

SSP rings and modules

A. N. Abyzov

Chair of Algebra and Mathematical Logic Kazan (Volga Region) Federal University 18 Kremlyovskaya str., Kazan 420008, Russia aabyzov@ksu.ru adel.abyzov@ksu.ru

T. C. Quynh

Department of Mathematics, Danang University 459 Ton Duc Thang, Danang City, Vietnam tcquynh@live.com tcquynh@dce.udn.vn

T. H. N. Nhan

Chair of Algebra and Mathematical Logic Kazan (Volga Region) Federal University 18 Kremlyovskaya str., Kazan 420008, Russia tranhoaingocnhan@gmail.com

> Communicated by M. Arslanov Received August 3, 2015 Revised September 1, 2015 Published November 6, 2015

We study A-Ci modules (i = 2, 3), first introduced in [K. Oshiro, Continuous modules and quasi-continuous modules, *Osaka J. Math.* **20** (1983) 681–694], and A-SSP modules. We consider the cases when these classes of modules coincide. As a consequence, we obtain some results related to simple-direct-injective modules. We also investigate some properties of SSP formal matrix rings and describe semiartinian SSP rings.

Keywords: SSP modules; semiartinian rings; formal matrix rings.

AMS Subject Classification: 16D10, 16D40, 16D80

1. Introduction

Throughout this paper, R denotes an associative ring with identity, and modules will be unitary right R-modules.

A module M is called an SSP module (respectively, SIP module) if the sum (respectively, the intersection) of any two direct summands of M is also a direct summand of M. A ring R is called a right SSP ring (respectively, right SIP ring) if R_R is an SSP module (respectively, SIP-module). Because right SSP rings are left SSP rings, we will not use the terms right SSP and left SSP, and call these rings SSP rings, simply. From [3, Lemma 1.9], it implies that all SSP rings are SIP rings. SSP and SIP modules have also been studied [7, 9, 14]. An important generalization of SSP module (respectively, SIP module) is the concept of C3 module (respectively, D3 module). These modules have recently been studied in [4, 5].

Let \mathcal{A} be a set of submodules of M. We say that a module M is an \mathcal{A} -SSP module, if for any submodules $A \in \mathcal{A}$ and $X \leq M$, $A \leq_{\oplus} M, X \leq_{\oplus} M$ then $A + X \leq_{\oplus} M$. In this paper we study the relationship between \mathcal{A} -Ci modules (i = 2, 3), first introduced in [12], and \mathcal{A} -SSP modules. We also studied semiartinian SSP rings and SSP formal matrix rings.

Throughout this paper, the notations $N \leq M$, $N \leq_e M$ and $N \ll M$ mean that N is a submodule, an essential submodule, and a small submodule of M, respectively. The Jacobson radical and the maximal regular ideal in R are denoted by J(R) and Reg(R), respectively. The Jacobson radical of a right R-module M is denoted by J(M).

The paper uses standard concepts and notations of the theory of rings and modules (see, eg., [13]).

2. \mathcal{A} -Ci Modules

Let M be a right R-module and \mathcal{A} be a set of submodules of M. Following [12, 10], we recall the following conditions:

 $\begin{array}{l} \mathcal{A}\text{-}(C1)\text{: For all } A \in \mathcal{A} \text{, there exists } A^* \leq_{\oplus} M \text{ such that } A \leq_e A^*. \\ \mathcal{A}\text{-}(C2)\text{: For all } A \in \mathcal{A} \text{, if } X \leq_{\oplus} M \text{ is such that } A \cong X \text{, then } A \leq_{\oplus} M. \\ \mathcal{A}\text{-}(C3)\text{: For all } A \in \mathcal{A} \text{ and } X \leq_{\oplus} M \text{, if } A \leq_{\oplus} M \text{ and } A \cap X = 0 \text{ then } A \oplus X \leq_{\oplus} M. \end{array}$

Lemma 2.1. Let M be a right R-module and A be a set of submodules of M which is closed under isomorphic images. If M is an A-C2 module then M is an A-C3 module.

Lemma 2.2. Let M be a right R-module and A be a set of submodules of M which is closed under isomorphic images. If M is an A-C2 module (A-C3 module) then so are all direct summands of M.

Let $f:A\to B$ be a homomorphism. We denote by $\langle f\rangle$ the submodule of $A\oplus B$ as follows:

$$\langle f \rangle = \{ a + f(a) \, | \, a \in A \}.$$

Theorem 2.1. Let M be a right R-module and A be a set of submodules of M which is closed under isomorphic images and summands. If every submodule of M is A-projective, then the following conditions are equivalent:

(1) If whenever two direct summands A, B of M with $A \in A$, then A+B is a direct summand of M.

- (2) M is an A-C3 module.
- (3) For any decomposition $M = A_1 \oplus A_2$ with $A_1 \in \mathcal{A}$, then every homomorphism $f: A_1 \to A_2$ has the image, a direct summand of A_2 .

Proof. $(1) \Rightarrow (2)$ The implication is obvious.

 $(2) \Rightarrow (3)$ Let $f : A_1 \to A_2$ be an *R*-homomorphism with $A_1 \in \mathcal{A}$. By the hypothesis, there exists a decomposition $A_1 = \operatorname{Ker}(f) \oplus B$ for a submodule *B* of A_1 . Then $B \oplus A_2$ is a direct summand of *M*. Note that if a module satisfies (2), so are its direct summands of *M*. Hence $B \oplus A_2$ satisfies (2). Let $g := f|_B : B \to A_2$. Then g is a monomorphism and $\operatorname{Im}(g) = \operatorname{Im}(f)$. It is easy to see that $B \oplus A_2 = \langle g \rangle \oplus A_2$, $\langle g \rangle \cap B = 0$ and $\langle g \rangle \simeq B$. Note that $B, \langle g \rangle \in \mathcal{A}$. As $B \oplus A_2$ satisfies (2), $B \oplus \langle g \rangle$ is a direct summand of $B \oplus A_2$. Thus $B \oplus \langle g \rangle = B \oplus \operatorname{Im}(g)$, which implies that $\operatorname{Im}(g)$ or $\operatorname{Im}(f)$ is a direct summand of A_2 .

 $(3) \Rightarrow (1)$ Let N and K be summands of M such that $N \in \mathcal{A}$. Write $M = N \oplus N'$ and $M = K \oplus K'$ for some $N', K' \leq M$. Consider the canonical projections $\pi_K : M \to K$ and $\pi_{N'} : M \to N'$. Let $A := \pi_{N'}(\pi_K(N))$. Then $A = (N + K) \cap (N + K') \cap N'$, and so is a direct summand of M by (3). Write $M = A \oplus L$ for a submodule $L \leq M$. Clearly,

$$(N+K) \cap [(N+K') \cap (N' \cap L)] = 0.$$

Hence, $N' = A \oplus (N' \cap L)$ and $M = (N \oplus A) \oplus (N' \cap L)$. Since $A \leq N + K$ and $A \leq N + K'$, we get

$$N + K = (N \oplus A) \cap [(N + K) \cap (N' \cap L)]$$

and

$$N + K' = (N \oplus A) \cap [(N + K') \cap (N' \cap L)].$$

They imply

$$M = N + K' + K$$

= $(N \oplus A) + [(N + K) \cap (N' \cap L)] + [(N + K') \cap (N' \cap L)]$
 $\leq (N + K) + [(N + K') \cap (N' \cap L)].$

Thus $M = (N + K) \oplus [(N + K') \cap (N' \cap L)]$.

Theorem 2.2. Let M be a right R-module and A be a set of submodules of M which is closed under isomorphic images and summands. If every factor module of M is A-projective or every submodule of M is A-injective, then the following conditions are equivalent:

- (1) If whenever two direct summands A, B of M with $A \in A$, then A+B is a direct summand of M.
- (2) M is an A-C3 module.

A. N. Abyzov, T. C. Quynh & T. H. N. Nhan

- (3) For any decomposition $M = A_1 \oplus A_2$ with $A_1 \in \mathcal{A}$, then every homomorphism $f: A_1 \to A_2$ has the image, a direct summand of A_2 .
- (4) M is an A-C2 module.

Proof. $(1) \Rightarrow (2)$ The implication is obvious.

 $(2) \Rightarrow (3) \Rightarrow (1)$ The implication is similar to the argument in the proof of Theorem 2.1.

 $(4) \Rightarrow (2)$ It follows from Lemma 2.2(1).

 $(3) \Rightarrow (4)$ Let $\sigma : A \to B$ be an isomorphism with $A \in \mathcal{A}$ a summand of Mand $B \leq M$. We show that B is a direct summand of M. Write $M = A \oplus T$ for a submodule T of M. We have that $A/A \cap B$ is an image of M and obtain that $A \cap B$ is a direct summand of A. Take $A = (A \cap B) \oplus C$ for a submodule C of A. Now $M = (A \cap B) \oplus (C \oplus T)$. Clearly, $A \cap [(C \oplus T) \cap B] = 0$ and $B = (A \cap B) \oplus [(C \oplus T) \cap B]$. Let $H := \sigma^{-1}((C \oplus T) \cap B)$. Then H is a submodule of $A, H \cap [(C \oplus T) \cap B] = 0$ and there exists a submodule H' of H such that $A = H \oplus H'$. Note that $M = H \oplus (H' \oplus T)$. Consider the projection $\pi : M \to H' \oplus T$. Then

$$H \oplus [(C \oplus T) \cap B] = H \oplus \pi((C \oplus T) \cap B).$$

By (3), the image of the homomorphism $\pi|_{(C\oplus T)\cap B} \circ \sigma|_H : H \to H' \oplus T$ is a direct summand of $H' \oplus T$ because H is contained in \mathcal{A} . Write $H' \oplus T = \pi|_{(C\oplus T)\cap B}\sigma(H) \oplus K$ for a submodule K of $H' \oplus T$. Then $H' \oplus T = \pi((C \oplus T) \cap B) \oplus K$. It follows that

$$M = H \oplus \pi((C \oplus T) \cap B) \oplus K = H \oplus [(C \oplus T) \cap B] \oplus K.$$

By the modular law, $C \oplus T = [(C \oplus T) \cap B] \oplus [(H \oplus K) \cap (C \oplus T)]$. Thus

$$M = (A \cap B) \oplus [(C \oplus T) \cap B] \oplus [(H \oplus K) \cap (C \oplus T)]$$
$$= B \oplus [(H \oplus K) \cap (C \oplus T)].$$

Corollary 2.1. Let N be a right R-module. The following conditions are equivalent:

- (1) N is semisimple injective.
- (2) For any right R-module M, M is an A-C3 module and every factor module of M is A-projective where

$$\mathcal{A} = \{ A \le M \mid \exists X \le N, f : X \to M, f(X) \le^e A \}.$$

Proof. (1) \Rightarrow (2) Assume that N is a semisimple injective module. For any right R-module M,

 $\mathcal{A} = \{ A \le M \mid \exists X \le N, f : X \to M, f(X) \le^e A \}$

 $= \{ A \le M \, | \, A \text{ is embeddable in } N \}.$

Thus every factor module of M is A-projective and M is an A-C3 module by Theorem 2.2.

 $(2) \Rightarrow (1)$ Let *B* be a submodule of *N*. Then $M = B \oplus E(B)$ is an *A*-*C*3 module where $\mathcal{A} = \{A \leq M \mid \exists X \leq N, f : X \to M, f(X) \leq^e A\}$. As $B \in \mathcal{A}$, then by Theorem 2.2 the inclusion map $\iota : B \to E(B)$ splits. It means that B = E(B) is injective. So *B* is a direct summand of *N*. It shown that *N* is a semisimple injective module.

Theorem 2.3. Let M be a right R-module and A be a set of Artinian submodules of M which is closed under isomorphic images and summands. If every submodule of M is A-projective, then the following conditions are equivalent:

- (1) M is an A-C3 module.
- (2) M is an A-C2 module.

Proof. (1) \Rightarrow (2) Let M_1 be submodule of M, which is isomorphic to a direct summand M_2 of M and $M_1 \in \mathcal{A}$. Then $M = M_2 \oplus M'_2$. If $M_1 \subset M_2$, then by M_2 that is Artinian and $M_1 \cong M_2$, implies that $M_1 = M_2$. Let $M_1 \not\subseteq M_2$ and $\pi: M_2 \oplus M'_2 \to M'_2$ be projection. According to the hypothesis, $\operatorname{Ker}(\pi_{|M_1})$ is a direct summand of M_1 , then $M_1 = M_1 \cap M_2 \oplus N_1$. Since $N_1 \cong \pi(M_1), M_1 \cong M_2$, then there is an isomorphism $\phi: N' \to \pi(M_1)$, where N' is a direct summand of M_1 . Since $\langle \phi \rangle \in \mathcal{A}$ and $\langle \phi \rangle \cap M_2 = 0, M_2 + \langle \phi \rangle = M_2 \oplus N_1$ is a direct summand of M. Therefore, N_1 is a non-zero direct summand of M. It is clear that $M_1 \cap M_2 \in \mathcal{A}$ and $M_1 \cap M_2$ is isomorphic to a direct summand of M. If $M_1 \cap M_2$ is not a direct summand of M, by using an argument that is similar to the argument presented above, we can show that $M_1 \cap M_2 = N_2 \oplus N'_2$, where N_2 is a non-zero direct summand of M, N'_2 is a submodule of M, which is isomorphic to a direct summand of M and $N_2, N'_2 \in \mathcal{A}$. Since each module of the class \mathcal{A} is Artinian, by conducting similar constructions that continue for some k, we obtain a decomposition $M_1 = N_1 \oplus \cdots \oplus N_k$, where N_i is a direct summand of M and $N_i \in \mathcal{A}$ for each i. Since M is an \mathcal{A} -C3 module, $N_1 \oplus \cdots \oplus N_k$ is a direct summand of M.

 $(2) \Rightarrow (1)$ It follows from Lemma 2.2(1).

Corollary 2.2 ([6, Proposition 2.1]). The following conditions are equivalent for a module M:

- (1) For any simple submodules A, B of M with $A \cong B \leq_{\oplus} M$, $A \leq_{\oplus} M$.
- (2) For any simple summands A, B of $M, A \oplus B \leq_{\oplus} M$.
- (3) For any finitely generated semisimple submodules A, B of M with A ≈ B ≤_⊕ M, A ≤_⊕ M.
- (4) For any finitely generated semisimple summands A, B of $M, A \oplus B \leq_{\oplus} M$.

Proof. The equivalences $(1) \Leftrightarrow (2)$ and $(2) \Leftrightarrow (3)$ follow from Theorem 2.2. The implication $(4) \Rightarrow (1)$ is obvious.

 $(2) \Rightarrow (4)$ It is enough to show that, if M_1, \ldots, M_n are simple summands of M, then $M_1 + \cdots + M_n$ is a summand of M. That is easy to prove by induction.

Note that a module M satisfying the condition of Corollary 2.2 is called simpledirect-injective (see [6]).

3. SSP-Rings

The following statement follows from [2, 3, 7].

Theorem 3.1. The following conditions are equivalent for a quasi-projective module M:

- (1) If $f, g \in \text{End}_R(M)$ are regular homomorphisms, then fg is a regular homomorphism.
- (2) If $e, f \in \text{End}_R(M)$ are idempotent homomorphisms, then fe is a regular homomorphism.
- (3) $\operatorname{End}_R(M)$ is a right SSP ring.
- (4) $\operatorname{End}_R(M)$ is a left SSP ring.
- (5) For any decomposition $M = A \oplus B$ and any homomorphism $f \in \text{Hom}_R(A, B)$, the image of the homomorphism f is a direct summand of M.

Lemma 3.1. The following conditions are equivalent for a ring R:

- (1) If $a, b \in R$ are regular, then ab is also regular.
- (2) If $e, f \in R$ are idempotent elements, then ef is regular.
- (3) $_{R}R$ is an SSP module.
- (4) R_R is an SSP module.
- (5) For any idempotent $e \in R$, every element of the set eR(1-e) and every element of the set (1-e)Re are regular.

The previous lemma gives the equivalent definition of an SSP ring. For example, every regular ring and every normal ring are SSP rings.

Lemma 3.2. If R is an SSP ring, then eRe is an SSP ring for any idempotent $e \in R$.

Lemma 3.3. Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ be a Morita context. If K is an SSP ring, then M is an N-regular module and N is an M-regular module.

Lemma 3.4. The following conditions are equivalent for a ring R:

- (1) R is an SSP ring.
- (2) R/Reg(R) is an SSP ring.

Proof. (1) \Rightarrow (2) Using Lemma 3.1, we only need to show that the product of two idempotents of the ring R/Reg(R) is a regular element. Let e_1, e_2 are idempotents of the ring R/Reg(R). Then by [11, Lemma 3], there exist idempotents $f_1, f_2 \in R$ such that $e_1 = f_1 + \text{Reg}(R), e_2 = f_2 + \text{Reg}(R)$. Since R is an SSP ring, f_1f_2 is a regular element of the ring R. Therefore, e_1e_2 is a regular element of the ring R/Reg(R).

 $(2) \Rightarrow (1)$ We will show that the product of two regular elements of the ring R is also a regular element. Let a, b are regular elements of the ring R. Since R/Reg(R)is an SSP ring, there exists $c \in R$ such that $abcab - ab \in \text{Reg}(R)$ by Lemma 3.1. Then we have abcab - ab = (abcab - ab)d(abcab - ab) for some $d \in R$. Therefore, $ab \in abRab$.

A module M is called a *retractable module* if $\text{Hom}(M, N) \neq 0, \forall N \neq 0 \le M$.

Theorem 3.2. Let P be a quasi-projective retractable module. If J(P) is an essential submodule of P, then the following conditions are equivalent:

(1) P is an SSP module.

(2) $S = \operatorname{End}_R(P)$ is a normal ring.

Proof. (1) \Rightarrow (2) Assume that $e \in S$ is not a central idempotent. Without loss of generality, we can assume that $(1 - e)Se \neq 0$. Then there exists a non-zero homomorphism $\psi \in \operatorname{Hom}_R(eP, (1 - e)P)$. From Theorem 3.1, $\operatorname{Im}(\psi)$ is a direct summand of P. Then $\operatorname{Ker}(\psi)$ is a direct summand of eP. Therefore, eP and (1 - e)Pcontain non-zero direct summands which are isomorphic. Let fP be a non-zero direct summand of eP, which is isomorphic to some direct summand of (1 - e)P. Then f is an idempotent of the ring S. Since J(P) is essential in P, the submodule fP contains a non-zero element $m \in J(P)$. Since P is retractable, there exists a non-zero homomorphism modules $\phi : P \to mR$. If $\phi_{|fP} \neq 0$ then there exists a non-zero homomorphism $\varphi : eP \to (1 - e)P$ such that $\operatorname{Im}(\varphi) \subset J((1 - e)P)$, that is impossible by Theorem 3.1. If $\phi_{|fP|} = 0$ then there exists a non-zero homomorphism from (1 - f)P to J(fP), which is also impossible. This contradiction shows that Sis a normal ring.

The implications $(2) \Rightarrow (1)$ follows from Theorem 3.1.

Theorem 3.3. Let R be a right semiartinian ring. Then the following conditions are equivalent:

- (1) R is an SSP ring.
- (2) R/Reg(R) is a normal ring.
- (3) $eR(1-e) \subset \operatorname{Reg}(R)$ for any idempotent $e \in R$.

Proof. (1) \Rightarrow (2) Put $\overline{R} = R/\text{Reg}(R)$. Call A a right ideal of the ring \overline{R} with $\text{Soc}(\overline{R_R}) = A \oplus J(\overline{R}) \cap \text{Soc}(\overline{R_R})$. Assume that S is a simple submodule of $A_{\overline{R}}$ and rS is not a submodule of $A_{\overline{R}}$ for some $r \in \overline{R}$. Then $\pi(rS)$ is a simple submodule of $J(\overline{R}) \cap \text{Soc}(\overline{R_R})$, where $\pi : A \oplus J(\overline{R}) \cap \text{Soc}(\overline{R_R}) \to J(\overline{R}) \cap \text{Soc}(\overline{R_R})$ is the natural projection. On the other hand, there exists a submodule B of $\overline{R_R}$ such that $\overline{R_R} = S \oplus B$. It follows that $J(\overline{R}) = J(B)$ and $J(B) \cap \text{Soc}(\overline{R_R})$ contains a submodule S_0 which is isomorphic to the module S. Then there is a homomorphism $f: S \to B$, such that $\text{Im}(f) = S_0$. By Lemma 3.4, the ring \overline{R} is an SSP ring. Therefore S_0 is a direct summand of B by Theorem 3.1, which contradicts $S_0 \subset J(B)$. Thus, A is an

Asian-European J. Math. Downloaded from www.worldscientific.com by MONASH UNIVERSITY on 11/17/15. For personal use only. ideal of R. We will show that A is a regular ideal. Let $a \in A$. Since $a\overline{R}$ is a semisimple module of finite length and $a\overline{R} \cap J(\overline{R}) = 0$, $a\overline{R}$ is a direct summand of $\overline{R}_{\overline{R}}$. Therefore, $a \in a\overline{R}a = aAa$. Since $\operatorname{Reg}(\overline{R}) = 0$, A = 0 and therefore $\operatorname{Soc}(\overline{R}_{\overline{R}}) \subset J(\overline{R})$. Then, the implication follows from Theorem 3.2.

The implication $(2) \Rightarrow (1)$ follows from Lemma 3.4.

The equivalence of $(2) \Leftrightarrow (3)$ follows from [11, Lemma 3].

Theorem 3.4. Let R, S be normal rings and $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ be a formal matrix ring. Then the following conditions are equivalent:

(1) K is an SSP ring.

(2) $R, S \text{ are } SSP \text{ rings and } \operatorname{Reg}(K) = \binom{\operatorname{Reg}(R)}{N} \binom{M}{\operatorname{Reg}(S)}.$

Proof. (1) \Rightarrow (2) By Lemma 3.3, all elements of the form $\begin{pmatrix} 0 & m \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ n & 0 \end{pmatrix}$ are regular in the ring K. Since Lemma 3.1, mn are regular in the ring R for any $m \in M, n \in N$. Let $\sum_{i \in I} r_i mnr'_i$ be any element of the ideal RmnR. Since mn is regular, mn = mnrmn for some $r \in R$. Then since $\sum_{i \in I} r_i mnr'_i = \sum_{i \in I} r_i mnrmr'_i = mnr(\sum_{i \in I} r_i mnr'_i)$, every element of the ideal RmnR belongs to the set $\{mn \mid m \in M, n \in N\}$, and hence, it is regular. So that we have $MN \subset \operatorname{Reg}(R)$. Similarly, we can show that $NM \subset \operatorname{Reg}(S)$. Then from [15, Theorem 5.3], it follows that $\operatorname{Reg}(K) = \begin{pmatrix} \operatorname{Reg}(R) & M \\ N & \operatorname{Reg}(S) \end{pmatrix}$. We obtain that R, S are SSP rings by Lemma 3.2.

(2) \Rightarrow (1) Since $K/\text{Reg}(K) \cong R/\text{Reg}(R) \times S/\text{Reg}(S)$ is an SSP ring, then it follows from Lemma 3.4 that K is an SSP ring.

Corollary 3.1. Let R, S be rings that satisfy every idempotent is trivial and $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ be a formal matrix ring. Then the following conditions are equivalent:

- (1) K is an SSP ring.
- (2) Either M = 0, N = 0 or $K \cong M_2(T)$, where T is a skew field.

Theorem 3.5. Let $K = \begin{pmatrix} R & M \\ N & S \end{pmatrix}$ is a formal matrix ring and R, S be right semiartinian rings. Then the following conditions are equivalent:

(1) K is an SSP ring.

(2) $R, S \text{ are } SSP \text{ rings and } \operatorname{Reg}(K) = \begin{pmatrix} \operatorname{Reg}(R) & M \\ N & \operatorname{Reg}(S) \end{pmatrix}.$

Proof. (1) \Rightarrow (2) According to [1, Theorem 4.2], the ring K is semiartinian. From Theorem 3.3, it follows that $\begin{pmatrix} 0 & M \\ N & 0 \end{pmatrix} \subset \operatorname{Reg}(K)$. Then from [15, Theorem 5.3], it implies that $\operatorname{Reg}(K) = \begin{pmatrix} \operatorname{Reg}(R) & M \\ N & \operatorname{Reg}(S) \end{pmatrix}$.

 $(2) \Rightarrow (1)$ Since by Theorem 3.3, the rings R/Reg(R) and S/Reg(S) are normal, then the ring $K/\text{Reg}(K) \cong R/\text{Reg}(R) \times S/\text{Reg}(S)$ is normal. Then from Lemma 3.4, it follows that K is an SSP ring.

References

- 1. A. N Abyzov and D. Tapkin, Formal Matrix and its isomorphisms, to appear in *Sibirsk. Mat. Zh.*
- A. N. Abyzov and A. A. Tuganbaev, Modules in which sums or intersections of two direct summands are direct summands, *Fundam. Prikl. Mat.* 19(1) (2014) 3–11.
- M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, *Turkish J. Math* 26 (2002) 131–147.
- I. Amin, Y. Ibrahim and M. F. Yousif, D3-modules, *Commun. Algebra* 42(2) (2014) 578–592.
- 5. I. Amin, Y. Ibrahim and M. F. Yousif, C3-modules, to appear in Algebra Collog.
- V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420 (2014) 39–53.
- J. L. Garcia, Properties of direct summands of modules, Comm. Algebra 17(1) (1989) 73–92.
- A. Hamdouni, A. Harmanci and A. Ç. Özcan, Characterization of modules and rings by the summand intersection property and the summand sum property, JP J. Algebra Number Theory Appl. 5(3) (2005) 469–490.
- J. Hausen, Modules with the summand intersection property, Comm. Algebra 17(1) (1989) 135–148.
- S. R. Lopez–Permouth, K. Oshiro and S. T. Rizvi, On the relative (quasi-) continuity of modules, *Comm. Algebra* 6 (1998) 3497–3510.
- P. Menal, On π-regular rings whose primitive factor rings are artinian, J. Pure Appl. Algebra 20 (1981) 71–78.
- K. Oshiro, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983) 681–694.
- 13. A. A. Tuganbaev, *Rings Close to Regular* (Kluwer Academic Publishers, Dordrecht, 2002).
- G. V. Wilson, Modules with the direct summand intersection property, Comm. Algebra 14 (1986) 21–38.
- Y. Zhou, On (semi)regularity and the total of rings and modules, J. Algebra 322 (2009) 562–578.