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We study A-Ci modules (i = 2,3), first introduced in [K. Oshiro, Continuous modules
and quasi-continuous modules, Osaka J. Math. 20 (1983) 681-694], and .A-SSP modules.
We consider the cases when these classes of modules coincide. As a consequence, we
obtain some results related to simple-direct-injective modules. We also investigate some
properties of SSP formal matrix rings and describe semiartinian SSP rings.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity, and modules
will be unitary right R-modules.

A module M is called an SSP module (respectively, SIP module) if the sum
(respectively, the intersection) of any two direct summands of M is also a direct
summand of M. A ring R is called a right SSP ring (respectively, right SIP ring) if
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Rp is an SSP module (respectively, SIP-module). Because right SSP rings are left
SSP rings, we will not use the terms right SSP and left SSP, and call these rings SSP
rings, simply. From [3, Lemma 1.9], it implies that all SSP rings are SIP rings. SSP
and SIP modules have also been studied [7, 9, 14]. An important generalization of
SSP module (respectively, SIP module) is the concept of C3 module (respectively,
D3 module). These modules have recently been studied in [4, 5].

Let A be a set of submodules of M. We say that a module M is an A-SSP
module, if for any submodules A € A and X < M, A <g M, X <g M then
A+ X <g M. In this paper we study the relationship between A-Ci modules
(i = 2,3), first introduced in [12], and A-SSP modules. We also studied semiartinian
SSP rings and SSP formal matrix rings.

Throughout this paper, the notations N < M, N <, M and N < M mean
that N is a submodule, an essential submodule, and a small submodule of M,
respectively. The Jacobson radical and the maximal regular ideal in R are denoted
by J(R) and Reg(R), respectively. The Jacobson radical of a right R-module M is
denoted by J(M).

The paper uses standard concepts and notations of the theory of rings and
modules (see, eg., [13]).

2. A-Ci Modules

Let M be a right R-module and A be a set of submodules of M. Following [12, 10],
we recall the following conditions:

A-(C1): For all A € A, there exists A* <g M such that A <, A*.
A-(C2): For all A€ A, if X <g M is such that A = X, then A <gq M.
A-(C3): Forall A€ Aand X <g M,if A <g M and ANX =0 then AdX <y M.

Lemma 2.1. Let M be a right R-module and A be a set of submodules of M which
is closed under isomorphic images. If M is an A-C2 module then M is an A-C3
module.

Lemma 2.2. Let M be a right R-module and A be a set of submodules of M which
is closed under isomorphic images. If M is an A-C2 module (A-C3 module) then
so are all direct summands of M.

Let f: A — B be a homomorphism. We denote by (f) the submodule of A® B
as follows:
(fy={a+ fla)]a € A}.

Theorem 2.1. Let M be a right R-module and A be a set of submodules of M
which is closed under isomorphic tmages and summands. If every submodule of M
is A-projective, then the following conditions are equivalent:

(1) If whenever two direct summands A, B of M with A € A, then A+ B is a direct
summand of M.
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(2) M is an A-C3 module.
(3) For any decomposition M = A; @& As with Ay € A, then every homomorphism
f A1 — As has the image, a direct summand of As.

Proof. (1) = (2) The implication is obvious.

(2) = (3) Let f : Ay — Ay be an R-homomorphism with A; € A. By the
hypothesis, there exists a decomposition 4; = Ker(f) ® B for a submodule B of
A;. Then B® A, is a direct summand of M. Note that if a module satisfies (2), so are
its direct summands of M. Hence B @ A, satisfies (2). Let g := f|p : B — As. Then
¢ is a monomorphism and Im(g) = Im(f). It is easy to see that B&® Ay = (g) & Aa,
(9) "B =0 and (g) ~ B. Note that B, (g) € A. As B ® A, satisfies (2), B® (g) is
a direct summand of B @ As. Thus B @ (g) = B @ Im(g), which implies that Im(g)
or Im(f) is a direct summand of As.

(3) = (1) Let N and K be summands of M such that N € A. Write M =
N& N and M = K& K’ for some N', K’ < M. Consider the canonical projections
7k M — K and 7/ : M — N'. Let A := 7/ (n(N)). Then A = (N + K)N
(N 4+ K') N N', and so is a direct summand of M by (3). Write M = A® L for a
submodule L < M. Clearly,

(N+K)N[(N+K')n(N'nL)]=0.

Hence, NN =A® (N'NL)and M = (N® A) & (N'NL). Since A< N+ K and
A< N+ K', we get

N+K=(N®AN[(N+K)Nn(N'NL)
and
N+K =(NaA)N[(N+K)N(N' NL).
They imply
M=N+K+K
=(Nas A+ [(N+K)Nn(N'NL)]+[(N+K')n(N'NL)
<(N+K)+[(N+K')n(N'NnL).
Thus M = (N+K)@ [(N+K')N(N'NL). m|
Theorem 2.2. Let M be a right R-module and A be a set of submodules of M
which is closed under isomorphic images and summands. If every factor module

of M is A-projective or every submodule of M is A-injective, then the following
conditions are equivalent:

(1) If whenever two direct summands A, B of M with A € A, then A+ B is a direct
summand of M.
(2) M is an A-C3 module.
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(3) For any decomposition M = A; & As with Ay € A, then every homomorphism
f A1 — Ay has the image, a direct summand of As.
(4) M is an A-C2 module.

Proof. (1) = (2) The implication is obvious.

(2) = (3) = (1) The implication is similar to the argument in the proof of
Theorem 2.1.

(4) = (2) It follows from Lemma 2.2(1).

(3) = (4) Let 0 : A — B be an isomorphism with A € A a summand of M
and B < M. We show that B is a direct summand of M. Write M = A& T
for a submodule T' of M. We have that A/A N B is an image of M and obtain
that AN B is a direct summand of A. Take A = (AN B) @ C for a submodule
Cof A. Now M = (AnB)& (CaT). Clearly, AN [(C & T)N B] = 0 and
B=(ANB)a|[(CaT)NB]. Let H := 0~ }((C®T)NB). Then H is a submodule of
A, HN[(CoT)NB] = 0 and there exists a submodule H' of H such that A = HGH'.
Note that M = H @ (H' @ T'). Consider the projection 7 : M — H' & T. Then

Hae|[(CeT)nBl=Harn((Ca&T)NB).

By (3), the image of the homomorphism 7|(cer)npoo|y : H — H' © T is a direct
summand of H'@T because H is contained in A. Write H'©T = 7|(cer)npo(H)®
K for a submodule K of H' @ T. Then H @ T = n((C ®T)N B) & K. It follows
that

M=Hor(CoT)NB)a K=Ha|[(Co»T)NB]® K.
By the modular law, C T =[(C e T)NB]& [(H ® K)N (C & T)]. Thus
M=(AnB)e[(CeT)NB]o[(HeK)N(CaT)
=Ba[(HeK)Nn(CaT). 0

Corollary 2.1. Let N be a right R-module. The following conditions are equivalent:

(1) N is semisimple injective.
(2) For any right R-module M, M is an A-C3 module and every factor module of
M is A-projective where

A={A<M|3IX<N,f: X — M, f(X)<°® A}
Proof. (1) = (2) Assume that N is a semisimple injective module. For any right
R-module M,
A= {A<M[3X <N,f: X — M, f(X) <* A}
={A < M| A is embeddable in N}.

Thus every factor module of M is A-projective and M is an A-C3 module by
Theorem 2.2.
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(2) = (1) Let B be a submodule of N. Then M = B® E(B) is an .A-C3 module
where A = {A < M|3X < N,f: X — M, f(X) <¢ A}. As B € A, then by
Theorem 2.2 the inclusion map ¢ : B — E(B) splits. It means that B = E(B) is
injective. So B is a direct summand of N. It shown that N is a semisimple injective
module. O

Theorem 2.3. Let M be a right R-module and A be a set of Artinian submodules
of M which is closed under isomorphic images and summands. If every submodule
of M is A-projective, then the following conditions are equivalent:

(1) M is an A-C3 module.
(2) M is an A-C2 module.

Proof. (1) = (2) Let M; be submodule of M, which is isomorphic to a direct
summand My of M and M; € A. Then M = My & M. If My C M, then by
Ms that is Artinian and M; = M,, implies that M; = Ms. Let M, 7,@ M, and
7+ My@® My — Mj be projection. According to the hypothesis, Ker(my, ) is a direct
summand of My, then My = MiNMa®N;. Since Ny = 7w(My), My = Mo, then there
is an isomorphism ¢ : N — 7(My), where N’ is a direct summand of M;. Since
(¢) € Aand (p)NMso = 0, Ma+(¢p) = Ma® N7 is a direct summand of M. Therefore,
N7 is a non-zero direct summand of M. It is clear that M; N My € A and My N M,
is isomorphic to a direct summand of M. If M7 N Ms is not a direct summand of
M, by using an argument that is similar to the argument presented above, we can
show that M; N My = No@ N, where Ny is a non-zero direct summand of M, N} is
a submodule of M, which is isomorphic to a direct summand of M and Ny, Nj € A.
Since each module of the class A is Artinian, by conducting similar constructions
that continue for some k, we obtain a decomposition My = N1 & --- & N, where
N; is a direct summand of M and N; € A for each i. Since M is an A-C'3 module,
Ny @ ---® N is a direct summand of M.

(2) = (1) It follows from Lemma 2.2(1). m|

Corollary 2.2 ([6, Proposition 2.1]). The following conditions are equivalent
for a module M:

(1) For any simple submodules A, B of M with A= B <g M, A <g M.

(2) For any simple summands A,B of M, A® B <g M.

(3) For any finitely generated semisimple submodules A, B of M with A =2 B <g
M, A<g M.

(4) For any finitely generated semisimple summands A, B of M, A® B <g M.

Proof. The equivalences (1) < (2) and (2) < (3) follow from Theorem 2.2. The
implication (4) = (1) is obvious.

(2) = (4) Tt is enough to show that, if M, ..., M, are simple summands of M,
then M; + --- 4+ M, is a summand of M. That is easy to prove by induction. O
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Note that a module M satisfying the condition of Corollary 2.2 is called simple-
direct-injective (see [6]).

3. SSP-Rings
The following statement follows from [2, 3, 7.

Theorem 3.1. The following conditions are equivalent for a quasi-projective
module M:

(1) If f,g € Endr(M) are regular homomorphisms, then fg is a reqular homomor-
phism.

(2) Ife, f € Endr(M) are idempotent homomorphisms, then fe is a regular homo-
morphism.

(3) Endr(M) is a right SSP ring.

(4) Endgr(M) is a left SSP ring.

(5) For any decomposition M = A& B and any homomorphism f € Hompg(A, B),
the image of the homomorphism f is a direct summand of M.

Lemma 3.1. The following conditions are equivalent for a ring R:

1) If a,b € R are regular, then ab is also regular.

) Ife, f € R are idempotent elements, then ef is regqular.

) rR is an SSP module.
4) Rp is an SSP module.

) For any idempotent e € R, every element of the set eR(1—e) and every element
of the set (1 — e)Re are regular.

The previous lemma gives the equivalent definition of an SSP ring. For example,
every regular ring and every normal ring are SSP rings.

Lemma 3.2. If R is an SSP ring, then eRe is an SSP ring for any idempotent
ec R.

Lemma 3.3. Let K = (]1\%, 1\5{) be a Morita context. If K is an SSP ring, then M
18 an N -regular module and N is an M -reqular module.

Lemma 3.4. The following conditions are equivalent for a ring R:

(1) R is an SSP ring.
(2) R/Reg(R) is an SSP ring.

Proof. (1) = (2) Using Lemma 3.1, we only need to show that the product of two
idempotents of the ring R/Reg(R) is a regular element. Let e, €5 are idempotents
of the ring R/Reg(R). Then by [11, Lemma 3], there exist idempotents f1, fo € R
such that e; = f1 + Reg(R),ea = fo + Reg(R). Since R is an SSP ring, fifs is
a regular element of the ring R. Therefore, ejes is a regular element of the ring
R/Reg(R).
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(2) = (1) We will show that the product of two regular elements of the ring R is
also a regular element. Let a, b are regular elements of the ring R. Since R/Reg(R)
is an SSP ring, there exists ¢ € R such that abcab — ab € Reg(R) by Lemma 3.1.
Then we have abcab — ab = (abcab — ab)d(abcab — ab) for some d € R. Therefore,
ab € abRab. O

A module M is called a retractable module if Hom(M, N) # 0, VN(# 0) < M.

Theorem 3.2. Let P be a quasi-projective retractable module. If J(P) is an essen-
tial submodule of P, then the following conditions are equivalent:

(1) P is an SSP module.
(2) S =Endg(P) is a normal ring.

Proof. (1) = (2) Assume that e € S is not a central idempotent. Without loss
of generality, we can assume that (1 — e)Se # 0. Then there exists a non-zero
homomorphism ¢ € Hompg(eP, (1 — €)P). From Theorem 3.1, Im(¢)) is a direct
summand of P. Then Ker (1)) is a direct summand of e P. Therefore, eP and (1—e¢)P
contain non-zero direct summands which are isomorphic. Let fP be a non-zero
direct summand of eP, which is isomorphic to some direct summand of (1 — e)P.
Then f is an idempotent of the ring S. Since J(P) is essential in P, the submodule
fP contains a non-zero element m € J(P). Since P is retractable, there exists a
non-zero homomorphism modules ¢ : P — mR. If ¢|;p # 0 then there exists a
non-zero homomorphism ¢ : eP — (1 —e)P such that Im(p) C J((1 —e)P), that is
impossible by Theorem 3.1. If ¢| s p = 0 then there exists a non-zero homomorphism
from (1 — f)P to J(fP), which is also impossible. This contradiction shows that S
is a normal ring.

The implications (2) = (1) follows from Theorem 3.1. m|

Theorem 3.3. Let R be a right semiartinian ring. Then the following conditions
are equivalent:

(1) R is an SSP ring.
(2) R/Reg(R) is a normal ring.
(3) eR(1 —e) C Reg(R) for any idempotent e € R.

Proof. (1) = (2) Put R = R/Reg(R). Call A a right ideal of the ring R with
Soc(Ry) = A& J(R) N Soc(Ry). Assume that S is a simple submodule of Az and
7S is not a submodule of Az for some r € R. Then 7(rS) is a simple submodule
of J(R) N Soc(Rz), where m : A @& J(R) N Soc(Rg) — J(R) N Soc(Rg) is the
natural projection. On the other hand, there exists a submodule B of RE such that
Rz = S®B. It follows that J(R) = J(B) and J(B) N Soc(Rz) contains a submodule
Sy which is isomorphic to the module S. Then there is a homomorphism f : S — B,
such that Im(f) = Sp. By Lemma 3.4, the ring R is an SSP ring. Therefore Sy is a
direct summand of B by Theorem 3.1, which contradicts Sy C J(B). Thus, A is an
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ideal of R. We will show that A is a regular ideal. Let a € A. Since aR is a semisimple
module of finite length and aRNJ(R) = 0, aR is a direct summand of Rz. Therefore,
a € aRa = aAa. Since Reg(R) = 0, A = 0 and therefore Soc(Rz) C J(R). Then,
the implication follows from Theorem 3.2.

The implication (2) = (1) follows from Lemma 3.4.

The equivalence of (2) < (3) follows from [11, Lemma 3]. |
Theorem 3.4. Let R, S be normal rings and K = (ff Zg[) be a formal matriz
ring. Then the following conditions are equivalent:

(1) K is an SSP ring.

(2) R, S are SSP rings and Reg(K) = (RQ%R) Re];s)).

Proof. (1) = (2) By Lemma 3.3, all elements of the form (8 ") (2 8) are
regular in the ring K. Since Lemma 3.1, mn are regular in the ring R for any
m € M,n € N. Let ), ;rymnr; be any element of the ideal RmnR. Since
mn is regular, mn = mnrmn for some r € R. Then since )
> icr rimnrmnry = mnr(d o,
to the set {mn|m € M,n € N}, and hence, it is regular. So that we have
MN C Reg(R). Similarly, we can show that NM C Reg(S). Then from [15, Theo-
rem 5.3], it follows that Reg(K) = (RQ%R) Reﬁs)). We obtain that R, S are SSP
rings by Lemma 3.2.

(2) = (1) Since K/Reg(K) = R/Reg(R) x S/Reg(S) is an SSP ring, then it
follows from Lemma 3.4 that K is an SSP ring. |

icl mnr; =

rimnr}), every element of the ideal RmnR belongs

Corollary 3.1. Let R, S be rings that satisfy every idempotent is trivial and K =
(ﬁ Aé[) be a formal matriz ring. Then the following conditions are equivalent:

(1) K is an SSP ring.

(2) Either M =0,N =0 or K = My(T), where T is a skew field.

Theorem 3.5. Let K = (ﬁ Ag) is a formal matrix ring and R, S be right semi-
artinian rings. Then the following conditions are equivalent:

(1) K is an SSP ring.
(2) R, S are SSP rings and Reg(K) = (RQ%R) Re];S))'

Proof. (1) = (2) According to [1, Theorem 4.2], the ring K is semiartinian. From
Theorem 3.3, it follows that (5 %) C Reg(K). Then from [15, Theorem 5.3], it
implies that Reg(K) = (RE%R) Re];/l(s)).

(2) = (1) Since by Theorem 3.3, the rings R/Reg(R) and S/Reg(S) are normal,
then the ring K/Reg(K) = R/Reg(R)xS/Reg(S) is normal. Then from Lemma 3.4,
it follows that K is an SSP ring. |
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