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We study A-Ci modules (i = 2, 3), first introduced in [K. Oshiro, Continuous modules
and quasi-continuous modules, Osaka J. Math. 20 (1983) 681–694], and A-SSP modules.
We consider the cases when these classes of modules coincide. As a consequence, we
obtain some results related to simple-direct-injective modules. We also investigate some
properties of SSP formal matrix rings and describe semiartinian SSP rings.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity, and modules
will be unitary right R-modules.

A module M is called an SSP module (respectively, SIP module) if the sum
(respectively, the intersection) of any two direct summands of M is also a direct
summand of M . A ring R is called a right SSP ring (respectively, right SIP ring) if
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RR is an SSP module (respectively, SIP-module). Because right SSP rings are left
SSP rings, we will not use the terms right SSP and left SSP, and call these rings SSP
rings, simply. From [3, Lemma 1.9], it implies that all SSP rings are SIP rings. SSP
and SIP modules have also been studied [7, 9, 14]. An important generalization of
SSP module (respectively, SIP module) is the concept of C3 module (respectively,
D3 module). These modules have recently been studied in [4, 5].

Let A be a set of submodules of M . We say that a module M is an A-SSP
module, if for any submodules A ∈ A and X ≤ M , A ≤⊕ M,X ≤⊕ M then
A + X ≤⊕ M . In this paper we study the relationship between A-Ci modules
(i = 2, 3), first introduced in [12], and A-SSP modules. We also studied semiartinian
SSP rings and SSP formal matrix rings.

Throughout this paper, the notations N ≤ M , N ≤e M and N � M mean
that N is a submodule, an essential submodule, and a small submodule of M ,
respectively. The Jacobson radical and the maximal regular ideal in R are denoted
by J(R) and Reg(R), respectively. The Jacobson radical of a right R-module M is
denoted by J(M).

The paper uses standard concepts and notations of the theory of rings and
modules (see, eg., [13]).

2. A-Ci Modules

Let M be a right R-module and A be a set of submodules of M . Following [12, 10],
we recall the following conditions:

A-(C1): For all A ∈ A, there exists A∗ ≤⊕ M such that A ≤e A
∗.

A-(C2): For all A ∈ A, if X ≤⊕ M is such that A ∼= X , then A ≤⊕ M .
A-(C3): For all A ∈ A and X ≤⊕ M , if A ≤⊕ M and A∩X = 0 then A⊕X ≤⊕ M .

Lemma 2.1. Let M be a right R-module and A be a set of submodules of M which
is closed under isomorphic images. If M is an A-C2 module then M is an A-C3
module.

Lemma 2.2. Let M be a right R-module and A be a set of submodules of M which
is closed under isomorphic images. If M is an A-C2 module (A-C3 module) then
so are all direct summands of M .

Let f : A→ B be a homomorphism. We denote by 〈f〉 the submodule of A⊕B

as follows:

〈f〉 = {a+ f(a) | a ∈ A}.
Theorem 2.1. Let M be a right R-module and A be a set of submodules of M
which is closed under isomorphic images and summands. If every submodule of M
is A-projective, then the following conditions are equivalent:

(1) If whenever two direct summands A,B of M with A ∈ A, then A+B is a direct
summand of M .
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(2) M is an A-C3 module.
(3) For any decomposition M = A1 ⊕ A2 with A1 ∈ A, then every homomorphism

f : A1 → A2 has the image, a direct summand of A2.

Proof. (1) ⇒ (2) The implication is obvious.
(2) ⇒ (3) Let f : A1 → A2 be an R-homomorphism with A1 ∈ A. By the

hypothesis, there exists a decomposition A1 = Ker(f) ⊕ B for a submodule B of
A1. Then B⊕A2 is a direct summand ofM . Note that if a module satisfies (2), so are
its direct summands of M . Hence B⊕A2 satisfies (2). Let g := f |B : B → A2. Then
g is a monomorphism and Im(g) = Im(f). It is easy to see that B⊕A2 = 〈g〉⊕A2,
〈g〉 ∩B = 0 and 〈g〉 � B. Note that B, 〈g〉 ∈ A. As B ⊕A2 satisfies (2), B ⊕ 〈g〉 is
a direct summand of B⊕A2. Thus B⊕ 〈g〉 = B ⊕ Im(g), which implies that Im(g)
or Im(f) is a direct summand of A2.

(3) ⇒ (1) Let N and K be summands of M such that N ∈ A. Write M =
N ⊕N ′ and M = K⊕K ′ for some N ′,K ′ ≤M . Consider the canonical projections
πK : M → K and πN ′ : M → N ′. Let A := πN ′(πK(N)). Then A = (N + K) ∩
(N +K ′) ∩N ′, and so is a direct summand of M by (3). Write M = A ⊕ L for a
submodule L ≤M . Clearly,

(N +K) ∩ [(N +K ′) ∩ (N ′ ∩ L)] = 0.

Hence, N ′ = A ⊕ (N ′ ∩ L) and M = (N ⊕ A) ⊕ (N ′ ∩ L). Since A ≤ N + K and
A ≤ N +K ′, we get

N +K = (N ⊕A) ∩ [(N +K) ∩ (N ′ ∩ L)]

and

N +K ′ = (N ⊕A) ∩ [(N +K ′) ∩ (N ′ ∩ L)].

They imply

M = N +K ′ +K

= (N ⊕A) + [(N +K) ∩ (N ′ ∩ L)] + [(N +K ′) ∩ (N ′ ∩ L)]

≤ (N +K) + [(N +K ′) ∩ (N ′ ∩ L)].

Thus M = (N +K) ⊕ [(N +K ′) ∩ (N ′ ∩ L).

Theorem 2.2. Let M be a right R-module and A be a set of submodules of M
which is closed under isomorphic images and summands. If every factor module
of M is A-projective or every submodule of M is A-injective, then the following
conditions are equivalent:

(1) If whenever two direct summands A,B of M with A ∈ A, then A+B is a direct
summand of M .

(2) M is an A-C3 module.
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(3) For any decomposition M = A1 ⊕A2 with A1 ∈ A, then every homomorphism
f : A1 → A2 has the image, a direct summand of A2.

(4) M is an A-C2 module.

Proof. (1) ⇒ (2) The implication is obvious.
(2) ⇒ (3) ⇒ (1) The implication is similar to the argument in the proof of

Theorem 2.1.
(4) ⇒ (2) It follows from Lemma 2.2(1).
(3) ⇒ (4) Let σ : A → B be an isomorphism with A ∈ A a summand of M

and B ≤ M . We show that B is a direct summand of M . Write M = A ⊕ T

for a submodule T of M . We have that A/A ∩ B is an image of M and obtain
that A ∩ B is a direct summand of A. Take A = (A ∩ B) ⊕ C for a submodule
C of A. Now M = (A ∩ B) ⊕ (C ⊕ T ). Clearly, A ∩ [(C ⊕ T ) ∩ B] = 0 and
B = (A∩B)⊕ [(C⊕T )∩B]. Let H := σ−1((C⊕T )∩B). Then H is a submodule of
A,H∩[(C⊕T )∩B] = 0 and there exists a submoduleH ′ ofH such that A = H⊕H ′.
Note that M = H ⊕ (H ′ ⊕ T ). Consider the projection π : M → H ′ ⊕ T . Then

H ⊕ [(C ⊕ T ) ∩B] = H ⊕ π((C ⊕ T ) ∩B).

By (3), the image of the homomorphism π|(C⊕T )∩B ◦ σ|H : H → H ′ ⊕ T is a direct
summand of H ′⊕T because H is contained in A. Write H ′⊕T = π|(C⊕T )∩Bσ(H)⊕
K for a submodule K of H ′ ⊕ T . Then H ′ ⊕ T = π((C ⊕ T ) ∩ B) ⊕K. It follows
that

M = H ⊕ π((C ⊕ T ) ∩B) ⊕K = H ⊕ [(C ⊕ T ) ∩B] ⊕K.

By the modular law, C ⊕ T = [(C ⊕ T ) ∩B] ⊕ [(H ⊕K) ∩ (C ⊕ T )]. Thus

M = (A ∩B) ⊕ [(C ⊕ T ) ∩B] ⊕ [(H ⊕K) ∩ (C ⊕ T )]

= B ⊕ [(H ⊕K) ∩ (C ⊕ T )].

Corollary 2.1. Let N be a right R-module. The following conditions are equivalent:

(1) N is semisimple injective.
(2) For any right R-module M, M is an A-C3 module and every factor module of

M is A-projective where

A = {A ≤M | ∃X ≤ N, f : X →M, f(X) ≤e A}.

Proof. (1) ⇒ (2) Assume that N is a semisimple injective module. For any right
R-module M ,

A = {A ≤M | ∃X ≤ N, f : X →M, f(X) ≤e A}
= {A ≤M |A is embeddable in N}.

Thus every factor module of M is A-projective and M is an A-C3 module by
Theorem 2.2.
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(2) ⇒ (1) Let B be a submodule of N . Then M = B⊕E(B) is an A-C3 module
where A = {A ≤ M | ∃X ≤ N, f : X → M, f(X) ≤e A}. As B ∈ A, then by
Theorem 2.2 the inclusion map ι : B → E(B) splits. It means that B = E(B) is
injective. So B is a direct summand of N . It shown that N is a semisimple injective
module.

Theorem 2.3. Let M be a right R-module and A be a set of Artinian submodules
of M which is closed under isomorphic images and summands. If every submodule
of M is A-projective, then the following conditions are equivalent:

(1) M is an A-C3 module.
(2) M is an A-C2 module.

Proof. (1) ⇒ (2) Let M1 be submodule of M , which is isomorphic to a direct
summand M2 of M and M1 ∈ A. Then M = M2 ⊕ M ′

2. If M1 ⊂ M2, then by
M2 that is Artinian and M1

∼= M2, implies that M1 = M2. Let M1 � M2 and
π : M2⊕M ′

2 → M ′
2 be projection. According to the hypothesis, Ker(π|M1) is a direct

summand ofM1, thenM1 = M1∩M2⊕N1. SinceN1
∼= π(M1),M1

∼= M2, then there
is an isomorphism φ : N ′ → π(M1), where N ′ is a direct summand of M1. Since
〈φ〉 ∈ A and 〈φ〉∩M2 = 0,M2+〈φ〉 = M2⊕N1 is a direct summand ofM . Therefore,
N1 is a non-zero direct summand of M . It is clear that M1 ∩M2 ∈ A and M1 ∩M2

is isomorphic to a direct summand of M . If M1 ∩M2 is not a direct summand of
M , by using an argument that is similar to the argument presented above, we can
show that M1∩M2 = N2⊕N ′

2, where N2 is a non-zero direct summand of M , N ′
2 is

a submodule of M , which is isomorphic to a direct summand of M and N2, N
′
2 ∈ A.

Since each module of the class A is Artinian, by conducting similar constructions
that continue for some k, we obtain a decomposition M1 = N1 ⊕ · · · ⊕ Nk, where
Ni is a direct summand of M and Ni ∈ A for each i. Since M is an A-C3 module,
N1 ⊕ · · · ⊕Nk is a direct summand of M .

(2) ⇒ (1) It follows from Lemma 2.2(1).

Corollary 2.2 ([6, Proposition 2.1]). The following conditions are equivalent
for a module M :

(1) For any simple submodules A, B of M with A ∼= B ≤⊕ M, A ≤⊕ M .
(2) For any simple summands A,B of M, A⊕B ≤⊕ M .
(3) For any finitely generated semisimple submodules A, B of M with A ∼= B ≤⊕

M, A ≤⊕ M .
(4) For any finitely generated semisimple summands A,B of M, A⊕B ≤⊕ M .

Proof. The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Theorem 2.2. The
implication (4) ⇒ (1) is obvious.

(2) ⇒ (4) It is enough to show that, if M1, . . . ,Mn are simple summands of M ,
then M1 + · · · +Mn is a summand of M . That is easy to prove by induction.
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Note that a module M satisfying the condition of Corollary 2.2 is called simple-
direct-injective (see [6]).

3. SSP-Rings

The following statement follows from [2, 3, 7].

Theorem 3.1. The following conditions are equivalent for a quasi-projective
module M :

(1) If f, g ∈ EndR(M) are regular homomorphisms, then fg is a regular homomor-
phism.

(2) If e, f ∈ EndR(M) are idempotent homomorphisms, then fe is a regular homo-
morphism.

(3) EndR(M) is a right SSP ring.
(4) EndR(M) is a left SSP ring.
(5) For any decomposition M = A⊕B and any homomorphism f ∈ HomR(A,B),

the image of the homomorphism f is a direct summand of M .

Lemma 3.1. The following conditions are equivalent for a ring R:

(1) If a, b ∈ R are regular, then ab is also regular.
(2) If e, f ∈ R are idempotent elements, then ef is regular.
(3) RR is an SSP module.
(4) RR is an SSP module.
(5) For any idempotent e ∈ R, every element of the set eR(1−e) and every element

of the set (1 − e)Re are regular.

The previous lemma gives the equivalent definition of an SSP ring. For example,
every regular ring and every normal ring are SSP rings.

Lemma 3.2. If R is an SSP ring, then eRe is an SSP ring for any idempotent
e ∈ R.

Lemma 3.3. Let K =
(R M
N S

)
be a Morita context. If K is an SSP ring, then M

is an N -regular module and N is an M -regular module.

Lemma 3.4. The following conditions are equivalent for a ring R:

(1) R is an SSP ring.
(2) R/Reg(R) is an SSP ring.

Proof. (1) ⇒ (2) Using Lemma 3.1, we only need to show that the product of two
idempotents of the ring R/Reg(R) is a regular element. Let e1, e2 are idempotents
of the ring R/Reg(R). Then by [11, Lemma 3], there exist idempotents f1, f2 ∈ R

such that e1 = f1 + Reg(R), e2 = f2 + Reg(R). Since R is an SSP ring, f1f2 is
a regular element of the ring R. Therefore, e1e2 is a regular element of the ring
R/Reg(R).
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(2) ⇒ (1) We will show that the product of two regular elements of the ring R is
also a regular element. Let a, b are regular elements of the ring R. Since R/Reg(R)
is an SSP ring, there exists c ∈ R such that abcab − ab ∈ Reg(R) by Lemma 3.1.
Then we have abcab − ab = (abcab − ab)d(abcab − ab) for some d ∈ R. Therefore,
ab ∈ abRab.

A module M is called a retractable module if Hom(M,N) �= 0, ∀N(�= 0) ≤M .

Theorem 3.2. Let P be a quasi-projective retractable module. If J(P ) is an essen-
tial submodule of P, then the following conditions are equivalent:

(1) P is an SSP module.
(2) S = EndR(P ) is a normal ring.

Proof. (1) ⇒ (2) Assume that e ∈ S is not a central idempotent. Without loss
of generality, we can assume that (1 − e)Se �= 0. Then there exists a non-zero
homomorphism ψ ∈ HomR(eP, (1 − e)P ). From Theorem 3.1, Im(ψ) is a direct
summand of P . Then Ker(ψ) is a direct summand of eP . Therefore, eP and (1−e)P
contain non-zero direct summands which are isomorphic. Let fP be a non-zero
direct summand of eP , which is isomorphic to some direct summand of (1 − e)P .
Then f is an idempotent of the ring S. Since J(P ) is essential in P , the submodule
fP contains a non-zero element m ∈ J(P ). Since P is retractable, there exists a
non-zero homomorphism modules φ : P → mR. If φ|fP �= 0 then there exists a
non-zero homomorphism ϕ : eP → (1− e)P such that Im(ϕ) ⊂ J((1− e)P ), that is
impossible by Theorem 3.1. If φ|fP = 0 then there exists a non-zero homomorphism
from (1− f)P to J(fP ), which is also impossible. This contradiction shows that S
is a normal ring.

The implications (2) ⇒ (1) follows from Theorem 3.1.

Theorem 3.3. Let R be a right semiartinian ring. Then the following conditions
are equivalent:

(1) R is an SSP ring.
(2) R/Reg(R) is a normal ring.
(3) eR(1 − e) ⊂ Reg(R) for any idempotent e ∈ R.

Proof. (1) ⇒ (2) Put R = R/Reg(R). Call A a right ideal of the ring R with
Soc(RR) = A⊕ J(R) ∩ Soc(RR). Assume that S is a simple submodule of AR and
rS is not a submodule of AR for some r ∈ R. Then π(rS) is a simple submodule
of J(R) ∩ Soc(RR), where π : A ⊕ J(R) ∩ Soc(RR) → J(R) ∩ Soc(RR) is the
natural projection. On the other hand, there exists a submodule B of RR such that
RR = S⊕B. It follows that J(R) = J(B) and J(B)∩ Soc(RR) contains a submodule
S0 which is isomorphic to the module S. Then there is a homomorphism f : S → B,

such that Im(f) = S0. By Lemma 3.4, the ring R is an SSP ring. Therefore S0 is a
direct summand of B by Theorem 3.1, which contradicts S0 ⊂ J(B). Thus, A is an
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ideal ofR.We will show thatA is a regular ideal. Let a ∈ A. Since aR is a semisimple
module of finite length and aR∩J(R) = 0, aR is a direct summand ofRR. Therefore,
a ∈ aRa = aAa. Since Reg(R) = 0, A = 0 and therefore Soc(RR) ⊂ J(R). Then,
the implication follows from Theorem 3.2.

The implication (2) ⇒ (1) follows from Lemma 3.4.
The equivalence of (2) ⇔ (3) follows from [11, Lemma 3].

Theorem 3.4. Let R, S be normal rings and K =
(R M
N S

)
be a formal matrix

ring. Then the following conditions are equivalent:

(1) K is an SSP ring.
(2) R,S are SSP rings and Reg(K) =

(Reg(R) M
N Reg(S)

)
.

Proof. (1) ⇒ (2) By Lemma 3.3, all elements of the form
(0 m
0 0

)
,
(0 0
n 0

)
are

regular in the ring K. Since Lemma 3.1, mn are regular in the ring R for any
m ∈ M,n ∈ N . Let

∑
i∈I rimnr

′
i be any element of the ideal RmnR. Since

mn is regular, mn = mnrmn for some r ∈ R. Then since
∑

i∈I rimnr
′
i =∑

i∈I rimnrmnr
′
i = mnr(

∑
i∈I rimnr

′
i), every element of the ideal RmnR belongs

to the set {mn |m ∈ M,n ∈ N}, and hence, it is regular. So that we have
MN ⊂ Reg(R). Similarly, we can show that NM ⊂ Reg(S). Then from [15, Theo-
rem 5.3], it follows that Reg(K) =

(Reg(R) M
N Reg(S)

)
. We obtain that R, S are SSP

rings by Lemma 3.2.
(2) ⇒ (1) Since K/Reg(K) ∼= R/Reg(R) × S/Reg(S) is an SSP ring, then it

follows from Lemma 3.4 that K is an SSP ring.

Corollary 3.1. Let R,S be rings that satisfy every idempotent is trivial and K =(R M
N S

)
be a formal matrix ring. Then the following conditions are equivalent:

(1) K is an SSP ring.
(2) Either M = 0, N = 0 or K ∼= M2(T ), where T is a skew field.

Theorem 3.5. Let K =
(R M
N S

)
is a formal matrix ring and R, S be right semi-

artinian rings. Then the following conditions are equivalent:

(1) K is an SSP ring.
(2) R, S are SSP rings and Reg(K) =

(Reg(R) M
N Reg(S)

)
.

Proof. (1) ⇒ (2) According to [1, Theorem 4.2], the ring K is semiartinian. From
Theorem 3.3, it follows that

( 0 M
N 0

) ⊂ Reg(K). Then from [15, Theorem 5.3], it

implies that Reg(K) =
(Reg(R) M

N Reg(S)

)
.

(2) ⇒ (1) Since by Theorem 3.3, the rings R/Reg(R) and S/Reg(S) are normal,
then the ringK/Reg(K) ∼= R/Reg(R)×S/Reg(S) is normal. Then from Lemma 3.4,
it follows that K is an SSP ring.
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