SSP rings and modules

A. N. Abyzov
Chair of Algebra and Mathematical Logic Kazan (Volga Region) Federal University 18 Kremlyovskaya str., Kazan 420008, Russia aabyzov@ksu.ru adel.abyzov@ksu.ru
T. C. Quynh
Department of Mathematics, Danang University 459 Ton Duc Thang, Danang City, Vietnam
tcquynh@live.com
tcquynh@dce.udn.vn
T. H. N. Nhan
Chair of Algebra and Mathematical Logic
Kazan (Volga Region) Federal University
18 Kremlyovskaya str., Kazan 420008, Russia
tranhoaingocnhan@gmail.com
Communicated by M. Arslanov
Received August 3, 2015
Revised September 1, 2015
Published November 6, 2015

Abstract

We study \mathcal{A}-Ci modules $(i=2,3)$, first introduced in [K. Oshiro, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983) 681-694], and \mathcal{A}-SSP modules. We consider the cases when these classes of modules coincide. As a consequence, we obtain some results related to simple-direct-injective modules. We also investigate some properties of SSP formal matrix rings and describe semiartinian SSP rings.

Keywords: SSP modules; semiartinian rings; formal matrix rings.
AMS Subject Classification: 16D10, 16D40, 16D80

1. Introduction

Throughout this paper, R denotes an associative ring with identity, and modules will be unitary right R-modules.

A module M is called an SSP module (respectively, SIP module) if the sum (respectively, the intersection) of any two direct summands of M is also a direct summand of M. A ring R is called a right SSP ring (respectively, right SIP ring) if
R_{R} is an SSP module (respectively, SIP-module). Because right SSP rings are left SSP rings, we will not use the terms right SSP and left SSP, and call these rings SSP rings, simply. From [3, Lemma 1.9], it implies that all SSP rings are SIP rings. SSP and SIP modules have also been studied [7, 9, 14]. An important generalization of SSP module (respectively, SIP module) is the concept of $C 3$ module (respectively, $D 3$ module). These modules have recently been studied in $[4,5]$.

Let \mathcal{A} be a set of submodules of M. We say that a module M is an \mathcal{A}-SSP module, if for any submodules $A \in \mathcal{A}$ and $X \leq M, A \leq_{\oplus} M, X \leq_{\oplus} M$ then $A+X \leq_{\oplus} M$. In this paper we study the relationship between \mathcal{A} - Ci modules $(i=2,3)$, first introduced in [12], and \mathcal{A}-SSP modules. We also studied semiartinian SSP rings and SSP formal matrix rings.

Throughout this paper, the notations $N \leq M, N \leq_{e} M$ and $N \ll M$ mean that N is a submodule, an essential submodule, and a small submodule of M, respectively. The Jacobson radical and the maximal regular ideal in R are denoted by $J(R)$ and $\operatorname{Reg}(R)$, respectively. The Jacobson radical of a right R-module M is denoted by $J(M)$.

The paper uses standard concepts and notations of the theory of rings and modules (see, eg., [13]).

2. \mathcal{A}-Ci Modules

Let M be a right R-module and \mathcal{A} be a set of submodules of M. Following [12, 10], we recall the following conditions:
$\mathcal{A}-(C 1)$: For all $A \in \mathcal{A}$, there exists $A^{*} \leq_{\oplus} M$ such that $A \leq_{e} A^{*}$.
$\mathcal{A}-(C 2)$: For all $A \in \mathcal{A}$, if $X \leq_{\oplus} M$ is such that $A \cong X$, then $A \leq_{\oplus} M$.
$\mathcal{A}-(C 3)$: For all $A \in \mathcal{A}$ and $X \leq_{\oplus} M$, if $A \leq_{\oplus} M$ and $A \cap X=0$ then $A \oplus X \leq_{\oplus} M$.
Lemma 2.1. Let M be a right R-module and \mathcal{A} be a set of submodules of M which is closed under isomorphic images. If M is an $\mathcal{A}-C 2$ module then M is an $\mathcal{A}-C 3$ module.

Lemma 2.2. Let M be a right R-module and \mathcal{A} be a set of submodules of M which is closed under isomorphic images. If M is an $\mathcal{A}-C 2$ module ($\mathcal{A}-C 3$ module) then so are all direct summands of M.

Let $f: A \rightarrow B$ be a homomorphism. We denote by $\langle f\rangle$ the submodule of $A \oplus B$ as follows:

$$
\langle f\rangle=\{a+f(a) \mid a \in A\}
$$

Theorem 2.1. Let M be a right R-module and \mathcal{A} be a set of submodules of M which is closed under isomorphic images and summands. If every submodule of M is \mathcal{A}-projective, then the following conditions are equivalent:
(1) If whenever two direct summands A, B of M with $A \in \mathcal{A}$, then $A+B$ is a direct summand of M.
(2) M is an $\mathcal{A}-C 3$ module.
(3) For any decomposition $M=A_{1} \oplus A_{2}$ with $A_{1} \in \mathcal{A}$, then every homomorphism $f: A_{1} \rightarrow A_{2}$ has the image, a direct summand of A_{2}.

Proof. (1) \Rightarrow (2) The implication is obvious.
$(2) \Rightarrow(3)$ Let $f: A_{1} \rightarrow A_{2}$ be an R-homomorphism with $A_{1} \in \mathcal{A}$. By the hypothesis, there exists a decomposition $A_{1}=\operatorname{Ker}(f) \oplus B$ for a submodule B of A_{1}. Then $B \oplus A_{2}$ is a direct summand of M. Note that if a module satisfies (2), so are its direct summands of M. Hence $B \oplus A_{2}$ satisfies (2). Let $g:=\left.f\right|_{B}: B \rightarrow A_{2}$. Then g is a monomorphism and $\operatorname{Im}(g)=\operatorname{Im}(f)$. It is easy to see that $B \oplus A_{2}=\langle g\rangle \oplus A_{2}$, $\langle g\rangle \cap B=0$ and $\langle g\rangle \simeq B$. Note that $B,\langle g\rangle \in \mathcal{A}$. As $B \oplus A_{2}$ satisfies (2), $B \oplus\langle g\rangle$ is a direct summand of $B \oplus A_{2}$. Thus $B \oplus\langle g\rangle=B \oplus \operatorname{Im}(g)$, which implies that $\operatorname{Im}(g)$ or $\operatorname{Im}(f)$ is a direct summand of A_{2}.
(3) \Rightarrow (1) Let N and K be summands of M such that $N \in \mathcal{A}$. Write $M=$ $N \oplus N^{\prime}$ and $M=K \oplus K^{\prime}$ for some $N^{\prime}, K^{\prime} \leq M$. Consider the canonical projections $\pi_{K}: M \rightarrow K$ and $\pi_{N^{\prime}}: M \rightarrow N^{\prime}$. Let $A:=\pi_{N^{\prime}}\left(\pi_{K}(N)\right)$. Then $A=(N+K) \cap$ $\left(N+K^{\prime}\right) \cap N^{\prime}$, and so is a direct summand of M by (3). Write $M=A \oplus L$ for a submodule $L \leq M$. Clearly,

$$
(N+K) \cap\left[\left(N+K^{\prime}\right) \cap\left(N^{\prime} \cap L\right)\right]=0 .
$$

Hence, $N^{\prime}=A \oplus\left(N^{\prime} \cap L\right)$ and $M=(N \oplus A) \oplus\left(N^{\prime} \cap L\right)$. Since $A \leq N+K$ and $A \leq N+K^{\prime}$, we get

$$
N+K=(N \oplus A) \cap\left[(N+K) \cap\left(N^{\prime} \cap L\right)\right]
$$

and

$$
N+K^{\prime}=(N \oplus A) \cap\left[\left(N+K^{\prime}\right) \cap\left(N^{\prime} \cap L\right)\right]
$$

They imply

$$
\begin{aligned}
M & =N+K^{\prime}+K \\
& =(N \oplus A)+\left[(N+K) \cap\left(N^{\prime} \cap L\right)\right]+\left[\left(N+K^{\prime}\right) \cap\left(N^{\prime} \cap L\right)\right] \\
& \leq(N+K)+\left[\left(N+K^{\prime}\right) \cap\left(N^{\prime} \cap L\right)\right] .
\end{aligned}
$$

Thus $M=(N+K) \oplus\left[\left(N+K^{\prime}\right) \cap\left(N^{\prime} \cap L\right)\right.$.
Theorem 2.2. Let M be a right R-module and \mathcal{A} be a set of submodules of M which is closed under isomorphic images and summands. If every factor module of M is \mathcal{A}-projective or every submodule of M is \mathcal{A}-injective, then the following conditions are equivalent:
(1) If whenever two direct summands A, B of M with $A \in \mathcal{A}$, then $A+B$ is a direct summand of M.
(2) M is an $\mathcal{A}-C 3$ module.
(3) For any decomposition $M=A_{1} \oplus A_{2}$ with $A_{1} \in \mathcal{A}$, then every homomorphism $f: A_{1} \rightarrow A_{2}$ has the image, a direct summand of A_{2}.
(4) M is an $\mathcal{A}-C 2$ module.

Proof. (1) \Rightarrow (2) The implication is obvious.
$(2) \Rightarrow(3) \Rightarrow(1)$ The implication is similar to the argument in the proof of Theorem 2.1.
$(4) \Rightarrow(2)$ It follows from Lemma 2.2(1).
(3) \Rightarrow (4) Let $\sigma: A \rightarrow B$ be an isomorphism with $A \in \mathcal{A}$ a summand of M and $B \leq M$. We show that B is a direct summand of M. Write $M=A \oplus T$ for a submodule T of M. We have that $A / A \cap B$ is an image of M and obtain that $A \cap B$ is a direct summand of A. Take $A=(A \cap B) \oplus C$ for a submodule C of A. Now $M=(A \cap B) \oplus(C \oplus T)$. Clearly, $A \cap[(C \oplus T) \cap B]=0$ and $B=(A \cap B) \oplus[(C \oplus T) \cap B]$. Let $H:=\sigma^{-1}((C \oplus T) \cap B)$. Then H is a submodule of $A, H \cap[(C \oplus T) \cap B]=0$ and there exists a submodule H^{\prime} of H such that $A=H \oplus H^{\prime}$. Note that $M=H \oplus\left(H^{\prime} \oplus T\right)$. Consider the projection $\pi: M \rightarrow H^{\prime} \oplus T$. Then

$$
H \oplus[(C \oplus T) \cap B]=H \oplus \pi((C \oplus T) \cap B)
$$

By (3), the image of the homomorphism $\left.\left.\pi\right|_{(C \oplus T) \cap B} \circ \sigma\right|_{H}: H \rightarrow H^{\prime} \oplus T$ is a direct summand of $H^{\prime} \oplus T$ because H is contained in \mathcal{A}. Write $H^{\prime} \oplus T=\left.\pi\right|_{(C \oplus T) \cap B} \sigma(H) \oplus$ K for a submodule K of $H^{\prime} \oplus T$. Then $H^{\prime} \oplus T=\pi((C \oplus T) \cap B) \oplus K$. It follows that

$$
M=H \oplus \pi((C \oplus T) \cap B) \oplus K=H \oplus[(C \oplus T) \cap B] \oplus K
$$

By the modular law, $C \oplus T=[(C \oplus T) \cap B] \oplus[(H \oplus K) \cap(C \oplus T)]$. Thus

$$
\begin{aligned}
M & =(A \cap B) \oplus[(C \oplus T) \cap B] \oplus[(H \oplus K) \cap(C \oplus T)] \\
& =B \oplus[(H \oplus K) \cap(C \oplus T)] .
\end{aligned}
$$

Corollary 2.1. Let N be a right R-module. The following conditions are equivalent:
(1) N is semisimple injective.
(2) For any right R-module M, M is an $\mathcal{A}-C 3$ module and every factor module of M is \mathcal{A}-projective where

$$
\mathcal{A}=\left\{A \leq M \mid \exists X \leq N, f: X \rightarrow M, f(X) \leq^{e} A\right\} .
$$

Proof. (1) $\Rightarrow(2)$ Assume that N is a semisimple injective module. For any right R-module M,

$$
\begin{aligned}
\mathcal{A} & =\left\{A \leq M \mid \exists X \leq N, f: X \rightarrow M, f(X) \leq^{e} A\right\} \\
& =\{A \leq M \mid A \text { is embeddable in } N\} .
\end{aligned}
$$

Thus every factor module of M is \mathcal{A}-projective and M is an $\mathcal{A}-C 3$ module by Theorem 2.2.
(2) \Rightarrow (1) Let B be a submodule of N. Then $M=B \oplus E(B)$ is an $\mathcal{A}-C 3$ module where $\mathcal{A}=\left\{A \leq M \mid \exists X \leq N, f: X \rightarrow M, f(X) \leq^{e} A\right\}$. As $B \in \mathcal{A}$, then by Theorem 2.2 the inclusion map $\iota: B \rightarrow E(B)$ splits. It means that $B=E(B)$ is injective. So B is a direct summand of N. It shown that N is a semisimple injective module.

Theorem 2.3. Let M be a right R-module and \mathcal{A} be a set of Artinian submodules of M which is closed under isomorphic images and summands. If every submodule of M is \mathcal{A}-projective, then the following conditions are equivalent:
(1) M is an $\mathcal{A}-C 3$ module.
(2) M is an $\mathcal{A}-C 2$ module.

Proof. (1) $\Rightarrow(2)$ Let M_{1} be submodule of M, which is isomorphic to a direct summand M_{2} of M and $M_{1} \in \mathcal{A}$. Then $M=M_{2} \oplus M_{2}^{\prime}$. If $M_{1} \subset M_{2}$, then by M_{2} that is Artinian and $M_{1} \cong M_{2}$, implies that $M_{1}=M_{2}$. Let $M_{1} \nsubseteq M_{2}$ and $\pi: M_{2} \oplus M_{2}^{\prime} \rightarrow M_{2}^{\prime}$ be projection. According to the hypothesis, $\operatorname{Ker}\left(\pi_{\mid M_{1}}\right)$ is a direct summand of M_{1}, then $M_{1}=M_{1} \cap M_{2} \oplus N_{1}$. Since $N_{1} \cong \pi\left(M_{1}\right), M_{1} \cong M_{2}$, then there is an isomorphism $\phi: N^{\prime} \rightarrow \pi\left(M_{1}\right)$, where N^{\prime} is a direct summand of M_{1}. Since $\langle\phi\rangle \in \mathcal{A}$ and $\langle\phi\rangle \cap M_{2}=0, M_{2}+\langle\phi\rangle=M_{2} \oplus N_{1}$ is a direct summand of M. Therefore, N_{1} is a non-zero direct summand of M. It is clear that $M_{1} \cap M_{2} \in \mathcal{A}$ and $M_{1} \cap M_{2}$ is isomorphic to a direct summand of M. If $M_{1} \cap M_{2}$ is not a direct summand of M, by using an argument that is similar to the argument presented above, we can show that $M_{1} \cap M_{2}=N_{2} \oplus N_{2}^{\prime}$, where N_{2} is a non-zero direct summand of M, N_{2}^{\prime} is a submodule of M, which is isomorphic to a direct summand of M and $N_{2}, N_{2}^{\prime} \in \mathcal{A}$. Since each module of the class \mathcal{A} is Artinian, by conducting similar constructions that continue for some k, we obtain a decomposition $M_{1}=N_{1} \oplus \cdots \oplus N_{k}$, where N_{i} is a direct summand of M and $N_{i} \in \mathcal{A}$ for each i. Since M is an $\mathcal{A}-C 3$ module, $N_{1} \oplus \cdots \oplus N_{k}$ is a direct summand of M.
$(2) \Rightarrow(1)$ It follows from Lemma 2.2(1).
Corollary 2.2 ([6, Proposition 2.1]). The following conditions are equivalent for a module M :
(1) For any simple submodules A, B of M with $A \cong B \leq_{\oplus} M, A \leq_{\oplus} M$.
(2) For any simple summands A, B of $M, A \oplus B \leq_{\oplus} M$.
(3) For any finitely generated semisimple submodules A, B of M with $A \cong B \leq_{\oplus}$ $M, A \leq \leq_{\oplus} M$.
(4) For any finitely generated semisimple summands A, B of $M, A \oplus B \leq_{\oplus} M$.

Proof. The equivalences $(1) \Leftrightarrow(2)$ and $(2) \Leftrightarrow(3)$ follow from Theorem 2.2. The implication $(4) \Rightarrow(1)$ is obvious.
$(2) \Rightarrow(4)$ It is enough to show that, if M_{1}, \ldots, M_{n} are simple summands of M, then $M_{1}+\cdots+M_{n}$ is a summand of M. That is easy to prove by induction.

Note that a module M satisfying the condition of Corollary 2.2 is called simple-direct-injective (see [6]).

3. SSP-Rings

The following statement follows from [2, 3, 7].
Theorem 3.1. The following conditions are equivalent for a quasi-projective module M :
(1) If $f, g \in \operatorname{End}_{R}(M)$ are regular homomorphisms, then $f g$ is a regular homomorphism.
(2) If e, $f \in \operatorname{End}_{R}(M)$ are idempotent homomorphisms, then $f e$ is a regular homomorphism.
(3) $\operatorname{End}_{R}(M)$ is a right SSP ring.
(4) $\operatorname{End}_{R}(M)$ is a left SSP ring.
(5) For any decomposition $M=A \oplus B$ and any homomorphism $f \in \operatorname{Hom}_{R}(A, B)$, the image of the homomorphism f is a direct summand of M.

Lemma 3.1. The following conditions are equivalent for a ring R :
(1) If $a, b \in R$ are regular, then $a b$ is also regular.
(2) If $e, f \in R$ are idempotent elements, then ef is regular.
(3) ${ }_{R} R$ is an SSP module.
(4) R_{R} is an SSP module.
(5) For any idempotent $e \in R$, every element of the set $e R(1-e)$ and every element of the set $(1-e)$ Re are regular.

The previous lemma gives the equivalent definition of an SSP ring. For example, every regular ring and every normal ring are SSP rings.

Lemma 3.2. If R is an SSP ring, then $e R e$ is an SSP ring for any idempotent $e \in R$.

Lemma 3.3. Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ be a Morita context. If K is an SSP ring, then M is an N-regular module and N is an M-regular module.

Lemma 3.4. The following conditions are equivalent for a ring R :
(1) R is an SSP ring.
(2) $R / \operatorname{Reg}(R)$ is an SSP ring.

Proof. (1) \Rightarrow (2) Using Lemma 3.1, we only need to show that the product of two idempotents of the ring $R / \operatorname{Reg}(R)$ is a regular element. Let e_{1}, e_{2} are idempotents of the ring $R / \operatorname{Reg}(R)$. Then by [11, Lemma 3], there exist idempotents $f_{1}, f_{2} \in R$ such that $e_{1}=f_{1}+\operatorname{Reg}(R), e_{2}=f_{2}+\operatorname{Reg}(R)$. Since R is an SSP ring, $f_{1} f_{2}$ is a regular element of the ring R. Therefore, $e_{1} e_{2}$ is a regular element of the ring $R / \operatorname{Reg}(R)$.
$(2) \Rightarrow(1)$ We will show that the product of two regular elements of the ring R is also a regular element. Let a, b are regular elements of the ring R. Since $R / \operatorname{Reg}(R)$ is an SSP ring, there exists $c \in R$ such that $a b c a b-a b \in \operatorname{Reg}(R)$ by Lemma 3.1. Then we have $a b c a b-a b=(a b c a b-a b) d(a b c a b-a b)$ for some $d \in R$. Therefore, $a b \in a b R a b$.

A module M is called a retractable module if $\operatorname{Hom}(M, N) \neq 0, \forall N(\neq 0) \leq M$.
Theorem 3.2. Let P be a quasi-projective retractable module. If $J(P)$ is an essential submodule of P, then the following conditions are equivalent:
(1) P is an SSP module.
(2) $S=\operatorname{End}_{R}(P)$ is a normal ring.

Proof. (1) \Rightarrow (2) Assume that $e \in S$ is not a central idempotent. Without loss of generality, we can assume that $(1-e) S e \neq 0$. Then there exists a non-zero homomorphism $\psi \in \operatorname{Hom}_{R}(e P,(1-e) P)$. From Theorem 3.1, $\operatorname{Im}(\psi)$ is a direct summand of P. Then $\operatorname{Ker}(\psi)$ is a direct summand of $e P$. Therefore, $e P$ and $(1-e) P$ contain non-zero direct summands which are isomorphic. Let $f P$ be a non-zero direct summand of $e P$, which is isomorphic to some direct summand of $(1-e) P$. Then f is an idempotent of the ring S. Since $J(P)$ is essential in P, the submodule $f P$ contains a non-zero element $m \in J(P)$. Since P is retractable, there exists a non-zero homomorphism modules $\phi: P \rightarrow m R$. If $\phi_{\mid f P} \neq 0$ then there exists a non-zero homomorphism $\varphi: e P \rightarrow(1-e) P$ such that $\operatorname{Im}(\varphi) \subset J((1-e) P)$, that is impossible by Theorem 3.1. If $\phi_{\mid f P}=0$ then there exists a non-zero homomorphism from $(1-f) P$ to $J(f P)$, which is also impossible. This contradiction shows that S is a normal ring.

The implications $(2) \Rightarrow(1)$ follows from Theorem 3.1.
Theorem 3.3. Let R be a right semiartinian ring. Then the following conditions are equivalent:
(1) R is an SSP ring.
(2) $R / \operatorname{Reg}(R)$ is a normal ring.
(3) $e R(1-e) \subset \operatorname{Reg}(R)$ for any idempotent $e \in R$.

Proof. (1) \Rightarrow (2) Put $\bar{R}=R / \operatorname{Reg}(R)$. Call A a right ideal of the ring \bar{R} with $\operatorname{Soc}\left(\bar{R}_{\bar{R}}\right)=A \oplus J(\bar{R}) \cap \operatorname{Soc}\left(\bar{R}_{\bar{R}}\right)$. Assume that S is a simple submodule of $A_{\bar{R}}$ and $r S$ is not a submodule of $A_{\bar{R}}$ for some $r \in \bar{R}$. Then $\pi(r S)$ is a simple submodule of $J(\bar{R}) \cap \operatorname{Soc}\left(\bar{R}_{\bar{R}}\right)$, where $\pi: A \oplus J(\bar{R}) \cap \operatorname{Soc}\left(\bar{R}_{\bar{R}}\right) \rightarrow J(\bar{R}) \cap \operatorname{Soc}\left(\bar{R}_{\bar{R}}\right)$ is the natural projection. On the other hand, there exists a submodule B of $\bar{R}_{\bar{R}}$ such that $\bar{R}_{\bar{R}}=S \oplus B$. It follows that $J(\bar{R})=J(B)$ and $J(B) \cap \operatorname{Soc}\left(\bar{R}_{\bar{R}}\right)$ contains a submodule S_{0} which is isomorphic to the module S. Then there is a homomorphism $f: S \rightarrow B$, such that $\operatorname{Im}(f)=S_{0}$. By Lemma 3.4, the ring \bar{R} is an SSP ring. Therefore S_{0} is a direct summand of B by Theorem 3.1, which contradicts $S_{0} \subset J(B)$. Thus, A is an
ideal of R. We will show that A is a regular ideal. Let $a \in A$. Since $a \bar{R}$ is a semisimple module of finite length and $a \bar{R} \cap J(\bar{R})=0, a \bar{R}$ is a direct summand of $\bar{R}_{\bar{R}}$. Therefore, $a \in a \bar{R} a=a A a$. Since $\operatorname{Reg}(\bar{R})=0, A=0$ and therefore $\operatorname{Soc}\left(\bar{R}_{\bar{R}}\right) \subset J(\bar{R})$. Then, the implication follows from Theorem 3.2.

The implication $(2) \Rightarrow(1)$ follows from Lemma 3.4.
The equivalence of $(2) \Leftrightarrow(3)$ follows from [11, Lemma 3].
Theorem 3.4. Let R, S be normal rings and $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ be a formal matrix ring. Then the following conditions are equivalent:
(1) K is an SSP ring.
(2) R, S are SSP rings and $\operatorname{Reg}(K)=\left(\begin{array}{cc}\operatorname{Reg}(R) & M \\ N\end{array} \underset{\operatorname{Reg}(S)}{M}\right)$.

Proof. $(1) \Rightarrow(2)$ By Lemma 3.3, all elements of the form $\left(\begin{array}{cc}0 & m \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ n & 0\end{array}\right)$ are regular in the ring K. Since Lemma 3.1, $m n$ are regular in the ring R for any $m \in M, n \in N$. Let $\sum_{i \in I} r_{i} m n r_{i}^{\prime}$ be any element of the ideal $R m n R$. Since $m n$ is regular, $m n=m n r m n$ for some $r \in R$. Then since $\sum_{i \in I} r_{i} m n r_{i}^{\prime}=$ $\sum_{i \in I} r_{i} m n r m n r_{i}^{\prime}=m n r\left(\sum_{i \in I} r_{i} m n r_{i}^{\prime}\right)$, every element of the ideal $R m n R$ belongs to the set $\{m n \mid m \in M, n \in N\}$, and hence, it is regular. So that we have $M N \subset \operatorname{Reg}(R)$. Similarly, we can show that $N M \subset \operatorname{Reg}(S)$. Then from [15, Theorem 5.3], it follows that $\operatorname{Reg}(K)=\left(\begin{array}{cc}\operatorname{Reg}(R) & M \\ N\end{array} \underset{\operatorname{Reg}(S)}{M}\right)$. We obtain that R, S are SSP rings by Lemma 3.2.
(2) \Rightarrow (1) Since $K / \operatorname{Reg}(K) \cong R / \operatorname{Reg}(R) \times S / \operatorname{Reg}(S)$ is an SSP ring, then it follows from Lemma 3.4 that K is an SSP ring.

Corollary 3.1. Let R, S be rings that satisfy every idempotent is trivial and $K=$ $\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ be a formal matrix ring. Then the following conditions are equivalent:
(1) K is an SSP ring.
(2) Either $M=0, N=0$ or $K \cong M_{2}(T)$, where T is a skew field.

Theorem 3.5. Let $K=\left(\begin{array}{cc}R & M \\ N & S\end{array}\right)$ is a formal matrix ring and R, S be right semiartinian rings. Then the following conditions are equivalent:
(1) K is an SSP ring.
(2) R, S are SSP rings and $\operatorname{Reg}(K)=\left(\begin{array}{cc}\operatorname{Reg}(R) & M \\ N\end{array}\right)$ Reg(S)

Proof. $(1) \Rightarrow(2)$ According to $[1$, Theorem 4.2], the ring K is semiartinian. From Theorem 3.3, it follows that $\left(\begin{array}{cc}0 & M \\ N & 0\end{array}\right) \subset \operatorname{Reg}(K)$. Then from [15, Theorem 5.3], it implies that $\operatorname{Reg}(K)=\left(\begin{array}{cc}\operatorname{Reg}(R) & M \\ \operatorname{Reg}(S)\end{array}\right)$.
$(2) \Rightarrow(1)$ Since by Theorem 3.3, the rings $R / \operatorname{Reg}(R)$ and $S / \operatorname{Reg}(S)$ are normal, then the $\operatorname{ring} K / \operatorname{Reg}(K) \cong R / \operatorname{Reg}(R) \times S / \operatorname{Reg}(S)$ is normal. Then from Lemma 3.4, it follows that K is an SSP ring.

References

1. A. N Abyzov and D. Tapkin, Formal Matrix and its isomorphisms, to appear in Sibirsk. Mat. Zh.
2. A. N. Abyzov and A. A. Tuganbaev, Modules in which sums or intersections of two direct summands are direct summands, Fundam. Prikl. Mat. 19(1) (2014) 3-11.
3. M. Alkan and A. Harmanci, On summand sum and summand intersection property of modules, Turkish J. Math 26 (2002) 131-147.
4. I. Amin, Y. Ibrahim and M. F. Yousif, D3-modules, Commun. Algebra 42(2) (2014) 578-592.
5. I. Amin, Y. Ibrahim and M. F. Yousif, C3-modules, to appear in Algebra Colloq.
6. V. Camillo, Y. Ibrahim, M. Yousif and Y. Zhou, Simple-direct-injective modules, J. Algebra 420 (2014) 39-53.
7. J. L. Garcia, Properties of direct summands of modules, Comm. Algebra 17(1) (1989) 73-92.
8. A. Hamdouni, A. Harmanci and A. Ç. Özcan, Characterization of modules and rings by the summand intersection property and the summand sum property, JP J. Algebra Number Theory Appl. 5(3) (2005) 469-490.
9. J. Hausen, Modules with the summand intersection property, Comm. Algebra 17(1) (1989) 135-148.
10. S. R. Lopez-Permouth, K. Oshiro and S. T. Rizvi, On the relative (quasi-) continuity of modules, Comm. Algebra 6 (1998) 3497-3510.
11. P. Menal, On π-regular rings whose primitive factor rings are artinian, J. Pure Appl. Algebra 20 (1981) 71-78.
12. K. Oshiro, Continuous modules and quasi-continuous modules, Osaka J. Math. 20 (1983) 681-694.
13. A. A. Tuganbaev, Rings Close to Regular (Kluwer Academic Publishers, Dordrecht, 2002).
14. G. V. Wilson, Modules with the direct summand intersection property, Comm. Algebra 14 (1986) 21-38.
15. Y. Zhou, On (semi)regularity and the total of rings and modules, J. Algebra 322 (2009) 562-578.
