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The original problem on surface and leaky eigen-
modes of a weakly guiding step-index optical waveg-
uide is considered. The original problem is reduced
to a nonlinear spectral problem for the set of
weakly singular boundary integral equations. We
approximate the integral operator by collocation and
Galerkin methods. Their convergence and quality
are proved by numerical experiments.

1 Introduction

Many different numerical techniques are applied
for computing eigenmodes of dielectric waveguides
[1, 2]; namely, Finite-element, Finite-difference,
beam propagation, and spline collocation meth-
ods, as well as multidomain spectral approach. Of-
ten the authors concentrate on algorithm’s features
and physical interpretation of the numerical results
rather than on fundamental mathematical aspects
including the existence, properties, and distribution
of the spectra on the complex plane. This study
develops a new approach to mathematical and nu-
merical analysis of dielectric waveguides based on
the methods of spectral theory of operator-valued
functions and integral equations [3]–[5].

We consider the spectral problem on surface and
leaky eigenmodes of a weakly guiding step-index
optical waveguide. The statement of the prob-
lem and its reduction to nonlinear spectral prob-
lem with Fredholm integral operator are given in
[6]. The convergence of the Galerkin method for
numerical solution of this problem was proved the-
oretically in [7]. For numerical solution of this non-
linear spectral problem in this study we propose the
collocation method. We realized this method and
the Galerkin method practically, computed some
examples, and compared these two methods. The
collocation method demonstrated better speed of
convergence.

2 Statement of the problem: geometry
and relations

Let the three-dimensional space be occupied by an
isotropic source-free medium, and let the refractive

index be prescribed as a positive real-valued func-
tion n = n(x) independent of the longitudinal co-
ordinate and equal to a constant n∞ > 0 outside a
cylinder. We consider the generalized natural (sur-
face and leaky) modes of a step-index optical fiber
and suppose that the refractive index is equal to a
constant n+ > n∞ inside the cylinder. The axis of
the cylinder is parallel to the longitudinal coordi-
nate and its cross section is a bounded domain Ω
with a twice continuously differentiable boundary
Γ (see Fig. 1). The domain Ω is a subset of a cir-
cle with radius R0. Denote by Ω∞ the unbounded
domain Ω∞ = R2 \ Ω.

Figure 1: Cross section of the waveguide

We consider a weakly guiding optical waveguide.
In this case function n also satisfies the following
condition: n+ ≈ n∞. The modal problem can be
formulated [6] as a scalar eigenvalue problem for
the Helmholtz equation:

∆u+ χ2
+(β)u = 0, x ∈ Ω, (1)

∆u+ χ2
∞(β)u = 0, x ∈ Ω∞, (2)

where

χ+ =
√
k2n2+ − β2, χ∞ =

√
k2n2∞ − β2,

k2 = ω2ε0µ0; ω is a given radian frequency and
ε0, µ0 are the free-space dielectric and magnetic



132 DAYS on DIFFRACTION 2013

constants, respectively; β is an unknown complex
propagation constant (eigenvalue). Eigenfunction
u also has to satisfy the conjugation conditions

u+ = u−,
∂u+

∂ν
=
∂u−

∂ν
, x ∈ Γ, (3)

and the partial condition at infinity

u(r, φ) =
∞∑

l=−∞

alH
(1)
l (χ∞r) exp(ilφ), |x| ≥ R0.

(4)

Here ν is the normal derivative; H
(1)
l is the Hankel

function of the first kind and index l; (r, φ) are the
polar coordinates of the point x. The series in (4)
should converge uniformly and absolutely.

3 Nonlinear spectral problem

If function u is an eigenfunction of problem (1)–(4)
corresponding to a eigenvalue β, then the following
representations are valid:

u(x) =

∫
Γ

Φ+(β;x, y)f+(y)dl(y), x ∈ Ω, (5)

u(x) =

∫
Γ

Φ∞(β;x, y)f∞(y)dl(y), x ∈ Ω∞, (6)

where Φ (β;x, y) = i/4H
(1)
0 (χ (β) |x− y|). The

right sides of these representations are the simple
layer potentials.

We use the properties of the simple layer poten-
tials and reduce the original problem to nonlinear
spectral problem:∫

Γ

Φ+(β;x, y)f+(y)dl(y)

−
∫
Γ

Φ∞(β;x, y)f∞(y)dl(y) = 0, x ∈ Γ, (7)

1

2
f+(x) +

∫
Γ

∂Φ+(β;x, y)

∂ν(x)
f+(y)dl(y)

+
1

2
f∞(x)−

∫
Γ

∂Φ∞(β;x, y)

∂ν(x)
f∞(y)dl(y), x ∈ Γ.

(8)

It was proved [6] that for each β the integral op-
erator of the problem (7), (8) is Fredholm, and
also that the original problem (1)–(4) is spectrally
equivalent to the problem (7), (8).

4 Galerkin method

We approximate the eigenfunctions by truncated
Fourier series. The set of linear algebraic equations
(7), (8) of the Galerkin method looks as follows:

N∑
k=−N

α
(1)
k λk,l

+
1

4π2

N∑
k=−N

α
(1)
k

∫ 2π

0

∫ 2π

0

h(1,1)eikτe−iltdτdt

+
1

4π2

N∑
k=−N

α
(2)
k

∫ 2π

0

∫ 2π

0

h(1,2)eikτe−iltdτdt = 0,

k, l = −N, . . . , 0, . . . , N, (9)

N∑
k=−N

α
(1)
k Ik,l

+
1

4π2

N∑
k=−N

α
(1)
k

∫ 2π

0

∫ 2π

0

h(2,1)eikτe−iltdτdt

+
1

4π2

N∑
k=−N

α
(2)
k

∫ 2π

0

∫ 2π

0

h(2,2)eikτe−iltdτdt = 0,

k, l = −N, . . . , 0, . . . , N, (10)

where

h(1,1)(β; t, τ) = π
[
Φ+(β;x(t), y(τ))

+ Φ∞(β;x(t), y(τ))
]
+ ln | sin t− τ

2
|,

h(1,2)(β; t, τ) = π
[
Φ+(β;x(t), y(τ))

+ Φ∞(β;x(t), y(τ))
]
|r′(τ)|,

h(2,1)(β; t, τ) = 2π

[
∂Φ+(β;x(t), y(τ))

∂ν(x(t))

+
∂Φ∞(β;x(t), y(τ))

∂ν(x(t))

]
,

h(2,2)(β; t, τ) = 2π

[
∂Φ+(β;x(t), y(τ))

∂ν(x(t))

− ∂Φ∞(β;x(t), y(τ))

∂ν(x(t))

]
,

λk,l=


0, for k ̸= l,

ln 2, for k = l = 0,
1

2|k| , for k = l ̸= 0,

Ik,l=

{
0, for k ̸= l,

1, for k = l.
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5 Collocation method

Consider the Collocation method for numerical ap-
proximation of integral equations (7)–(8). We di-
vide (see Fig. 2) the boundary Γ into n sub elements
si, i = 1, . . . , n. Denote |si| by τ . Denote the col-
location points by ξi. We approximate the integral
operator by the following representation:

(Ajfj)(β)(β; t, τ) =

n∑
i=1

α
(1)
i

∫
si

K(β; ξj , y)dl(y),

j = 1, . . . , n. (11)

The set of linear algebraic equations of the collo-
cation method looks as follows (j = 1, . . . , n):

n∑
i=1

α
(1)
i

∫
si

Φ+(β; ξj , y)dl(y)−

−
n∑

i=1

α
(2)
i

∫
si

Φ∞(β; ξj , y)dl(y) = 0, (12)

1

2
α
(1)
i +

n∑
i=1

α
(1)
i

∫
si

∂Φ+(β; ξj , y)

∂ν(ξj)
dl(y)+

+
1

2
α
(2)
i −

n∑
i=1

α
(2)
i

∫
si

∂Φ∞(β; ξj , y)

∂ν(ξj)
dl(y) = 0.

(13)

So by the collocation method and by Galerkin
method we reduce the original problem to two dif-
ferent algebraic nonlinear eigenvalue problems:(

A(1,1)(β) A(1,2)(β)
A(2,1)(β) A(2,2)(β)

)(
α(1)

α(2)

)
=

(
0
0

)
.
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Figure 2: Collocation points

For computations we use the residual inverse itera-
tion process [8].
The singular collocation elements are calculated

analytically:

a
(1,1)
i,i = τ

i

4

(
1 +

2i

π

[
lnχ+(β)− ln 2−

− ψ(1) + ln
τ

2
− 1

])
, i = 1, . . . , n,

a
(1,2)
i,i = −τ i

4

(
1 +

2i

π

[
lnχ∞(β)− ln 2

− ψ(1) + ln
τ

2
− 1

])
, i = 1, . . . , n,

a
(2,1)
i,i =

1

2
+

τ

2π
, i = 1, . . . , n,

a
(2,2)
i,i =

1

2
− τ

2π
, i = 1, . . . , n,

where ψ is the psi-function.
The other elements are calculated by midpoint

method:

a
(1,1)
i,j = τΦ+(β; ξi, ξj), i, j = 1, . . . , n, i ̸= j,

a
(1,2)
i,j = τΦ∞(β; ξi, ξj), i, j = 1, . . . , n, i ̸= j,

a
(2,1)
i,j =

1

2
− i

4
τχ+(β)

(
(ξ

(1)
j − ξ

(1)
i )ν1

|ξj − ξi|

+
(ξ

(2)
j − ξ

(2)
i )ν2

|ξj − ξi|

)
·H(1)

1 (χ+(β)|ξj − ξi|),

i, j = 1, . . . , n, i ̸= j,

a
(2,2)
i,j =

1

2
− i

4
τχ∞(β)

(
(ξ

(1)
j − ξ

(1)
i )ν1

|ξj − ξi|

+
(ξ

(2)
j − ξ

(2)
i )ν2

|ξj − ξi|

)
·H(1)

1 (χ∞(β)|ξj − ξi|),

i, j = 1, . . . , n, i ̸= j.

Now we describe numerical results based on the
collocation method. We present a table for circular
waveguide that evaluates dependence for relative
error ε = |h6 − h6|/|h6| and e = ε/τ of the number
of collocation points n. Here h6 = 1.02561149 is the
exact value, h6 is the approximate value, hi = βi/k.

n τ h6 ε e
100 0.0634 1.024 + 9e-03i 0.0011 0.018
250 0.0252 1.025 + 4e-03i 0.0004 0.017
500 0.0125 1.025 + 2e-03i 0.0002 0.016
1000 0.0062 1.025 + 8e-05i 0.0001 0.016
2000 0.0031 1.025 + 4e-05i 5e-05 0.016



134 DAYS on DIFFRACTION 2013

0 5 10 15 20 25 30 35 40 45 50
−5

−4

−3

−2

−1

0

1

2

3

4

5

λ

σ

 Re χ

Im χ

σ = Im χ

Figure 3: The first ten dispersion curves for
leaky and surface waves for circular waveg-
uide calculated by the Collocation method
(marked by circles) with comparison to the
exact solutions (plotted by solid lines), where
λ = k2(n2+ − n2∞), σ =

√
β2 − k2n2∞.

Our numerical calculations show that the colloca-
tion method has the first rate of convergence. The
dispersion curves for surface and leaky modes of
the circular step-index fiber calculated by colloca-
tion method in comparation with exact solutions
are presented at figure 3. Figures 4, 5 show some
isolines of the eigenfunctions for circular and square
waveguide.

6 Comparison of methods

The following table describes the behavior of inner
convergence for square waveguide. We compare ap-
proximations obtained by collocation method and
by Galerkin method with h6 which was calculated
for n = 4000 by collocation method.

n time(s.) ε N time(s.) ε
100 12 1e-3 1 1449 9e-3
500 167 3e-4 3 6484 2e-4
2000 2308 4e-5 4 10450 6e-5
4000 9457 0

Here n is the number of collocation points, N
is the retained terms of the Fourier series for
Galerkin method, ε is the relative error of collo-
cation method, ε is the relative error of Galerkin
method, time(sec.) is the time of computing. The
collocation method demonstrates better speed of
convergence in this experiment as well as in other
numerical experiments for waveguides with compli-
cated boundaries.
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Figure 4: Isolines of some eigenfunctions of
circular waveguide
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Figure 5: Isolines of some eigenfunctions of
square waveguide
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