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Abstract: - Gain-frequency characteristics of displacements of daylight area at forced oscillations are 
studied. Several models utilizing a layer sitting on top of a basement are considered. Together with a 
classical model (considering two homogeneous media), investigated are a model for the layer with 
absorption and a model for the layer having continuous variation of elasticity parameters at transition 
toward the basement. The case of linear variation of density and a constant velocity is considered in 
detail. For all structures under consideration, analytical expressions for displacements of daylight area are 
obtained. 
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1. INTRODUCTION 
 

A physical model for the sedimentary cover 
represents a stratified elastic medium each layer of 
which is characterized by a known velocity of 
longitudinal (and transverse) waves, density, 
dissipative parameter and thickness [1, 2]. 

The upper boundary of the sedimentary cover is a 
daylight area while the lower boundary is a surface 
of the crystalline basement. Measurements 
conducted at the daylight area during both active and 
passive seismic surveys allow investigating 
frequency-selective properties of the sediment cover 
and obtaining data regarding its structure [3, 4]. The 
most detailed data regarding the structure can be 
obtained through using gain-frequency 
characteristics (GFC) of the normal (vertical) 
constituent of the wave process. 

The paper resolves questions of modeling 
(calculation) of GFC, calculating parameters at 
essential peaks (frequency, extrema, width) for 
simple models of medium, propagation and wave 
processes. Several models for stratified media are 
considered including a homogeneous layer and a 
dissipative layer on top of a geological basement as 
well as a homogeneous layer with continuous 
variation of elasticity parameters at transition to the 
basement. Obtained are analytical and semi-
empirical expressions describing GFC parameters as 
well as parameters of propagation medium. 
Conclusions are made with regards to similarities 
and differences of GFC for the considered models. 

2. STATEMENT OF THE PROBLEM 
 

We consider a homogeneous isotropic layer 

(medium 1) of thickness L , density 1  and elastic 

wave propagation velocity 1v . The layer lies on the 

homogeneous isotropic substrate (medium S with 

parameters S  and Sv ). We will investigate forced 

oscillations of the daylight area (of a free surface 

layer), when stress 0 ( )   is applied to some    

point x . 
Elastic harmonic oscillations of frequency  , 

longitudinal velocity v  in homogeneous isotropic 
medium are described by the equation: 

 
2''( ) ( ) 0,u x k u x   (1) 

where k  is the wave number defined by /k v  
for media without absorption. For the fixed value of 
  and constant k , we can solve equation (1) 
explicitly. Then for the layer we have 
 

1 1
1 1 1( ) ik x ik xu x A e B e  , (2) 

and for the substrate we have 
 

( ) Sik x
S Su x A e . (3) 

Note that we only consider waves within the 
substrate propagating toward infinity. 
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We allocate the supplementary layer (medium 2) 
of thickness 2  under the substrate. The layer has a 

gradient structure. Density 2 ( )x  continuously 

varies from value 1  to value S , whereas velocity 

2v  is constant. Propagation of oscillations within the 

like media is described by the equation: 
 

2
2 2 2 2 2( ( ) '( )) ( ) ( ) 0,x u x x k u x     

.L x L      
(4) 

     Equation (4) usually does not have an analytical 
solution [5]. 

Displacement ( )u x  and stress ( )x  are 

continuous functions over the entire region 0x  . 
Stress and displacement satisfy to Hooke’s law: 

2( ) '( )x v u x  . 
The continuity of displacements and stresses 

provide conditions at the media joint: 
 

1 2( ) ( ),u L u L     

2( ) ( ),Su L u L     

2
1 1 1 '( )v u L   

2
2 2 2( ) '( ),L v u L      

2 '( )S S Sv u L   
2

2 2 2( ) '( ).L v u L      

(5)

 
Let us locate the source at 0x  . Then we 

obtain the boundary condition in the form 
2

1 1 1 0'(0)v u  . This condition combined with 

(2)–(5) is a mathematical statement of the boundary 
value problem for elastic oscillations within our 
structure. 

We will investigate the dependence 1| (0) |u  on 

frequency   for the cases 0   and 0  . Thus, 
we evaluate the range of amplitude leaps for 
different cases of elastic structures. 
 
3. STEPWISE DISTRIBUTION OF 
MEDIUM PARAMETERS 
 

We consider the simple case of the uniform layer 

1 placed onto the substrate S. Amplitudes 1A , 1B  

and SA  can be found in the analytical form. The 

displacement of the daylight area ( 0x  ) can be 
written in the form: 

01 1
1 2

1 1 1 1 1

cos sin
(0)

cos sin

iLk it Lk
u

t Lk i Lk k v








, 

where 1 1( ) /( )S St v v  . Thus, the absolute value 

of displacement takes the form 
 

2 2
2 2

1 0
1

2 2 2 1 1

1 1

( 1) 2
sin

4 | |
(0)

sin cos

t L
t

v
u

L L vt
v v




   







. 

We define the source in the form 

0 0 1 1( ) A v    , where 0A  is a parameter (in 

meters) which is independent on frequency. 

Then, extrema of 1(0)u  occur for frequencies 

 

1nv

L

   и 1(2 1)

2

n v

L

 
 . (6) 

Values of 1| (0) |u  in these points are 

1 1 0/( ) | |S Sv v A   and 1 1 0/( ) | |S Sv v A   (see the 

graph of 1(0)u  in Fig. 1). 

 

 
Figure 1. GFC of displacements 1(0)u  for source 

0 1 1 0| ( ) | | |v A    . Blue line is for the top source; 

red line is for the bottom source. Parameters of media: 

1/ 1700 /1250S   , 100L   m, 0 1A   m. 
 

Next, the daylight area is a free surface, and the 
wave in the form ( )

0 0 1 1( ) /( ) Sik x L
S Su x A v v e    

comes from infinity. Then we have the source 

0 0 1 1( ) iA v     in point x L . 

Extrema of the function 1(0)u  occur at 

frequencies 1 /nv L   and 

1(2 1) /(2 )n v L   . Their values equal to 
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1 1 0/( ) | |S Sv v A   and 0| |A . If 1 1S Sv v  , then 

value 0| |A  corresponds to maximum of the above 

function. The absolute value of displacement of 
daylight area becomes 

 

1 0
2 2 2

1 1

1
(0) | |

sin cos

u A
h h

t
v v
 




. 

The graph of 1(0)u  is presented in Fig. 1 (red 

line). The pattern of oscillations for the top source is 
similar to that for the bottom source. 

Now, we consider the dissipative layer. In this 
case we have 2 2

0 /(1 )k k i   in equation (1), 

where 

v
k


0 , 

0
  , 

b

v 2

0

  , 

b  is the dissipation  parameter. 
If all coefficients are constant, then the general 

solution can be written in the form: 
 


1( ) exp[ ( ) ]u x A ik x    


1 exp[( ) ].B ik x   

 
    Here, expressions for acoustical absorption 
coefficient and for wave number are given as 
 

   
2

2 20
2 2

2
1 1

1

 
 

  


, 


   

2
2 20

2
1 1

2 1

k
k 


  


, 

where 2 3
0 ( ) /(2 ) b v    is the acoustical 

absorption coefficient for low-frequency 
approximation. 

We make several observations regarding an 

asymptotic behavior of   and k . For 1  , wave 

number k  tends to the limit equal to 0k ; for 1 

: 
2 2

0( ) /(2 )k v . The absorption coefficient   

tends to 0  for small values of  . For 1  : 
2 2

0( ) /(2 )v  . In other words, the absorption 

coefficient increases proportionally to 2  for small 
frequencies, whereas for high frequencies it 

increases proportionally to  . Velocity increases 

proportionally to   for high frequencies 
(dispersion of velocity is characteristic of a 
dissipative medium). 

Stress and displacement are related via the law: 
2( ) '( ) '( )x v u x i bu x    . Accordingly, the 

conjugate condition of required functions at the joint 
(at x L ) takes another form in this case. The 
condition for the daylight area becomes 

 2
1 1 1 1 0' (0) ( )v i b u     . 

Oscillations of the daylight area take 





11

11

2( )1

2( )1 1

1

(0)

1 1

i k L

S

ik L

S S

z
e

z
u

z z
e

z z









 
 

  
 

   
 



 
 

02 ( )

Sz

 
 , 

where 2
S S S Sz ik v  and 

        2
1 1 1 1 1 1z ik v i b     . 

 

 
Figure 2. GFC of displacements 1(0)u  for source 

0 1 1 0| ( ) | | |v A    . Blue line is for medium without 

absorption, red line is for medium with absorption. 

Parameters of media: 510b  , 100L   m, 

1 1250   kg/m3, 1700S   kg/m3, 

2500nv   m/s. 

The oscillations have the same phase pattern as 
oscillations without absorption. However, 
amplitudes of oscillations decrease exponentially 
(see Fig. 2). 
 
4. MEDIA WITH THE GRADIENT 
VARIATION OF MEDIUM PARAMETERS 
 

We make several observations regarding the 
behavior of displacements for high frequencies in 
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gradient media. We write wave equation in the 
following form: 

 
2( ( ) '( )) ' ( ) ( ) 0G x u x x u x   , (7) 

where ( )G x  is elastic modulus. Equation (7) can be 

reduced to the form: 
 

'( ) '( ) ( ) ''( )G x u x G x u x
2( ) ( ) 0.x u x    

(8) 

We introduce the characteristic frequency 
 

0

'( )
( )

( ) ( )

G x
x

x G x



 . 

Let the velocity of medium ( )v x  have a constant 
value. Then equation (8) can be written in the form: 

 
2
0( ) '( ) ''( ) ( ) ( ) 0k x u x u x k x u x   , (9)

where 0 ( ) / ( )k x c x , 0( ) ( ) / ( )k x x c x , ( )c x  

is phase velocity. 

Note, for 0 0max | ( ) |x    equation (9) 

is reduced to the following equation: 
 

2
0''( ) ( ) ( ) 0u x k x u x  . 

We consider the case, when the distribution of 

medium density is given by 0( ) = (1 sin )x Bx    

and velocity is constant [6]. For this case: 

0

cos
( )

1 sin

vB Bx
x

Bx
 


, 

and 0 vB  . 

Solution for the propagating in the positive 
direction wave can be presented in the form: 

2
0

0 2
( ) exp( 1 )

4( )

A
u x ixk

x 


   . 

Phase velocity of this medium is defined by the 
following relation: 

2 2
01 /(4 )

v
с





  

Media of this kind are characterized by 

anomalous dispersion. For 0  , we obtain 

( )c x v  and 0( )k x k . For 1 , we obtain 

( ) 2 /c x B  and ( ) / 2k x B . 
In [6] we showed that the elastic wave reflected 

off the gradient layer having density distribution in 

the form 2 ( ) (1 sin )x A Bx    decay according to 

law 1( )O  . 
 
5. SUPPLEMENTARY LAYER WITH 
LINEAR DISTRIBUTION OF MEDIUM 
PARAMETERS 
 

Now, in lieu of stepwise variation of elastic 
medium parameters at the conjugation of layer (

Lx <<0 ) with the substrate ( x L ), we consider 
continuous variation of parameters obeying the 
linear law. In order to accomplish that, we add a 
gradient layer ( < <L x L   ) of thickness 2  
in between the layer and the substrate.  

In Fig. 3 an example of smoothing of densities of 

the layer 1 1250   kg/m3 and of the substrate 

1700S   kg/m3 is shown. For this purpose, a 

second layer (in this particular case) at x(70 m 
130 m) with the density distribution 

2 ( ) = 7.5 1100x x   is introduced. 

 

 
Figure 3. Linear smoothing of the density leap from 

1 1250   kg/m3 to 1700S   kg/m3. 

 
Next, we assume that propagation speed of 

elastic waves is uniform everywhere. Thus, due to 
introducing a new layer, density ( )x  and elastic 

modulus 2( ) ( ) ( )G x x v x  vary continuously. 

However, whereever possible, we will leave the 

notation nv  for the speed of a considered medium. 

As to the intermediate layer, we assume that the 

density distribution is given by 2 ( ) =x ax b  , 

whereas velocity remains constant 2 2( )v x v . 

Besides, 2 ( )x  changes its values from 1  to S . 

Parameters a and b can be expressed through  : 
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1

2
Sa

 



 , 1 1

2 2
S Sb L

   


 
  . 

 
Equation (4) can be solved explicitly: 
 

2 2 0
2 2

( ) (| |)
b

u x A J x
v av

 
   

2 0
2 2

(| |).
b

B Y x
v av

 
   

Then conditions of continuity of displacement 
and stress lead to a system of linear algebraic 
equations which can be solved analytically. Hence, 
displacement of the daylight area takes the form: 

 

   
   

2 1 1 0 0
1

1 0 2 1 1 1

1 1
(0)

1 1

E v Q E iv Q
u

E v Q E iv Q v




   


   
 

where  

1

exp[2 ( ) ]E i L
v

  , 

0 2 3 1 2 2 1( ( ) ( ) ) ( )n nQ J v iJ v Y     

0 2 3 1 2 2 1( ( ) ( ) ) ( ), 0,1nY v iY v J n    

and 

1
2

,
b

L
a v

     
 

 

2
2

.
b

L
a v

     
 

 

We investigate behavior of displacement at low 

frequencies  . We have  

0
1

0 0
lim (0) lim .

S S

i
u

v 


  

  (10)

Let the velocities in all the media be equal. Then for 
high frequancies we obtain  

0
1

1 1

lim (0) lim .
i

u
v 


  

  (11)

Here we observe that the value 1(0)u  oscillates 

around the value leaning toward a given limit with 
increasing  . 

Amplitude of a wave passed into the substrate 

takes the form 

1

2exp[ ( ) ]S
S

L L
A i

v v

   
    

   
1 2 0 2 0 2 1 2 2 0

1 0 2 1 1

( ) ( ) ( ) ( )

1 1

J Y J Y v

E v Q E iv Q

    
 




   
. 

Asymptotic expressions for SA  at low 

frequencies   become: 
 

0

0 0
lim lim ,S

S S

i
A

v 


  

  

whereas at high frequencies the corresponding 
expressions take the form: 
 

0

1 1

lim lim .S

S

i
A

v 


  

  

Below are given results of calculation of absolute 
value of displacement of the daylight area and of 
amplitude of the substrate wave (Fig. 4) for layer of 

thickness 100 m, density 1 1250   kg/m3 sitting on 

top of the geological basement having density 
1700S   kg/m3. We assume that speed of 

propagation of elastic oscillations equals 
2500nv   m/s everywhere. The source is located at 

the daylight area and 0 0 1 1( ) A v    , where 

0 1A   m. 

 

 
Figure 4. Dependence of absolute value of displacement 
for daylight area and for substrate on frequency   at 

5   m. Blue line corresponds to displacement for 

daylight area 1| (0) |u ; red line corresponds to amplitude 

of transmitted wave | |SA . 
 

We observe that the layered structures in the 
performed calculations are those described above. 
The upper layer is located at 0 < <x L  , the 
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gradient layer is at < <L x L   , and the 

substrate is at x L   . 

 
Figure 5. Dependence of absolute value of displacement 

for daylight area on frequency   at 5   m; for 

50L   m (blue line) и 200L  m (red line). 
 

Fig. 5 shows comparison of GFC 1| (0) |u  for 

50L   m and 200L  m. It can be seen that the 
envelope curves for both graphs coincide. It is also 
evident that the large layer thickness L  leads to 
more frequent oscillations of the plots. 

In the presented figures (Fig. 4 and 5) 
compression points of oscillations are clearly seen. 
They correspond to frequencies 800   rad and 

1600   rad. The general expression for these 
frequencies (as well as for high frequencies) is 
following: 

 

2 , 1, 2,
2n

nv
n




    (12)

Just as in the case of a single layer (6), extreme 
values are achieved at frequencies  

 

1nv

L

   and 1(2 1)

2

n v

L

 
 . (13)

Let us say a few words regarding the other 
method for smoothing the density. Let us once again 
locate the gradient layer at ( < <L x L   ) but 
having parameters varying in accordance with the 

law 2 ( ) (1 sin )x A Bx   . For example, we can 

choose 4.8746   m and  
 

1
2 ( ) = (1 sin )

2
S x

x
L

   
 ,. 

Since the value of B  is small, the density 
distribution curve of the “sine” layer is close to the 
distribution curve for the “linear” layer. The 

intereference picture practically coincides with that 
observed in the case of the linear transition. 
 

 
Figure 6. Graphs of displacement 1| (0) |u  and its 

approximation 1u . 
 

By analyzing asymptotes (10), (11) and 
expressions (12), (13), and accounting for 
conclusions of the previous point regarding the 

decay of oscillations, let us approximate 1(0)u  

using function 1u : 

 1 1 2
1 1

2
S S

S S

v v v
u

v

 
 


   

2 1

2 2
sin cos

L

v v

 
 . 

We observe that 2sin(2 / )v  gives beatings of 

period around 800 rad whereas 1cos(2 / )L v  

provides high-frequency oscillations. The graphs for 

1(0)u  and 1u  for the case 5   m are given in 

Fig. 6. Here 100L   m, 1 1250   kg/m3, 

1700S   kg/m3, 2500nv   m/s. 

 
6. CONCLUSIONS 
 

The work considered several models for stratified 
layers including a homogeneous or dissipative layer 
sitting on top of a basement as well as a 
homogeneous layer having continuous variation of 
elasticity parameters at transition to the basement. 

Conclusion was made that in all considered 
layered structures frequency of extrema of 
displacements of daylight area remains constant. 
What changes are amplitudes of the displacements 
only. 

Dispersive dependences for several gradient 
structures are obtained. The work presented explicit 
relations for displacements of daylight area at forced 
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oscillations for the case of a source allocated at the 
daylight area. 

It was concluded that in case of a thin gradient 
layer being present, amplitude of a signal reflected 
off a substrate decreases inversely proportional to 
frequency. This knowledge can be used, for 
example, to explain mechanisms of scattering of 
high frequency oscillations in models with 
continuous variation of elasticity parameters as well 
as to explain dependences of displacements at the 
daylight area (GFC) on frequency. 

The work also showed that presence of a gradient 
layer on top of a substrate leads to additional 
complications of a shape of dependences of GFC on 
frequencies of the “beating” type; the phenomenon 
can be attributed to complications of processes of 
reflection off the substrate. Approximate expressions 
for displacements of daylight area in the case of a 
linear gradient layer are obtained. 

Thus, it was shown that there exist two 
mechanisms of decrease, on average, of 
displacements of daylight area with increasing 
frequency. The first mechanism is related to 
absorption in dissipative media. The second 
mechanism is related to specifics of reflections off 

the gradient layers (it gives dependence inversely 
proportional to frequency). 
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