Z7. Аксиома Бесконечности. Существует множество, ко-
торое содержит в качестве своего элемента нулевое множество и
которое вместе с любым своим элементом x содержит единичное
множество {x}. В символах:

(Ez).[∧ ∈ z&(x).(x ∈ z ⊃ {x} ∈ z)].

Z8. Аксиома ограничения. Для всякого предложения F (x)
из системы Z, такого, что (Ex)F (x), существует множество y,
такое, что F (y) истинно, но ни для какой его части z F (z) не яв-
ляется истинным. В символах:

(Ex).F (x) ⊃ (Ey).(F (y)& (z) ∼ [z ∈ y&F (z)]).

Z9. Аксиома подстановки. Если одна из взаимнооднознач-
но соответствующих друг другу областей является множеством,
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то и другая также является множеством. Другими словами, если
дано такое предложение F (u, v), что

(x).(y).(z).(ω).([F (x, y) & F (z, ω)] ⊃ [(x = z) ≡ (y = ω)]),

и если существует множество всех множеств u таких, что (Ev)F (u, v)
истинно, то существует множество всех множеств v, таких, что
(Eu)F (u, v) истинно.

§ 7. Частично-упорядоченные множества

Из математических структур, которые можно изложить, следуя
Н. Бурбаки, прежде всего рассмотрим частично-упорядоченные мно-
жества. Результаты, изложенные в этом параграфе (см. подробнее
в [30]), понадобятся нам для доказательства теоремы Гудстейна.

Пусть дано множествоX, частично упорядоченное отношением≤.
Определение 7.1. Частично упорядоченное множество назы-

вается линейно упорядоченным или цепью, если любые два элемента
его x и y сравнимы по порядку: x ≤ y, либо y ≤ x.

Определение 7.2. C ⊆ X называются максимальной цепью,
если для ∀z ∈ X − C множество C ∪ {z} не является цепью.

Определение 7.3. Элемент m частично упорядоченного мно-
жества X называется максимальным (минимальным), если из a ≥
m(a ≤ m) для некоторого a ∈ X следует, что a = m.

Определение 7.4. Элемент m частично упорядоченного мно-
жества X называется верхней гранью для подмножества P ⊆ X,
если для ∀x ∈ P,m ≥ x, соответственно называется нижней гра-
нью, если ∀x ∈ P,m ≤ x.

Теорема 7.1. Следующие свойства частично упорядоченного
множества X эквивалентны:

(1) Условие минимальности: всякое непустое подмножество мно-
жества X является частично упорядоченным множеством,
содержащим минимальные элементы относительно этого под-
множества.

(2) Условие индуктивности: любое свойство E(x) справедливо для
всех элементов X, если оно выполняется для минимальных эле-
ментов X, а также для элементов a, у которых все предше-
ственники этим свойством обладают, т. е. x < a влечет E(x).
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(3) Условие обрыва убывающих цепей: последовательность элемен-
тов из X : a1 ≥ a2 ≥ . . . ≥ ak . . . содержит только конечное
число элементов. Это равносильно тому, что, начиная с неко-
торого n, выполняется an = an+1 = an+2 = . . .

Доказательство. Из (1) следует (2). Пусть E выполняется для
минимальных элементов и для a, если выполняется для всех пред-
шественников a. Предположим, что существует элемент b ∈ X, для
которого E не выполняется. Рассмотрим собрание {b} = B ⊆ X эле-
ментов b, для которых E не выполняется. Это множество не пустое;
там есть минимальный элемент m, минимальный в B, но не в X. Все
предшественники m свойством E обладают, следовательно, и m об-
ладает. Противоречие говорит о том, что предположение B = ∅ не
верно.

Из (2) следует (3). Пусть выполняется условие индуктивности. В
качестве свойства E возьмем такое свойство: a обладает свойством E ,
если любая убывающая цепь, начинающаяся с элемента a, конечна.
Свойство верно для минимальных элементов, и пусть E выполняется
для всех предшественников a. Рассмотрим любую убывающую цепь,
начинающуюся с a > a1 > a2 > . . .Цепь, начинающаяся с a1, конечна,
потому конечна и рассматриваемая цепь. Отсюда следует, что E вер-
но для всех элементов X. Следовательно, выполнено условие обрыва
убывающих цепей.

Из (3) следует (1). Пусть выполнено условие обрыва убывающих
цепей. Докажем, что верно условие минимальности. Пусть B под-
множество X, и предположим, что B не содержит минимальных эле-
ментов. Берем любой элемент b1 из B, найдется b2 ∈ B такой, что
b2 < b1. Повторяя рассуждения, получим бесконечно убывающую це-
почку b1 > b2 > b3 > . . . > bn . . . Получено противоречие, следова-
тельно, B содержит минимальные элементы. �

2. Аксиома выбора.
Следующие утверждения эквивалентны:

(1) Аксиома выбора: если дано множество X, то существует функ-
ция φ, сопоставляющая каждому не пустому подмножеству A
из X непустой элемент φ(A) этого подмножества.

(2) Теорема Цермелло: всякое множество можно вполне упорядо-
чить.

(3) Теорема Хаусдорфа: всякая цепь частично упорядоченного мно-
жества содержится в максимальной цепи.
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(4) Теорема Куратовского — Цорна: если всякая цепь частично упо-
рядоченного множества X обладает верхней гранью, то всякий
элемент множества X предшествует максимальному элементу.

Доказательство. Из (1) следует (2). Пусть дано произвольное
множество X. На основании аксиомы выбора отметим в каждом его
не пустом подмножестве M по одному элементу φ(M). Отмеченным
будем называть непустое множество A ⊆ X, если оно может быть
вполне упорядоченном таким образом, что φ(X − [a]) = a для всяко-
го элементаa ∈ A. Через [a] обозначим множество элементов A, кото-
рые предшествуют a, т. е. x < a эквивалентно x ∈ [a]. Отмеченным
является, например, множество, состоящее из одного элемента φ(X).

Рассмотрим два отмеченных подмножества A и B. Пусть C есть
объединение всех совпадающих отрезков A и B, т. е. подмножеств M
таких, что из x ∈M и y < x следует y ∈M . Первый элемент множе-
ства A − C, если последнее не пусто, в порядке, определенном на A
обозначим через a. Аналогично, b− есть первый элемент в множестве
B−C. Имеем a = φ(X− [a]) = φ(X−C); b = φ(X− [b]) = φ(X−C),
следовательно, имеется общий отрезок C∪{a} множеств A и B, вклю-
чающий C. Используя максимальность C, заключаем, что на самом
деле A−C или B−C пусто. Следовательно, одно из множеств, напри-
мер, A, является отрезком другого. При этом порядок, индуцируемый
множеством B на A совпадает с рассматриваемым на A порядком.

Итак, все отмеченные подмножества линейно упорядочены по
включению, и порядки на них согласованы. На их объединении D
определен, поэтому естественный линейный порядок: x, y ∈ D пола-
гаем x ≤ y, если x ≤ y в отмеченном множестве, которому оба x и
y принадлежат. Объединение D удовлетворяет условию минимально-
сти, поскольку всякая убывающая цепь элементов D лежит во вполне
упорядоченном отмеченном подмножестве, содержащим первый эле-
мент цепи. Следовательно, D вполне упорядочено. Легко видеть, что
оно и допустимо, поскольку отрезок множества D является отрезком
и в одном из отмеченных множеств, из которыхD слагается. Наконец,
заметим, чтоD совпадает сX. Иначе, множествоD = D∪{φ(X−D)}
было бы отмеченным и большим, чем D, если положить φ(X − D)
наибольшим элементом D, т. е. (1)→(2) доказано.

Из (2) следует (3). Пусть в частично упорядоченном множестве X
взята произвольная цепь M . Если множество X −M = B не пусто,
вполне упорядочим B в порядке, который может отличаться от по-
рядка в X. Отнесем первый элемент множества B к первому клас-
су, если он в частичном порядке X сравним с каждым элементом
из M , иначе отнесем его ко второму классу. Пусть b есть произволь-
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ный элемент B, и каждый из элементов B, строго предшествующих b
в порядке множества B отнесен к одному из двух классов. Отно-
сим b к первому классу, если он сравним с каждым предшествую-
щим элементом, уже входящим в первый класс или множество M ;
относим b ко второму классу в противном случае. Согласно условию
индуктивности, B будет дизъюнктивной суммой этих двух классов:
B = B1 ∪ B2, B1 ∩ B2 = ∅. Здесь элементы B1 составляют первый
класс. Остается заметить, что M ∪ B1 и будет максимальной цепью,
содержащей цепь M .

Из (3) следует (4). Пусть дано частично упорядоченное множе-
ство X, в котором всякая цепь обладает верхней гранью. Если a ∈ X,
то в качестве максимального элемента из X большего, чем a, мож-
но взять верхнюю грань максимальной цепи, включающей в себя в
качестве подцепи одноэлементное множество a.

Из (4) следует (1). Пусть дано произвольное множество X. Рас-
смотрим систему непустых подмножеств A такую, что на A можно
определить функцию φ, относящую каждому подмножеству M ∈ A
элемент φ(M) ∈ M . Одно фиксированное подмножество, например,
образует такую систему. Пусть A1 и A2 системы, обладающие отме-
ченным свойством, φ1 иφ2 соответствующие им функции. Полагаем
φ1 ≤ φ2, если A1 подмножество A2, и на элементах A1 функция φ1

совпадает с φ2. Множество Φ введенных таким образом в рассмотре-
ние функцией φ становится частично упорядоченным, удовлетворя-
ющим условиям теоремы Куратовского — Цорна. Вследствие этого
множество Φ обладает максимальным элементов ψ. Максимальность
функции ψ влечет, что она определена на всех подмножествах мно-
жества X. �

Возможность вполне упорядочить рассматриваемое множествоM
позволяет доказывать справедливость утверждения E(x) для любого
элемента x ∈ M методом трансфинитной индукции, т. е. доказыва-
ем E для наименьшего элемента вполне упорядоченного M , а затем
доказываем справедливость E(x) при условии, что E имеет место для
всех y ≤ x, y ∈M .

§ 8. Приложение 1. Порядковые числа (ординалы)

Мы следуем здесь книге [56] (см. также [14]). Будем говорить, что
два частично упорядоченных множества порядково подобны (имеют
одинаковый порядковый тип), если существует взаимно однозначное
отображения одного на другое, сохраняющее порядок. Множество X
и Y подобны, если функция φ(x) определенная всюду на X, отобра-
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жает взаимно однозначно X на Y, и если из x1 ≤ x2 в X следует
φ(x1) ≤ φ(x2) в Y .

Порядковый тип вполне упорядоченного множества называется
порядковым числом или ординалом.

Каждый элемент a вполне упорядоченного множества A опре-
деляет отрезок P , равный множеству всех элементов < a, оста-
ток Q, равный множеству всех элементов ≥ a, и тем самым раз-
биение A = P +Q.

Обратно, каждое разбиение A начальный кусок P и концевой ку-
сок Q есть разбиение, определяемое некоторым элементом a, именно
первым элементом Q. Если a — первый элемент A, то следует поло-
жить P = ∅, Q = A.

Теорема 8.1. Если f — подобное отображение вполне упорядо-
ченного множества A на его подмножество B, то f(a) ≥ a. для
всех a из A.

То есть при таком отображении ни один элемент не может иметь
своим образом элемент, стоящий перед ним.

Доказательство. В самом деле, если бы существовали элемен-
ты a, для которых f(a) < a, то между ними был бы первый; пусть
этот элемент есть a, а его образ есть b = f(a), b < a. Тогда в силу
подобия f(b) < f(a), т. е. f(b) < b; следовательно, a — не первый из
элементов, обладающий указанным свойством. �

Следствие 8.1. Вполне упорядоченное множество не может
быть подобно своему отрезку.

Доказательство. Если бы A было подобно отрезку B, опреде-
ляемому элементом a, то f(a) ∈ B, следовательно, f(a) < a. �

Свойство множества A быть подобным отрезку некоторого мно-
жества B сохраняется при замене множеств им подобным. Это оправ-
дывает такое

Определение 8.1. Если α и β два порядковых числа, A и B —
вполне упорядоченные множества этих типов, то по определению

α < β или β < α

(α меньше β, β меньше α), если A подобно отрезку множества B.
Очевидно, справедлив транзитивный закон:

если α < β, β < γ, то α < γ

(A подобно отрезку отрезка множества C, т. е. отрезку множества C).
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В силу следствия не может быть α < α, т. е. соотношение α < β
и α = β и исключает одно другое; то же самое можно сказать и от-
носительно α > β и α = β. То же самое относится и к соотношениям
α > β, α < β, так как из α < β, β < α по транзитивности следо-

вало бы α < α. Из соотношений α S β может иметь место только
одно; покажем, что одно из них обязательно имеет место, т. е. два
порядковых числа всегда сравнимы.

В последующем будем постоянно пользоваться следующим обо-
значением: каждое порядковое число α определяет множество

W (α) = множеству порядковых чисел < α,
которое называется числовым отрезком. Числа множества W (α)
все сравнимы между собой, и W (α), упорядоченное по величине,
имеет тип α. В самом деле, если

A = {. . . , a, . . . , b, . . .}
вполне упорядоченное множества типа α, то по самому определению
числа < α поставлены во взаимно однозначное и подобное соответ-
ствие отрезкам A, а тем самым элементам A: каждый элемент a опре-
деляет свой отрезок Pa типа πa и если a < b, то Pa есть отрезок
отрезка Pb, πa < πb.

Таким образом,
W (α) = {. . . , πa, . . . , πb, . . .},

что и доказывает наше последнее утверждение. Обратно, сказанное
позволяет перенумеровать элементы вполне упорядоченного множе-
ства типа α при помощи соответствия этих элементов числам множе-
ства

W (α) = {0, 1, . . . , ξ, . . .} (ξ < α)

таким образом, чтобы в
A = {α0, α1, . . . , αξ, . . .} (ξ < α)

индекс каждого элемента был типом соответствующего этому элемен-
ту отрезка. Так, например,

W (1) = {0},W (2) = {0, 1},W (n) = {0, 1, . . . , n− 1}
для конечного n > 0, в то время, какW (0) = ∅ есть пустое множество.

Пусть теперь α, β — два порядковых числа, A = W (α), B = W (β)
и D = A∩B — пересечение этих отрезков, т. е. множество тех поряд-
ковых чисел, которые одновременно< α и< β. Значит,D вполне упо-
рядочено, его тип δ — порядковое число; мы утверждаем, что δ ≤ α.
Если D = A, то δ = α; если же D ⊂ A, то в разложении
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A = D + (A−D)

D есть начальный кусок, A−D — концевой кусок A. Действительно,
если ξ ∈ D, η ∈ A − D, то ξ и η как элементы A сравнимы, следо-
вательно, ξ ≷ η; но не может быть η < ξ < α, β, так как тогда η
принадлежало бы D; следовательно, имеем ξ < η. Но A тогда D есть
отрезок A и β < α; сверх того, очевидно, что δ есть первый элемент
A−D и D = W (δ). Таким образом мы имеем:

δ ≤ α, δ ≤ β.

При этом невозможна комбинация δ < α, δ < β, так как в этом случае
мы бы имели δ ∈ D, и, следовательно, возможны только три случая:

δ = α, δ = β : α = β,

δ = α, δ < β : α < β,

δ < α, δ = β : α > β.

Этим доказана
Теорема 8.2 (сравнения). Два порядковых числа всегда срав-

нимы, т.е. между ними всегда существует одно и только одно из
трех соотношений:

α < β, α = β, α > β.

В частности, если A j B, то α ≤ β. В самом деле, если α >
β, то B подобно отрезку P множества A, определяемому элементом
a ∈ A, и при отображении B на P элемент a отображается в элемент
множества P , который меньше, чем α, что противоречит теореме 8.1.
Заметим, что α может равняться β и в том случае, когда A ⊂ B;
но это может быть только тогда, когда A не есть отрезок B; так,
например, все бесконечные подмножества натуральных чисел имеют
тип ω.

Пользуясь теоремой Теорема Цермелло и теоремой сравнения, мы
можем восполнить пробел, бывший до сих пор в теории кардиналь-
ных чисел (мощностей), доказав, что любые два кардинальных чис-
ла сравнимы. В самом деле, любые мощности a, b мы можем теперь
рассматривать как мощности вполне упорядоченных множеств A,B
соответственно типов α, β, и тогда

или α = β, a = b,
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или α < β, a ≤ b,

или α > β, a ≥ b.

Действительно, α < β означает, что A подобно отрезку множества B,
следовательно, A эквивалентно подмножеству множества B.

Обратно, мы имеем:

или a = b, α S β,

или a < b, α < β,

или a > b, α > β,

причем первая строчка выражает то обстоятельство, что при данной
мощности множество может быть вполне упорядочено различными
способами, например, при a = N0 получаем, что α может быть рав-
но ω, ω + 1, . . .

Теорема 8.3. В каждом (не пустом) множестве порядковых
чисел существует наименьшее число; таким образом каждое мно-
жество порядковых чисел вполне упорядочено по величине своих эле-
ментов.

Доказательство. В самом деле, если W — множество порядко-
вых чисел и α — число этого множество, то, если α не есть наимень-
шее в W , пересечение W ·W (α), будучи подмножеством W (α), вполне
упорядочено, как уже доказано, и наименьшее число этого множества
есть наименьшее и в W . Следовательно, если W имеет тип β, то его
можно записать в виде:

W = {α0, α1, . . . , αη . . .} (η < β)

причем если ξ < η, то αξ < αη. �
Теорема 8.4. Для каждого множества W порядковых чисел

существует порядковые числа, большие всех чисел данного множе-
ства; в частности, существует первое, превышающее все числа
множества.

Доказательство. Выберем мощность α, большую, чем мощ-
ность всех порядковых чисел W ; если α — порядковое число мощно-
сти a, то α больше всех порядковых W, короче: α > W . Наименьшее
из чисел > W есть либо α, либо одно из чисел отрезка W (α). �

На основании этой теоремы можно заключить, что понятие ≪ мно-
жество всех порядковых чисел≫ немыслимо.
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Числа > α имеют вид α + β(β > 0) и, обратно, только числа
такого вида > α (A подобно A + B); наименьшее из чисел > α есть
α+ 1.

Число λ > 0, которое не имеет числа, непосредственно ему пред-
шествующего, т. е. такое число, для которого W (λ) не имеет послед-
него элемента, называется предельным числом; наименьшие предель-
ные числа суть ω, ω + ω = ω2, ω3, . . . Порядковое число, не явля-
ющееся предельным, называется изолированным; все изолированные
числа, кроме нуля, имеют вид α + 1.

Если множество порядковых чисел

W = {α0, α1, . . . , αη . . .} (η < β),

монотонно возрастающих вместе с η, не имеет последнего элемента
(т. е. если β есть предельное число), то первое число λ > W , которое,
очевидно, является предельным, называется пределом W и обозна-
чается λ = limW , или, еще иначе, λ = limαη. Например, ω есть
предел 0, 1, 2, . . . a, также любой возрастающей последовательности
{α0, α1, α2, . . .} конечных чисел αν: ω = lim ν = limαν.

Трансфинитная индукция. Вместо обычного метода заклю-
чения от n к n + 1 в применении к порядковым числам имеет место
следующий принцип.

Некоторое утверждение F (α) относительно порядкового числа α
верно для любого α, если верно F (0) и если из того обстоятельства,
что F (ξ) верно для всех ξ < α, следует, что верно и F (α).

В самом деле, если бы F (β) было не верно, то существовало бы
наименьшее α, 0 ≤ α ≤ β, такое, что F (α) неверно, что приводит к
противоречию, как в случае α = 0, так и в случае α > 0.

Трансфинитная индукция применяется не только в доказатель-
ствах, но и в определениях.

Функция f(α) от порядкового числа α определена для каждого
α, если определено значение f(0) и если при помощи уже данного
определения f(ξ) для ξ < α определено значение f(α).

Если заменить f(0) через f(α0), то необходимо небольшое видо-
изменение, а именно в этом случае f(α) соответственно верно или
определено для α ≥ α0.

§ 9. Приложение 2. Об одном множестве базисного типа

Теорию упорядоченных, в частности, вполне упорядоченных мно-
жеств можно рассматривать как область математики, где проявля-
ет себя развитие принципа математической индукции. Замечатель-
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ное усиление этого принципа представляет также метод приоритета
в теории рекурсивных функций [45].

Настоящее приложение имеет целью продемонстрировать эффек-
тивность трансфинитной индукции на примере доказательства суще-
ствования множества вещественных чисел со свойством: любое другое
ненулевое число однозначно представимо разностью чисел этого же
множества.

Пусть ω1 — первое, т. е. наименьшее, порядковое число среди чи-
сел таких, что упорядоченные множества с таким порядковым типом
имеют мощность множества вещественных чисел. Тогда веществен-
ные числа можно поставить во взаимно-однозначное соответствие по-
рядковым числам, меньшим чем ω1. Будем считать, что множество
W (ω1) = {1, 2, . . . , ω, ω + 1, . . . , α, . . . , β, . . . }, α < ω, β < ω1, пред-
ставляет все множество вещественных чисел R взаимно однозначным
способом: R = {r1, r2, . . . , rω, rω+1, . . . , rα, . . . , rθ, . . . }, β < ω1, α <
ω1.

Фиксируем число β < ω1 и предположим, что построены вполне
упорядоченные множества чисел Aα = {a1, a2, . . . , aγ, . . . }γ<α ⊆ R
для любого порядкового числа α < β со свойствами:

1) |ai− aj| ̸= |ak − am|, если пара {ai, aj} ̸= {ak, am}, ai, aj, am, ak ∈
Aα,

2) Aµ ⊂ Aη, если µ < η < β.

Строим множество Aβ. Первый случай: β — есть предельное чис-
ло. Полагаем Aβ =

∪
α<β Aα. Свойства 1 и 2, как легко проверяется,

имеют место.
Второй случай: β = β1 + 1. Пусть rθ — первое число из R, не

реализуемое в Aβ1, т. е. не представимое разностью двух чисел из
из Aβ1. Берем αβ1+1, αβ1+2, не входящие оба одновременно в Aβ1 (это
можно сделать, ведь Aβ1 счетно, а R не счетно!), так, что |αβ1+1 −
αβ1+2| = rθ.

Переберем случаи, когда добавление этой пары чисел к Aβ1 нару-
шает условие 1:

1) Есть числа ak, an, ap, aq ∈ Aβ1 такие, что выполняется одно из
двух неравенств: |ak − an| = |ap − aβ1+1|, или |ak − an| = |aq − aβ1+2|.
Но множество всех возможных пар {ak, an} и чисел ap, aq счетно, а
множество, из которого выбирается aβ1, aβ1+1 несчетно.

2) Есть числа ak, an ∈ Aβ1, такие, что |ak − aβ1+1| = |an − aβ1+2|.
Если середина отрезка [ak, an] не есть середина отрезка [aβ1+1, aβ1+2],
то |ak − an| = rθ, что противоречит нереализуемости rθ в Aβ.
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Следовательно, середина отрезка [ak, an] совпадает со сред-
ней точкой отрезка [aβ1+1, aβ1+2]. Возможных пар {ak, an} счетно.
Следовательно, нам надо выбрать точки aβ1+1, aβ1+2 с условием
(aβ1+1, aβ1+2)/2 ̸= p, где p принадлежит счетному множеству. Суще-
ствует несчетное число сдвигов пары {aβ1+1, aβ1+2}, среди этих сдви-
гов aβ1+1− d, aβ1+2− d, d ∈ R найдется сдвиг, позволяющий избежать
появления случаев 1 или 2.

Следовательно, найдется пара чисел aβ1+1, aβ1+2 такая, что добав-
ление их к Aβ не нарушает условий 1, 2. Кроме того, |aβ1+1−aβ1+2| =
rθ. Еще раз пройдемся по выводу этого заключения.

Если мы примем, что aβ1+2 − aβ1+1 = rθ, то уравнения:

|ak − an| = |ap − aβ1+1|,

или
|ak − an| = |aq − aβ1+2|, aβ1+1 + aβ1+2 = 2p,

при фиксированных ak, an, ap, aq, p определяют конечное число значе-
ний aβ1+1, а для всех возможных ak, an, ap, aq, p — счетное число. В по-
строении же множествAα, α < ω1, можно выбрать aβ1+1 из несчетного
множества, не выполняя вышеприведенные модульные равенства.

Итак, построив Aβ для всех β < ω1, возьмем Aω1
= ∪β<ω1

Aβ.
Множество Aω1

обладает свойством 1. Кроме того, для любого чис-
ла r ∈ R найдется пара чисел a и b из Aω1

со свойством a − b = r.
Действительно, если это не так, то найдется первое число в упорядо-
чении R = {r1, r2, . . . , rθ, . . . }β<ω1

, для которого подобные a и b не
найдутся. Пусть это будет rγ,

Рассмотрим следующее отображение θ(β) для порядковых чисел
β < ω1. При построении последовательности {Aα}, α < ω1, для
множества {Aβ+1} определялось число rθ. Его порядковый номер и
есть θ(β). Отображение θ(β) монотонно: β < β̄ ⇒ θ(β) < θ(β̄). Вслед-
ствие этого (теорема 8.1) имеем, что θ(β) ≥ β, поэтому θ(β) стремится
к ω1 при β → ω1. По смыслу определения θ(β) любое число rγ будет
представлено парой чисел из Aθ(β), где θ(β) > γ. Получается проти-
воречие. Итак, доказана.

Теорема 9.1. В множестве вещественных чисел существует
подмножество чисел A такое, что каждое число r ̸= 0 единствен-
ным способом представляется в виде r = a1 − a2, где a1, a2 ∈ A.

Множество A, описываемое теоремой, обладает рядом замеча-
тельных свойств. Например, A имеет нулевую Лебегову меру, и, сле-
довательно, R представлено в виде R = A − A, где A имеет меру
ноль.
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§ 10. Приложение 3. Теорема Гудстейна

Теорема 10.1 (Гудстейн). Все последовательности Гудстейна
заканчиваются нулем.

Последовательности Гудстейна (обозначим G(n)) определяется
достаточно просто: используется представление натурального числа в
виде суммы степенных членов с одинаковым основанием. Например,
число 581, используя основание n = 2, представим в виде

581 = 512 + 64 + 4 + 1 = 29 + 26 + 22 + 20.

Разложим показатели степени по тому же принципу.

581 = 22
3+1 + 22

2+2 + 22 + 1 = 22
2+2 + 22 + 1.

Подобное разложение (обозначим его G(2)) можно получить для
любого числа.

Будем попеременно (рекурсивно) применять к получившемуся
выражению две следующие операции:

(a) увеличение ≪основания≫ на 1;
(b) вычитание от всего выражения 1.
Таким образом, после применение операции (a) будет получено

выражение:
33

3+1+1 + 33
3+3 + 33 + 1,

которое дает — если выписать его в обычной форме — сорокозначное
число, начинающееся с 133027946 . . .

После применения операции (b) получим

33
3+1+1 + 33

3+3 + 33

, обозначающееся как G(3).
После нового применения операции (a) получим:

44
4+1+1 + 44

4+4 + 44,

это уже значительно большее число, состоящее из 618 знаков, которое
начинается с 12926802 . . .

После нового применения операции (b) получим:

44
4+1+1 + 44

4+4 + 3 · 43 + 3 · 42 + 3 · 41 + 3,

обозначающееся как G(4).
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После чего операция (a) дает нам:

55
5+1+1 + 55

5+5 + 3 · 53 + 3 · 52 + 3 · 51 + 3

, что является числом, которое имеет 10923 знака и начинается с
1274 . . . Обратите внимание, что коэффициенты 3, которые возника-
ют при этом, с необходимостью меньше, чем основание (в данном
случае 5), и не изменяются с возрастанием последнего.

Применяя (b) вновь, получим число

55
5+1+1 + 55

5+5 + 3 · 53 + 3 · 52 + 3 · 51 + 3,

обозначающееся как G(5), над которым мы опять производим после-
довательно действия (a), (b), (a), (b), ... и т. д., насколько возможно.
Вполне естественно предположить, что этот процесс никогда не за-
вершится, потому что каждый раз мы будем получать все большие
и большие числа. Однако это не так, как следует из поразительной
теоремы Гудстейна, независимо от величины исходного числа (581 в
нашем примере), мы в конце концов получим нуль!

Кажется невероятным, но это так. И чтобы в это поверить, проде-
лаем вышеописанную процедуру, для начала, с числом 3. Для этого
составим следующую таблицу:

Основание n Запись последовательности G(n) Значение
2 21 + 1 3
3 (31 + 1)− 1 = 31 3
4 41 − 1 = 3 · 40 3
5 3 · 50 − 1 = 2 · 50 2
6 2 · 60 − 1 = 60 1
7 70 − 1 = 0 0

Если же попробовать то же самое с числом 4, то получим сначала
вполне закономерно возрастающий ряд, значения которого находятся
в третьем столбце следующей таблицы:

Значение этого ряда доходит до числа из 121210695 знаков, после
чего начинает непреклонно уменьшаться вплоть до нуля.

Введем обозначения, чтобы понять, что происходит в структуре
этих чисел. На каждом шаге растет только основание. Заменим из-
меняющееся обозначение на ординал ω. Перепишем нашу таблицу,
учитывая введенное обозначение:

Теперь последовательность выглядит более регулярной! Простым
вычитанием 1 на каждом шагу мы постепенно заменяем растущий
множитель ω на константу, если он есть в правом слагаемом. Хотя
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Основание n Запись последовательности G(n) Значение
2 22 4
3 2 · 32 + 2 · 31 + 2 26
4 2 · 42 + 2 · 41 + 1 41
5 2 · 52 + 2 · 51 60
6 2 · 62 + 61 + 5 83
7 2 · 72 + 71 + 4 109
... ... ...
11 2 · 112 + 111 253
... ... ...
21 2 · 212 + 2 884
... ... ...
41 412 + 23 · 411 + 6 2630
... ... ...

Основание n Запись последовательности G(n) Значение
2 ωω 4
3 2ω2 + 2ω1 + 2 26
4 2ω2 + 2ω1 + 1 41
5 2ω2 + 2ω1 60
6 2ω2 + ω1 + 5 83
7 2ω2 + ω1 + 4 109
... ... ...
11 2ω2 + ω 253
... ... ...
21 2ω2 + 2 884
... ... ...
41 ω2 + 23ω1 + 6 2630
... ... ...

значение ряда растет с основанием последовательности, но каждый
раз структура ряда немного ≪упрощается≫. Так что структура пред-
ставления G(n) никогда не будет более ≪сложной≫, чем это было на
первом шаге. Она переходит от вида ωω к 2ω2 + O(ω), затем посте-
пенно к O(ω), и в конце концов превращается в константу.

За счет этого становится видно, как скромная, незаметная опера-
ция (b) безжалостно ≪отщипывает≫ по кусочку от огромной башни
≪показателей≫ до тех пор, пока она не начинает постепенно таять и
пока не исчезает полностью, хотя на это и уходит невообразимо боль-
шое число шагов.

Доказательство теоремы Гудстейна. В контексте (n− 1)-й
строки первой таблицы в арифметическом выражении основание n
заменяем на ординал ω. Получаем корректно определенную после-
довательность λn порядковых чисел, представленную второй таб-
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лицей. Легко усматривается, что это — убывающая последователь-
ность, мажорирующая исходную числовую. Убывающая последова-
тельность порядковых чисел всегда конечна. Значит она заканчива-
ется нулем. �

То, что теорема Гудстайна недоказуема в арифметике Пеано, уста-
новили Кирви и Парис.

Материалы этого параграфа взяты из [68].



Глава 10
Аналогия как метаматематический принцип

§ 1. Введение

≪Математик — это, тот кто находит аналогию
между утверждениями. Лучший математик - тот,
который устанавливает аналогию доказательств.

Более сильный математик тот, который замечает аналогию
теорий, но можно представить себе и такого, который

видит аналогию в аналогии≫.
С. Банах.

≪Я больше всего дорожу аналогиями — моими
самыми дорогими учителями. Они знают все секреты

природы, и ими меньше всего следует пренебрегать в геометрии≫.
И. Кеплер.

Аналогию можно рассматривать как принцип получения по сход-
ству определений, правдоподобных утверждений, доказательств.

Вот общая ситуация такого проявления аналогии. Пусть имеются
объекты A и B (или явления), и наблюдается (устанавливается) мно-
жество отношений {λi}i∈I между частями aj и bj, j ∈ J , объектов A
и B. Мы экстраполируем по сходству: некоторое новое отношение µ,
наблюдаемое в A, берется как возможное в B.

Чем существеннее отношения свойства λi и части aj и bj, тем
правдоподобнее утверждения наличия µ в B.

Вообще, аналогия с высказанной точки зрения лежит в контек-
сте восточного философского напряжения мысли — познавать исти-
ну через сопоставление. (Возможно, все творчество математика, не
≪уложенное≫ на бумагу, — это, скорее, работа мысли по Востоку, чем
по Западу.)

§ 2. Примеры

Пример 2.1. Назовем медианной плоскостью тетраэдра плос-
кость, проходящую через ребро пирамиды и середину противолежа-
щего ребра. Например, это плоскость треугольника MDC. Доказать,
что шесть медианных плоскостей тетраэдра проходят через одну и ту
же точку.
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Рис. 1. Тэтраэдр

Найдем задачу аналогичную, но проще. Для этого применим свое-
образную математическую индукцию — спустимся на ступень ниже.
Перейдем от трехмерного пространства к двумерному — плоскости.
Совершенно естественно, используя по сходству, медианы вместо ме-
дианных плоскостей, приходим к задаче: доказать, что три медианы
треугольника пересекаются в одной точке. Будем считать, что дока-
зательство этого известно, и вернемся к тетраэдру. Три медианные
плоскости, имеющие общие точку D, имеют еще одну общую точ-
ку O, поскольку они проходят через медианы треугольника ABC.
Следовательно, они все проходят через прямую DO. Рассмотрим три
медианные плоскости, проходящие через стороны основания ABC.

Они пересекаются в одной точке. Эта точка принадлежит и
остальным медианным плоскостям, например проходящей через реб-
ро DB. Ибо показали уже, что медианные плоскости, проходящие
через одну вершину B, имеют общую прямую. На последней лежит,
следовательно, обсуждаемая точка.

Нижеследующие примеры взяты из книги Д. Пойя [40].

Пример 2.2. Вычислить сумму ряда S =
∞∑
n−1

1

n2
.

Эту сумму впервые вычислил Эйлер с помощью дерзкой анало-
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гии. Вспомним теорему Безу. Полином Ln(x) представляется согласно
ей в виде:

Ln(x) = a0+a1x+a2x
2+a3x

3+...+anx
n = an(x−α1)(x−α2) · · · (x−αn),

где αi корни Ln.
Сравнивая слагаемые одной степени справа и слева от равенства,

находим, что коэффициент при xn−1 равен an−1 = −an(α1+α1+ ...+
αn), или иначе:

n∑
i=1

αi =
an−1
an

.

Сравнивая свободные члены, имеем равенство:

a0 = (−1)nanα1α2...αn.

В итоге полином Ln(x) получает представление:

Ln(x) = a0

(
1− x

α1

)(
1− x

α2

)
...

(
1− x

αn

)
.

Применим полученные равенства к многочлену: P2n(x) = b0 −
b1x

2 + a2x
4 − ...+ (−1)nbnx2n с четными степенями.

Пусть β1, β1, β2,−β2, . . . — его корни. Тогда согласно новому
представлению

P2n(x) = (−1)nbn(x2 − β2
1)(x

2 − β2
2)...(x

2 − β2
n) = b0

(
1− x2

β2
1

)(
1−

x2

β2
2

)
...

(
1 − x2

β2
n

)
, приравнивая коэффициенты при x2, получаем что

сумма квадратов чисел, обратных корням уравнения P2n = 0, опре-
деляется формулой

b1 = b0

(
1

β2
1

+
1

β2
2

+ ...+
1

β2
n

)
(2.1)

Рассмотрим новое уравнение sin(x) = 0. Используя разложение в ряд

Тейлора, перепишем его в виде: x− x3

3!
+
x4

5!
− ... = 0.

Пусть x ̸= 0, тогда 1− x2

3!
+
x4

5!
− x6

7!
− ... = 0. По аналогии пред-

положим, пусть формула (2.1) имеет место и для этого уравнения,
где левая часть представляет полином бесконечного порядка. Корни
нового полинома βk = kπ, k = ±1,±2, ...
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Имеем:

(2.1) =⇒ 1

6
=

∞∑
k=1

1

k2π2
=⇒

∞∑
k=1

1

k2
=
π2

6
. (2.2)

В силу свойств гладкости функции sin(x) правдоподобно, что
формулу (2.2) можно строго доказать. Доказываемое получено по
аналогии.

Пример 2.3. Теорема Ферма для многочленов.
Великой теоремой Ферма для чисел является следующее утвер-

ждение: xn + yn = zn, при n ≥ 3 не имеет решения в целых числах.
Более двухсот лет математики бились над доказательством, и

только в 1995 году математик Вайлс дал, наконец, доказательство,
используя алгебраическую геометрию. Рассмотрим аналог теоремы
Ферма для полиномов: для n ≥ 3 не существует решения уравнения
xn(t) + yn(t) = zn(t), члены которого не равны тождественно кон-
станте и являются взаимно простыми полиномами по t. Материал
взят из [34].

Удивительно то, что теорема для полиномов доказывается про-
стыми средствами. Вначале установим, что имеет место:

Теорема 2.1 (Мейсона — Стотерса). Пусть f, g, h — полино-
мы с комплексными коэффициентами, не равные константе и вза-
имно простые. Пусть выполняется равенство f + g = h. Тогда

max(deg f, degg, degh) ≤ n0(fgh)− 1,

где n0(P (x)) — число различных корней полинома P (x).
Доказательство. Будем использовать производные и подбе-

рем подходящую операцию, переводящую произведения в сумму. По-
скольку

[lnφ(x)]
′

x =
φ

′

φ
,

[ln(φ(x) · ψ)]′x =
φ

′

φ
+
ψ

′

ψ
=

(φψ)
′

φψ
,

то таковой может служить операция (логарифмическая производ-
ная): φ→ (lnφ)

′
.

Равенство f + g = h перепишем в виде
f

h
+
g

h
= 1.
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Введем обозначения R =
f

h
и S =

g

h
. Получаем последовательно

R′(t) + S ′(t) = 0,

R′

R
R +

S ′

S
S = 0⇒

R′

R
S ′

S

=
S

R
=
g

f
. (2.3)

В полученном равенстве воспользуемся разложениями
f(t) = C1

∏
(t− αi)mi, g(t) = C2

∏
(t− βi)ni, h(t) = C3

∏
(t− γi)li;

и производными от них:
f ′

f
=
∑
i

mi

t− αi
,
g′

g
=
∑
i

ni
t− βi

,
h′

h
=
∑
i

li
t− γi

.

Далее, согласно (2.1) и свойству логарифмической производной,
имеем:

g

f
= −

f ′

f
− h′

h
g′

g
− h′

h

= −

∑
i

mi

t− αi
−
∑
i

li
t− γi∑

i

ni
t− βi

−
∑
i

li
t− γi

. (2.4)

Обозначим через D(t) =
∏
i,j,k

(t − αi)(t − βj)(t − γk) общий знаме-

натель во всех суммах. Тогда:
degD(t) = n0(f · g · h),

deg
D(t)

t− αi
= n0(f · g · h)− 1,

deg
D(t)

t− βj
= n0(f · g · h)− 1, deg

D(t)

t− γk
= n0(f · g · h)− 1.

Из равенства (2.4) следует
g

f
= −

∑ D

t− αi
mi −

∑ D

t− γk
lk∑ D

t− βj
nj −

∑ D

t− γk
lk

.

Поскольку g и f взаимно простые, из этого равенства следует,
что степени f и g не превосходят степени числителя и знаменателя
правой части, т.е не превосходят числа n0(f ·g ·h)−1, и мы получаем

max(deg f, deg g) ≤ n0(f · g · h)− 1. �

Доказав теорему Мейсона — Стотерса, переходим к доказа-
тельству теоремы Ферма для многочленов. Предположим обрат-
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ное: пусть x(t), y(t), z(t) попарно взаимные простые многочлены, от-
личные от постоянной решения уравнения

xn(t) + yn(t) = zn(t), n ≥ 3 (2.5)

Обозначим f(t) = xn(t), g(t) = yn(t), h(t) = zn(t). По теореме
Мейсона — Стотерса

deg xn(t) ≤ n0(x
nynzn)− 1,

ndegxn(t) ≤ n0(x(t))+n0(y(t))+n0(z(t))−1 ≤ degx(t)+degy(t)+
deg z(t)− 1,

n deg y(t) ≤ deg x(t) + deg y(t) + deg z(t)− 1,
n deg z(t) ≤ deg x(t) + deg y(t) + deg z(t)− 1.
Сложим три неравенства, получим:
(n − 3)(deg x(t) + deg y(t) + deg z(t)) ≤ −3; т.к n ≥ 3, слева по-

ложительное число, справа отрицательное, следовательно полиномов
таких, что xn + yn = zn нет. �

Этот пример показывает, также, как и задача о четырех красках,
что для предельного, идеального случая (в данном случае для чисел,
полиномов нулевой степени) доказательство бывает более сложным.
В проблеме четырех красок для географической карты, сравнительно
быстро получили решения для всех поверхностей, не гомеоморфных
сфере. А для решения задачи на сфере пришлось привлекать ЭВМ.
Аналогично, в знаменитой проблеме Пуанкаре, входящей в список
наиболее важных математических проблем двадцать первого века,
составленный известным математиком Смейлом, решение в простран-
ствах размерности больше трех было получено сравнительно быстро
(самим Смейлом). В привычном нам трехмерном пространстве реше-
ние было получено недавно российским математиком Перельманом.

Попытаемся по аналогии, по сходству переложить изложенное до-
казательство на доказательство теоремы Ферма для чисел. В дока-
зательстве мы использовали существенно, что степень произведения
равна сумме степеней сомножителей; нетрудно заметить что этим
аналогом для чисел будет логарифм (по любому основанию, боль-
шему единицы) deg↔ log n.

Аналог числа n0(f) определим, привлекая следующее построение
его для полиномов. Если f(t) = C1

∏
i

(t − αi)
mi, то по нему строим

f0 = C1

∏
i

(t− αi), тогда n0(f) = deg f0.

Это цепь построений легко моделируется на числах. Надо начать
с разложения n = pα1

1 p
α2
2 . . . pαr

r ; убираем показатели и в качестве f0
возьмем N0(n) = p1, p2, . . . , pr. Следующий шаг взятия степени заме-
няем взятием логарифма. Испытываем как n0(f) число logN0(n).
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Теперь теорема Мейсона — Стотерса для целых чисел должна
формулироваться так: если a, b, c — натуральные числа, взаимно про-
стые, и a+ b = c, то max(log a, log b, log c) ≤ logN0(abc)− 1.

Преобразуя последнюю формулу, получаем
logmax(a, b, c) ≤ N0(abc)− log d,

где d — основание логарифма. Следовательно, для некоторого числа
k имеет место: max(a, b, c) ≤ kN0(abc).

На довольно простых примерах обнаруживается, что это нера-
венство при всевозможных a, b, c не имеет место ни для каких k. Что-
бы выйти из положения, мы используем очень часто применяемый
метод: ≪ε-поправку≫. Соответствующая ≪ε-поправка≫ выглядит так:
при данном ε > 0 существует константа k(ε), зависящая от ε, но не
зависящая от a, b, c, такая, что для всех ненулевых взаимно простых
чисел a, b, c таких, что a+ b = c, выполняется неравенство:

max(a, b, c) ≤ k(ε)(N0(abc))
1+ε.

Это утверждение получило название ≪гипотеза abc≫.
Покажем что гипотеза abc влечет теорему Ферма. Пусть x, y, z —

целые числа, для которых, выполняется xn + yn = zn. Обозначим
xn = a, yn = b, zn = c и применим гипотезу abc. Согласно гипотезе:

xn ≤ k(ε)(N0(x
nynzn)1+ε) = k(ε)N0(xyz)

1+ε,
yn ≤ k(ε)(N0(x

nynzn)1+ε),
zn ≤ k(ε)(N0(x

nynzn)1+ε),
xnynzn ≤ k3(ε)N0(xyz))

3+3ε ≤ k3(ε)(xyz)3+3ε,
(xyz)n−3ε−3 ≤ k3(ε).
Считаем n− 3ε− 3 > 0,
(n− 3ε− 3) log(xyz) ≤ 3 log(ε),

(n− 3ε− 3) ≤ 3 log k(ε)

log(xyz)
,

n ≤ 3 + 3ε+ 3
3 log k(ε)

log(xyz)
, xyz > 2, log(xyz) > log 2,

n ≤ 3 + 3ε+ 3
3 log k(ε)

log(2)
.

Осталось проверить теорему Ферма для конечного числа значе-
ний n. Это можно сделать на ЭВМ с помощью специальной програм-
мы.

Впечатляющее применение аналогии можно найти при построе-
нии квантовой механики в книге [50]. Как в примере 2.3, структу-
ра и понятия классической гамильтоновой механики ≪переделывают-
ся≫ для описания ≪квантовых явлений≫.



Глава 11
Вариативный и эволюционный ряды

Цель главы — ввести новые понятия, обсуждая определенный ма-
тематический материал и рассматривая его в связи с философскими
категориями, в частности, с категорией ≪иерархия≫.

≪Если нам не удается найти решение математической проблемы,
то часто причина этого заключается в том, что мы еще не овладели
достаточно общей точкой зрения, с которой рассматриваемая про-
блема представляется лишь отдельным звеном в цепи родственных
проблем. Отыскав эту точку зрения, мы не только делаем доступ-
ной для исследования данную проблему, но и овладеваем методом,
применимым к родственным проблемам≫.

Давид Гильберт.

§ 1. Вариативный ряд

Применим эту точку зрения на аналогию, которая интерпретиру-
ет аналогию как родовое сходство, вскрывающее существенную общ-
ность за оболочкой поверхностных общих моментов, частностей.

При исследовании какого-либо явления или объекта в математике
ряд, в который встраивается как член исследуемый объект, являет-
ся обычным и необходимым явлением. Обычно ряд строится путем
вариации первичных характеристик-параметров или формы исследу-
емого, а уже затем вскрывается внутреннее родство объектов, нечто
существенное, что объединяет члены ряда, и что этим рядом проду-
цируется.

Ряд, через который вскрывается сущностное сходство членов ря-
да, не проявляемое членами в отдельном от ряда бытии, назовем ва-
риативным рядом. Собственно, вариативный ряд, это элементарное
пространство c той точки зрения, что члены ряда вскрывают некую
сущность за процессом изменения членов ряда. Приведем примеры.

Пример 1. Теорема Пифагора.
Изобразив геометрически величины, входящие в доказываемое

равенство a2 + b2 = c2, мы получим рисунок, с которого начинали
свои рассуждения и древние греки (≪Пифагоровы штаны≫).
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Попробуем варьировать формы воздвигаемых на сторонах тре-
угольника фигур, естественно, придерживаясь каких-то принципов;
в данном случае, требуя подобия всех трех фигур. Выясним, не кро-
ется ли за элементами ряда какая-то закономерность.

Открытие, даже очень скромное открытие, требует, чтобы что-
то было подмечено, осознана какая-то связь. Действие и рефлексия
мышления на изменившиеся обстоятельства — два основных принци-
па математика.

Если отношение площади Sc фигуры, построенной на гипотену-
зе c, к площади c2 соответствующего квадрата ≪пифагоровых шта-
нов≫ обозначим через λ, то из подобия всех фигур имеем и для сто-
роны a : Sa = λa2, и для стороны b : Sb = λb2. Рефлексия(осознание)
только что полученных фактов дает нам умозаключение: равенство
Sc = Sa+Sb выполняется или не выполняется сразу для всех объектов
ряда. Нет ли такого члена в ряду, где это равенство очевидно? Такой
≪мутант≫ легко построить. В нем все фигуры Sa, Sb, Sc — прямо-
угольные треугольники, равные соответственно ABC, ADC, DBC,
где DC — высота, опущенная на гипотенузу.

Бросим ретроспективный взгляд на приведенное доказательство,
(заметим, что доказать более общее иногда проще). Здесь мы выявили
≪родовое≫ свойство всех фигур ряда. Отметим также, что «решает»
задачу наиболее «экономично построенный» член вариативного ряда.

Подчас, выяснить в задаче действующие лица, формирующие со-
ответствующий ряд, — и есть решающий шаг в решении.

Оторвемся от изложения примеров для ряда философского ха-
рактера высказываний:

1) Вариативный ряд обнажает свойство, которое относится к сущ-
ности объекта, свойство вскрывается через ряд. Через вариацию
материала членов ряда свойство проглядывает как нечто устой-
чивое через неустойчивый хаос вариаций. Неверно думать, что
есть отдельно свойство и отдельно ряд, вскрывающий сущност-
ное свойство членов ряда. Свойство есть потому, что есть ряд;
свойство и ряд образуют целостность.

2) Вариативный ряд есть движение. Движение по вариативному ря-
ду не сводимо к движению по пространству и времени! По про-
странству и времени движется одно, уже взятое как известное.
Движение по вариативному ряду вскрывает (формирует) это од-
но и вскрывает это одно как родовое свойство, как некую мате-
матическую теорему.

3) Понимание сущности приходит через объединение в один ряд
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разных, казалось бы, явлений. Прекрасный пример этому — воз-
никновение понятия о тяготении и современного понятия силы в
теоретической механике. Ньютон объединил аналогией падение
яблок с дерева, притяжение планет к солнцу и движение тела при
приложении к нему силы — эти три взаимодействия рассмотрел
в одном ряду.

4) Сущность — это самый глубокий инвариант ряда. Ряд есть все-
гда неопределенность, всегда уравнение, и в движении ряда ре-
шается это уравнение, выявляется и обогащается содержанием
понятие, формируется теорема.

5) Ряд означает взгляд с более общих принципов, чем частности
задачи.

6) ≪Тайная гармония≫ (Гераклит) — это вскрытая сущность членов
(частей) ряда (целого).

Вернемся к примерам.
Пример 3. Вариативный ряд возникает чаще всего через вариа-

цию параметров формы или конструкции объекта. Иногда централь-
ным для построения ряда является выбор формы представления ма-
тематического объекта. Рассмотрим формулу:

a2 − b2 = (a+ b)(a− b).

Как построить к ней вариативный ряд? Проблема прояснится,
если мы представим a2 − b2 как определитель:

a2 − b2 =
∣∣∣∣a b
b a

∣∣∣∣ . (1.1)

Теперь мы можем в качестве следующего члена взять определитель:∣∣∣∣∣∣
a b c
b c a
c a b

∣∣∣∣∣∣ = 3abc− (a3 + b3 + c3). (1.2)

Формулу, аналогичную (1.1), мы установим, заметив, что сумма эле-
ментов каждой строки a + b + c. Как следствие получаем, что опре-
делитель (1.2) должен делиться на a+ b+ c:

3abc− (a3 + b3 + c3) = (a+ b+ c)(ab+ ac+ bc− a2 − b2 − c2). (1.3)

Итак, обнаружена какая-то существенная закономерность, по-
рождающая формулу (1.1), (1.3). В общем вариативном ряду на n-ом
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месте стоит то, что в математике называется определителем цикли-
ческой матрицей n-го порядка.∣∣∣∣∣∣∣

a1,1 a1,2 . . . a1,n−1 a1,n
a1,2 a1,3 . . . a1,n a1,1
. . . . . . . . . . . . . . .
a1,n a1,1 . . . a1,n−2 a1,n−1

∣∣∣∣∣∣∣ (1.4)

Есть специальный раздел матричной алгебры, занимающийся
циклическими определителями. Нами здесь открыта только одна
формула из развиваемой в этом разделе теории.

Пример 4. Рассмотрим ряд (где варьируется форма):

tgα = t, tg 2α =
2t

1− t2
, tg 3α =

3t− t3

1− 3t3
,

tg 4α =
4t− t4

1− 6t2 + t4
, . . . (1.5)

≪Тайная гармония≫ этого ряда представляется формулой Эйлера:

eiθ = cos θ + i sin θ. (1.6)

Эта формула непосредственно приводит к ряду (1.5), если заметить,
что

einθ = cosnθ + i sinnθ = (cos θ + i sin θ)n =

= cosn θ + C1
n cos

n−1(i sin θ) + C2
n cos

n−2(i sin θ)2 + . . .

Разделив эти равенства на cosn, приравняв мнимые части, при-
ходим к формуле для tg nα, представленного в ряду (1.5). Но что
ведет к ≪обнаружению≫ сущности — к формуле (1.6)? Составление
нового ряда: выстроим коэффициенты последовательных степеней t,
встречаемых у члена ряда (1.5):

{1}, {1; 2;−1}, {1; 3;−3;−1}, {1; 4;−6;−4; 1}, . . .

Если отбросим знаки (закономерность расположения знаков легко
формализуется), то получим строки треугольника Паскаля.

Теперь уже можно натолкнуться на идею использовать бином
Ньютона, а по расположению знаков — на многочлен (a+ ib)n.

Все исследование должно вестись под главенством вопроса: како-
ва общность членов ряда и в чем причина этой общности?
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§ 2. Эволюционный ряд

Аналогия как средство обнаружения рода объекта («стада», в ко-
тором объект есть одно) «работает» в вариативном ряду, выявляя
общность как внутреннюю сущность членов рода-ряда.

Вариативный ряд работает на одном уровне абстракции, а точ-
нее, на одной ступени иерархической системы, которой представлена
вся математики Ибо, по сути, вся математика — это восхождение от
работы в определенных понятиях к работе над более абстрактными
понятиями, охватывающими отношения между понятиями и объек-
тами предыдущего, предшествующего уровня.

При ≪восхождении≫ абстракции образуется эволюционный ряд,
в котором наполняется новым содержанием сущность явления или
понятия благодаря обсуждению в большем контексте, привлечению
более широкого круга отношений. Организуется более обширная тер-
ритория мышления, в администрацию управления которой обсужда-
емое понятие входит в новом чине.

Внешне тот факт, что одно движется по эволюционному ряду,
схватывается опять аналогией. Но теперь аналогия есть проявление
развития содержания понятия, математического объекта. Ряд, в кото-
ром объект предстает нам в своем развитии, назовем эволюционным
рядом.

Пример 1. Рассмотрим некоторые члены эволюционного ряда
для теоремы Пифагора.

Формула Бине — Коши. Пусть n < m, где n и m — натураль-
ные числа. Множество взаимно однозначных отображений λ множе-
ства натуральных чисел {1, 2, . . . , n} в множество {1, 2, . . . ,m}, со-
храняющих естественный порядок, т. е. возрастающих отображений:
i < j ⇒ λ(i) < λ(j), обозначим через Λ(m,n). Далее рассмотрим
прямоугольную матрицу с n столбцами и m строками.

A =

a11 a12 . . . a1n
a21 a22 . . . a2n
. . . . . . . . . . . .
am1 am2 . . . amn


Квадратную матрицу, выделяемую отображением λ:

Aλ =

aλ(1),1 aλ(1),2 . . . aλ(1),n−1 aλ(1),n
aλ(2),1 aλ(2),2 . . . aλ(2),n−1 aλ(2),n
. . . . . . . . . . . . . . .
aλ(n),1 aλ(n),2 . . . aλ(n),n−1 aλ(n),n

 ,
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обозначим через Aλ. Формула Бине — Коши записывается в виде

(detA)2 =
∑

λ∈Λ(m,n)

(detAλ)
2. (2.1)

Поверхностное сходство формулы (2.1) с теоремой Пифагора через
сумму квадратов очевидно. Однако имеется существенная общность,
которую мы постараемся раскрыть.

Для этого рассмотрим более общий, чем матрицы, математиче-
ский объект — операторы. Пусть L : En → Em — линейное отобра-
жение n-мерного пространства En в евклидово пространство Em раз-
мерности m. Если n < m, то якобиан ∥L∥ отображения определяется
равенством:

∥L∥ = det (L∗L), (2.2)
где L∗ — оператор, сопряженный к L, определяемый отношением

x · L∗y = Lx · y, ∀x ∈ En, ∀y ∈ Em.

Введем в рассмотрение специальные операторы Pλ (проекторы
пространства Em). Если λ ∈ Λ(m,n), то пусть

Pλ : Em → En, Pλ(x1, . . . , xm) = (xλ(1), xλ(2), . . . , xλ(n)).

В новых терминах формула Бине — Коши выглядит так:

∥L∥2 =
∑

λ∈Λ(m,n)

(det (Pλ · L))2. (2.3)

Эквивалентность (2.1) и (2.3) легко устанавливается, если в (2.3)
заменить операторы, представляющими их в некотором базисе мат-
рицами. Кроме матриц и операторов в новое пространство рассужде-
ний включим n-мерные меры Лебега и Хаусдорфа: Ln(A) и Hn(A).
Заметим, что мера обобщает понятие объема, площади, длины.

Воспользуемся следующим свойством меры Хаусдорфа [?, с. 72].
Пусть L : Rn → Rm — линейное отображение и n ≤ m. Тогда

Hn(L(A)) = ∥L∥Ln(A) для всех A ⊆ Rn.
Умножим (2.3) на (Ln(A))2. В итоге получаем

[Hn(L(A))]2 =
∑

λ∈Λ(m,n)

[Hn(Pλ(L(A)))]
2. (2.4)

Теперь, учитывая сделанное выше замечание, мы видим, что и по
смыслу формула (2.1) обобщает теорему Пифагора.
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≪Новая≫ теорема Пифагора действует в гораздо большем контек-
сте, вбирает в себя (организует) гораздо больше фактов. Но что самое
примечательное, в таком абстрактном восхождении в нечто единое
объединяются, казалось бы, совершенно разные ранее установленные
теоремы.

Возьмем, к примеру, матрицу (n = 2):

A =

a11 a12
a21 a22
. . . . . .
am1 am2

 .

По определению

∥A∥2 = det(A∗A) =


n∑
j=1

aj1aj1
n∑
j=1

aj1aj2

n∑
j=1

aj2aj1
n∑
j=1

aj2aj2

 =
n∑
j=1

a2j1a
2
j2−

n∑
j=1

(aj1aj2)
2.

С другой стороны, по формуле Бине — Коши

∥A∥2 =
∑

λ∈Λ(m,n)

(aλ(1)λ(1) · aλ(2)λ(2) − aλ(1)λ(2) · aλ(2)λ(1))2 ≥ 0.

Сравнивая два выражения, получаем
n∑
j=1

a2j1

n∑
j=1

a2j2 −
n∑
j=1

(aj1aj2)
2 ≥ 0,

а это — неравенство Коши — Буняковского, играющее фундаменталь-
ную роль в анализе.

Вообще, движение по эволюционному ряду есть восхождение ко
все более абстрактному и к всеединому. Только в своем движении по
эволюционному ряду теорема Пифагора проявляется в его всеобщно-
сти и необходимости.

В эволюционном ряду теоремы Пифагора стоят декартова систе-
ма координат, ортонормированный базис гильбертова пространства и
некоторые другие центральные понятия современной математики.

Следующие примеры, формирующие представление об эволюци-
онном ряде, мы уже подробно не описываем. Они просто иллюстри-
руют, что эволюционные ряды ≪пронизывают≫ всю математику.

Пример 2. Эволюционным ≪потомком≫ классической теоремы
Гаусса — Остроградского является структурная теорема для функ-
ций с локально ограниченной вариацией [63].
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Теорема 2.1. Пусть U — открытое подмножество в En. Для
f ∈ BVloc(U) существует мера Радона µ на U и µ-измеримая функ-
ция σ : U → En, такие что

(i) |σ(x)| = 1 µ-п.в.
(ii)

∫
U f(x)divφ(x)dx = −

∫
U φ(σ) · σ(x)dµ

для всех φ ∈ C1
c (U,En).

Пояснение обозначений в формулировке теоремы 2.1, а также ее
доказательство можно найти в [?]. Это же замечание относится к
теореме 2.2.

Пример 3. Непосредственно за комбинаторной леммой Шпер-
нера в соответствующем эволюционном ряду стоит основная теорема
об индексе для отображения комплексов. [49, с. 73]

Теорема 2.2. Пусть Ck — ориентированная симплициальная
k-цепь, Skr — ориентированный симплекс, fk — отображение вер-
шин симплексов цепи Ck в вершины симплекса Skr , a — выделенная
вершина симплекса Skr , приведенная граница Ck относительно fk

и a есть δ(Ck, fk, a); приведенное отображение fk относительно a
есть fk−1. Тогда k-мерный индекс L отображения fk над Ck равен
(k − 1)-мерному индексу K отображения fk−1 над δ(Ck, fk, a), то
есть L = K.

Везде в примерах этого пункта аналогия есть следствие суще-
ствования инварианта ряда, двигающегося по ряду с развитием. Та-
кой инвариант именно в силу своего движения и развития перестает
быть классическим математическим объектом. Для пояснения своей
мысли приведем следующий ≪парадокс≫.

В понятие ≪человек≫ как содержание входит свойство ≪быть чело-
веком и вчера≫ (человек из ≪вчера≫ он сам или его мать). Применим
метод математической индукции. Если k дней назад человек был, то
по содержанию понятия он был и k + 1 дней назад. Получается, он
был всегда. Так что Дарвин ≪ошибался≫, утверждая происхождение
человека от обезьяны.

Этот пример по ≪философскому≫ содержанию имеет общее со
знаменитой теоремой Геделя о неполноте любой формальной систе-
мы, включающий арифметику, в частности, принцип математической
индукции.

Напряжение мышления, улавливающего содержание понятия в
эволюционном ряду, замечательно согласуется со следующим выска-
зыванием Гегеля [15, с. 306].
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≪Познание движется от содержания к содержанию. Это движение
вперед определяет себя прежде всего таким образом, что оно начинает
с простых определенностей и что следующие за ними определенности
становятся все богаче и конкретнее. Ибо результат содержит свое на-
чало, и движение этого начала обогатило его новой определенностью.
Всеобщее составляет основу; потому движение вперед не следует при-
нимать за процесс, протекающий от чего-то иного к чему-то иному.
В абсолютном методе понятие сохраняется в своём инобытии, всеоб-
щее — в своем обособлении, в суждении и реальности; на каждой сту-
пени дальнейшего определения всеобщее возвышает всю массу своего
предыдущего содержания, и не только не оставляет позади себя, но
несет с собой все приобретенное и обогащается внутри себя≫.

Вариативный ряд (B-ряд) и эволюционный ряд (Э-ряд) интерпре-
тируют в контексте метаматематики горизонтальные и вертикальные
линии — два базисных понятия схемы иерархии Э.М. Хакимова [53].
Здесь они развертываются и наполняются математическим содержа-
нием. Мы отличаем рациональную метаматематику от формализуе-
мой средствами математической логики и основным понятием сде-
лали ряды. Именно в развертывающихся рядах, нам кажется, можно
объединить математическое содержание и содержание категорий диа-
лектики логики.

Предельно экстраполируя, можно сказать, что вариативный ряд
в актуальной своей завершенности дает одно - сущность понятия или
теоремы. Эволюционный ряд отрицает эту завершенность, перенося
сущность в развитие. Каждый объект находится на пересечении Э-
ряда и B-ряда.

Вариативный ряд строится по частностям, но отрицает эти част-
ные, вскрывая сущность понятия (теоремы, явления). Эволюционный
ряд снимает отдельное бытие, в себе бытие понятия, теоремы, обра-
щаясь и переходя все время к идеальному внебытию.

Цель наших дальнейших исследований - выявление категорий,
определяющих движение по ряду, и формирование соответствующих
математических структур.
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Первоначально понятие о пространстве возникло как представле-
ние о евклидовом трехмерном пространстве, с которым отождеств-
лялся весь физический мир. Считалось, что он существует объектив-
но, отражает истинные законы строения мира. С появлением неев-
клидовой геометрии Лобачевского (он отказался от аксиомы един-
ственности параллельной прямой, проходящей через точку вне этой
прямой, и, опираясь на остальные аксиомы, построил непротиворе-
чивую теорию) такое представление полностью разрушилось, больше
нельзя было говорить об объективной реальности исключительно ев-
клидовой геометрии.

Таким образом, понятие пространства, от физического и объек-
тивного перешло в математике к абстрактному инструменту, основан-
ного на понятии множества, и являющимся одним из важнейших в
постановках и развитии теории.

Первая интерпретация пространстве вообще на этой основе мо-
жет быть таковой: это не пустое вместилище любых возможных объ-
ектов, явлений, процессов, взаимоотношений, а само множество всех
возможных объектов, явлений, процессов, взаимоотношений, образу-
ющие иерархическую структуру (наподобие теории типов).

Элементарным же в подобной интерпретации является элементар-
ное пространство (совокупность родственных, по какому-либо при-
знаку объектов). Любую математическую задачу можно определить
в терминах элементарного пространства.

Элементарное пространство есть воплощение локального подхода
в понимании пространства как категории. Каждая задача, проблема
имеют свое сущностное пространство. Нет абсолютно пространства,
в котором все объясняется. Подтверждение этому можно найти и в
современной теоретической физике. Для объяснения некоторых яв-
лений микромира вводятся общие топологические пространства ≪да-
лекие≫ от евклидовых или римановых.

Итак, опираясь на теорию множеств, будем строить эволюцион-
ный ряд понятия (сущности) ≪пространство≫ (в математике).
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§ 1. Метрическое пространство

Будем двигаться от конкретных понятий к абстрактным, опира-
ясь на основные свойства понятий евклидового пространства. Исполь-
зование характерных свойств расстояния позволяет сформулировать

Определение 1.1. Метрическим пространством называется
любое множество X, на котором определена вещественнозначная
функция ρ(x, y) : X ×X → R со свойствами:

1) ∀x, y ρ(x, y) ≥ 0, ρ(x, y) = 0⇔ x = y;

2) ∀x, y ∈ X ρ(x, y) = ρ(y, x);

3) ∀x, y, z ∈ X ⇒ ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Примеры метрических пространств.

1) Пространство E3 определяется как множество упорядоченных
троек вещественных чисел, и если
x = (x1, x2, x3), y = (y1, y2, y3), то

ρ(x, y) =

√√√√ 3∑
i=1

(xi − yi)2

Свойства 1)–3) легко проверяются. Неравенство 3) есть обычное
неравенство треугольника.

2) Пространство C[a, b] есть пространство функций, непрерывных
на отрезке [a, b], с естественным определением операций сложе-
ния и умножения. Если φ, ψ ∈ C[a, b], то

ρ(φ, ψ) = sup
x∈[a,b]

|φ(x)− ψ(x)|

Докажем, что ρ(φ, ψ) метрика:
ρ(φ, ψ) ≥ 0

ρ(φ, ψ) = ρ(ψ, φ)

|φ(x)− ψ(x)| ≤ |φ(x)− f(x)|+ |f(x)− ψ(x)| ⇒
sup |φ(x)− ψ(x)| ≤ sup |φ(x)− f(x)|+ sup |f(x)− ψ(x)|
Таким образом, ρ(φ, ψ) удовлетворяет всем свойствам метрики.
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3) Другим употребительным метрическим пространством является
пространство интегрируемых с квадратом функций

L2[a, b] =

φ :

b∫
a

φ(x)2dx <∞

 .

Если φ, ψ ∈ L2[a, b], то расстояние расстояние между ними опре-
деляется равенством

ρ(φ, ψ) =

 b∫
a

(φ(x)− ψ(x))2dx

1/2

.

Первый этап построения теории метрических пространств начи-
нается с определений по аналогии с определениями в евклидовом про-
странстве.

Определение 1.2. Открытый шар Br(x) радиуса r с центром
в точке x есть множество

Br(x) = ⟨y : y ∈ X, ρ(x, y) < r⟩.

Определение 1.3. Замкнутый шар Br(x) радиуса r с центром
в точке x есть множество

Br(x) = ⟨y : y ∈ X, ρ(x, y) ≤ r⟩.

Не все утверждения, справедливые в евклидовом пространстве,
имеют место в произвольном метрическом пространстве, например,
утверждение о единственности центра шара.

Пример. Определим метрику на X = {a, b, c} :
ρ(a, b) = ρ(a, c) = ρ(b, c) = 2,
ρ(a, a) = 0, ρ(b, b) = 0, ρ(c, c) = 0,
ρ(a, b) = ρ(b, a) ∀a, b ∈ X,
ρ(a, b) ≤ ρ(a, c) + ρ(c, b) ∀a, b, c ∈ X.

Следовательно, определили метрическое пространство X, ρ, в кото-
ром B3(a) = B3(b) = B3(c) = X.

Определение 1.4. Пусть даны r > 0 и точка а, тогда V ⊂ X
называется окрестностью точки а, если V содержит шар Br(a),
т. е. V ⊇ Br(a), r > 0.
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Определение 1.5. Множество O ⊆ X называется открытым
множеством, если вместе с каждой своей точкой оно содержит
и окрестность этой точки, т. е. если O является окрестностью
каждой своей точки.

Определение 1.6. Множество F ⊆ X называется замкну-
тым, если оно является дополнением к открытому множеству,
т.е. X − F открыто.

Предложение 1.1. Фундаментальные свойства открытых
множеств.

1) X, ∅ — открытые множества,

2) Если O1, O2, . . . , Ok какой-то произвольный конечный набор от-
крытых множеств, то пересечение этого набора тоже открытое
множество.

3) Сумма любого числа открытых множеств является открытым
множеством:
∀α ∈ I, Oa — открыто ⇒

∪
α∈I

Oa — открыто.

Доказательство.

1) ∀a ∈ X,Br(a) ⊂ X, r > 0 ⇒ X — открытое множество по опре-
делению. Если a ∈ ∅, то Br(a) ⊆ ∅ по смыслу импликации.

2) Пусть

a ∈
k∩
i=1

Oi ⇒ a ∈ Oi ∀i.

Существуют ri > 0 такие, что Bri(a) ⊆ Oi, r > 0. Пусть r =
min(r1, r2, . . . , rk), тогда Br(a) ⊆ Oi ∀i.

3) a ∈
∪
α∈I

Oα ⇒ ∃α : a ∈ Oα и ∃r > 0, что Br(a) ⊆ Oα ⊆
∪
α∈I

Oα. �

Предложение 1.2. Фундаментальные свойства замкнутых
множеств.

1) X, ∅, — замкнутые множества,

2) Если F1, F2, . . . , Fk — какой-то произвольный конечный набор за-
мкнутых множеств, то сумма множеств этого набора тоже за-
мкнутое множество.
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3) Пересечение любого числа замкнутых множеств является за-
мкнутым множеством:
∀α ∈ I, Fa — замкнуто ⇒

∩
α∈I

Fa замкнуто.

Доказательство.

1) X открыто, значит, его дополнение X −X = ∅ замкнуто.

2) Fi замкнуто ⇒ Oi = X − Fi− открыто
k∩
i=1

Oi =
k∩
i=1

(X − Fi) = X −
k∪
i=1

Fi открыто по первому

предложению, следовательно,
k∪
i=1

Fi замкнуто, так как является
дополнением к открытому.

3) Аналогично п.2 (нужно воспользоваться принципом двойствен-
ности). �

Определение 1.7. Пусть X — метрическое пространство,
M ⊆ X, точка a ∈ X называется предельной точкой для множе-
ства M, если каждая окрестность точки а содержит точку из M,
не равную a.

Теорема 1.1. Множество F ⊂ X замкнуто тогда и только
тогда, когда оно содержит все свои предельные точки.

Доказательство. Пусть F задано, по определению X − F =
O — открытое множество, по определению открытого множества в
нём нет предельных точек для F . Обратно. Пусть F содержит все
свои предельные точки. Рассмотрим множество X − F , a ∈ X − F ,
a — не предельная точка. Тогда ∃Va — окрестность точки a, кото-
рая не содержит точек из F , следовательно, Va ⊆ X − F ⇒ X − F
открыто. �

Определение 1.8. Пусть M ⊆ X, ρ. M — замыкание множе-
ства М есть множество М со всеми присоединенными к М предель-
ными точками.

Теорема 1.2. Замыкание множества М есть наименьшее за-
мкнутое множество, содержащее М.

Доказательство. Имеем, M — замкнутое множество. Пусть
a — предельная точка для M . Примем,что

V (a) = Br(a), r > 0, b ∈ Br(a) ∩ (M − a)
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∃ρ > 0, Bρ(b) ⊆ Br(a), ρ < r − ρ(a, b),∃m ∈ M,m ∈ Bρ(b) ⇒ m ∈
Br(a)⇒ a — предельная точка для M ⇒ a ∈M .

Пусть некоторое замкнутое множество F содержит M , тогда F
содержит все предельные точки для M , следовательно, F ⊇M . �

Определение 1.9. Дано метрическое пространство X, ρ. Мно-
жество M ⊆ X называется всюду плотным, если для M — замы-
кания M — выполняется M = X.

Пример. Пусть X ≡ R1, M — множество рациональных чисел.
M = R1, т. е. множество рациональных чисел всюду плотно.

Определение 1.10. Система множеств {Aα}α∈I покрывает
(есть покрытие множества) M ⊆ X, если∪

α∈I

Aα ⊇M.

Определение 1.11. Метрическое пространство X, ρ называ-
ется сепарабельным, если в X существует счетное всюду плотное
множество.

Пример. Пространство R1 сепарабельно, так как множество всех
рациональных чисел, входящие в него, счетно и всюду плотно.

Определение 1.12. Метрическое пространство X, ρ называ-
ется линделёфовым, если из любого покрытия X открытыми мно-
жествами можно выделить счетное покрытие, то есть, если

∀α ∈ I, Oα — открыто и
∪
α∈I

Oα ⊇ X, то ∃α1, α2, . . . , αn, . . . ∈ I, и
∞∪
i=1

Oαi
⊇ X.

Теорема 1.3. Сепарабельное метрическое пространство линде-
лёфово.

Доказательство. ПустьX, ρ сепарабельно и a1, a2, . . . , an, . . .—
счетное всюду плотное множество. Пусть система {Oα}α∈I открытых
множеств покрывает X, т. е.∪

α∈I
Oα ⊇ X.

Пусть a — произвольный элемент из X. Так как {Oα} покрывают X,
то ∃α ∈ I, a ∈ Oα ⇒ Br(a) ⊆ Oα (так как Oα открытое множество, то
содержит и шар радиуса r > 0 с центром в точке a), число r можно
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считать рациональным числом. Так как a1, a2, . . . , an, . . . всюду плот-
ное, то ∃am ∈ Br/3(a)⇒ a ∈ Br/3(am)⇒ Br/3(am) ⊆ Br(a) ⊆ Oα.

Рассмотрим совокупность полученных шаров {Br/3(am)}, когда a
пробегает все X. Система этих шаров счетная, так как r/3 пробе-
гает счетное множество (потому что r рациональное число), элемен-
тов am — тоже счетное количество, значит, система счетна. Но каждое
из них входит в некоторое Oα. Из покрытия {Oα} оставляем только
те множества, которые содержат шар из построенной совокупности,
их счетное число и они покрывают X. �

Определение 1.13. В метрическом пространстве X, ρ мно-
жество M называется ограниченным, если оно содержится в неко-
тором шаре конечного радиуса, т. е.

sup
a,b∈M

ρ(a, b) <∞.

Определение 1.14. Последовательность x1, x2, . . . , xn, . . . на-
зывается фундаментальной, если ∀ε > 0 ∃N ∀n > N и ∀m :
(ρ(xn+m, xn) < ε); N,n,m — натуральные числа.

Определение 1.15. Множество M метрического простран-
ства X, ρ называется компактным, если каждая последователь-
ность попарно различных элементов из X содержит подпоследо-
вательность, которая сходится к какому-то элементу из M, то
есть, если x1, x2, . . . , xn, . . . ∈M , то существует подпоследователь-
ность xn1, xn2, . . . и a ∈M , такие что lim

i→∞
xni = a.

Определение 1.16. Множество M метрического простран-
ства X, ρ называется вполне ограниченным, если каждая последо-
вательность попарно различных элементов из M содержит фунда-
ментальную подпоследовательность.

Теорема 1.4. Множество M вполне ограничено тогда и толь-
ко тогда когда ∀ε > 0 множество M можно покрыть конечным
числом шаров радиуса, не превосходящего ε.

Доказательство.

1) Пусть M вполне ограничено по определению. Пусть существу-
ет такое ε > 0, что M нельзя покрыть никаким конечным
числом шаров радиуса ε. Строим последовательность: в каче-
стве m1 берём любой элемент из M . Рассмотрим шар Bε(m1),
он не покрывает M ⇒ ∃ m2 /∈ Bε(m1),m2 ∈ M . Возьмем
Bε(m1)

∪
Bε(m2), они тоже не покрывают M , следовательно,
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∃m3 /∈ Bε(m1)
∪
Bε(m2),m3 ∈ M и т. д. На k-м шаге постро-

или m1,m2, . . . ,mk, такие что они не содержатся в сумме шаров
с центрами в предыдущих элементах с радиусом ε. Возьмем из
множества M−Bε(m1)

∪
Bε(m2) . . .

∪
Bε(mk) ̸= ∅ элемент mk+1,

получаем бесконечную последовательность попарно различных
элементов, таких что ρ(mi,mj) ≥ ε. Значит, из этой последова-
тельности никак нельзя выделить фундаментальную подпосле-
довательность, и предложение о существовании ε неверно.

2) Обратно. Пусть M можно покрыть конечным числом шаров ра-
диуса ε для любого ε, пусть x1, x2, . . . , xn, . . . — последователь-
ность элементов из M . Берём последовательность чисел ε1 >
ε2 > · · · εn > · · · > 0 такую, что

lim
n→∞

εn = 0.

Тогда M можно покрыть конечным числом шаров

Bε1(y1), Bε1(y2), . . . , Bε1(yp),

следовательно, в одном из этих шаров есть бесконечная подпо-
следовательность исходной последовательности:

{x(1)1 , x
(1)
2 , . . . } ⊆ {x1, x2 . . . }.

Рассуждаем аналогично с ε2 : Bε2(z1), Bε2(z2), . . . покрывают
M , а потому существует последовательность {x(2)1 , x

(2)
2 , . . . } ⊆

{x(1)1 , x
(1)
2 , . . . } ⊆ {x1, x2 . . . } и ρ(x(2)i , x

(2)
j ) < ε2 ∀i, j,

Продолжая, получаем следующую таблицу:

x
(1)
1 , x

(1)
2 , . . .←→ ε1,

x
(2)
1 , x

(2)
2 , . . .←→ ε2,

. . . . . . . . . . . . . . .

x
(k)
1 , x

(k)
2 , . . .←→ εk,

. . . . . . . . . . . . . . .

где каждая строка есть подмножество предыдущей. Выбираем
диагональную последовательность

x
(1)
1 , x

(2)
2 , . . . , x

(k)
k , . . . ρ(x

(i)
i , x

(i+m)
i+m ) < εi ∀m > 0.

Последовательность фундаментальна по построению. Таким об-
разом, из исходной последовательности выделили фундамен-
тальную подпоследовательность. �
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Теорема 1.5. Множество M , подмножество метрического
пространства X, ρ, компактно тогда и только тогда, когда из лю-
бого открытого покрытия M можно выделить конечное открытое
покрытие.

Доказательство.

1) Пусть M компактно по определению, значит, из любой после-
довательности можем выделить сходящуюся подпоследователь-
ность (а любая такая подпоследовательность фундаментальна),
следовательно, M является вполне ограниченным.
Возьмем последовательность εn ↓ 0. Берём ε1и покрываем M
конечным числом шаров Bε1(a

1
1) ∪Bε1(a

1
2) ∪ .. ∪Bε1(a

1
k1
) ⊇M.

Из каждого шара берем по одному элементу, принадлежаще-
му M :

{m(1)
1 ,m

(1)
2 , ..,m

(1)
k1
}.

Аналогично для ε2 получаем конечное подмножество:

{m(2)
1 ,m

(2)
2 , ..,m

(2)
k2
} ⊆M .

Повторяем этот процесс построения для всех

εl : {m(l)
1 ,m

(l)
2 , ..,m

(l)
kl
} ⊆M .

Объединяя эти последовательности, получаем счётную последо-
вательность

Φ ≡ {m(1)
1 ,m

(1)
2 , . . . ,m

(1)
k1
,m

(2)
1 ,m

(2)
2 , . . . ,m

(2)
k2
, . . . ,m

(l)
kl
, . . . },

которая тоже счетная. Она всюду плотная в M ⇒ Φ ⊇ M ⇒
(M рассматриваем как самостоятельное метрическое простран-
ство). Пространство M является сепарабельным и по теореме 3
линделёфовым. Так как M линделёфово, то из заданного покры-
тия можно выделить счётное подпокрытиеOα1

, Oα2
, . . . , Oαn

, . . . ,

αi ∈ I,
∞∪
i=1

Oαi
⊇ M . Начиная с i = 1 выкидываем Oαi

, если оно

содержится в сумме предыдущих. Оставшиеся, по-прежнему, по-
крывают M . Предполагая, что эта процедура проделана, выби-
раем элементы ai ∈ Oαi

−
∪
j<i

Oαj
, ai ∈ M . Не теряя общности и

пользуясь условием исходным компактности, будем считать, что
сама последовательность {ai} сходится к a, lim

m→∞
am = a. Для

некоторого αk a ∈ Oαk
, но aj /∈ Oαk

, если αj > αk. С другой
стороны, по определению предела в Oαk

содержатся все члены
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последовательности, начиная с какого-то номера. Получили про-
тиворечие. Значит, последовательность a1, a2, . . . , am, . . . не явля-
ется бесконечной, последовательность Oα1

, Oα2
, . . . , Oαn

, . . . тоже
конечная.

2) Далее, M ⊆ X, ρ и для M выполняется условие: из всякого
открытого покрытия M можно выделить конечное покрытие
M . Покажем, что M замкнутое множество: Пусть b /∈ M —
предельная точка множества M, b ∈ M , {m1,m2, ..,mk, . . .} ∈
M и lim

k→∞
mk = b множество {m1,m2, ..,mk, . . . , b} ≡ F за-

мкнутое, так как содержит в себе все свои предельные точ-
ки; тогда множество X − F = O открытое. Выберем откры-
тые множества Bk, такие что ∀k mk ∈ Bk, mi /∈ Bk ∀i ̸=
k Тогда B1, B2, . . . , Bk, . . . , O покрывают M . (По предположе-
нию из этого покрытия можно выделить конечное подпокры-
тие Bi1, Bi2, . . . , Bim, O, покрывающее M . Поэтому последова-
тельность m1,m2, . . . ,mk, . . . конечная, что противоречит по-
строению, следовательно M содержит все свои предельные точ-
ки, M замкнуто. Пусть теперь дана бесконечная последователь-
ность из M : a1, a2, . . . , an, . . . ⊆ M . Предположим, что из
этой последовательности нельзя выделить никакую сходящую-
ся подпоследовательность к элементу из M . Множество F =
{a1, a2, . . . , an, . . .} замкнутое, потому что содержит все свои пре-
дельные точки (иначе бы существовала подпоследовательность
сходящаяся к предельной точке)) Берем открытое множество
X − F = O и открытое множество Bn an ∈ Bn, am /∈ Bn ∀m ̸= n
B1, B2, . . . , Bk, . . . , O покрывают M , а потому можно выделить
конечное подпокрытие Bn1

∪
Bn2

∪
. . .
∪
Bnk

∪
O ⊇ M . Тогда

элементов a1, a2, . . . , an конечное число — опять противоречие,
значит, последовательность a1, a2, . . . , an . . . имеет сходящуюся
подпоследовательность. �

Краткий итог. При переходе от евклидово пространства En к
метрическому пространству X мы оставили лишь метрику ρ. Постро-
енная теория, опирающаяся только на метрику, получилась содержа-
тельной. Отметим, что во всех важнейших теоремах участвуют от-
крытые множества. Выделим существенные свойства открытого мно-
жества и пойдем дальше: откажемся от метрики. Будем строить тео-
рию, опираясь только на свойства открытого множества.

Хотя метрика пропадает из определения, она неявно, идеально,
полагается в некоторых организуемых ею отношениях. Фундамен-
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тальные свойства метрики раскрываются как определенные отноше-
ния в классе открытых множеств.

§ 2. Общие топологические пространства

Усилим напряжение предыдущей мысли, цитируя Дж.Л. Кел-
ли [25].

≪Путь, по которому эволюционировала общая топология, во мно-
гом характерен для математики. Сначала замечается сходство неко-
торых ситуаций, аналогии и повторения в рассуждениях. Затем пред-
принимаются попытки выделить понятия и методы, общие для раз-
личных примеров: при условии, что анализ достаточно глубок, есть
надежда найти теорию, которая охватывает многие или даже все на-
ши примеры и достойна самостоятельного изучения. Именно на этом
пути после длительного экспериментирования было получено понятие
топологического пространства. Оно — естественный продукт непре-
рывного процесса консолидации, абстрагирования и обобщения. Что-
бы избежать формализма и обобщения, каждую возникающую таким
образом абстракцию следует испытать с целью выяснения, действи-
тельно ли центральные идеи воплощены в ней. Это испытание обычно
заключается в сравнении абстрактно построенного объекта с объек-
тами, от которых он произошел.≫

Многие теоремы теории метрических пространств могут быть до-
казаны только с использованием свойств открытых множеств, кото-
рые мы назвали фундаментальными. Этот факт подсказывает важ-
ность введения рассмотрение пространств, в определении которых
эти свойства заложены.

1. Базовые определения.

Определение 2.1. Общим топологическим пространством на-
зывается множество X, в котором выделено семейство подмно-
жеств τ = {Qα}α∈I , где I — не пустое множество индексов, со
свойствами:

1. ∅, X ∈ τ , здесь ∅, как везде в этой лекции, обозначает пустое
множество;

2.
∩k
i=1Oαi

∈ τ , где при любом натуральном числе k

α1, α2, . . . , αk ∈ I;

3.
∪
α∈M Oαi

∈ τ , для любого множества M ⊆ I.
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Определение 2.2. Множества, которые входят в τ , называ-
ются открытыми множествами, говорят также, что в X опре-
делена топология τ .

Следующие определения даются по аналогии с теорией метриче-
ских пространств.

Определение 2.3. Замкнутым называется множество, кото-
рое является дополнением к открытому.

Определение 2.4. Окрестностью точки α называется любое
множество, содержащее открытое подмножество, которому при-
надлежит α.

Аналогично случаю метрических пространств, в терминах окрест-
ности и открытого множества определяются предельная точка, схо-
дящаяся последовательность, компактность, непрерывность. Дадим,
например, определение непрерывности в терминах открытых мно-
жеств. Пусть даны два топологических пространства X и Y , с то-
пологиями τ и σ соответственно. Отображение φ пространства X в
пространство Y называется непрерывным, если для любого O ∈ σ
множество φ−1(O) ∈ τ .

Пример. Топологическое доказательство бесконечности множе-
ства простых чисел. Рассмотрим следующую топологию на множе-
стве Z целых чисел. Положим для a, b ∈ Z, b > 0,

Na,b = {a+ nb : n ∈ Z}.
Каждое множество Na,b есть бесконечная в обе стороны арифмети-
ческая прогрессия. Назовем множество O ⊆ Z открытым, если O
пусто или для каждого α ∈ O существует такое b > 0, что Na,b ⊆ O.
(Замкнутыми называются множества S ⊆ Z, дополнения к которым
являются открытыми, и только такие множества.) Ясно, что объеди-
нение открытых множеств является открытым. Если O1, O2 — откры-
тые множества и a ∈ O1 ∩ O2, причем Na,b1 ⊆ O1 и Na,b2 ⊆ O2, для
которых b1, b2 ∈ Z, то a ∈ Na,b1b2 ⊆ O1 ∩ O2. Поэтому конечное пере-
сечение открытых множеств тоже открыто. Это семейство открытых
множеств индуцирует топологию на Z.

Теперь отметим два факта:
(A) Любое непустое открытое множество бесконечно.
(B) Любое Na,b является замкнутым.
В самом деле, (A) следует из определения. Далее заметим, что

Na,b = Z−
b−1∪
i=1

Na+i,b,
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значит, Na,b замкнуто как дополнение к открытому множеству. До
сих пор о простых числах мы не упоминали; теперь, наконец, они
появляются. Так так любое число n ̸= 1,−1 имеет некоторый про-
стой делитель p и, следовательно, содержится в N0,p, мы приходим к
выводу, что

Z− {1,−1} =
∪
p∈P

N0,p .

Если бы P было конечно, то
∪
p∈PN0,p было бы замкнуто как конечное

объединение замкнутых согласно (B) множеств. Поэтому {1,−1} как
дополнение к замкнутому множеству было бы открытым, что проти-
воречит (A).

Следует заметить, что не все результаты теории метрических про-
странств имеют место для общих топологических пространств. Так,
в метрических пространствах, если точка x является предельной точ-
кой для множества M , то существует последовательность принадле-
жащих M точек x1, x2, . . . , xn, . . . , которая сходится к x:

lim
n→∞

xn = x, xn ∈M.

В топологических пространствах возможна иная ситуация: точка x
может являться предельной для множества M , но ни одна последо-
вательность из M к ней не сходится. Такая ситуация часто имеет
место для так называемых слабых топологий в банаховых простран-
ствах. Чтобы определить предельную точку через сходимость после-
довательностей элементов, надо обобщить понятие последовательно-
сти.

Определение 2.5. Система множеств F = {Aα}α∈I , Aα ⊆ X
называется фильтром, если выполнены следующие условия:

1) Ни одно множество Aα не пустое, то есть Aα ̸= ⊘
для всех α ∈ I;
2) Пересечение конечного числа множеств из F принадлежит

мно жеству F : если Aα1
, Aα2

, ..., Aαk
∈ F , то Aα1

∩Aα2
∩...∩Aαk

∈ F ;
3) Если Aα ∈ F и B ⊇ Aα, то B ∈ F .
Дадим пример фильтра. Пусть a — точка топологического про-

странства X, a ∈ X. Тогда F = {V (a)} — множество всех окрестно-
стей точки a представляет собой фильтр.

Пусть даны два фильтра: Φ = {Bβ}β∈J , F = {Aα}α∈I .
Будем говорить, что фильтр Φ мажорирует фильтр F и обозна-

чать это так: Φ ≻ F , если каждое множество Aα из F принадлежит
также Φ: Aα ∈ F ⇒ Aα ∈ Φ.
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Определение 2.6. Фильтр F в топологическом простран-
стве X сходится к точке α, если F мажорирует фильтр окрест-
ностей точки α.

Покажем, что в метрическом пространстве сходимость последова-
тельности элементов эквивалентна сходимости определенного филь-
тра, построенного по последовательности.

Фильтр F для последовательности {xn}, n = 1, 2, . . . строит-
ся следующим образом. Сначала образуются множества SN , состо-
ящие из всех членов последовательности с номерами большими N .
Эта совокупность образует базис фильтра, то есть пересечение любо-
го конечного числа множеств SNi

, i = 1, 2, . . . k, не пусто. Искомый
фильтр F , который называется фильтром сечений последовательно-
сти {xn}, есть семейство множеств, каждое из которых содержит пе-
ресечение конечного числа множеств вида SN , или равносильно, про-
сто некоторое множество SN .

Пусть последовательность {xn} сходится к элементу x метриче-
ского пространства. Тогда, как следует из определения сходимости
в метрическом пространстве, любой шар Bε(x) с центром в точке x
радиуса ε содержит множество SN = {xN+1, xN+2, . . . } для некото-
рого N . То есть Bε(x) принадлежит фильтру сечений, и последний,
поэтому, мажорирует фильтр окрестности точки x.

Обратно, если фильтр сечений последовательности {xn} мажо-
рирует фильтр окрестностей точки x, то окрестность вида Bε(x) со-
держит сечение вида xN+1, xN+2, . . . , то есть все члены последова-
тельности, начиная с некоторого номера. Таким образом, x1, x2, . . .
сходится и в смысле старого определения.

Перейдем, наконец, к определению сходимости через семейство
элементов. Пусть множество индексов I частично упорядочено отно-
шением порядка ≤ и фильтруется вправо по этому порядку, то есть
∀i1, i2 ∈ I ∃i3 ∈ I : i1 ≤ i3 и i2 ≤ i3. Множества Ik = {i ∈ I : i ≥ k}
образуют, очевидно, базис фильтра, когда k пробегает I.

Определение 2.7. Направленность в X, τ — это семейство
элементов {xi}i∈I , где I частично упорядочено и фильтруется по
отношению к порядку. Направленность {xi} сходится по определе-
нию к x ∈ X, если для всякой окрестности V (x) точки x суще-
ствует k ∈ I, что xi ∈ V (x), если i ≥ k. Так определенная сходи-
мость, легко видеть, равносильна сходимости по фильтру подмно-
жеств F , порожденному базисными множествами

Φk = {xi : i ≥ k}, k ∈ I.
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Для общих топологических пространств справедливо утвержде-
ние: a — предельная точка множества M тогда и только тогда, когда
существует направленность из элементов M , отличных от a, сходя-
щаяся к a. Для доказательства утверждения надо взять фильтр F
окрестностей точки a в качестве множества индексов I. Отношение
порядка V 1(a) ≥ V 2(a), V 1(a), V 2(a) ∈ F на множестве I равносильно
включению V 1(a) ⊆ V 2(a). Соответствующая направленность возни-
кает, когда в каждом множестве V (a) ∩M выбираем элемент XV (a).

2. Аксиомы отделимости.
В топологических пространствах важную роль играет возмож-

ность отделить два множества друг от друга содержащими их от-
крытыми непересекающимися множествами.

Определение 2.8. Топологическое пространство (X, τ) удовле-
творяет первой аксиоме отделимости, и называется T1-простран-
ством, если для любых различных точек a и b из X существует
окрестность Va точки a, не содержащая b : b /∈ Va.

Определение 2.9. Топологическое пространство (X, τ) удовле-
творяет второй аксиоме отделимости, и называется T2-простран-
ством, или хаусдорфовым, или отделимым, если для любых двух
различных точек a и b из X существует окрестность Va точки a
и окрестность Vb точки b, которые не пересекаются: Va ∩ Vb = ∅.

Определение 2.10. Топологическое пространство (X, τ) удо-
влетворяет третьей аксиоме отделимости, и называется T3-про-
странством, или регулярным, если для любой его точки a и любого
замкнутого множества F , не содержащего a, существует окрест-
ность точки Va точки a и окрестность VF множества F , которые
не пересекаются: Va

∩
VF .

Определение 2.11. Топологическое пространство X называ-
ется вполне регулярным тогда и только тогда, когда для каждой
точки x и любой ее окрестности U существует непрерывная функ-
ция f на X со значениями в замкнутом интервале [0, 1], равная
нулю в точке x и единице на множестве X − U .

Определение 2.12. Топологическое пространство (X, τ) удо-
влетворяет четвертой аксиоме отделимости, и называется T4-
пространством, или нормальным, если для любых двух непересека-
ющихся замкнутых множеств F и Φ из X существуют их непе-
ресекающиеся окрестности VF и VΦ: VF ∩ VΦ = ∅.

Все метрические пространства нормальны.
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В дальнейшем обсуждаются только хаусдорфовы пространства,
и это не будет специально оговариваться. В частности, говоря о
нормальных пространствах, мы предполагаем, что все точки явля-
ются замкнутыми множествами. Это равносильно выполнению T2-
аксиомы.

Следующую теорему, важную для многих разделов математики,
приводим еще и потому, что ее доказательство полностью копирует
доказательство элементарной теоремы о компактности.

3. Теорема компактности Тихонова.
Компактные множества играют большую роль в теории евкли-

довых пространств. Встает вопрос: насколько богато компактными
множествами общее топологическое пространство? Оказывается, есть
конструкция (играющая важную роль сама по себе в функциональ-
ном анализе), которая по имеющимся компактным пространствам
позволяет построить новые компактные пространства. Эта конструк-
ция называется произведением топологических пространств по Тихо-
нову. Без подробного объяснения отметим, что для банаховых про-
странств конструкция произведения моделирует определение слабой
топологии.

Пусть X — топологическое хаусдорфово пространство с тополо-
гией τ = {Qα}α∈I .

Определение 2.13. Система множеств {Fβ}β∈I называется
центрированной, если каждое конечное подмножество семейства
имеет непустое пересечение:

Fβ1 ∩ Fβ2 ∩ ... ∩ Fβk ̸= ∅,

для любых натуральных k и индексов β1, . . . , βk из I.
Лемма 2.1. Пространство X компактно тогда и только

тогда, когда любая центрированная система замкнутых подмно-
жеств пространства X имеет не пустое пересечение.

Доказательство. Пусть X компактно, {Fβ}β∈I центриро-
вано, {Fβ}-замкнутое для любого β множество. Предположим,
что ∩β∈IFβ = ∅. Рассмотрим открытые множества Oβ = X −
Fβ. Система {Oβ} открытых множеств покрывает X. Из определе-
ния компактности следует, что из системы можно выделить мно-
жества Og1

, Og2
, . . . , Ogk

такие, что ∪ni=1Ogi
= X. Откуда следует,

что ∩ni=1Fgi
= ∅. Возникшее противоречие опровергает предположе-

ние. Аналогичными рассуждениями доказывается, что если любая
центрированная система замкнутых множеств пространства X имеет
не пустое пересечение, то X компактно. �
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Пусть дано множество топологических пространств Xi, i ∈ I. Об-
разуем новое множество, обозначаемое X =

∏
i∈I Xi, называемое де-

картовым произведением множеств Xi, i ∈ I. Элементами произведе-
ния являются функции φ, определенные на множестве индексов I и
отображающих каждый индекс i в элемент множества Xi : φ(i) ∈ Xi.
Других элементов X не содержит.

Если I линейно упорядочено (а часто I берется вполне упорядо-
ченным), то φ удобно представлять строкой, где индексы с выбран-
ным порядком на I представляют места, и где на месте, помеченном
индексом i стоит элемент Xi : φ(i) ∈ Xi. Если фиксирован порядок
индексов i1 < i2 < · · · < ik < · · · , то произведение X =

∏
i∈I Xi

записывают также в виде:

Xi1 ×Xi2 × · · · ×Xik × · · ·

К примеру, если I = {1, 2}, то Xi1 ×Xi2 представляется как мно-
жество функций φ таких, что φ(1) = x1 ∈ X1, φ(2) = x2 ∈ X2; таким
образом, как множество упорядоченных пар {(x1, x2) : x1 ∈ X1, x2 ∈
X2}.

Определим топологию на X, если на каждом Xi определена то-
пология τi.

Пусть α — любое конечное подмножество: α = {α1, α2, . . . , αk} ⊆
I, k — произвольно взятое натуральное число, индексы α1, α2, . . . , αk
также берутся произвольно из I. Пусть для каждого αi выбрано от-
крытое множество Oαi

∈ τi.
Подмножеству α поставим в соответствие множество Oα пред-

ставленное как следующее произведение:

α↔ Oα =
∏
i∈I

Yi, где Yi =

{
Xi, i /∈ α,
Oαj

, Oαj
∈ ταj

, i = αj ∈ α.

Топологию τ , называемую тихоновской топологией произведе-
ния X, задают всевозможные объединения множеств Oα.

Теорема 2.1 (Тихонов). Если каждое пространство Xi ком-
пактно, то и их произведение X =

∏
i∈I Xi компактно.

Доказательство. Пусть топология τi определяется системой
открытых множеств {O(i)

k }k∈Bi
, и относительно топологии τi про-

странство Xi компактно. Мы положили, что базисное открытое мно-
жество в X есть Oα = Oα

α1
× Oα

α2
× · · · × Oα

αk
× · · · , где Oα

αk
∈ τk,

α = (α1, α2, ..., αn), αk ∈ I. В произведении на месте, помеченном ин-
дексом j, не входящим в набор α, стоит множителем соответствующее
пространство Xj.



§ 2. Общие топологические пространства 195

Открытыми множествами по определению тихоновской тополо-
гии являются всевозможные объединения множеств Oα. По опреде-
лению замкнутое базисное множество F α = X − Oα есть дополне-
ние к базисному открытому множеству Oα. Множество F α, где α =
(α1, α2, . . . , αn), имеет следующее строение: F α = (F α

α1
×Xα2

× · · · ×
Xαn
×· · · )∪(Xα1

×F α
α2
×· · ·×Xαn

×· · · )∪· · ·∪(Xα1
×Xα2

×· · ·×F α
αn
×· · · ),

где каждое F α
αk

= X−Oα
αk

, k = 1, 2, . . . , n, а не выписанные сомножи-
тели в слагаемых совпадают с соответствующими пространствами.

Для краткой записи слагаемые в представлении F α обозначим
следующим образом:

F α = Φα
α1
∪ Φα

α2
∪ · · · ∪ Φα

αn
,

где

Φα
α1
=(F α

α1
×Xα2

×· · ·×Xαn
×· · · ), · · · ,Φα

αn
= (Xα1

×Xα2
×· · ·×F α

αn
×· · · ).

Множества вида Φα
i назовем фундаментальными замкнутыми

множествами.
Для доказательства теоремы достаточно показать, что если

какая-то система базисных замкнутых множеств вида z = {F α}, α ∈
J центрирована, то вся система имеет не пустое пересечение. Каждый
символ α обозначает конечный мультииндекс α = (α1, α2, . . . , αn),
α1, α2, . . . , αn ∈ I. Набор мультииндексов α из z есть J .

Возьмем конкретное множество F α из z и вместо него оставим
в системе ẑ фундаментальное замкнутое множество из его представ-
ления Φα

α1
= (F α

α1
× · · · ), где не выписанные сомножители совпадают

с соответствующими пространствами. Если теперь условие центриро-
ванности для z нарушается, то это означает, что будет центрирован-
ной система z, в которой у F α оставлены все слагаемые кроме Φα

α1
. В

этом случае, удаляя Φα
α1

, переходим к рассмотрению Φα
α2

и проводим
для него такие же рассуждения, как и для Φα

α1
. Если же условие цен-

трированности выполняется, то заменим в z множество F α на Φα
α1

и
переходим к следующему множеству из z. В любом случае в конце
концов вместо F α после выполнения вышеописанных операций оста-
ется одно слагаемое вида Φα

αk
. Аналогичные рассуждения проводим с

каждым множеством, входящим в z (вполне упорядочивая z и при-
меняя условие индуктивности). В итоге получаем центрированную
систему множеств вида: Φα

αi
= (F α

α1
× · · · ), где α пробегает исходное

множество мультииндексов J , а αi при фиксированном α есть индекс
из I, входящий в α. Напомним, что Xαi

− F α
αi
∈ ταi

, и по построению
система замкнутых множеств {F α

αi
}α∈J , отвечающих фиксированному

αi, центрирована в Xαi
.
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Пусть yαi
принадлежит пересечению этих множеств. Функция, ко-

торая ставит в соответствие αi элемент yαi
входит в каждое F α. �



Глава 13
Принцип организации и привлечения

идеального бытия

§ 1. Пример

Все числа распределяются на два класса — алгебраические и
трансцендентные. Число называется алгебраическим , если оно явля-
ется корнем алгебраического уравнения с рациональными коэффи-
циентами (не умаляя общности, эти коэффициенты можно считать
целыми); в противном случае число называют трансцендентным.

Теорема 1.1 (Эрмит). Основание натуральных логарифмов e
— число трансцендентное.

Доказательство. Допустим, что e служит корнем уравнения

c0 + c1e+ c2e
2 + . . .+ cme

m = 0, (1.1)

где все коэффициенты c0, . . . , cm — целые числа.
Основная идея: найти материал математического анализа, кото-

рый организует число e по своей сущности. Можно сказать и так: най-
ти идеальное бытие денотата e — пример рассуждения, где целиком
сущность e. Простой способ обнаружения ≪инобытия≫ e — просмот-
реть формулы из какого-либо справочника. Мы возьмем из известной
книги И.М. Рыжика и И.С. Градштейна [46] формулу∫

f(x)eax dx =
eax

a

n∑
k=0

(−1)kf
(k)(x)

ak
. (1.2)

Здесь f(x) — многочлен степени n, a — вещественное число, от-
личное от нуля.

Полагая в (1.2) a = −1 и заменяя неопределенный интеграл опре-
деленным, имеем∫ b

0

f(x)e−x dx = e−x[f(x) + f (1)(x) + · · ·+ f (n)(x)]
∣∣∣b
0
.

Обозначим выражение в квадратных скобках через F (x), получа-
ем

f(x) + f (1)(x) + · · ·+ f (n)(x) = F (x), (1.3)
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ebF (0) = F (b) + eb
∫ b

0

f(x)e−x dx.

Формула (1.3) целиком обусловлена сутью числа e, например, ис-
пользованием при выводе характеризующего функцию ex равенства:
y′(x) = y(x) .

Обладая свободой выбора полинома f , в частности, его степени
и выбора числа b, будем ≪развивать≫ содержание двух форм (1.3)
до получения противоречия. Сначала воспользуемся наличием ра-
венства (1.1). Полагая последовательно b = 0, 1, 2, . . . ,m; умножая
получаемые равенства соответственно на c0, c1, . . . , cm, складывая по-
лучаем

0 = c0F (0) + c1F (1) + · · ·+ cmF (m) +
m∑
i=0

cie
i

∫ i

0

f(x)e−x dx. (1.4)

Рассмотрим последнее слагаемое с сумме (1.4). Полагая c = |c0|+
|c1|+ . . .+ |cm|, i ∈ [0,m], M = max

x∈[0,m]
|f(x)|, имеем

∣∣∣ m∑
i=0

cie
i

∫ i

0

f(x)e−x dx
∣∣∣ < cem(m+ 1)mM. (1.5)

Если M допускает оценку вида M ≤ [φ(m)]q

q!
, где q стремится к

бесконечности с ростом степени n полинома f(x), а φ(m) — некото-
рое положительное число, зависящее от m, то правая часть (1.5) (а
вместе с ней и последнее слагаемое в (1.4)) стремятся к нулю с ро-
стом n. Итак, чтобы ≪избавиться≫ от последнего слагаемого в (1.4),
мы должны выбирать f(x), допускающим указанную оценку. Кроме
того желательно, чтобы F (0), F (1), . . . , F (m) были целыми числами,
имеющими определенное свойство, которое и привело к противоре-
чию.

Например, если F (0), F (1), . . . , F (m) — целые числа, кратные
числу p, а c0F (0) нет; при этом p связано с n.

Эти предварительные рассуждения можно реализовать , напри-
мер, выбирая f(x) таким:

f(x) =
1

(p− 1)!
xp−1(x− 1)p(x− 2)p · · · (x−m)p, (1.6)

p — простое число, больше m и |c0|. Имеем необходимую оценку

M ≤ 1

(p− 1)!
mp−1mp . . . =

(mm+1)p−1

(p− 1)!
mm.
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Далее, производные полинома f(x) порядка p и выше имеют целые
коэффициенты, делящиеся на p, ибо

(xl)(q) = l(l − 1) · · · (l − q + 1)xl−q, l ≥ q,

а при q ≥ p, произведение l(l−1) . . . (l−q+1) делится на p. С другой
стороны, при x = 1, 2, . . . ,m полиномы f(x) и его первые p − 1 про-
изводные обращаются в нуль, и это влечет, что F (0), F (1), . . . , F (m)
будут целыми числами, кратными p,

F (0) = f (p−1)(0) + f (p)(0) + · · ·

Все слагаемые , начиная со второго делятся на p , но f (p−1)(0) =
(−1)pm! и на p не делится. Итак, вся сумма

c0F (0) + c1F (1) + . . .+ cmF (m)

есть целое число, не делящиеся на p. Следовательно, при больших p
равенство (1.4) невозможно. �

Резюме. ≪Сработали≫:

1) идеальное бытие числа e;

2) устранение последнего слагаемого в (1.4) предельным процессом;

3) переход к целым числам и выявление свойства (делимость на p)
у всех слагаемых ciF (i), кроме одного.

Собственно, об идеальном бытии объекта идет речь в приводимом
ниже тексте из книги [24].

≪Характерный тип абстракции ведущий, к полному иг-
норированию физической природы геометрических объек-
тов, встречается не только в традиционных границах ма-
тематики. Примером служит предложенная Эрнстом Ма-
хом (на основе работ Джеймса Максвелла) трактовка по-
нятия температуры. Для определения температуры необхо-
димо ввести понятия теплового равновесия и теплового
контакта; последние же крайне трудно, если вообще воз-
можно , определить в логически приемлемых терминах. Од-
нако, как показывает анализ, все что на самом деле нуж-
но, — это свойство транзитивности теплового равновесия
, т. е. постулат (называемый иногда нулевым началом тер-
модинамики), утверждающий что если (A и B) и (A и C)
находятся в тепловом равновесии, то и (B и C) находятся
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в тепловом равновесии. Для полноты нужно ещё добавить
в некотором смысле обращение этого нулевого начала: если
A, B и C находятся в тепловом равновесии, то этим свой-
ством обладают (A и B) и (A и C). Так же, как в геометрии,
здесь необязательно знать логически точный смысл терми-
нов; достаточно уметь объединять их в осмысленные (т. е.
допустимые) предложения.≫

§ 2. Пример второй

Ориентируясь на приведенное высказывание Улама и Каца, орга-
низуем идеальное бытие множества рациональных чисел. Упор сде-
лаем на отношение порядка между ними. Напомним

Определение 2.1. Множество M упорядочено бинарным от-
ношением R(x, y), если выполняются свойства: ∀x ∈M ⇒ R(x, x),

∀x, y ∈M ⇒ R(x, y)&R(y, x)⇒ x = y,
∀x, y, z ∈M ⇒ R(x, y)&R(y, z)⇒ R(x, z).

Определение 2.2. Пусть множество M упорядочено отно-
шением R(x, y), a множество L — отношением S(x, y). Если су-
ществует взаимно однозначное отображение φ множества M на
множество L, сохраняющее порядок: R(x, y) ⇒ S(φ(x), φ(y)), бу-
дем говорить, что M и L порядково подобны (изоморфны) и имеют
одинаковый порядковый тип.

Разобьем линейно упорядоченные множества на непересекающи-
еся классы, собирая в один класс все множества, попарно подобные
между собой. Каждому такому классу сопоставим свой символ, ко-
торый назовём порядковым типом класса. Так , символ η будет оюо-
значать порядковый тип рациональных чисел с их естественным по-
рядком; символ λ — тип множества вещественных чисел; ω — тип
множества натуральных чисел.

Определение 2.3. Линейно упорядоченное множество M ,
не имеющее наименьшего или, иными словами, первого элемента
(такого a ∈ M , что ∀x ∈ M a ≤ x) и не имеющее наибольшего,
то есть последнего элемента (такого b ∈ M , что ∀x ∈ M b ≥ x),
называется неограниченным.

Определение 2.4. Линейно упорядоченное множество M
плотное, если в нем не существует соседних элементов, то есть
∀x, y ∈M,x < y, ∃z ∈M такое, что x < z < y.
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Порядковые типы η, λ представляют плотные и неограниченные
множества. Порядковый тип интервала (0,1) есть λ, потому что функ-
ция φ(x) = tg(πx− π

2 ) осуществляет взаимно однозначное монотонное
отображение интервала (0, 1) на всю прямую (−∞,+∞).

Теорема 2.1. Пусть A — счетное линейно упорядоченное мно-
жество, B — неограниченное плотное множество. Тогда существу-
ет подмножество множества B, которое подобно A : C ∼ A. Все
счетные, неограниченные, плотные множества подобны и, следова-
тельно, имеют тип η.

Доказательство. Представим A в виде последовательности :

A = {a1, a2, . . . , an, . . .}. (2.1)

Зафиксировав любой элемент b1 из B1 сопоставим его a1 : b1 ↔ a1.
Пусть элементам a1, a2, . . . , an поставлены в соответствие элементы
множества B : b1, b2, . . . , bn,, сохраняющие порядок элементов ai :
ai < aj ∼ bi < bj, i, j ∈ {1, . . . , n}. Рассмотрим элемент an+1 из A.
Вследствие неограниченности и плотности B найдется элемент bn+1

из B, который находится в том же отношении порядка к элементам
b1, b2, . . . , bn, что и a1, a2, . . . , an,. Ставим bn+1 в соответствие an+1.
Осталось положить C = {bi}, i = 1, 2, . . .

Пусть теперь, добавочно, A неограничено и плотно , а B счетно ,
то есть B представимо в виде последовательности :

B = {b1, b2, . . . , bn, . . .}. (2.2)

Требуемое соответствие между A и B строим так. Начинаем с a1
и ставим ему произвольно элемент из B, например b1. Далее берем
первый элемент из последовательности (2.2) , ещё не поставленный
в соответствие элементам A. В данном случае это b2. Из последова-
тельности (2.1) выбираем первый элемент, который к a1 относится
по порядку так же, как b2 к b1. На третьем шаге построения берем
сначала первый элемент из (2.1), ещё не поставленный в соответствие
элементам из B, и выбираем по нему элемент из B, находящийся в
таком же соответствии к уже выбранным, в каком находится взятый
последний элемент из A ко всем предыдущим. Поступая так и даль-
ше: при нечетным шаге 2i+ 1 выбирая первый элемент из (2.1), ещё
не участвовавший в соответствии; а при четном 2i, соответственно,
из (2.2), получаем соответствие между элементами множества A и B,
доказывающие их порядковое подобие. �

Итак, в целом множество рациональных чисел однозначно ха-
рактеризуется как линейно упорядоченное плотное неограниченное
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счетное множество. Везде, где появляется подобное отношение меж-
ду элементами какого-либо множества, можно считать, что ≪просту-
пают≫ на арене действия рациональные числа в своей совокупности.
Такое идеальное бытие совокупности рациональных чисел есть дей-
ственный инструмент в доказательствах (например, теоремы Уры-
сона о существовании непрерывной функции в топологических про-
странствах, излагаемой ниже)

§ 3. Теорема Урысона о продолжении функций

Лемма 3.1. Пусть даны нормальное топологическое простран-
ство (X, τ), замкнутое множество F ⊆ X и открытое множество
U , содержащее F . Тогда существует открытое множество Γ, со-
держащее F , замыкание Γ которого содержится в U :

F ⊆ Γ ⊆ Γ ⊆ U.

Доказательство. Множество Φ = X − U замкнуто и не пере-
секается с F . По аксиоме существует открытые множества Γ ⊇ F и
W ⊇ Φ такие, что они не пересекаются, Γ∩W = ∅. Ни одна точка W
не является предельной для Γ, и потому

Γ ∩W = ∅. (3.1)

Из формулы (3.1) следует, что Γ содержится в дополнении к W , в
множестве X −W ⊆ X − Φ = U . �

Лемму 3.1 можно интерпретировать следующим образом. Если
дана пара (F,U), состоящая из замкнутого множества F , содержа-
щегося в открытом множестве U , то она обладает ≪порождающей си-
лой≫, приводит в двум аналогичным парам (F,Γ) и (Γ, U), последние
в свою очередь порождают соответствующие пары и т. д.

Рассмотрим совокупность ε всех открытых множеств Γ, получае-
мых в описанном процессе, (U * ε). Множество ε линейно упорядоче-
но по включению. По построению оно не обладает ни первым, ни по-
следним элементом,то есть неограничено, а также плотно. Согласно
ранее доказанному ε изоморфно по порядку множеству рациональ-
ных чисел из интервала (0, 1).

Этот изоморфизм позволяет обозначить множества, входящие в ε,
через Γr, где r — рациональное число из (0, 1). При этом

r1 < r2 ⇒ Vr1 ⊆ V r1 ⊆ Γr2. (3.2)

Если обозначим X как Γ1, то условие (3.2) будет иметь место для
любого r ∈ (0, 1].
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Определим функцию f(x) на X следующим образом:

f(x) = inf{r : r ∈ (0, 1], x ∈ Γr}.

Рассмотрим следующую окрестность точки f(x) для положитель-
ных малых чисел ε:

D = (f(x)− ε; f(x) + ε),

предполагая, что 0 < f(x) < 1. Пусть f(y) ∈ D. Существует рацио-
нальные числа r1, r2, r3 такие, что

f(x)− ε < r1 < r2 < f(y) < r3 < f(x) + ε.

Отсюда следует, что y * Γr2 ⊇ Γr1, а потому

y ∈ Γr3 − Γr1, (3.3)

где последнее множество открыто. Обратно, легко видеть, что из
условия (3.3) следует f(y) ∈ D.

Таким образом, f−1(D) как сумма открытых множеств является
открытым множеством, а потому по определению функция f непре-
рывна в рассматриваемой точке x.

Непрерывность f в точке x, в которой f(x) = 1, устанавлива-
ется аналогичными рассуждениями, если вместо интервала D взять
интервал (f(x)− ε, 1].

В итоге, доказана следующая
Теорема 3.1. Пусть F и Φ — два замкнутых множества в

нормальном топологическом пространстве X, которые не пересе-
каются. Существует непрерывная функция (f(x), отображающая
X на интервал [0, 1], такая, что (f(x) = 0, если x ∈ F , и (f(x) = 1,
если x ∈ Φ.



Глава 14
Эволюция понятия величины в математике

Введение. В настоящей главе рассматривается ≪естествен-
ное≫ развитие понятия ≪вектор≫ в понятие ≪тензор≫ через общее по-
нятие векторного пространства.

Богатство содержания в развитии достигается через включение
в рассмотрение двойственности между векторным пространством и
его сопряженным (взаимные базисы) и рассмотрением ≪идеального
бытия≫ тензора (то, как он организует обширный математический
материал). Категорная характеристика тензора позволяет переходить
от полилинейных операторов к линейным.

Через ≪криволинейные≫ системы координат понятие тензора
можно обобщить на риманово пространство — общие топологические
пространства, где каждая точка обладает ≪евклидовой≫ окрестно-
стью. Ни категорный подход ни теория римановы пространств здесь
не излагаются. Мы ограничимся рассмотрением тензора в криволи-
нейных системах координат, введенных для евклидова пространства.

К рассмотрению величины как оператора (тензора) двойствен-
ным является рассмотрение величины как меры. Этот двойственный
подход здесь также не рассматривается.

К содержанию этой главы наиболее близка книга [20].

§ 1. Тензорное представление физических величин

1. Обобщение понятия ≪вектор≫.

Физическая величина — это физическое явление, которое устой-
чиво повторяется и достаточно полно характеризуется числовыми ха-
рактеристиками.

Пример. Сила — это определенный класс взаимодействий физи-
ческих тел (силовое,тепловое взаимодействие).

Понять явление — значит включить его в более широкий класс
явлений и выявить, какие связи оно организует в этом классе.

При геометрическом представлении силы a сила представляет-
ся с помощью вектора — направленного отрезка, |a| — величина си-
лы, длина этого отрезка. Недостатком приведенного математическо-
го описания силы является недостаточная определенность, присущая
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всякому интуитивному представлению. Для более точного определе-
ния в пространстве вводится система прямоугольных декартовых ко-
ординат (СК), и вектор характеризуется своими координатами в этой
системе.

Но сила – это взаимодействие между телами, и она по сущности
никак не зависит от выбора системы координат. И чтобы представить
инвариантность инвариантность силы относительно выбора СК рас-
смотрим сразу все СК. Всю эту актуальную бесконечность представ-
ляет закон, связывающие координаты a в двух системах: исходной
x = (x1, x2, x3) и новой xH = (xH1 , x

H
2 , x

H
3 ).

aHi =
3∑
i=1

ak
∂xHi
∂xk

, где i = 1, 2, 3, (1.1)

индексом ≪н≫ отмечаются величины в новой системе координат.
Закон (1.1) есть инвариантная характеристика изменений (при

переходе от одной СК к другой).
Определение 1.1. Пусть в каждой мыслимой СК указана

тройка чисел a1, a2, a3 таким образом, что при переходе от СК X
к СК XH (новой) координаты меняются по формуле (1.1), тогда
будем говорить, что это бесконечное множество троек опре-
деляет вектор. Важно, что можно задать только закон (1.1) и
координаты в одной априори фиксированной системе (актуальная
бесконечность всех систем переходит в потенциальную).

С целью вникнуть в суть ∂xHi /∂xk в определении 1.1 рассмотрим
следующий рисунок. Пусть координата x2 точки A изменилась на
∆x2 при сохранении остальных координат, A переходит в точку C.
Изменение координаты xH1 составит ∆xH1 .

∂xH1
∂x2

= lim
∆x2→∞

AB

AC
= cos a = cos(xH1 , x2) = (e2 · eH2 )

Исследуя этот вывод, получаем следующую формулу:

∂xk
∂xHi

=
∂xHi
∂xk

— для декартовых систем координат.

Анализируя определение 1.1, далее замечаем, что под координата-
ми a1, a2, a3 можно понимать элементы любого линейного простран-
ства (ЛП).
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Рис. 1. К определению 1.1

Определение 1.2. Если в каждой СК евклидова простран-
ства E3 указана упорядоченная тройка элементов a1, a2, a3 фикси-
рованного линейного пространства, которая при переходе от од-
ной СК к другой меняется по закону (1.1), то все эти тройки
образуют обобщенный вектор.

Данное определение естественным образом распространяется на
пространство En.

Пример. Пусть C∞ = {φ(x1, . . . , xn)} — множество бесконечно
дифференцируемых функций. Рассмотрим векторное пространство
линейных операторов L : C∞ −→ C∞.

В любой СК x = (x1, . . . , xn) в En указываем следующие n ли-
нейных операторов (

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)
= ∇.

где
∂

∂xi
есть оператор : φ −→ ∂φ

∂xi
. Покажем, что оператор∇ является

обобщенным вектором. Пусть выбрана другая система координат.

xHn = (xH1 , x
H
2 , ..., x

H
n ) −→

(
∂

∂xH1
,
∂

∂xH2
, ...,

∂

∂xHn

)
Физическая величина φ (скажем температура) задана в системе x,

в системе xH представляется так:

φ = φ(x1(x
H
1 , . . . , x

H
n ), . . . , xn(x

H
1 , . . . , x

H
n )).
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Поэтому

∂

∂xH1
φ(x1, . . . , xn) =

∂φ

∂x1

∂x1
∂xH1

+
∂φ

∂x2

∂x2
∂xH1

+ · · ·+

+
∂φ

∂xn

∂xn
∂xH1

=

(
n∑
k=1

∂

∂xk

∂xk
∂xH1

)
φ.

Таким образом, правило дифференцирования сложной функции
приводит к формуле

∂

∂xHi
=

n∑
k=1

∂xk
∂xHi

∂

∂xk

Следовательно, ∇ есть обобщенный вектор в линейном пространстве
операторов.

2. Аффинный ортогональный тензор.

Рассмотрим случай, когда в каждой СК пространства E3 в ка-
честве a1, a2, a3 будем брать сами векторы трехмерного пространства
E3, так что:

a1 = (a11, a12, a13), a2 = (a21, a22, a23), a3 = (a31, a32, a33).

Определение 1.3. Пусть для каждой СК указана упорядочен-
ная тройка векторов таким образом, что при переходе от одной
СК к другой она меняется по закону (1.1), тогда соответствующий
обобщенный вектор называется аффинным ортогональным тензо-
ром второго ранга (АОТ).

Если дан аффинный ортогональный тензор A = {(a1, a2, a3)} , то
каждой системе координат X ставим в соответствии матрицу

A=

a11 a12 a13
a21 a22 a23
a31 a32 a33

, где i-ю строку занимают координаты вектора ai.

При переходе к новой системе координатXH получаем матрицу AH =
(aHij ), i, j = 1, 2, 3. Имеем

aHi =
3∑

k=1

ak
∂xk
∂xHi

=
3∑

k=1

3∑
l=1

aklel
∂xk
∂xHi

.
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Здесь ei, eHi — орты соответствующих осей системы координат X
и XH . Тогда

eHj = (cos (xHj , x1), cos (x
H
j , x2), cos (x

H
j , x3)) =

(
∂xHj
∂x1

,
∂xHj
∂x2

∂xHj
∂x3

)
,

aHij = aHi · eHj , el · eHj = ∂xl
∂xHj

. Таким образом,

aHij =
3∑

k,l=1

akl
∂xk
∂xHi

∂xl
∂xHj

(1.2)

Обратное тоже верно. Если в любой СК указана матрица, элемен-
ты которой при переходе от одной СК к другой меняются по прави-
лу (1.2), то эта матрица определяет АОТ, обобщенными координатами
которого являются строки этой матрицы.

Примеры тензоров.
1. Тензор напряжений Коши.
Пусть в пространстве имеется сплошная среда, занимающая опре-

деленную область Ω. Рассмотрим площадку ∆S, окружающую точ-
ку P и ориентированную выбором единичной нормали n. Со стороны
частиц сплошной среды, которые расположены с той стороны пло-
щадки, куда направлен вектор n, действует сила F , плотность кото-

рой pn(x) = lim
∆S→∞

F⃗

∆S
≡ pn(P ), при x = P. В каждой точке сплош-

ной среды получаем три вектора: (p1(x), p2(x), p3(x)), где pei(x), где ei
выбирается как нормаль, pi — плотность силы, действующей на пло-
щадку S, перпендикулярную орту ei и проходящую через точку x.

Покажем , что эта тройка векторов образует тензор. Выберем ≪ку-
сок≫ сплошной среды в виде тетраэдера DABC, ребра DA,DC,DB
которого параллельны осям x1, x2, x3, а грань ABC имеет внешнюю
нормаль n = (n1, n2, n3) (рис. 2).

Выпишем все действующие наDABC, силы и приравняем их сум-
му нулю — условие равновесия.

На грань ABC со стороны оставшихся вне пирамиды частиц сре-
ды действует сила pn · S, на грань ADC — (−p2S2);, на грань DCB
— (−p1S1); на грань ADB — (−p3S3). Здесь через S, S1, S2, S3 обо-
значены площади соответствующих граней.

Пусть массовая плотность внешних сил есть f(x), тогда по опре-
делению f(x)ρ(x)dx есть сила, действующая на массу dm = ρ(x)dx,
заполняющую элементарный объем dx. На него же действует сила

инерции p(x)dx
dv

dt
(если среда находится в движении со скоростями

v(x, t) в точках x).
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Рис. 2. К определению тензора Коши

Итак, условие равновесия принимает вид

pnS −
3∑
i=1

piSi + ρ(x)f(x)V − ρ(x)dv
dt
V = 0, (1.3)

где V — объем пирамиды ABCD, который предполагается малым
и стягивается к точке D. Поделим (1.3) на S и перейдем к пределу,
когда A,B,C → D

pn(P )−
3∑
i=1

pi(P )
Si
S

+ f(P )ρ(P ) lim
s→0

V

S
− ρ(P )a(P ) lim

s→0

V

S
= 0.

Здесь Si/S = cos (̂ei, n) = ni, поскольку Si — проекция S. Таким
образом, получаем:

pn(P ) =
3∑
i=1

nipi(P ). (1.4)

Перейдем от СК (e1, e2, e3) к новой СК (eH1 , e
H
2 , e

H
3 ). В формуле (1.4)

примем n = eHk . Тогда

pHk (P ) =
3∑
i=1

pi(P ) cos
̂(eHk , ei), но cos ̂(eHk , e⃗i) =

∂xi
∂xHk

≡ ∂xHk
∂xi

.

Таким образом, pHk (P ) =
3∑
i=1

pi(P )
∂xHk
∂xi

. Мы видим, что тройка векто-

ров (p1, p2, p3) образует тензор (напряжений Коши).
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В любой СК тензор напряжений Коши ставит в соответствии еди-
ничному вектору n по формуле (1.4) вектор pn.

3. Интерпретация тензора как оператора.

Любой тензор определяет некоторый оператор в базисном вектор-
ном пространстве. Обратно, любой линейный оператор в векторном
пространстве можно рассматривать как тензор.

1) Вначале рассмотрим пространство E3, A = (a1, a2, a3), где

ai =

a1ia2i
a3i

 ,

т. е. мы перешли к записи ai как вектора столбца. Таким образом,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ,

а в новой координатной системе:

aHij =
n∑
k=1

aki
∂xk
∂xHi

∂xi
∂xHj

.

Определим оператор в E3 формулой: вектору b = (b1, b2, b3) по-
ставим в соответствие вектор c = b1a1 + b2a2 + b3a3. Проверим, что
значение c оператора не зависит от выбора координатной системы,
представляющей b.

Для другой системы коордиинат:

b = (bH1 , b
H
2 , b

H
3 ), A = (aH1 , a

H
2 , a

H
3 ),

b⃗ −→
3∑
i=1

bHi a
H
i =

3∑
i=1

bj
∂xj
∂xHi

ak
∂xHj
∂xk

=

=
3∑
i=1

bjak


3∑
i=1

bj
∂xj
∂xHi

∂xHi
∂xk︸ ︷︷ ︸

∂xj
∂xk

 =
3∑

k=1

bkak = c,



§ 1. Тензорное представление физических величин 211

т. е. получаем тот же самый вектор c в независимости от системы
координат.

2) Обратно. Пусть дан линейный оператор A :E3 → E3. Фик-
сируем в E3 некоторый базис (e1, e2, e3) и рассмотрим векторы
(Ae1, Ae2, Ae3). Убедимся, что тройка векторов ai = Aei, i = 1, 2, 3
образует тензор. Перейдем к новой СК:

(eH1 , e
H
2 , e

H
3 ) −→ (AeH1 , Ae

H
2 , Ae

H
3 ),

AeH1 = A

(
3∑
i=1

ai1Aei

)
=

3∑
i=1

ai1Aei,

где

eHi =
3∑
i=1

ai1ei, ai1 = eH1 ei = cos (xi, x
H
1 ),

AeH1 =
3∑
i=1

cos (xH1 , xi)Aei =
3∑
i=1

ai
∂xi
∂xH1

= aH1 . �

Сравним матрицу оператора A и матрицу тензора A = (a1, a2, a3).
По определению Aek = ak, так как в матрице оператора в k-м столбце
записываются координаты вектора Aek, то матрица тензора совпада-
ет с матрицей оператора.

Пример. Комплексные числа. Пусть C — множество ком-
плексных чисел; E2 — евклидово двумерное пространство. Рассмот-
рим в нем следующий оператор A: каждый вектор a поворачивается
на угол φ по часовой стелке, а длина |a| увеличивается в λ раз, где
λ > 0. По доказанной теореме этому оператору соответствует неко-
торый тензор. Выясним, что это за тензор.

Зафиксируем СК. Пусть a = (x1, x2), тогда
A(a) = (λ(x1 cosφ+ x2 sinφ, λ(−x1 sinφ+ x2 cosφ)).
Составим матрицу оператора A. Для этого применим последова-

тельно оператор к (1, 0), а затем к (0, 1):

A =

(
λ cosφ λ sinφ
−λ sinφ λ cosφ

)
= λ

(
cosφ sinφ
− sinφ cosφ

)
=

= λ cosφ

(
1 0
0 1

)
+ λ sinφ

(
0 1
−1 0

)
.

Нашему оператору соответствует следующее представление:

λ(cosφI + sinφJ), где I =

(
1 0
0 1

)
, а
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J =

(
0 1
−1 0

)
, J2 =

(
−1 0
0 −1

)
= −1.

Любое комплексное число имеет вид λ(cosφ+i sinφ), где i =
√
−1.

Сравнивая представления, оператора и комплексного числа, делаем
заключение: линейное пространство операторов A изоморфно про-
странству комплексных чисел.

Вывод. Множество C комплексных чисел мы можем рассмат-
ривать как множество тензоров второго ранга.

§ 2. Общее определение тензора

1. Двойственное определение тензора для криволиней-
ных координатных систем.

Пусть Ω ⊂ En,En — евклидово пространство, координаты точек Ω
являются функциями параметров α1, α2, . . . , αm:

x1 = x1(α1, α2, ..., αm)

. . . . . . . . . . . . . . . . . . . . . (2.1)
xn = x1(α1, α2, . . . , αm)

Предполагается, что декартова система координат x фиксирова-
на, точки α = (α1, α2, . . . , αm) принадлежат области D евклидова
пространства Em, m ≤ n. Числа α1, α2, . . . , αm называются криволи-
нейными координатами в Ω.

Примерами криволинейных координат в E3 служат сферические
координаты r, θ, φ :

x1 = r sin θ cosφ,

x2 = r sin θ cosφ,

x3 = r cos θ,

0 6 r <∞, 0 6 θ < π, 0 6 φ < 2π,

цилиндрические координаты r, φ, z :

x1 = r cosφ,

x2 = r sinφ,

x3 = z

0 6 r <∞, 0 6 φ 6 2π, −∞ < z <∞.
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В этих примерах m = n = 3. Если m = n − 1, то получаем гипер-
поверхность в En. Так, поверхность в E3 определяется уравнениями:
x1 = x1(α

1, α2), x2 = x2(α
1, α2), x3 = x3(α

1, α2), α = (α1, α2) ∈ D.
Если m = 1, в En, получаем кривую xi = xi(α), i = 1, . . . , n,

α ∈ [a, b].
В общем случае функция x = x(α) определяет многообразие раз-

мерности m в пространстве En.

1.1. Рассмотрим подробнее случай m = n = 3 и попробуем вы-
явить инварианты, связанные с функцией x = x(α) при определенных
преобразованиях. Мы уже не раз отмечали, что инварианты обеспе-
чивают развитие теории.

Пусть r = r(α1, α2, α3) — радиус вектор точки области, которая
характеризуется тремя криволинейными координатами (α1, α2, α3).
Возникают функции

xi = xi(α
1, α2, α3) и αi = αi(x1, x2, x3), i = 1, 2, 3.

Введем векторы

r1 =
∂r

∂α2
, r2 =

∂r

∂α2
, r3 =

∂r

∂α3
.

По определению частной производной r1, r2, r3 — касательные к кри-
вым, на которых у точки меняется соответственно только α1, α2

или α3. Зададим следующую тройку чисел a1H , a
2
H , a

3
H для вектора

a = (a1, a2, a3), заданного декартовыми координатами a1, a2, a3:

aiH =
3∑

k=1

ak
∂αi

∂xk
, i = 1, 2, 3.

По этой тройке чисел построим вектор:
3∑
i=1

aiHri. (2.2)

Определим тройку чисел:

aHi =
3∑

k=1

ak
∂xk
∂αi

.

Этой тройке чисел поставим в соответствие вектор:
3∑
i=1

air
i, (2.3)
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где ri определяется равенствами ri · rj =

{
1, i = j,

0, i ̸= j.
Тройка векто-

ров {ri} называется базисом, взаимным с базисом {rj}. При переходе
к криволинейным координатам следующие величины в общем не рав-
ны:

∂α1

∂xk
̸= ∂xk

∂α1
.

Докажем, что векторы (2.2) и (2.3) совпадают с вектором a (инвари-
антны относительно перехода от {ri} к {rj}). Проверим равенство:∑

i

aiHri = a

∑
i

aiHri =
∑
i,j

aj
∂αi

∂xj
ri =

∑
i,j

aj
∂αi

∂xj

∂r

∂αi
=
∑
i,j,k

aj
∂αi

∂xj
ek
∂xk
∂αi

=

=
∑
j,k

ek
∑
i

aj
∂αi

∂xj

∂xk
∂αi

=
∑
j,k

ekaj
∂xk
∂xj

.

Здесь
∂xk
∂xj

= δkj, поэтому из всей суммы по j останется только одно

слагаемое при k=j. Получим:∑
i

aiHri =
∑

akek = a.

Аналогично доказывается, что вектор a совпадает с (2.3):
3∑

k=1

aHi r
i = a,

∑
i

aHi r
i =

∑
i,j

aj
∂xj

∂αi
ri =

∑
i,j,k

aj
∂xj

∂αi
ek
∂αi

∂xk
=

=
∑
j,k

ek
∑
i

aj
∂xj

∂αi

∂αi

∂xk
=
∑
j,k

ekaj
∂xj

∂xk
.

Здесь
∂xj

∂xk
= δkj, поэтому из всей суммы по j останется только одно

слагаемое при k=j. Получим:∑
i

aHi r
i =

∑
akek = a.
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Таким образом, имеем:

a =
∑

aiHri =
∑

aHi r
i. (2.4)

Определение 2.1. Числа {aiH} называются контравариантны-
ми компонентами вектора a, числа {aHi } называются ковариантны-
ми компонентами вектора a.

Вектор a, представленный в виде в виде (2.2), называется контра-
вариантным вектором, а в виде (2.3), — ковариантным вектором.

Легко проверяется, что при переходе от системы координат
(α1, α2, α3) к другой криволинейной системе координат (β1, β2, β3),
контравариантные компоненты меняются по закону:

ai =
3∑

k=1

ak
∂βi

∂αk
, (2.5)

а ковариантные компоненты меняются по закону:

ai =
3∑

k=1

ak
∂αk

∂βi
. (2.6)

Пользуясь рассмотренным подробно случаем представлении век-
тора a в криволинейной системе координат E3, введем следующие
общие определения.

Определение 2.2. Пусть для любой криволинейной СК (α1,
α2, . . . , αm), определенной на многообразии Ω, указаны функ-
ции A1(α), A2(α), . . .Am(α), на Ω. Пусть при переходе от одной
криволинейной СК к другой эти функции меняются по правилу

AH
k =

m∑
i=1

Ai
∂αi

∂αHk
. Тогда будем говорить, что совокупность функ-

ций A1(α) . . . Am(α) образует ковариантный вектор.
Определение 2.3. Если в каждой криволинейной СК на мно-

гообразии Ω указаны m функций A1(α) . . . Am(α) т.о., что при пере-

ходе к новой СК αH они меняются по закону Ak
H =

m∑
i=1

Ai∂α
H
k

∂αi
, то

они образуют контравариантный вектор.
В общем случае

∂αi
∂αHk

̸= ∂αHk
∂αi

,
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но для декартовой СК контравариантные и ковариантные координа-
ты векторы совпадают.

Определение 2.4. Пусть в криволинейной СК (α1, . . . , αm),
указаны m2 функций Aij(α) таким образом, что при переходе от од-

ной СК к другой они меняются по закону AH
ij (α

H) =
m∑

p,q=1
Apq

∂αp

∂αH
i

∂αq

∂αH
j
.

Тогда будем говорить, эти функции определяют ковариантный
тензор второго ранга.

Определение 2.5. Пусть в криволинейной СК определены m2

функций Aij(α), i, j = 1, 2 . . . ,m, на многообразии Ω и при пе-
реходе от одной СК к другой они меняются по закону Aij

H =
m∑

p,q=1

Apq∂α
i
H

∂αp
∂αjH
∂αq

. Тогда будем говорить, что эти функции опреде-

ляют контравариантный тензор второго ранга

Аналогично определяется тензор любого ранга. Например, тензор
третьего ранга определяется m3 функциями {Aijk(α)} и соответству-
ющим правилом преобразования.

2. Примеры.

Пусть S ⊆ E3 — поверхность: r = r(α), α = (α1, α2) ∈ D.
Точки, у которых меняется только α2 или только α1 образуют ко-

ординатные линии α2 и α1 на S. Рассмотрим векторы, касательные к
координатным линиям αi. Пусть ∂r

∂α1 ≡ r1;
∂r
∂α2 ≡ r2. Поставим в соот-

ветствие каждой точке α ∈ D матрицу (gij) = (ri · rj), i, j = {1, 2}.

Покажем, что g ≡
(
g11 g12
g21 g22

)
— ковариантный тензор. Действитель-

но,

gHij =
∂r

∂αiH
· ∂r
∂αjH

=
∑
p,q

∂r

∂αp
∂αp

∂αiH

∂r

∂αq
∂αq

∂αjH
=
∑
p,q

∂αp

∂αiH

∂αq

∂αjH
gpq,

т. е. g является ковариантным тензором, который называется метри-
ческим тензором поверхности.

В общем случае, пусть задано многообразие Ω ⊆ Em криволиней-
ной системой координат (α1, . . . , αn). Положение каждой частицы Em

определяется радиус-вектором r = r(α1, . . . , αn). Вновь строим мат-
рицу g = (gij)

n
i,j=1, где g = rαi · rαj , матрица определяет тензор, кото-

рый является ковариантным и называется фундаментальным мет-
рическим тензором многообразия Ω.
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Вернемся к рассмотрению евклидового пространства E3 и поверх-
ности S. В каждой точке S рассматривается нормаль n единичной
длины: |n| = 1, n ⊥ S. Определяем функции bij(α) следующим обра-

зом: bij = ni · rj, где ni =
∂n

∂αi
, rj =

∂r

∂αj
.

Матрица bij ≡ h также является тензором, который называется
тензором второй квадратичной формы поверхности.

Система функций (cij(α)), где cij = ni · nj ≡ γij определяет тез-
ор — тензор третьей квадратичной формы поверхности.

Гаусс доказал, что тензоры g, h, γ определяют поверхность с точ-
ностью до положения в пространстве, и что между ними имеет место
следуещее соотношение:

γij − 2Hhij +Kgij = 0,

где H — средняя кривизна поверхности, равная k1+k2
2 , K — полная

кривизна поверхности, равная k1k2, где k1, k2 — главные кривизны
координатных линий α1 и α2 соответственно.

§ 3. Начала тензорного анализа

1. Операции поднятия и опускания индекса тензора.
Операции, которые мы сейчас введем и изучим, важны для представ-
ления тензора инвариантными выражениями при переходе от рас-
сматриваемого базиса к взаимному.

Рассмотрим контравариантный вектор a = (a1, a2, . . . , an). Пока-
жем, что функции

ai =
n∑
k=1

akgik ≡ akgik (3.1)

образуют ковариантный вектор. Для последнего выражения принято
соглашение, знак Σ опускать, подразумевая, что по повторяющемуся
индексу, который встречается и вверху, и внизу, проводится сумми-
рование.

Операция, определяемая формулой (3.1), называется операцией
опускания индекса у вектора a.

Если дан тензор второго ранга {aij}, то операция опускания ин-
декса определяется следующим образом:

a·ji· = akjgki,

где по j вектор ведет себя как контравариантный тензор; по i — как
ковариантный тензор, т. е. при замене переменных эти компоненты
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тензора преобразуются по закону:

a·ji· =
n∑

p,q=1

a·pq·
∂αq

∂αiH

∂αjH
∂αp

и задают смешанный тензор второго ранга.
Можно опустить оба индекса и получить ковариантные компонен-

ты:
aij = aklgkiglj.

Рассмотрим более подробно (3.1).
a1g11 + a2g12 + . . . + ang1n = a1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a1gn1 + a2gn2 + . . . + angnn = an

Пользуясь этой системой равенств, мы можем (a1, a2, . . . , an) вы-
разить через (a1, a2, . . . , an) :

ak =
1

∆

∣∣∣∣∣∣
g11 . . . a1 . . . g1n
. . . . . . . . . . . . . . . . . . . . .
gn1 . . . an . . . gnn

∣∣∣∣∣∣ =
n∑
i=1

aig
ik ⇒ ak = aig

ik

где ∆ — определитель системы, а gik есть алгебраическое дополнение
к gik, деленное на ∆.

Доказывается, что gik — тензор с контравариантными компонен-
тами.

Если применим операцию опускания индексов у тензора {gik}, то
получим фундаментальный метрический тензор:

(gikgiα)gkβ = δkαgkβ = gαβ.

2. Тензоры как элементы пространства формальных вы-
ражений

Рассмотрим контравариантный тензор a = (aij), i, j = 1, 2, 3. По-
ставим ему в соответствие формальное выражение

∑
i,j

aijrirj. Опе-

рации сложения и умножения на число над подобными формаль-
ными выражениями определим естественным образом. Покажем,
что

∑
i,j

aijrirj инвариантно относительно преобразований СК, от

СК (α1, α2, α3) перейдем к новой СК (α1H , α2H , α3H). Поскольку
(r1, r2, r3) образуют обобщенный ковариантный вектор, то∑

i,j

aijrirj =
∑
i,j

∑
p,q

ap,qH
∂αi

∂αpH

∂αj

∂αqH

(∑
m

rHm
∂αmH
∂αi

)(∑
n

rHn
∂αnH
∂αj

)
=
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=
∑
m

∑
n

rHmr
H
n

∑
i,j,p,q

ap,qH

(
∂αmH
∂αi

∂αi

∂αp

)
︸ ︷︷ ︸

∂αm
H

∂αp =δmp

(
∂αnH
∂αj

∂αj

∂αqH

)
=
∑
p,q

ap,qH rHp r
H
q .

В силу инвариантности формального выражения тензор a опреде-
ляет оператор в том пространстве, в которое вложено многообразие Ω:
если b ∈ E3, то b →

∑
i,j

aijri(rjb) — рассмотренная выше инвариант-

ность означает, что данное определение корректно, т. е. не зависит от
СК. Изложенные выше рассуждения можно провести относительно
тензора (ai1i2 . . . ik) ранга k. Инвариантном будет формальное выра-
жение ai1i2 . . . ikri1ri2 . . . rik.

Рассмотрим многообразие размерности два, то есть поверхность
в E3, где уравнение поверхности S есть r = r(α1, α2), (α1, α2) ∈ D.

Пусть ri = ∂r
∂αi , i = 1, 2, ri · rj = gij, если a = a1r1 + a2r2, то

пара (a1, a2) образует контравариантный вектор и если a = a1r
1 +

a2r
2, ri · rj = gij, то пара (a1, a2) образует ковариантный вектор на

поверхности S, при условии, что
∑
i

airi и
∑
i

air
i есть инвариантные

формальные выражения.
Пусть дан тензор gij = (ri · rj), ему соотносится формальное вы-

ражение
∑
i,j

gijrirj. В общем случае, если некоторое множество Ω па-

раметризовано параметрами (α1, . . . , αn) и находится в Em, то опре-
делено n2 функций {gij}ni,j=1 = {ri · rj} так, что квадратичная форма∑
i,j

gij(α)dαidαj положительно определена.

Эта форма определяет расстояние в Em между точками многооб-
разия (α1, . . . , αn) и (α1 + dα1, . . . , αn + dαn) по формуле:

ρ(α, α+ dα) =
n∑

i,j=1

gijdα
idαj.

Определение 3.1. Многообразие Ω с определенным таким обра-
зом расстоянием между двумя соседними бесконечно близкими точ-
ками называется римановым пространством с метрикой g = {gij}.

3. Тензорная производная.
Рассмотрим на Ω фундаментальный метрический тензор (gij) =

(ri · rj), а также систему чисел:

Γl,ij =
1

2

{
∂gil
∂αj

+
∂gjl
∂αi
− ∂gij
∂αl

}
. (3.2)
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где i, j, l ∈ {1, . . . ,m}. Эту систему чисел мы назовем символами
Кристоффеля I рода, и определяются они вторыми производными от
радиус-вектора r, характеризующего положение в En точки многооб-
разия α = (α1, . . . , αm).

Покажем, что Γl,ij = rl · rij, где rl =
∂r

∂αl
, rij =

∂2r

∂αi∂αj
:

Γl,ij =
1

2

{
∂

∂αj

(
∂r

∂αi
∂r

∂αl

)
+

∂

∂αi

(
∂r

∂αj
∂r

∂αl

)
− ∂

∂αl

(
∂r

∂αi
∂r

∂αj

)}
=

=
1

2

{
∂2r

∂αj∂αi
∂r

∂αl
+

∂r

∂αi
∂2r

∂αl∂αj
+ rijrl + rjrli − rilrj − rirjl

}
= rijrl,

т. е. (3.2) выполняется.
Числа вида Γlij = glkΓk,ij, будем называть символами Кристоф-

феля II рода, Γlij =
n∑
k=1

glkΓk,ij, Γlij = rl · rij, где rl = glkrk.

Важность символов Кристоффеля состоит в том, что через них
можно выразить вторые производные r:

rij = Γlijrl (3.3)

Умножим (3.3) скалярно на rp, тогда rij · rp =
∑
l

Γlij(rl · rp), т. е.

равенство Γpij = rp · rij верно.
Перейдем к другой СК: α→ αH .

Γl,ij =
1

2

(
∂glj
∂αi

+
∂gli
∂αj
− ∂gij
∂αl

)
=

1

2

(
∂

∂αi

∑
p,q

(
gHpq
∂αpH
∂αl

∂αqH
∂αj

)
+ . . .

)
,

gHpq = gHpq(α
1
H , . . . , α

m
H),

Γl,ij =
m∑

p,q,r=1

ΓHp,qr
∂αpH
∂αl

∂αqH
∂αi

∂αrH
∂αj

+
m∑

p,q=1

∂αpH
∂αl

∂2αqH
∂αi∂αj

· gHpq.

Таким образом, система символов Кристоффеля не является тен-
зором. Возникает вопрос: каким образом их нужно ≪подправить≫,
чтобы получить тензоры?

Пусть a =
m∑
i=1

airi. Тогда

∂a

∂αj
=

m∑
i=1

(
∂ai

∂αj
ri + ai

∂ri
∂αj

)
=

m∑
i=1

(
∂ai

∂αj
ri + airij

)
=
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=
m∑
i=1

(
∂ai

∂αj
ri + aiΓlijrl

)
==

m∑
i=1

(
∂al

∂αj
+
∑
i

aiΓlij

)
rl.

Таким образом,

∂

∂αj

(∑
i

airi

)
=

m∑
i=1

(
∂al

∂αj
+

m∑
i=1

aiΓlij

)
rl. (3.4)

По определению
∂al

∂αj
+ aiΓlij = ∇ja

l

есть ковариантная производная от al. Система m2 функций {∇ja
i}

образуют тензор. Это следует из равенства (3.4), которое можно пе-
реписать так:

∂a

∂αj
=

m∑
l=1

(∇ja
l)rl.

Другая важная особенность символов Кристоффеля состоит в том,
что через них явно выражаются производные от тензора.

Пусть A = (alk) — контравариантный тензор, и A =
m∑

l,k=1

alkrlrk —

инвариантное формальное выражение этого тензора.
Легко доказать, что

∂

∂αj
A =

m∑
l,k=1

∇ja
lkrlrk, где ∇ja

lk =
∂alk

∂αj
+
∑
p

Γkjpa
lp +

∑
q

Γljqa
qk.

Отметим, что ковариантная производная от ковариантных ком-
понент вектора берется по формуле:

∇ja
l =

∂al
∂αj
− aiΓijl (по i суммируется!).

4. Тензоры в физической теории пространства.

В общей теории относительности физическое пространство счита-
ется четырехмерным римановым пространством. Фундаментальную
роль в теории этого пространства играет тензор Римана — Кристоф-
феля

Riνλµ =
1

2

{
∂2giµ
∂xν∂xλ

− ∂2giλ
∂xν∂xµ

− ∂2gνµ
∂xi∂xλ

+
∂2gνλ
∂xi∂xµ

}
−
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− gρσΓσ,λiΓρ,µν + gρσΓσ,λνΓρ,µi.

и производный от него тензор Риччи

Rνλ = giµRiνλµ.

Напоминаем, что по повторяющимся индексам производится сум-
мирование.

Основное уравнение общей теории относительности получено
Д. Гильбертом:

Rik −
1

2
gikR =

8ΠG

c4
Tik.

Здесь R = Rikgik, Tik — тензор энергии-импульса материи, компонен-
ты которого выражаются через плотность, потоки импульса и другие
величины, характеризующие материю и ее движение; c, Π, G — кон-
станты. c — скорость света, G — постоянная тяготения.



Глава 15
Доказательства с помощью компьютера

Введение

В современных математических исследованиях все шире практи-
куется использование компьютеров для проведения доказательств. В
этой главе мы продемонстрируем возможности применения вычис-
лительных машин на примере так называемых конфигурационных
теорем, которые есть утверждения относительно систем прямых на
плоскости.

≪В 1953 году, я понял, что прямая линия ведет челове-
чество к упадку. Тирания прямой стала абсолютной. Пря-
мая линия — это нечто трусливое, прочерченное по линей-
ке, без эмоций и размышлений; это линия, не существую-
щая в природе. И на этом насквозь прогнившем фундамен-
те построена наша обреченная цивилизация.≫

Ф. Хундертвассер

§ 1. Элементарное пространство прямых.

Рассмотрим систему из n прямых общего положения, т. е. никакие
две прямые не параллельны и через точку пересечения двух прямых
никакая другая прямая не проходит. Базовая конфигурационная тео-
рема для них есть

Теорема 1.1 (Манелая). Пусть дан треугольник ABC и точ-
ки C1, B1, A1 на прямых AB, AC, BC, соответственно. Точки A1,
B1, C1 лежат на одной прямой и тогда и только тогда, когда вы-
полняется равенство

AC1

C1B
· BA1

A1C
· CB1

B1A
= 1. (1.1)

Доказательство. Н е о б х о д и м о с т ь. Пусть прямая l
пересекает прямые AB, BC, AC соответственно в точках C1, A1 и
B1. Проведем произвольную прямую p, пересекающую прямую l в
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Рис. 1. К доказательству теоремы Манелая

точке N , а через точки A, B, C соответственно прямые a, b, c, парал-
лельные прямой l и пересекающие p в точках K, L, M . По теореме о
пропорциональных отрезках

AC1

C1B
=
KN

NL
;
BA1

A1C
=

LN

NM
;
CB1

B1A
=
NM

NK
.

Перемножая равенства и учитывая, что

KN

NL
· LN
NM

· NM
NK

= 1,

получаем искомое равенство.
Д о с т а т о ч н о с т ь. Если смотреть на (1.1), как на уравне-

ние, определяющее, например, C1 при известных остальных точках,
то это уравнение имеет единственное решение. Из этого факта следу-
ет достаточность. �

Преобразуем формулу Менелая. Взяв (△OBB1&SA), получим:

OA

AB
=

OA1

A1B1
·
(
SB1

SB

)
(1.2)

Если бы прямые AA1 и BB1 были параллельными, имело бы место
соотношение Фалеса:

OA

AB
=

OA1

A1B1
. (1.3)

Таким образом, формула Менелая имеет вид формулы Фалеса (1.3)

с ≪поправочным≫ коэффициентом
SB1

SB
. Здесь и впредь запись
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Рис. 2. Полный четырехугольник

(△ABC1&MN) будет означать применение теоремы Менелая к тре-
угольнику ABC, пересекаемому прямой MN .

Рассмотрим еще одно изменение формы теоремы Менелая:

OB1 · SA1 · AB = OB · SA · A1B1(△OAA1&SB1) (1.4)

Подчеркнутые произведения аналогичны произведению , определяю-
щему площадь в треугольниках OSB1 и OSB. Неподчеркнутые же
множители ≪подправляют≫ эти ≪площади≫ до равенства.

Итак, мы получим ≪фалесную≫ форму (1.2) и ≪площадную≫ фор-
му (1.4) исодной формулы Менелая (1.1) Эти интерпритации подска-
зывают, когда и как надо использовать теорему Менелая.
В формулах (1.1), (1.2), (1.4) участвуют три пропорции (отношения
отрезков). Можно развить теорему до равенств с четырьмя пропор-
циями вида (−)(−)(−)(−) = 1.

Первое соотношение. Имеет место (рис. 2) следующее равен-
ство:

OA

OB
· SA1

SA
· OB1

O1A
· SB
SB1

= 1. (1.5)

Доказательство.

(△ABS&OB1)⇒
AO

OB
· BB1

B1S
· SA1

A1A
= 1. (1.6)

(△OAA1&SB1)⇒
AB

BO
· OB1

B1A1
· A1S

SA
= 1. (1.7)

Перемножив (1.6) и (1.7), получим(
AO

OB
· SA1

SA

)(
OB1

B1S

)(
BB1

B1A1
· A1S

A1A
· AB
BO

)
= 1. (1.8)
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Преобразуем то, что заключено во вторые скобки:

OB1

B1S
=

(
OB1

OA1
· SB
SB1

· OA1

SB

)
. (1.9)

Рассмотрим произведение

OB1

B1S
· OA1

SB
· BB1

B1A1
· A1S

A1A
· AB
BO

= m. (1.10)

Для входящего в (1.10) отношения BB1

B1A1
имеем

(△A1SB1&OB)⇒ B1B

SB
· SA
AA1

· A1O

OB1
= 1. (1.11)

Подставим выражение для BB1

B1A1
, полученное из (1.11) в (1.10):

m =
OA1

B1A1
· A1

A1A
· AB
BO
· AA1

SA
· OB1

A1O
=
A1S

SA
· AB
BO
· OB1

B1A1
= 1.

Из (1.8) , (1.9) и m = 1 получаем (1.5). �
Второе соотношение. Имеет место (рис. 2) следующее равен-

ство (симметричная форма первого соотношения):

OA

AB
· SA
AA1

· A1B1

OB1
· BB1

SB1
= 1. (1.12)

Доказательство. По ≪площадной форме≫ формулы Менелая име-
ем

SA ·OB · A1B1 = SA1 ·OB1 · AB ⇒
SA

AB
=
SA1

OB
· OB1

A1B1
,

OA · SA1 ·BB1 = OB · SB1 · AA1 ⇒
OA

AA1
=

OB

BB1
· SB1

SA1
.

Перемножив эти соотношения, получим

SA

AB
· OA
AA1

=
OB1

A1B1
· SB1

BB1
.

Отсюда и следует (1.12). �
Мы привели простые примеры конфигурационных теорем. Клас-

сические теоремы проективной геометрии (теоремы Дезарга, Паппа,
Паскаля, . . . ) тоже принадлежат к классу конфигурационных тео-
рем.

Далее на втором примере изложим идеи привлечения вычислений
на компьютере для доказательства подобных теорем.
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§ 2. Одно отображение четырехугольника

Рассмотрим четыре точки K,L,M,N , образующие выпуклый че-
тырехугольникKLMN . Опишем функцию, которая ставит в соответ-
ствие этой четверке другую четверку точек A,B,C,D. Берем сторону
четырехугольника, например KN . Из вершины K проводим прямую
перпендикулярно к NM , а из вершины N — прямую, перпендику-
лярную к KL. Точку A пересечения этих перпендикуляров соотносим
стороне KN . Аналогично, стороне NB соотносим точку B, стороне
ML точку C, стороне LK точку D.

Построение искомых точек A,B,C,D поясняет (рис.3) (предпо-
лагаем, что у исходного четырехугольника KNML нет переменных
сторон).

Рис. 3. Построение искомых точек

Теорема 2.1. Точки A,B,C,D всегда лежат на одной прямой.
Доказательство. Опишем стратегию доказательства этого

факта. Достаточно доказать, что точки A,B,C лежат на одной пря-
мой, а так же точки A,D,C. Рассмотрим, к примеру, точки A,B,C.
Набор свободно выбираемых параметров, однозначно определяющих
рассматриваемую конфигурацию, назовем базисом конфигурации.
В нашей задаче всю конфигурацию (рис.3) определяют, например, па-
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раметры l,m, n, a, b. Здесь l,m, n, k — углы при вершинах L,M,N,K
соответственно, a — длина отрезка LM , b — длина MN , c — дли-
на KN .

Геометрический факт расположения точек A,B,C на одной пря-
мой нужно свести к выполнению некоторого алгебраического равен-
ства, которое относительно базисных параметров будет тождеством.
Последний факт существенно облегчает проверку равенства.

Изучая (рис. 3), заключаем, что B лежит на прямой AC, если
треугольники ABP и BCQ подобны, что равносильно выполнению
равенства BQ

BP = CQ
PA . Поскольку EQ = BQ, EF = BP , достаточно

доказать, что

CQ

PA
=
EO

EF
. (2.1)

Участвующие в равенстве (2.1) отрезки необходимо выразить через
l,m, n, a, b. Имеем:

EB

ME
= tg γ,

EB

EN
= tg θ, b = EB(ctg γ + ctg θ), γ = n− π

2
, θ = m− π

2
,

EB =
−b

tgm+ tg n
. (2.2)

Вычислим, далее,

α = π − k − n = l +m− π,OM = sin θ = − cosm,

NF = c sin γ = −c cosn, UN = b sinα, TU = a sin l.

Отсюда:

C =
b sinα+ a sin l

sin k
. (2.3)

Используя (2.2) и (2.3), перепишем (2.1):

a cosm ctg(l +m) + b
tgm+tgn

c cosn ctg(l +m)− b
tgm+tgn

=
a cosm+ b

tgm+tgn tg n

a cosn− b
tgm+tgn tgm

.

Здесь C определяется равенством (2.3), а α = π − k − n. Перейдем к
производному отношению, сложив числители и знаменатели.

(a cosm+ c cosn) ctg(l +m)

c cosn ctg(l +m)− b
tgm+tgn

=
(a cosm+ c cosn)− b
c cosn− b

tgm+tgn tgm
. (2.4)
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Равенство (2.4) имеет вид

α11a+ α12b

α21a+ α22b
=
β11a+ β12b

β21a+ β22b
. (2.5)

и должно выполняться для всех a ≥ 0, b ≥ 0. Это влечет, что следую-
щих три величины A1, A2, A3 (коэффициенты квадратичной формы,
получаемой из (2.5) освобождением от знаменателя и переводом всех
членов в одну сторону) должны для всех l,m, n обращаться в нуль:

A1 =

∣∣∣∣α11 β11
α21 β21

∣∣∣∣ = 0, A2 =

∣∣∣∣α12 β12
α22 β22

∣∣∣∣ = 0,

A3 =

∣∣∣∣α11 β11
α22 β22

∣∣∣∣+ ∣∣∣∣α12 β12
α21 β21

∣∣∣∣ = 0. (2.6)

Равенства (2.6) проверяются стандартными выкладками с использо-
ванием известных формул тригонометрии.
Вычисление A1:

A1 =

(
cosm+

sin l

sink
cosn

)
ctg(l +m)

sin l

sink
cosn−

− sin l

sink
cosn ctg(l +m)

(
cosm+

sin l

sink
cosn

)
=

= cosm cosn ctg(l +m)
sin l

sink
×

×
(
cosm+

sin l

sink
cosn− cosm− sin l

sink
cosn

)
= 0.

Вычисление A2:

A2 =
sinα

sin k
cosn ctg(l +m)

(
sinα

sin k
cosn− tgm

tgm+ tg n

)
−

−
(
sinα

sin k
cosn ctg(l +m)− 1

tgm+ tg n

)(
sinα

sin k
cosn− 1

)
=

=
1

tgm+ tg n

(
sinn

sinα

sin k
ctg(l +m) +

sinα cosn

sin k
− 1

)
,

но sinα = − sin(l +m), поэтому

A2 =
−1

sin k(tgm+ tg n)
[sinn cos(l +m) + sin(l +m) cosn+ sin k] =

= − 1

sin k(tgm+ tg n)
[sin(l +m+ n) + sin k] = 0.
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Вычисление A3:

A3 = cosm ctg(l +m)

(
sinα cosn

sin k
− tgm

tgm+ tg n

)
=

=
1

tgm+ tg n

sin l cosn

sin k
+

sin l cosn

sin k
ctg(l +m)

tgm

tgm+ tg n
−

− cosm

(
sinα

sin k
ctg(l +m) cosn− 1

tgm+ tg n

)
.

Принимая во внимание, что sin(α) = − sin(l + m), получаем, что
равенство A3 = 0 равносильно следующему

(sin k sinm− sin l sinn ctg(l +m) = cosm sin k + sin l cosn),

или (расписывая ctg(l +m)) — равенству

cos l cosm− sin l sinm

sin l cosm+ cosm sin k
=

cosm sin k + sin l cosn

sin k sinm− sin l sinn
.

Освобождаемся от знаменателей, получаем, что, действительно:

sin l sin k(cos2m+ sin2m) + sin2 l cos(m+ n) + sin l cos l sin(n+m) =

= sin l(sin k + sin(l + n+m)) = 0.

Доказательство того, что точки A,D,C лежат на одной прямой во
всем аналогично проведенному для точек A,B,C. �

Заключение. Идея проведенного нами доказательства прогля-
дывается сразу. Вычисления длинны, но стандартны. Идея ≪базис
из свободных параметров ⇒ алгебраическое тождество≫ срабатыва-
ет эффективно во многих случаях. Например, так может быть прове-
дено доказательство теоремы Паскаля и других теорем проективной
геометрии.

Всегда полезно обсудить проведенное доказательство, развивая
примененные принципы в абстрактно-всеобщие соображения и вы-
сказывания, которые затем в будущем можно использовать как руко-
водство к действию.

Проведенное нами доказательство дает повод нам задуматься над
тем, что такое (математическое) доказательство. Мы легко наметили
план действий, но ≪черновая вычислительная часть доказательства
занимает много места≫. Правда, эту часть работы можно переложить
на ЭВМ.

Примерно по этой схеме была решена знаменитая проблема четы-
рех красок: четырех красок достаточно, чтобы раскрасить плоскую
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карту так, чтобы все смежные области были окрашены в разные цве-
та. Задача о раскраске карты сводится к задаче теории графов, или
заменить каждую область графа вершиной графа, каждую границу
области — ребром. В полученной задаче нужно раскрасить вершины
графа так, чтобы смежные вершины были окрашены в разные цвета.

Хим описал сведение общей задачи к проверке гипотезы для опре-
деления (приводимых) конфигураций карт. Аннель и Хакен реализо-
вали эту идею, получили примерно 1500 приводимых конфигураций.
Для анализа последних использовали компьютер.

Альтернативный путь доказательства сложной гипотезы состо-
ит в обнаружении (дополнительными исследованиями и анализом
специальной литературы) какого-то замечательного математического
факта, берущего на себя роль центрального организатора распреде-
лений. На этом пути затрачивается больше творческих усилий. Для
доказательства задачи, обсуждаемой выше, роль этого центрального
организатора играет теорема о центральной точке или центральной
окружности системы прямых общего положения.

Внимательный анализ проведенного нами доказательства выяв-
ляет следующее: равенство (2.4) достаточно проверить дляN наборов
параметров базисаa, b, l,m, n. При этом N можно достаточно легко
оценить хотя бы с избытком, а сами наборы достаточно свободно-
располагаются в пространстве R5, где R — множество вещественных
чисел. Это, конечно, не четкое замечание, и для ассоциативного усвое-
ния изложенной мысли приведем следующее утверждение. Чтобы до-
казать, что полином Pn(z) = a0+ · · ·+anzn тождественно равен нулю,
достаточно доказать, что Pn(zi) = 0 для n + 1 точек z1, z2, · · · , zn+1,
Используя сказанное, мы можем провести доказательство теоремы
целиком на ЭВМ. На плоскости выберем сетку точек (xi, yi), клетки
которой есть квадрат со стороной h = a/N . Выбор h, a,N делаем по
условию задачи.

Составляем программу для ЭВМ проверки истинности теоремы
для случаев, когда четырехугольник KLMN выбирается с вершина-
ми в узлах сетки (см. рис. 4). Каждый такой выбор есть выбор пара-
метров l,m, n, a, b. Если для всевозможных выборок теорема верна,
то она верна и в общем случае.

Еще один повод задуматься после конфигурационных теорем, что
такое хаос в сообществе родственных математических объектов? Про-
извол положения прямых в системе n прямых общего положения есть
ли хаос? В только что рассмотренной задаче произволу выбора че-
тырех точек соответствует инвариант — расположенность по прямой
другой четверки, определяемой первой. А в общей системе прямых со-
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Рис. 4. Сетка для выбора вершин

ответствует либо центральная точка, либо центральная окружность.
Можно ли привести пример сообщества родственных (однотип-

ных) объектов, которое никакой закономерности взаимодействия не
даст? Много примеров для обнаружения порядка при произволе вы-
бора дают принцип Дирихле и теория Рамсея. Другой порядок в хаосе
обнаруживает теория фракталов. Хаос изучает также теория дина-
мических систем.

≪Высшее назначение математики —
находить порядок в хаосе, который нас окружает≫

Н. Винер.

≪Если можно найти порядок в хаосе, то есть ли сам хаос?≫

Дигаш.



Глава 16
Мышление в двойственности

1. Базовые двойственности. Основной двойственностью для объ-
екта является ≪предметное бытие — идеальное бытие≫. С ней связана
двойственность ≪A — не-A≫, здесь не-A не утверждение отсутствия
A, а все, что отличается от A, будучи связанным с A; так сказать,
≪внешнее бытие≫ A. Не-A определяет контекст пребывания A.

Вообще двойственность объектов A и B — это создание единства
сопоставлением A и B. Объект B не отрицает или заменяет A, но
выявляет сущностные свойстваA во взаимодействии с ним. Наоборот:
так же ≪поступает≫ A по отношению к B.

В нашем сознании также наблюдается фундаментальная двой-
ственность: утверждающее Я и возражающее Я. Употребляя слова
Хайдеггера, в нас имеет место ≪вопрошающее присутствие≫ оппонен-
та. Оппонент организует внутреннюю дискуссию (собственно, мыш-
ление), не отрицая, но приводя факты извне, вне установленных ло-
гических следствий.

2. Двойственность как единство. Единство двойственности в том,
что объект есть процесс движения от одного полюса двойственности
к другому. Для математика важно, обнаружив для проблемы значи-
мость определенной двойственности, раскрыть ≪творческую силу≫,
взаимодействия этих полюсов.

Именно противополагание является ≪энергией≫, ≪силой≫, движе-
ния рассуждений. Особая роль здесь двойственности ≪ явление —
сущность≫. За ≪явленным нам≫ формой стоит сущностное содержа-
ние.

Вот характерная элементарная задача, где осознание присутствия
этой двойственности, помогает найти решение. Имеется тысяча бочек
с вином. В одной из бочек вино отравлено, при этом действие яда
проявляется через 20 часов. Требуется за сутки определить эту бочку,
имея в распоряжении всего 9 подопытных мышей.

Приступая к решению, мы ясно осознаем конечное возможное
число наших действий. После некоторого раздумья мы приходим к
выводу, что универсально действие описывается так: каждому мы-
шу даем попробовать вино из определенных бочек. В это действие
≪вписано≫ любое другое возможное действие, поэтому возникает ≪на-
пряжение мысли≫, что решение явлено нам в форме этого действия
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(≪закодированное≫ решение перед нами) При осмыслении проблемы:
из каких бочек дать вино конкретной мыши, — естественно прихо-
дим к последовательности номеров бочек, из которых проба берется.
≪Обернем≫ отношение: мышь −→ последовательность номеров ≪про-
буемых≫ бочек. Пусть каждая iая бочка, i = 1, 2, . . . , 1000, однознач-
но закодирована последовательностью di = (ci1, c

i
2, . . . , c

i
9), где cik есть

символ +, или символ −. Таких последовательностей 29 > 1000, так
что упомянутая кодировка возможна. Из i-й бочки даем попробовать
j-й мыши, если cij есть +. В результате этого эксперимента получа-
ем последовательность d, где символ − стоит на k-м месте, если k-я
мышь осталась жива после 20 часов; стоит +, иначе. Та бочка отрав-
лена, код которой совпадает с d.

Приведем также вариативный ряд высказываний, создающий
полноту восприятия мысли, что препятствие в решении является нам
иной формой, предвестником решения.

≪Превосходно, что мы столкнулись с парадоксом. Значит, есть
надежда на прогресс.≫ Нильс Бор.

≪И кажется преграда на пути лишь камнем, чтобы на нем точить
и править силы.≫ Эмиль Верхерн.

≪Научился ли ты радоваться препятствию?≫ Надпись на камне в
Тибете.

≪Пессимист видит в возможности препятствие, оптимист видит
возможность в препятствии.≫

≪Перед ошибкою я закрываю дверь.
В смятении истина: ≪Как я войду теперь?≫ Р. Тагор.
≪Необходимо понять препятствие и сделать его объектом иссле-

дования≫ Р. Дигаш.
3. Двойственности и рациональные принципы. Перечислим неко-

торые двойственности, для которых напряжение понимания взаимо-
действия внутри них, ≪схваченное≫ абстрактно-общим высказывани-
ем как принцип, помогают нам в продвижении к математическому
доказательству: ≪предметное бытие — идеальное бытие≫; ≪действие
— рефлексия≫; ≪форма — содержание≫; ≪явление — сущность≫; ≪дви-
жение — остановка≫ (≪движение есть — движения нет≫); ≪конечное
— бесконечное≫; ≪хаос – порядок≫; ≪локальное — глобальное≫; ≪эле-
ментарное — системное≫; ≪форма — превращенная форма≫; ≪силло-
гистическое мышление — ассоциативное≫. Есть ряд других.

Каждой двойственности соответствует вариативный ряд абстрак-
тно-общих высказываний, помогающих понять эту двойственность.
некоторые из этих высказываний имеют всеобщий характер, характер
≪аксиом≫.



235

I. ≪Из ничего ничего не рождается≫. Эта ≪аксиома≫ имеет основа-
нием двойственности: ≪предметное бытие объекта — идеальное бытие
объекта≫; ≪действие — рефлексия на действие≫.

II. ≪Абсолютно нет абсолютной отделенности≫. Если объект B
отличается от объекта A, то своим отличием B уже характеризует A.

В предельной форме ≪аксиома≫ II дает основные операторы α и β
ассоциативного мышления. Оператор α создает смысловое единство
объектов A и B, полагая, что A и B во всем совпадают, кроме одного
качества. Оператор β создает единство, имеющее самостоятельность
по смыслу, полагая, что A и B различны во всем, кроме одного свой-
ства.

Иллюстрацией к сказанному является двойственность понятия
натурального числа. Число три, например, выступая как мера, есть
α(A,B), где A,B — две ели, B в 3 раза выше A (рис. 1).

Рис. 1. Число три как мера высоты

С другой стороны три выступает как кардинальное число, есть
β(A,B), где A — скажем, стадо из трех баранов, а B — три дерева.

Можно развить теорию — логику ассоциативного мышления, опи-
раясь на операторы α и β.

III. ≪Любой процесс, порождающий однотипные объекты, есть
объект, представляющий более ≪высокую≫ сущность≫. Необходимо
явно предъявить эту сущность. Начинаем понимание сущности, осо-
знав ≪направление≫ процесса, выявив ≪сингулярный член≫, перестро-
ив процесс как ≪предельный переход≫ и т. д.

4. ≪Философская≫ система координат. Примем, что в описании
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конкретной двойственности участвует конечное число слов заданно-
го алфавита. Оставляем в стороне важный вопрос: ≪Возможно ли
однозначно передать конечным текстом понимание данной дуально-
сти?≫

В силу принятого соглашения всевозможные двойственности об-
разуют счетное множество, и мы их перечисляем: σ1, σ1, . . . . Каждое
σi есть двойственность ≪Ai −−Bi≫. Объекту a припишем число дво-
ичное α ∈ [0; 1], α = 0, n1n2 . . . nk . . . . Здесь nk есть 1, если Ak суще-
ственно определяет содержание объекта a, и nk = 0, если a находится
в области ≪действия≫ Bk. Рассматривается ситуация (контекст), ис-
ключающая совместность A и B. Опять же ≪опускаем≫ случай ≪по-
граничного≫ состояния a.

Таким образом, последовательность двойственностей σ1, σ2, . . .
образует счетную координатную систему, определяющую любой объ-
ект (на момент рассмотрения) вполне определенным вещественным
числом α, 0 ≤ α ≤ 1.

Хорошо бы продуктивно для математики и физики развить эти
рассуждения (имея аналогию с геделевскими номерами в получении
метатеорем). Сейчас же ограничимся одним математическим утвер-
ждением (лемма 1 ниже), которое совместно со своим доказатель-
ством моделирует в каком-то плане описанную ситуацию с ≪философ-
ской≫ системой координат. Дуальности ≪заменяют≫ пары чисел 1 и 2,
с различным расположением в различных квадратах прямоугольной
сетки на плоскости. Объект a представляет траекторию определен-
ного движения на этой плоскости.

Возможно, есть аналогия того, что нам нужно для развития сфор-
мулированной выше мысли с проведенными ниже рассуждениями. По
крайней мере, даже такая простая математическая модель ситуации с
≪философской≫ системой координат приводит к математически зна-
чимым результатам.

5. Точная формулировка задачи. Рассмотрим разбиение некото-
рого квадрата на прямоугольники, указанным на рисунке способом.
Пусть все прямоугольники разбиты на 2 класса. Прямоугольники пер-
вого класса помечаем цифрой 1, второго цифрой 2. Противоположные
стороны квадрата помечаем одинаковой цифрой: либо 1, либо 2.

Лемма 1. Всегда найдется лента из прямоугольников одного
класса, соединяющая противоположные стороны квадрата того же
класса. Лентой назовем последовательность прямоугольников та-
ких, что два соседних прямоугольника имеют общий отрезок.

Доказательство. Начнем движение с точки A. Движемся по
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Рис. 2. Разбиение квадрата

ребрам прямоугольников таким образом, чтобы слева была область,
помеченная 1, а справа 2.

Заметим, что движение не может закончиться во внутренней точ-
ке, так как мы имеем всего два случая нумерации прямоугольников,
с вершиной, к которой мы подошли.

В обоих случаях движение может продолжаться и выражает сущ-
ностное свойство элементарного графа.

На сторонах квадрата движение тоже не может закончиться, за
исключением ситуации, когда мы находимся в точках B и D. Если
движение заканчивается в точке D, то существует лента из прямо-
угольников 2 класса, соединяющая стороны AB и DC. Если же в
точке B, то существует лента из 1 класса, соединяющая стороны AD
и BC. �

Замечание 1. ≪Вес≫ леммы, ее значимость оценивается через
следствия. Из леммы, например, следует теорема Брауэра о непо-
движной точке.

Теорема 1 (Брауэр). Пусть φ — непрерывное отображение
замкнутого квадрата ABCD в себя. Тогда существует такая точ-
ка x0 квадрата, что φ(x0) = x0. Иными словами, существует непо-
движная точка отображения φ.

Доказательство. Разобьем квадрат на прямоугольники с диа-
гональю, имеющей длину меньшую или равную некоторому заданно-
му числу h. Не теряя общности, предположим, что вершины прямо-
угольников при отображении сдвигаются не параллельно осям. Каж-
дой вершине будем сопоставлять пару знаков из (+) и (−). Если
P1 = φ(P ), то полагаем
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P ←→ (+,−), если координата x у P1 больше, чем координата x
у P , а координата y соответственно меньше.

P ←→ (+,+), если обе координаты P1 больше, чем соответству-
ющие координаты точки P . Аналогично определяются соответствия

P ←→ (−,+) и P ←→ (−,−).

Заметим, что:
На стороне DC вершины помечены парой (?,−), на стороне AD

вершины помечены парой (?,−), на стороне AB вершины помечены
парой (?,+), на стороне BC вершины помечены парой (−, ?).

Знак ≪?≫ означает, что на этом месте может стоять как (−), так
и (+).

Как мы уже заметили, движение не осуществляется строго влево
или вправо (иначе изменяем отображение на заданную малую вели-
чину ε). Вследствие этого, значения могут быть только (+,+), (+,−),
(−,+), (−,−).

Разобьем прямоугольники на два класса следующим образом: к
первому классу относим прямоугольники, у которых все четыре вер-
шины имеют один и тот же знак (+ либо −) на первой позиции, иначе
относим прямоугольник ко второму классу.

Напомним, что стороны прямоугольника помечены единицей, ес-
ли они перпендикулярны оси x; помечены двойкой, если перпендику-
лярны оси y. Легко увидеть, что не существует ленты первого класса,
соединяющей стороны AD и BC. Поэтому существует лента второго
класса, которая соединяет стороны 2 и 2 (AB и CD). У этой ленты
найдется такой прямоугольник, у которого в наборах знаков для вер-
шин среди первых знаков имеются и (+), и (−), также и у вторых
знаков встречаются и (+), и (−).

Рассмотрим такой прямоугольник из ленты. Пусть точки A1, B1,
C1, D1 берутся из множества его вершин.

Если A1 соответствует (+, ?), то [φ(A1) − A1]x > 0. Устремляя в
нашей поправке ε отображения φ, число ε к 0, получаем

[φ(A1)− A1]x ≥ 0, (1)
где φ — исходное, ≪неисправленное≫ отображение.

Возьмем точку, где выполняется условие:
B1 ←→ (−, ?). Для него аналогично получаем

[φ(B1)−B1]x ≤ 0. (2)
Также найдутся точки C1 и D1, где

C1 ←→ (?,+) [φ(C1)− C1]y ≥ 0, (3)
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D1 ←→ (?,−) [φ(D1)−D1]y ≤ 0. (4)
Для каждого h = hk находим свой прямоугольник, и пусть
hk → 0, k →∞.

Квадрат — компактное множество, поэтому можем считать, что
соответствующие точки Ak, Bk, Ck, Dk стремятся к P .

В неравенствах (1)–(4) переходим к пределу, устремляя k → ∞.
Получим:

[φ(P )−P ]x1 ≥ 0, [φ(P )−P ]x1 ≤ 0, [φ(P )−P ]x2 ≥ 0, [φ(P )−P ]x1 ≤0,

следовательно, φ(P ) = P . �
В работе [60] эти рассуждения обобщаются на любое n-мерное

евклидово пространство.
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