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Abstract— The eigenvalue problems for generalized natural modes of an inhomogeneous di-
electric waveguide without a sharp boundary and a step-index dielectric waveguide with a smooth
boundary of cross-section are formulated as problems for the set of time-harmonic Maxwell equa-
tions with partial radiation conditions at infinity in the cross-sectional plane. The original prob-
lems are reduced by the integral equation method to nonlinear spectral problems with Fredholm
integral operators. Properties of the spectrum are investigated. The Galerkin and collocation
methods for the calculations of generalized natural modes are proposed and convergence of the
methods is proved. Some results of numerical experiments are discussed.

1. INTRODUCTION

Many different numerical techniques are applied for computing eigenmodes of dielectric waveg-
uides [1, 2]; namely, Finite-element, Finite-difference, beam propagation, and spline collocation
methods, as well as multidomain spectral approach. Often the authors concentrate on the algo-
rithm’s features and physical interpretation of the numerical results rather than on fundamental
mathematical aspects including the existence, properties, and distribution of the spectra on the
complex plane of the spectral parameter. In this study, we propose a new approach to mathemat-
ical and numerical analysis of dielectric waveguides based on the methods of spectral theory of
operator-valued functions [3, 4] and integral equations (IEs) [4–6]. The eigenvalue problems for the
determination of natural modes (surface, leaky, and complex eigenmodes) of inhomogeneous optical
waveguides and step-index optical waveguides with the smooth cross-sectional boundary are for-
mulated [3–5] for the time-harmonic Maxwell equations with partial radiation conditions at infinity
in the cross-sectional plane. The initial problems are reduced with the aid of the integral equation
(IE) method (using appropriate Green functions) to nonlinear spectral problems with Fredholm
integral operators. Theorems on the spectrum localization are proved. It is shown that the sets
of all eigenvalues of the initial problems may consist of isolated points on the Reimann surface of
the spectral parameter (longitudinal wavenumber) and each eigenvalue depends continuously on
the frequency and permittivity and can appear or disappear only at the boundary of the Reimann
surface. The initial problems for surface waves are reduced to linear eigenvalue problems for inte-
gral operators with real-valued symmetric weakly singular kernels. The existence, localization, and
dependence of the spectrum on parameters are investigated. The collocation and Galerkin methods
for the calculation of natural modes are proposed, the convergence of the methods is proved, and
some results of numerical experiments are discussed.

2. GENERALIZED NATURAL MODES OF A STEP-INDEX DIELECTRIC WAVEGUIDE

Let the three-dimensional space be occupied by an isotropic source-free medium, and let the per-
mittivity be prescribed as a positive real-valued function ε = ε(x) independent of the longitudinal
coordinate and equal to a constant ε∞ > 0 outside a cylinder. In this section, we consider the
generalized natural modes of a step-index optical fiber and suppose that the permittivity is equal
to a constant ε+ > ε∞ inside the cylinder. The axis of the cylinder is parallel to the longitudinal
coordinate and its cross section is a bounded domain Ωi with a twice continuously differentiable
boundary γ (see Fig. 1). The domain Ωi is a subset of a circle with radius R0. Denote by Ωe the
unbounded domain Ωe = R2 \ Ω̄i, by U the space of complex-valued continuous and continuously
differentiable in Ω̄i and Ω̄e, twice continuously differentiable in Ωi and Ωe functions, and by Λ the
Riemann surface of the function lnχ∞(β), where χ∞ =

√
k2ε∞ − β2. Here k2 = ω2ε0µ0, ω is a

given radian frequency and ε0, µ0 are the free-space dielectric and magnetic constants, respectively.
Denote by Λ0 the principal (“proper”) sheet of this Riemann surface specified by the condition
Imχ∞(β) ≥ 0.
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Figure 1: A schematic waveguide’s cross-section.

A nonzero vector {E, H} ∈ U6 is referred to as a generalized eigenvector (or eigenmode) of the
problem corresponding to an eigenvalue β ∈ Λ if the following relations are valid [7]:

rotβE = iωµ0H, rotβH = −iωε0εE, x ∈ R2 \ γ, (1)

ν × E+ = ν × E−, x ∈ γ, (2)
ν ×H+ = ν ×H−, x ∈ γ, (3)
[

E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) exp (ilϕ) , r ≥ R0. (4)

Here differential operator rotβ is obtained from the standard operator by replacing the generating
waveguide line derivative with iβ multiplication and H

(1)
l (z) is the Hankel function of the first kind

and index l. The conditions (4) are the the partial radiation conditions.
Theorem 1 (see [7]). The imaginary axis I and the real axis R of the sheet Λ0 except the

set G =
{
β ∈ R: k2ε∞ < β2 < k2ε+

}
are free of the eigenvalues of the problem (1)–(4). Surface

and complex eigenmodes correspond to real eigenvalues β ∈ G and complex eigenvalues β ∈ Λ0,
respectively. Leaky eigenmodes correspond to complex eigenvalues β belonging to an “improper”
sheet of Λ for which Imχ∞(β) < 0.

Theorem 1 generalizes the well-known results on the spectrum localization of a step-index cir-
cular dielectric waveguide which were obtained by the separation of variables method (see, for
example [8]).

We use representation of the eigenvectors of problem (1)–(4) in the form of single-layer potentials
u and v:

E1 =
i

k2ε− β2

(
µ0ω

∂v

∂x2
+ β

∂u

∂x1

)
, E2 =

−i

k2ε− β2

(
µ0ω

∂v

∂x1
− β

∂u

∂x2

)
, E3 = u, (5)

H1 =
i

k2ε− β2

(
β

∂v

∂x1
− ε0εω

∂u

∂x2

)
, H2 =

i

k2ε− β2

(
β

∂v

∂x2
+ ε0εω

∂u

∂x1

)
, H3 = v, (6)

[
u(x)
v(x)

]
=

i

4

∫

γ

H
(1)
0

(√
k2ε+/∞ − β2 |x− y|

)[
f+/∞(y)
g+/∞(y)

]
dl(y), x ∈ Ωi/e, (7)

where unknown densities f+/∞ and g+/∞ belong to the space of Hölder continuous functions C0,α.
The original problem (1)–(4) is reduced [7] by single-layer potential representation (5)–(7) to a
nonlinear eigenvalue problem for a set of singular integral equations on boundary γ. This problem
has the operator form

A(β)w ≡ (I + B(β))w = 0, (8)
where I is the identical operator in the Banach space W = (C0,α)4 and B(β): W → W is a compact
operator consisting particularly of the following boundary singular integral operators:

Lp = − 1
2π

2π∫

0

ln
∣∣∣∣sin

t− τ

2

∣∣∣∣p(τ)dτ, t ∈ [0, 2π], L: C0,α → C1,α, (9)
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Sp =
1
2π

2π∫

0

ctg
τ − t

2
p(τ)dτ +

i

2π

2π∫

0

p(τ)dτ, t ∈ [0, 2π], S: C0,α → C0,α. (10)

The original problem (1)–(4) is spectrally equivalent [7] to the problem (8). Namely, suppose
that w ∈ W is an eigenvector of the operator-valued function A(β) corresponding to an eigenvalue
β ∈ Λ0 \ D, D = {β ∈ I}⋃{β ∈ R: β2 < k2ε∞}. Then using this vector we can construct the
densities of the single-layer potential representation (5)–(7) of an eigenmode {E, H} ∈ U6 of the
problem (1)–(4) corresponding to the same eigenvalue β. On the other side, any eigenmode of
(1)–(4) corresponding to an eigenvalue β ∈ Λ0 \ D can be represented in the form of single-layer
potentials. The densities of these potentials constitute an eigenvector w ∈ W of the operator-valued
function A(β) corresponding to the same eigenvalue β.

Theorem 2 (see [7]). For each β ∈ {β ∈ R: β2 ≥ k2ε+} the operator A(β) has a bounded
inverse operator. The set of all eigenvalues β of the operator-valued function A(β) can be only a
set of isolated points on Λ. Each eigenvalue β depends continuously on ω > 0, ε+ > 0, and ε∞ > 0
and can appear and disappear only at the boundary of Λ, i.e., at β = ±k

√
ε∞ and at infinity.

Theorem 2 generalizes the known results on the dependence of the propagation constants β of a
step-index circular dielectric waveguide on wavenumber k and permittivity ε (see, for example [8]).

The statements similar to Theorems 1 and 2 for the scalar problem in weakly guiding approxi-
mation are proved in [9].

Describe a projection method for numerical solution of the problem (8). Denote by N the set
of integers. We represent the approximate eigenvector of the operator-valued function A(β) in the
form

wn =
(
w(j)

n

)4

j=1
, w(j)

n (t) =
n∑

k=−n

α
(j)
k exp(ikt), n ∈ N, j = 1, 2, 3, 4,

and look for unknown coefficients α
(j)
k by the Galerkin method

2π∫

0

(Awn)(j)(t) exp (−ikt)dt = 0, k = −n, . . . , n, j = 1, 2, 3, 4.

exp(ikt) are orthogonal eigenfunctions of the singular integral operators L: C0,α → C1,α and S:
C0,α → C0,α corresponding to the following eigenvalues:

λ(L)
m = {ln 2 if m = 0, (2|m|)−1 if m 6= 0},

λ(S)
m = {i if m = 0, i sign(m) if m 6= 0}

for the operators L and S respectively. Hence, the action of the main (singular) parts of the integral
operators in (8) on the basis functions is expressed explicitly.

Denote by W T
n the set of all trigonometric polynomials of the orders up to n. Denote by

Wn ⊂ W the space of the elements wn = (w(j)
n )4j=1 where w

(j)
n ∈ W T

n . Using the Galerkin method
for numerical solution of the problem (8), we get a finite-dimensional nonlinear spectral problem

An(β)wn = 0, An: Wn → Wn. (11)

Theorem 3 (see [10]). If β0 belongs to the spectrum σ(A) of the operator-valued function A(β),
then there exists a sequence {βn}n∈N with βn ∈ σ(An) such that βn → β0, n ∈ N . If {βn}n∈N is a
sequence such that βn ∈ σ(An) and βn → β0 ∈ Λ, then β0 ∈ σ(A). If βn ∈ σ(An), An(βn)wn = 0,
and βn → β0 ∈ Λ, wn → w0, n ∈ N , ‖wn‖ = 1, then β0 ∈ σ(A) and A(β0)w0 = 0, ‖w0‖ = 1.

Figure 2 shows (a) the dispersion curves for complex modes and (b) surface guided modes of
step-index waveguides of circular and square cross-sections. The numerical results obtained by the
Galerkin method are marked by circles and squares in Fig. 2(a). The dispersion curves for the
circular waveguide are plotted by a solid line, β̃ = β/(k

√
ε∞) and V = kR

√
ε+ − ε∞. Fig. 2(b)

compares the experimental data [11] for surface waves of a square waveguide (marked by squares)
with our numerical results (solid lines). Here a is one half of the square’s side.

The statement similar to Theorem 3 for a scalar problem in weakly guiding approximation is
proved in [12].



Progress In Electromagnetics Research Symposium Proceedings, Stockholm, Sweden, Aug. 12-15, 2013 391

(a) (b)

Figure 2: The dispersion curves for (a) the complex modes and (b) surface guided modes of the step-index
waveguides of circular and square cross-section.

3. GENERALIZED NATURAL MODES OF AN INHOMOGENEOUS WAVEGUIDE

In this section, we consider the generalized natural modes of an inhomogeneous optical fiber with-
out a sharp boundary. Let the permittivity ε belong to the space C2(R2) of twice continuously
differentiable in R2 functions. Denote by ε+ the maximum of the function ε in the domain Ωi and
let ε+ > ε∞ > 0. A nonzero complex vector {E, H} ∈ (C2(R2))6 is referred to as a generalized
eigenvector (or eigenmode) of the problem corresponding to an eigenvalue β ∈ Λ if the following
relations are valid [5]:

rotβE = iωµ0H, rotβH =− iωε0εE, x ∈ R2, (12)
[

E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) exp (ilϕ) , r ≥ R0. (13)

Theorem 4 (see [5]). The imaginary axis I and the real axis R of the sheet Λ0 except the
set G =

{
β ∈ R: k2ε∞ < β2 < k2ε+

}
are free of eigenvalues of the problem (12), (13). Surface

and complex eigenmodes correspond to real eigenvalues β ∈ G and complex eigenvalues β ∈ Λ0,
respectively. Leaky eigenmodes correspond to complex eigenvalues β belonging to an “improper”
sheet of Λ for which Imχ∞(β) < 0.

If vector {E, H} ∈ (C2(R2))6 is an eigenvector of problem (12), (13) corresponding to an eigen-
value β ∈ Λ, then (see [5])

E(x) = k2

∫

Ωi

(ε(y)−ε∞)Φ(β; x, y)E(y)dy+gradβ

∫

Ωi

(
E, ε−1gradε

)
(y)Φ(β; x, y)dy, x ∈ R2, (14)

H(x) = −iωε0rotβ

∫

Ωi

(ε(y)− ε∞)Φ(β; x, y)E(y)dy, x ∈ R2. (15)

Using the integral representation (14) for x ∈ Ωi we obtain a nonlinear eigenvalue problem for
an IE in Ωi which can be written in the operator form

A(β)F ≡ (I −B(β))F = 0, (16)

where the operator B(β): (L2(Ωi))3 → (L2(Ωi))3 corresponds to the right side of the integral
representation (14) for x ∈ Ωi. For any β ∈ Λ the operator B(β) is compact [5].

It was proved in [5] that the original problem (12), (13) is spectrally equivalent to problem (16).
Namely, suppose that {E, H} ∈ (C2(R2))6 is the eigenmode of problem (12), (13) corresponding to
an eigenvalue β ∈ Λ. Then F = E ∈ [L2(Ωi)]3 is an eigenvector of the operator-valued function
A(β) corresponding to the same eigenvalue β. Suppose that F ∈ [L2(Ωi)]3 is an eigenvector of the
operator-valued function A(β) corresponding to an eigenvalue β ∈ Λ and that the same number β
is not an eigenvalue of the following problem:

[
∆ +

(
k2ε− β2

)]
u = 0, x ∈ R2, u ∈ C2

(
R2

)
, (17)

u =
∞∑

l=−∞
alH

(1)
l (χ∞r) exp (ilϕ) , r ≥ R0. (18)
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Let E = B(β)F and H = (iωµ0)−1rotβE for x ∈ R2. Then {E,H} ∈ (C2(R2))6 and {E, H} is an
eigenvector of the original problem (12), (13) corresponding to the same eigenvalue β.

Theorem 5 (see [5]). For each β ∈ {β ∈ R: β2 ≥ k2ε+} the operator A(β) has a bounded
inverse. The set of all eigenvalues β of the operator-valued function A(β) can be only a set of
isolated points on Λ. Each eigenvalue β depends continuously on ω > 0, ε+ > 0, and ε∞ > 0 and
can appear and disappear only at the boundary of Λ, i.e., at β = ±k

√
ε∞ and at infinity.

Similar results for integrated optical guides are obtained in [13].
The scalar problem (17), (18) is a problem on eigenmodes of a nonhomogeneous optical fiber in

weakly guiding approximation. The statements similar to Theorems 4 and 5 for scalar problem (17),
(18) are proved in [14].

The initial problem (17), (18) for surface waves is reduced to a linear eigenvalue problem for
an integral operator with a real-valued symmetric weakly singular kernel. The existence of the
spectrum of this operator are proved in [15].

The collocation method for numerical approximation of weakly singular domain integral oper-
ators associated with problem (17), (18) is proposed in [15]. The statement similar to Theorem 3
concerning convergence of the collocation method is proved in [15].

As a numerical example Fig. 3 shows the isolines for real and imaginary parts of the fourth
eigenfunction of a unite circular waveguide [15]. Here ε = 2, x ∈ Ωi, ε∞ = 1, χ∞ = 2.039 + i1.003,
k2 = 5.025.
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Figure 3: The isolines for (a) real and (b) imaginary part of the fourth eigenfunction of circular waveguide.
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