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Введение

В учебно–методическом пособии представлен лабораторный практикум по основам
построения цифровых логических устройств. При разработке настоящего лаборатор-
ного практикума реализован компетентностный подход, который будет способствовать
формированию и развитию профессиональных навыков у обучающихся. Согласно пунк-
та 7.7 Федерального государственного образовательного стандарта третьего поколения
(ФГОС-3) по направлению подготовки «011800 — Радиофизика», данный лаборатор-
ный практикум отнесен к категории внеаудиторной самостоятельной работы студентов.
В связи с этим в учебно–методическом пособии кроме, собственно, описания лабо-
раторных работ дан теоретический материал в объеме, достаточном для выполнения
расчетной и практической частей работы. Несмотря на это, при освоении теории будет
очень полезно ознакомиться с дополнительной литературой [1, 2, 3].

Выполнение лабораторной работы осуществляется в четыре этапа. Первый этап по-
священ ознакомлению с теоретической частью. На втором этапе необходимо выполнить
расчетную часть работы. На третьем этапе осуществляется практическая реализация
заданного цифрового логического устройства. На четвертом этапе в процессе обсуж-
дения результатов выполнения работы с преподавателем выставляется оценка за вы-
полнение лабораторной работы. Каждая лабораторная работа снабжена специальным
бланком отчета, который необходимо распечатать и заполнять его по мере выполне-
ния расчетных и практических заданий.

Учебно–методическое пособие состоит из трёх частей.
Часть 1 посвящена способам математического описания работы цифровых логиче-

ских устройств, а также основам синтеза цифровых устройств с заданными техниче-
скими характеристиками.

В части 2 рассмотрены принципы построения и функционирования основных узлов
комбинационных логических устройств (автоматов без памяти).

В части 3 рассмотрены особенности построения последовательностых логических
устройств (автоматов с памятью).

В результате освоения лабораторного практикума по основам построения цифровых
логических устройств обучающийся должен:
знать: основные принципы, законы построения и функционирования цифровых элек-
тронных систем, теоретические и экспериментальные методы оценки параметров элек-
тронных приборов;
уметь: пользоваться основными методами расчета радиотехнических и электронных
систем;
владеть: навыками работы с современным экспериментальным оборудованием, метода-
ми обработки данных;

Практическая часть практикума базируется на использовании образовательной плат-
формы National Instruments ELVIS II+ совместно с отладочной платой Digital Electronics
FPGA Board. В процессе выполнения лабораторных работ обучающиеся получат на-
чальные навыки проектирования электронных устройств с использованием технологии
LabVIEW.
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Глава 1

ОБРАЗОВАТЕЛЬНАЯ ПЛАТФОРМА
NI ELVIS II+ И ОТЛАДОЧНАЯ
ПЛАТА NI DE FPGA BOARD

1.1 Образовательная платформа ELVIS II+

Образовательная платформа NI ELVIS II+ (National Instruments Educational Labora-
tory Virtual Instrumentation Suite II+) представляет собой аппаратно–программный
комплекс, в состав которого входит комплект виртуальных измерительных приборов, а
также информация, необходимая для работы с этими приборами.

Образовательная платформа для проектирования и создания прототипов NI ELVIS II+

выполнена на базе среды графической разработки NI LabVIEW. Платформа NI ELVIS II+

подключается к ПК посредством высокоскоростного USB-интерфейса. Программное
обеспечение NI ELVISmx служит для управления функционированием аппаратных
средств NI ELVIS II+ с помощью спроектированных в LabVIEW лицевых панелей (Soft
Front Panels – SFPs) следующих измерительных приборов:

• Генератора сигналов произвольной формы (Arbitrary Waveform Generator – ARB).

• Анализатора амплитудно- и фазочастотных характеристик (Bode Analyzer).

• Устройства чтения цифровых данных (Digital Reader).

• Устройства записи цифровых данных (Digital Writer).

• Цифрового мультиметра (Digital Multimeter – DMM).

• Анализатора спектра (Dynamic Signal Analyzer – DSA).

• Функционального генератора сигналов (Function Generator – FGEN).

• Анализатора импеданса (Impedance Analyzer).

• Осциллографа (Oscilloscope – Scope).

• Анализатора вольтамперной характеристики двухполюсников (Two-Wire Current
Voltage Analyzer).

• Анализатора вольтамперной характеристики четырехполюсников (Three-Wire Current
Voltage Analyzer).
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• Регулируемых источников питания (Variable Power Supplies).

Кроме того, в комплект включены экспресс–функции (Express VIs) LabVIEW и набо-
ры функций (Steps) SignalExpress для программирования NI ELVIS II в этих средах.
Внешний вид NI ELVIS II+ с поключенным оценочным модулем DE FPGA Board пока-
зан на рисунке 1.1.

Рис. 1.1. Внешний вид станции ELVIS II+ с отладочной платой DE FPGA Board

NI ELVIS II+ в данной конфигурации эффективен для организации занятий по осно-
вам построения цифровых логических устройств. Комплект NI ELVIS II+ предоставляет
широкие возможности для измерений и испытаний, необходимых в ходе этих занятий,
обеспечивает сохранение получаемых данных.

1.2 Отладочная плата Digital Electronics FPGA Board

FPGA — Field programmable gate array (дословно переводится как «массив ло-
гических вентилей, программируемых в условиях эксплуатации»), это «сверхбольшая»
интегральная схема (СБИС) с массивом логических вентилей, не соединенных между
собой функциональными связями в процессе производства. Другими словами, FPGA —
это программируемая логическая интегральная схема (ПЛИС).

Отладочная плата NI Digital Electronics FPGA Board [4] — это инструмент разра-
ботки электронных схем, построенный на основе микросхемы ПЛИС XC3S500E Xilinx
Spartan-3E. Помимо ПЛИС отладочная плата содержит: движковые переключатели;
светодиоды; два семисегментных индикатора; нажимные кнопки; нажимную поворот-
ную кнопку для выбора частоты внешнего синхросигнала и светодиоды для отобра-
жения выбранного режима работы; разъёмы Diglent Pmod для подключения внеш-
них устройств; интерфейс USB, предназначенный для программирования микросхемы
ПЛИС; инструментарий для разработки электронных устройств.
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Внешний вид отладочной платы NI Digital Electronics FPGA Board приведен на
рис. 1.2.

Рис. 1.2. Отладочная плата NI Digital Electronics FPGA Board

1. ПЛИС 11. Зона макетирования:
XC3S500E Xilinx Spartan-3E сигнальный разъем BB5

2. Переключатель SW9 12. Разъём подключения
источника питания

3. Движковые переключатели 13. Зона макетирования:
(SW0÷SW7) сигнальный разъем BB2

4. Кнопки (BTN0÷BTN3) 14. Выключатель питания
5. Вращающийся нажимной 15. Зона макетирования:

переключатель сигнальный разъем BB3
6. Разъёмы Digilent Pmod 16. Кнопка сброса (Reset)
7. Зона макетирования: 17. Разъём USB

сигнальный разъем BB1
8. Разъёмы общего назначения 18. Светодиод LD–G
9. Зона макетирования: 19. Семисегментные

сигнальный разъем BB4 индикаторы
10. Разъём для подключения 20. Светодиоды (LD0÷LD7)

к NI ELVIS II+
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Отладочную плату NI Digital Electronics FPGA Board можно подключить в двух
различных режимах:

• Автономный режим (Stand-alone Mode)1. В этом режиме отладочная плата ра-
ботает в качестве автономного или независимого устройства. Для подключения
в автономном режиме необходим независимый источник постоянного тока (15 В,
650 мА), который подключается к разъему 12 на рис. 1.2. Разъёмы BB4 и BB5
(9, 11 на рис. 1.2) в этом режиме могут использоваться для решения задач маке-
тирования.

• Режим NI ELVIS используется для подключения отладочной платы NI Digital
Electronics FPGA Board к образовательной платформе NI ELVIS. В этом режиме
отладочная плата NI Digital Electronics FPGA Board используется в качестве
дополнительной макетной платы для NI ELVIS II+. Поключение оценочной платы
рассмотрено в разделе 1.3.

Как правило, проектирование устройств на базе ПЛИС выполняется с помощью
специализированных программных инструментов разработки и языков программирова-
ния, например, VHDL или Verilog, освоение которых требует значительных усилий.
Модуль LabVIEW FPGA дополняет базовый пакет LabVIEW возможностью реализа-
ции целевых систем с ПЛИС на платформе реконфигурируемого ввода/вывода National
Instruments Reconfigurable I/O.

1.3 Подключение отладочной платы DE FPGA Board
в режиме NI ELVIS

В режиме NI ELVIS отладочная плата NI Digital Electronics FPGA Board может
быть использована как дополнительная макетная плата к рабочей станции NI ELVIS II+.

1.3.1 Подключение электропитания

Стенд NI ELVIS II+ имеет два последовательно подключенных выключателя. Пер-
вый, основной, расположен на задней панели, как это показано на левой панели
рис. 1.3. При помощи этого выключателя подается общее питание на стенд.

Второй выключатель расположен в верхнем правом углу стенда, как показано на
правой панели рис. 1.3. С помощью этого выключателя подается питание непосред-
ственно на оценочный модуль DE FPGA Board.

Рядом со вторым выключателем расположены световые индикаторы статуса:

• Индикатор POWER -–– сигнализирует о том, что подано питание на оценочный
модуль DE FPGA Board. Здесь следует заметить, что на самой плате имеется
собственный выключатель питания (14 на рис. 1.2), который используется в ав-
тономном режиме подключения, в режиме NI ELVIS данный выключатель всегда
должен быть установлен в положение «ON».

• Индикаторы USB. Их состояния приведены в таблице 1.1.

– READY –– показывает, что оборудование NI ELVIS II+ сконфигурировано
должным образом и готово к соединению с компьютером.

– ACTIVE –– показывает активность USB соединения с компьютером.
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Рис. 1.3. Включение питания на платформе NI ELVIS II+

Таблица 1.1. Состояния индикаторов USB рабочей станции

Индикатор ACTIVE Индикатор READY Описание
Выключен Главный источник питания выключен.

Желтый Выключен Нет соединения с компьютером.
Убедитесь, что USB–кабель подключен.

Выключен Зеленый Станция подключена
по протоколу USB 2.0.

Выключен Желтый Станция подключена
к высокоскоростному USB–порту.

Зеленый Зеленый или желтый Выполняется соединение.

Внимание! Перед установкой или извлечением оценочной платы из рабочей стан-
ции убедитесь, что питание от платы отключено.

1.3.2 Выбор способа загрузки ПЛИС

На отладочной плате DE FPGA Board установлена ПЛИС Xilinx XC3S500E-4FTG256C,
имеющая электронно–стираемое программируемое постоянное запоминающее устрой-
ство (ЭСППЗУ)2 емкостью 4 Мбит для хранения микропрограммы конфигурации ПЛИС.
Этот способ загрузки ПЛИС устанавливается по умолчанию. Альтернативным спосо-
бом является загрузка ПЛИС через USB–JTAG программатор.

Выбор режима загрузки ПЛИС осуществляется при помощи движкового переклю-
чателя SW9 (2 на рис. 1.2).

1Данный режим в настоящем учебно–методическом пособии не рассматривается.
2Более употребимая аббревиатура EEPROM (electronically erasable programmable read-only memory).
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Внимание! В лабораторном практикуме способ загрузки с EEPROM использоваться
НЕ БУДЕТ. Поэтому движковый переключатель SW9 ВСЕГДА должен быть установ-
лен в положение JTAG.

В случае, когда движковый переключатель установлен в положение JTAG, мик-
росхема ожидает загрузки конфигурации через интерфейс USB–JTAG. В микросхему
загружается конфигурация по умолчанию, которая заменяется затем конфигурацией,
загружаемой через интерфейс USB–JTAG. Загруженная конфигурация сохраняется до
выключения питания, сброса микросхемы ПЛИС (кнопка 16 на рис. 1.2) или загрузки
новой конфигурации.

Для связи компьютера с отладочной платой и загрузки микропрограммы конфигура-
ции в ПЛИС используется USB–кабель, который подключается к специальному входу
на DE FPGA Board (17 на рис.1.2), как показано на рис.1.4.

Рис. 1.4. Подключение JTAG–программатора. Горящий зеленым светодиод LD–G сиг-
нализирует о том, что связь с компьютером устанолена
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1.4 Зона макетирования

Отладочная плата NI Digital Electronics FPGA Board содержит две зоны макетиро-
вания:

• Сигнальная зона макетирования (7, 9, 11, 13, 15 на рис. 1.2).

• Зона макетирования общего назначения (8 на рис. 1.2).

1.4.1 Сигнальная зона макетирования

BB1 (7 на рис. 1.2) –– зона макетирования для подключения к ЦАП, АЦП, кноп-
кам, движковым переключателям, внешнему синхросигналу и линиям общего назначе-
ния ПЛИС.

BB2 (13 на рис. 1.2) — зона макетирования для подключения к линиям общего
назначения ПЛИС и источникам питания.

BB3 (15 на рис. 1.2) — зона макетирования для управления семисегментным инди-
катором на два знакоместа, светодиодами, подключения к источникам питания.

BB4 (9 на рис. 1.2) — зона макетирования для подключения к сигналам NI ELVIS,
включая аналоговые входные сигналы, аналоговые выходные сигналы, функциональные
генераторы, источники питания, цифровые входные/выходные сигналы.

ВВ5 (11 на рис. 1.2) –– зона макетирования для подключения к сигналам NI ELVIS,
включая регулируемые источники питания, цифровые входные/выходные сигналы, вы-
ходные сигналы счётчиков, общие точки сигналов.

1.4.2 Зона макетирования общего назначения

Зона макетирования общего назначения состоит из двух разъёмов (8 на рис. 1.2).
Эти разъёмы не подключены к каким-либо электронным компонентам платы.

При работе отладочной платы NI Digital Electronics FPGA Board в автономном
режиме (Stand–alone Mode) разъёмы BB4 и ВВ5 сигнальной зоны макетирования могут
быть использованы в качестве разъёмов общего назначения.

1.5 Аппаратная реализация периферийных устройств

В данном разделе рассмотрена аппаратная реализация периферийных устройств,
необходимых для выполнения лабораторных работ.

1.5.1 Движковые переключатели

Отладочная плата NI Digital Electronics FPGA Board имеет восемь движковых пе-
реключателей, обозначенных SW0÷SW7 (3 на рис. 1.2). На рис. 1.5 показана схема
включения движковых переключателей в отладочной плате.

Длительность дребезга контактов составляет 2 нс, в отладочной плате не имеется
схем защиты от дребезга контактов. Выходное сопротивление движковых переключа-
телей –– 2 кОм. При нахождении движкового переключателя в верхнем положении
(положение «ON») переключатель подключает соответствующую линию к линии с на-
пряжением 3.3 В («лог.1»). При нахождении движкового переключателя в нижнем
положении (положение «OFF») переключатель подключает соответствующую линию к
общей точке (земле) –– «лог.0».
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Рис. 1.5. Схема включения движковых переключателей [4]

Линии SW0÷SW7, на которых выставлено напряжение «лог.1» или «лог.0» с помо-
щью движковых переключателей, выведены на разъём BB1 зоны макетирования. Также
движковые переключатели напрямую подключены к соответствующим выводам ПЛИС.

1.5.2 Кнопки

Отладочная плата NI Digital Electronics FPGA Board имеет четыре кнопки BTN0÷BTN3
с моментальным установлением контакта (4 на рис. 1.2). На рис. 1.6 показана схема
включения кнопок в отладочной плате.

Рис. 1.6. Схема включения кнопок [4]

Нажатие на кнопку соединяет общую точку схемы со входом логического инвертора,
поэтому на выходе логического инвертора, включённого в линию, соответствующую той
или иной кнопке, появляется напряжение уровня «лог.1». Когда кнопка не нажата, на
вход каждого из инверторов подаётся напряжение уровня «лог.1» с источника питания,
что вызывает появление на выходе логического инвертора напряжения уровня «лог.0».
Схема защиты от дребезга контактов состоит из резистора и конденсатора, включенных
в линию каждой кнопки.

Линии BTN0÷BTN3, на которых выставлено напряжение «лог.1» или «лог.0» с по-
мощью соответствующих кнопок, выведены на разъём BB1 зоны макетирования. Также
кнопки напрямую подключены к соответствующим выводам ПЛИС.

13



1.5.3 Светодиоды

Отладочная плата NI Digital Electronics FPGA Board имеет восемь дискретных
светодиодов LD0÷LD7 с планарными выводами (20 на рис. 1.2). На рис. 1.7 показана
схема включения светодиодов в отладочной плате.

Рис. 1.7. Схема включения светодиодов [4]

К катоду каждого светодиода подключен токозадающий резистор номиналом 390 Ом,
к катоду каждого светодиода подключен КМОП-драйвер (см. рис. 1.7).

Линии управления каждым из светодиодов выведены на разъём ВВ3 зоны макети-
рования. Для того, чтобы вызвать свечение требуемого светодиода, необходимо подать
сигнал «лог.1» (3.3 В или 5 В) на линию управления выбранного светодиода.

1.5.4 Двунаправленные линии общего назначения

Отладочная плата NI Digital Electronics FPGA Board имеет 32 двунаправленные
линии общего назначения GPIO0÷GPIO31. На рис. 1.8 показана схемотехника этих
линий.

Каждая двунаправленная линия общего назначения соединена с ПЛИС через то-
козадающий резистор номиналом 200 Ом. Двунаправленные линии общего назначения
выведены на разъёмы BB2 и BB3 зоны макетирования.

Двунаправленные линии общего назначения могут быть индивидуально сконфигу-
рированы программным способом на ввод или вывод сигналов. Вводами/выводами сиг-
налов для описываемых линий являются КМОП устройства, поэтому уровнем «лог.1»
будет напряжение +3.3 В, допустима подача сигналов с уровнем «лог.1» +5 В.
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Рис. 1.8. Схемотехника двунаправленных линий общего назначения [4]

1.5.5 Семисегментный индикатор с двумя знакоместами

Отладочная плата NI Digital Electronics FPGA Board имеет семисегментный ин-
дикатор DISP 1 с двумя знакоместами, включенный по схеме с общим катодом. На
рис. 1.2 показано расположение индикатора на плате (19). На рис. 1.9 показана схема
включения индикатора в отладочной плате.

Рис. 1.9. Схема включения семисегментного индикатора с двумя знакоместами [4]

Каждая цифра индикатора состоит из семи сегментов, в каждый из которых встроен
светодиод. На рис. 1.9 светодиоды сегментов, составляющие нулевую цифру индикатора
обозначены как SEGx0, первую цифру индикатора –– SEGx1.

Схема включения индикатора позволяет вызвать свечение каждого светодиода неза-
висимо, что позволяет расширить количество символов, которые можно отобразить с
помощью индикатора. Для того, чтобы вызвать свечение отдельного светодиода, на со-
ответствующую линию управления нужно подать сигнал «лог.1» (3.3 В или 5 В). Линии
управления COM0 и COM1 предназначены для выдачи сигнала разрешения/запрета
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работы соответствующей цифры индикатора, что позволяет использовать индикатор в
мультиплексном режиме. Линии управления светодиодами сегментов и линии управле-
ния COM0 и COM1 подсоединены к ПЛИС.

1.5.6 Вращающаяся нажимная кнопка и светодиоды

Отладочная плата NI Digital Electronics FPGA Board имеет вращающуюся нажим-
ную кнопку ROT 1 (5 на рис. 1.2), которая служит для выбора частотного диапазона
синхросигнала.

Рис. 1.10. Вращающаяся нажимная кнопка ROT 1

Нажатие на вращающуюся нажимную кнопку выбирает частотный диапазон, ука-
зываемый соответствующим светодиодом. На на рис. 1.10 показаны вращающаяся на-
жимная кнопка и светодиоды. Свечение соответствующего светодиода указывает на
выбор одного из следующих частотных диапазонов:

• LD-LOW –– при выборе этого диапазона генератор синхросигналов генерирует
сигнал в диапазоне 1 Гц ÷ 100 Гц.

• LD-MID –– при выборе этого диапазона тактовый генератор генерирует сигнал
в диапазоне 100 Гц ÷ 100 кГц.

• LD-HIGH –– при выборе этого диапазона генератор синхросигналов генерирует
сигнал в диапазоне 100 кГц ÷ 5 MГц.

Конкретное значение частоты генератора в пределах выбранного диапазона задаётся
вращением кнопки.

Вывод генератора синхросигналов соединен с линией RotClk, выведённой на разъём
BB1 зоны макетирования. Выход генератора синхросигналов не подсоединён к ПЛИС.
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Глава 2

ОСНОВЫ АЛГЕБРЫ ЛОГИКИ
И ВЫПОЛНЕНИЕ ЛОГИЧЕСКИХ
ОПЕРАЦИЙ

2.1 Логические константы и переменные.
Операции Булевой алгебры

Для описания алгоритмов работы цифровых устройств необходим соответствую-
щий математический аппарат. Такой аппарат для решения задач формальной логики
в середине XIX века разработал ирландский математик Джорж Буль. По его имени
математический аппарат и получил название булевой алгебры, или алгебры логики.

Булева алгебра — это математическая система, оперирующая двумя понятиями:
«событие истинно» и «событие ложно». Естественно ассоциировать эти понятия с циф-
рами, используемыми в двоичной системе счисления. Далее будем их называть соот-
ветственно логическими единицей (лог.1) и нулем (лог.0).

Все возможные логические функции k переменных можно образовать с помощью
трех основных операций:

• Конъю́нкция (от лат. conjunctio союз, связь) — логическая операция, по своему
применению максимально приближённая к союзу «и». Синонимы: логическое «И»,
логическое умножение, или просто «И».

• Дизъю́нкция (лат. disjunctio — разобщение) — логическая операция, по своему
применению максимально приближённая к союзу «или» в смысле «или то, или
это, или оба сразу». Синонимы: логическое «ИЛИ», включающее «ИЛИ», логи-
ческое сложение, иногда просто «ИЛИ».

• Отрица́ние в логике — унарная операция над суждениями, результатом которой
является суждение, «противоположное» исходному. Синоним: логическое «НЕ»,
инверсия.

Приведем таблицы истинности для трех основных логических операций.

A B ИЛИ И
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

A НЕ
0 1
1 0
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Практически все булевы функции для 1, 2 и 3-х переменных сложились истори-
чески и имеют уникальные имена. Символы, участвующие в обозначениях элементар-
ных функций, называются логическими связками (операциями), или функциональны-
ми символами. В литературе и различных языках программирования функциональные
символы имеют различные условные обозначения. В таблице 2.1 приведены условные
обозначения и исторические названия элементарных булевых функций.

Таблица 2.1. Обозначения и исторические названия некоторых булевых функций

Обозначение Название
0 тождественный ноль,

тождественная ложь,
тождественное «НЕТ»

x ↓ y, x ИЛИ-НЕ y, ИЛИ-НЕ(x, y), НЕ-2ИЛИ, 2ИЛИ-НЕ,
x NOR y, NOR(x, y) антидизъюнкция,

функция Да́ггера,
функция Ве́бба,
стрелка Пи́рса

x < y, x LT y, LT(x, y), меньше,
x← y инверсия обратной импликации
x, НЕ1(x, y), NOT1(x, y), x′, ¬x,∼ x отрицание

(негация, инверсия)
первого операнда

x > y, x GT y, GT(x, y), больше,
x→ y инверсия прямой импликации
y, НЕ2(x, y), NOT2(x, y), y′, ¬y отрицание

(негация, инверсия)
второго операнда

x⊕ y, x +2 y, x 6= y, x >< y, x <> y, сложение по модулю 2,
x XOR y, XOR(x, y) не равно,

измена,
исключающее «или»

x|y, x NAND y, NAND(x, y), x И-НЕ y, И-НЕ(x, y) НЕ-2И, 2И-НЕ,
антиконъюнкция,
пунктир Чулкова,
штрих Ше́ффера

x&y, x · y, xy, x ∧ y, x× y, x AND y, AND(x, y), 2И,
x И y, И(x, y), min(x, y) конъюнкция
x ≡ y, x = y, x EQV y, EQV(x, y), x↔ y равенство,

эквивалентность
y, ДА2(x, y), YES2(x, y) второй операнд
x→ y, x ≤ y, x ⊃ y, x LE y, LE(x, y) меньше или равно,

прямая импликация
(от первого аргумента ко второму)

x, ДА1(x, y), YES1(x, y) первый операнд
окончание на следующей странице
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начало на предыдущей странице
Обозначение Название

x← y, x ≥ y, x ⊂ y, x GE y, GE(x, y) больше или равно,
обратная импликация
(от второго аргумента к первому)

x ∨ y, x + y, x ИЛИ y, ИЛИ(x, y), 2ИЛИ,
x OR y, OR(x, y), max(x, y) дизъюнкция
1 тождественная единица,

тождественная истина,
тождественное «ДА»,
тавтология

2.2 Основные аксиомы и законы алгебры–логики

Для логических операций (И, ИЛИ, НЕ), рассмотренных в предыдущем параграфе,
справедлив ряд аксиом (тождеств) и законов, основные из которых даны в таблице 2.2.
Для обозначения эквивалентности логических выражений используется знак равенства
«=».

Таблица 2.2. Основные аксиомы и законы алгебры–логики

Аксиомы (тождества) 0× A = 0
1 + A = 1
1× A = A
0 + A = A
A× A = A
A + A = A

A = A
Законы коммутативности A + B = B + A

A×B = B × A
Законы ассоциативности A + B + C = A + (B + C)

A×B × C = A× (B × C)
Законы дистрибутивности A× (B + C) = (A×B) + (A× C)

A + (B × C) = (A + B)× (A + C)

Законы дуальности (теоремы Де–Моргана) A + B = A×B
A×B = A + B

Законы поглощения A + A×B = A
A× (A + B) = A

В общем случае логические выражения являются функциями логических перемен-
ных A, B, C, . . . , каждая из которых может принимать значения 0 или 1. Если имеются
k логических переменных, то они образуют 2k возможных логических наборов из 0 и 1.
При k = 1: A = 0 или A = 1; При k = 2: AB = 00, 01, 10, 11 и т. д. Для каждого набора
переменных логическая функция F может принимать значения 0 или 1. Поэтому для
k переменных можно образовать lk = 22k различных логических функций. Таким обра-
зом, при увеличении k число l растет чрезвычайно быстро: при k = 2 получим lk = 16;
при k = 3 получим l3 = 256; при k = 4 получим l4 = 65536 и т. д.

Следует отметить, что алгебраические выражения тождеств и законов в таблице 2.2
заданы парами, и взаимной заменой операций И, ИЛИ и символов 0 и 1 из одного
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выражения получается другое. Используя данные тождества и законы, можно полу-
чать новые логические выражения, а также доказывать справедливость тех или иных
законов на основании других.

Например, с помощью второго закона дистрибутивности и тождества получаем со-
отношение:

A + A ·B = (A + A) · (A + B) = A + B

Используя первый закон дистрибутивности, тождество, аксиому и закон коммута-
тивности, получаем доказательство справедливости второго закона поглощения:

A · (A + B) = A · A + A ·B = A + A ·B = A · (1 + B) = A.

Применение данных тождеств и законов позволяет производить упрощение логиче-
ских функций, т. е. находить для них выражения, имеющие наиболее простую форму.

Используя законы ассоциативности, любую логическую функцию многих перемен-
ных (k > 2) можно представить в виде комбинации функции двух переменных.

Полный набор 22k = 16 логических функций двух переменных дан в таблице 2.3.
Каждая функция обозначает одну из 16 возможных логических операций над двумя
переменными A,B.

Таблица 2.3. Полный набор логических функций для двух переменных

A 0 0 1 1 Условное обозначение
B 0 1 0 1 и алгебраическое выражение
F0 0 0 0 0 F0 = 0
F1 0 0 0 1 F1 = A×B

F2 0 0 1 0 F2 = A×B
F3 0 0 1 1 F3 = A

F4 0 1 0 0 F4 = A×B
F5 0 1 0 1 F5 = B
F6 0 1 1 0 F6 = A⊕B
F7 0 1 1 1 F7 = A + B
F8 1 0 0 0 F8 = A ↓ B
F9 1 0 0 1 F9 = A⊕B

F10 1 0 1 0 F10 = B
F11 1 0 1 1 F11 = B → A

F12 1 1 0 0 F12 = A
F13 1 1 0 1 F13 = A→ B

F14 1 1 1 0 F14 = A|B = A×B
F15 1 1 1 1 F15 = 1
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2.3 Способы записи функций алгебры логики

Рассмотрим некоторое логическое устройство, на входе которого присутствует неко-
торый n–разрядный двоичный код xn−1, . . . , x1, x0, на выходе соответственно m–разряд-
ный двоичный код zm−1, . . . , z1, z0, (рис. 2.1). Для того, чтобы описать поведение этой
схемы, необходимо определить зависимость каждой из m выходных переменных zi от
входного двоичного кода xn−1, . . . , x1, x0.

Рис. 2.1. Обобщенная схема логического устройства

Зависимость выходных переменных zi, выраженная через совокупность входных пе-
ременных xn−1, . . . , x1, x0 с помощью операций алгебры–логики, носит название функ-
ции алгебры логики (ФАЛ). Иногда данную зависимость также называют переклю-
чательной функцией. Задать ФАЛ — это значит определить значения zi для всех
возможных комбинаций переменных xn−1, . . . , x1, x0. Очевидно, что для n-разрядного
двоичного кода xn−1, . . . , x1, x0 существует 2n различных значений zixn−1, . . . , x1, x0.

Функция называется полностью определенной, если заданы 2n ее значений. Если
часть значений функции не задана, то она называется частично определенной или
недоопределенной.

Иногда известно, что по условиям работы устройства появление некоторых вход-
ных кодов невозможно, и поэтому значения ФАЛ на этих кодах не задаются. При этом
возникают так называемые факультативные или необязательные значения функции, ко-
торые могут задаваться произвольными значениями. Входные коды, для которых ФАЛ
имеет факультативные значения, называются запрещенными.

Устройства, поведение которых описывается при помощи ФАЛ, называют логиче-
скими.

Для описания ФАЛ могут быть использованы различные способы. Основными из
них являются: описание функции в словесной форме, в виде таблиц истинности, ал-
гебраических выражений, последовательностей десятичных чисел и т. д.

2.3.1 Словесное описание ФАЛ

Данный вид описания наиболее часто применяется для первоначального, исходно-
го описания поведения логического устройства. Проиллюстрируем словесное описание
ФАЛ на примере.

Пример 2.1 Логическая функция трех переменных равна единице, если хотя бы две
входные переменные равны единице.

2.3.2 Описание ФАЛ в виде таблицы истинности

Таблица, содержащая все возможные комбинации входных переменных xn−1, . . . , x1, x0

и соответствующие им значения выходных переменных zi, называется таблицей ис-
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тинности, или комбинационной таблицей. В общем случае таблица истинности со-
держит 2n строк и m + n столбцов. Проиллюстрируем построение таблицы истинности
на примере.

Пример 2.2 Составить таблицу истинности для ФАЛ из примера 2.1.

Решение. Количество входных переменных n = 3, т. о. строк будет — 23 = 8. Количество
выходных переменных m = 1, т. е. количество столбцов — m + n = 1 + 3 = 4. Составим
таблицу истинности (см. таблицу 2.4). �

Таблица 2.4. Таблица истинности для ФАЛ трех переменных

x2 x1 x0 z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

2.3.3 Описание ФАЛ в виде алгебраического выражения

При описании ФАЛ алгебраическим выражением используются две стандартные
формы ее представления.

1. Дизъюнктивная нормальная форма (ДНФ). ДНФ называется логическая сумма
элементарных логических произведений, в каждое из которых аргумент или его
инверсия входят один раз. Получена ДНФ может быть из таблицы истинности с
использованием следующего алгоритма:

• для каждого набора переменных, на котором ФАЛ равна единице, записы-
ваются элементарные логические произведения входных переменных, причем
переменные, равные нулю, записываются с инверсией. Полученные произве-
дения называют конституентами единицы, или минтермами (m);

• логически суммируются все конституенты единицы (минтермы).

Пример 2.3 Записать ДНФ для ФАЛ, заданной в примере 2.2.

Решение. Составим таблицу конституент единицы (минтермов) для ФАЛ, задан-
ной в примере 2.2.

Согласно приведенному выше алгоритму, используя минтермы из таблицы 2.5 и
основные аксиомы (тождества) алгебры-логики (табл. 2.2), получим:

z (x2, x1, x0) = z0m0 + z1m1 + z2m2 + z3m3 + z4m4 + z5m5 + z6m6 + z7m7 =

= 0 · (x̄2x̄1x̄0) + 0 · (x̄2x̄1x0) + 0 · (x̄2x1x̄0) + 1 · (x̄2x1x0) + 0 · (x2x̄1x̄0) +

+1 · (x2x̄1x0) + 1 · (x2x1x̄0) + 1 · (x2x1x0) =

= x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0

Дизъюнктивную нормальную форму, полученную суммированием конституент еди-
ницы (минтермов), называют совершенной дизъюнктивной нормальной формой
(СДНФ). �
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Таблица 2.5. Минтермы ФАЛ z(x2, x1, x0)

x2 x1 x0 Минтермы(m) Значение функции
0 0 0 m0 = x2x1x0 z0 = 0
0 0 1 m1 = x2x1x0 z1 = 0
0 1 0 m2 = x2x1x0 z2 = 0
0 1 1 m3 = x2x1x0 z3 = 1
1 0 0 m4 = x2x1x0 z4 = 0
1 0 1 m5 = x2x1x0 z5 = 1
1 1 0 m6 = x2x1x0 z6 = 1
1 1 1 m7 = x2x1x0 z7 = 1

2. Конъюнктивная нормальная форма (КНФ). КНФ называется логическое произ-
ведение элементарных логических сумм, в каждую из которых аргумент или его
инверсия входят один раз. Получена КНФ может быть из таблицы истинности с
использованием следующего алгоритма:

• для каждого набора переменных, на котором ФАЛ равна нулю, записывают
элементарные логические суммы входных переменных, причем переменные,
значения которых равны единице, записывают с инверсией. Полученные сум-
мы называют конституентой нуля, или макстермами;

• логически перемножают все конституенты нуля (макстермы).

Пример 2.4 Записать KНФ для ФАЛ, заданной в примере 2.2.

Решение. Составим таблицу конституент нуля (макстермов) для ФАЛ, заданной
в примере 2.2.

Таблица 2.6. Макстермы ФАЛ z(x2, x1, x0)

x2 x1 x0 Макстермы (M) Значение функции
0 0 0 M0 = x2 + x1 + x0 z0 = 0
0 0 1 M1 = x2 + x1 + x0 z1 = 0
0 1 0 M2 = x2 + x1 + x0 z2 = 0
0 1 1 M3 = x2 + x1 + x0 z3 = 1
1 0 0 M4 = x2 + x1 + x0 z4 = 0
1 0 1 M5 = x2 + x1 + x0 z5 = 1
1 1 0 M6 = x2 + x1 + x0 z6 = 1
1 1 1 M7 = x2 + x1 + x0 z7 = 1

Согласно приведенному выше алгоритму, используя макстермы из таблицы 2.6 и
основные аксиомы (тождества) алгебры-логики (табл. 2.2), получим:

z (x2, x1, x0) = (z0 + M0) · (z1 + M1) · (z2 + M2) · (z3 + M3) · (z4 + M4)×
× (z5 + M5) · (z6 + M6) · (z7 + M7) =

= (x2 + x1 + x0) · (x2 + x1 + x̄0) · (x2 + x̄1 + x0) · (x̄2 + x1 + x0)

Конъюнктивную нормальную форму, полученную суммированием конституент ну-
ля (макстермов), также называют совершенной конъюнктивной нормальной фор-
мой (СКНФ). �
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Рассмотренные методики позволяют получить математическую форму записи для
самой функции. Иногда удобнее применять не саму ФАЛ, а ее инверсию. В этом случае
при использовании вышеописанных методик для записи СДНФ необходимо выбирать
нулевые, а для записи СКНФ - единичные значения функции.

Пример 2.5 Для ФАЛ из примера 2.2 записать СДНФ и СКНФ инверсной функцией.

Решение. Воспользовавшись таблицей 2.4, запишем
СДНФ: z̄ (x2, x1, x0) = x̄2x̄1x̄0 + x̄2x̄1x0 + x̄2x1x̄0 + x2x̄1x̄0.
СКНФ: z̄ (x2, x1, x0) = (x2 + x̄1 + x̄0) · (x̄2 + x1 + x̄0) · (x̄2 + x̄1 + x0) · (x̄2 + x̄1 + x̄0) �

2.3.4 Описание ФАЛ в виде последовательности
десятичных чисел

Иногда для сокращения записи ФАЛ представляют в виде последовательности де-
сятичных чисел. При этом последовательно записывают десятичные эквиваленты дво-
ичных кодов соответствующих конституент единицы и нуля (минтермов и макстермов).

Пример 2.6 Записать в виде последовательности десятичных чисел ФАЛ из при-
меров 2.3 и 2.4

Решение. В СДНФ из примера 2.3 первая конституента единицы (минтерм — x2x1x0)
соответствует двоичному коду 011 (табл. 2.5). Десятичный эквивалент этого кода равен
3. Аналогично записываются все остальные конституенты:

z (x2x1x0) =
∑

(3, 5, 6, 7).

В СКНФ из примера 2.4 первая конституента нуля (макстерм — x2 + x1 + x0) соот-
ветствует двоичному коду 000 (табл. 2.6). Десятичный эквивалент этого кода равен 0.
Аналогично записывают все остальные конституенты:

z (x2x1x0) =
∏

(0, 1, 2, 4).

�

2.3.5 Кубические комплексы

В последнее время широкое распространение получило так называемое кубическое
представление ФАЛ. Такое представление использует ограниченное число символов и
поэтому применяется при автоматизации процессов логического проектирования циф-
ровых интегральных схем (ИС).

Основой кубической формы является представление каждого набора входных пере-
менных в качестве n–мерного вектора. Вершины этих векторов геометрически могут
быть представлены как вершины n-мерного куба. Отмечая точками вершины векторов,
для которых ФАЛ равна единице, получаем геометрическое представление функции
куба.

Пример 2.7 Задана ФАЛ z (x2, x1, x0) =
∑

(3, 4, 5, 6, 7). Дать геометрическое пред-
ставление в виде куба.
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Рис. 2.2. Геометрическое
представление ФАЛ

Рис. 2.3. Единичный куби-
ческий комплекс ФАЛ (см.
пример 2.8)

Рис. 2.4. Двоичный куб для
ФАЛ (см. пример 2.8)

Решение. Графическое решение задачи проиллюстрировано на рисунке 2.2. �

Очевидно, что наборы переменных, расположенные на концах ребер куба, отлича-
ются только одной переменной. Такие наборы (коды) принято называть соседними.

Каждую функцию куба, в которой функция принимает единичное значение, назы-
вают нулевым кубом (0–кубом). Записывается 0–куб последовательностью образо-
вавших его входных переменных, т.е. кодом, соответствующим конституенте единицы.
Множество нулевых кубов образуют нулевой кубический комплекс K0 ФАЛ.

Если два нулевых куба комплекса K0 отличаются только по одной координате (пе-
ременной), т.е. два набора переменных, для которых ФАЛ равна единице, являются
соседними, то они образуют единичный куб (1–куб). Геометрически это соответствует
ребру исходного n–мерного куба (рис 2.3), 1–куб записывается последовательностью
общих элементов образовавших его 0–кубов с прочерком несовпадающих элементов.
Множество единичных кубов образует единичный кубический комплекс K1.

Аналогично, если два единичных куба комплекса K1 отличаются только по одной
координате (переменной), то эти единичные кубы образуют двоичный куб (2-куб).
Геометрически это соответствует грани исходного n-мерного куба (рис. 2.4). 2-куб
также записывается последовательностью общих элементов образовавших его 1-кубов с
прочерком несовпадающих элементов, а множество двоичных кубов образуют двоичный
кубический комплекс K2. И так далее.

Пример 2.8 Для ФАЛ из примера 2.7 записать кубические комплексы.

Решение. Нулевой кубический комплекс содержит пять членов по числу конституент
единицы ФАЛ. K0 = (011, 100, 101, 110, 111).

Сравнивая записанные 0-кубы, можно увидеть, что 1–й и 5–й кубы отличаются
только первым членом. Поэтому они образуют 1–куб вида ˘11. Аналогично, 2-ой и 3-й
0–кубы образуют 1–куб вида 10− и т.д. Единичный кубический комплекс заданной
ФАЛ будет иметь вид: K1 = (−11, 10−, 11−, 1− 1).

Аналогично может быть получен и двоичный кубический комплекс, состоящий из
одного 2–куба: K2 = (1−−). �

Из сказанного следует, что размерность куба (его ранг) определяется числом несов-
падающих координат, т. е. числом прочерков в его записи.

Объединение кубических комплексов K0, K1, . . . , Km для ФАЛ n-переменных обра-
зует ее кубический комплекс: K(z) =

⋃
(K0, K1, . . . Km).
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Глава 3

СИНТЕЗ ЛОГИЧЕСКИХ СХЕМ

Пользуясь ФАЛ, мы до сих пор ничего не говорили о структуре логического устрой-
ства, представляя его аналогично устройству на рис. 2.1 в виде некоторого «черного
ящика». Однако ФАЛ определят внутреннюю структуру логического устройства. Если
мы располагаем элементарными узлами, реализующими основные логические операции,
заданные постулатами в п. 2.1, то с их помощью можно построить логическую схему,
выполняющую заданный алгоритм преобразования исходных логических переменных.
В общем случае характер реальных логических переменных не имеет значения. Он
может быть произвольным.

3.1 Стандарты на условные графические
обозначения элементов цифровых схем

Инженеру–электронику постоянно приходится иметь дело с технической докумен-
тацией на различные устройства, которая, как правило, доступна на INTERNET сайтах
фирм–разработчиков и написана на языке оригинала (в основном английском). Кроме
того, в современной переводной литературе (учебниках, статьях и т. п.) никто не «пе-
рерисовывает» принципиальные схемы электронных устройств в соответствии с рос-
сийским стандартом, и они приводятся в оригинальном виде. Поэтому знакомство с
различными стандартами на обозначания необходимо для понимания принципов рабо-
ты электронных схем и их компонентов.

В настоящее время в мире существуют несколько общепринятых стандартов услов-
ных графических обозначений для элементов, реализующих основные логические опе-
рации. Цифровая техника последние 50 лет бурно развивается, номенклатура и функ-
циональная нагруженность интегральных схем (ИС) постоянно изменяются, что влечет
за собой периодическую модифицикацию стандаров на условные графические обозна-
чения в цифровых логических схемах.

В технической литературе используются несколько стандартов на условные обозна-
чения элементов — российский (ГОСТ 2.743–82, заменён на ГОСТ 2.743–91); евро-
пейский (DIN 40700 поддерживается в немецко- и франкоязычной литературе, в насто-
ящее время заменен на DIN EN 60617); американский (milspec 806B поддерживается
в англоязычной и японской литературе). Кроме этого, в русскоязычной технической
литературе до появления ГОСТ 2.743–82 активно использовался стандарт МЭК 117-
15А, созданный Международной электротехнической комиссией (International Electro-
technical Comission, IEC) в которую СССР, а затем и Россия входят с 1922 г. В насто-
ящее время действующим стандартом МЭК является стандарт IEC 60617.
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3.1.1 Обозначение выводов логических элементов

Необходимо сказать, что многие обозначения, в частности обозначения выводов,
несущих логическую информацию, одинаковы во всех вышеперечисленных стандартах.
Приведем обозначения выводов согласно российского стандарта ГОСТ 2.743–91 [5].

Выводы, несущие логическую информацию, подразделяют на статические и дина-
мические, а также на прямые и инверсные.

На прямом статическом выводе двоичная переменная имеет значение «1», если сиг-
нал на этом выводе в активном состоянии находится в состоянии «лог.1» в принятом
логическом соглашении.

На инверсном статическом выводе двоичная переменная имеет значение «1», если
сигнал на этом выводе в активном состоянии находится в состоянии «лог.0» в принятом
логическом соглашении.

На прямом динамическом выводе двоичная переменная имеет значение «1», если
сигнал на этом выводе изменяется из состояния «лог.0» в состояние «лог.1» в принятом
логическом соглашении.

На инверсном динамическом выводе двоичная переменная имеет значение «1», если
сигнал на этом выводе изменяется из состояния «лог.1» в состояние «лог.0» в принятом
логическом соглашении.

Таблица 3.1. Обозначение выводов элементов

№ Обозначение
п/п Наименование Форма 1 Форма 2

1. Прямой статический вход

2. Прямой статический выход

3. Инверсный статический вход

4. Инверсный статический выход

5. Прямой динамический вход

6. Инверсный динамический вход

Форма 1 является предпочтительной.

3.1.2 Базовые логические элементы

В соответствии с перечнем основных логических операций, перечисленных в разде-
ле 2.1, различают три базовых логических элемента (ЛЭ): И, ИЛИ, НЕ. Приведем их
условные графические обозначения, принятые в различных стандартах. Кроме этого,
настоящий лабораторный практикум предполагает активную работу с системой графи-
ческого программирования LabVIEW. Условные графические обозначения элементов,
выполняющих логические операции, принятые в LabVIEW, в основном соответствуют
стандарту milspec 806B, однако имеют некоторые особенности. Поэтому приведем их
также1.

1В скобках указано международное название логического элемента.
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Таблица 3.2. Обозначение условное графическое логического элемента И (AND)

Россия МЭК Европа США LabVIEW

Таблица 3.3. Обозначение условное графическое логического элемента ИЛИ (OR)

Россия МЭК Европа США LabVIEW

Таблица 3.4. Обозначение условное графическое логического элемента НЕ (NOT)

Россия МЭК Европа США LabVIEW

Наиболее распространенные логические элементы

Наряду с простейшими распространены и более сложные логические элементы, со-
четающие в себе несколько простейших операций. Такими являются логические эле-
менты И-НЕ, ИЛИ-НЕ, ЭКВИВАЛЕНТНОСТЬ, ИСКЛЮЧАЮЩЕЕ ИЛИ и т. п. При-
ведем условные графические обозначения некоторых из них.

Штрих Шеффера. Элемент И-НЕ реализует функцию «штрих Шеффера» двух пе-
ременных f = x× y = x|y (функция F14 в табл. 2.3). Условное обозначение логического
элемента И-НЕ в любом стандарте объединяет в себе обозначение элемента И и кру-
жок, являющийся признаком элемента НЕ.

Таблица 3.5. Логическая операция И-НЕ, Штрих Шеффера (NOT AND)

Россия МЭК Европа США LabVIEW

Стрелка Пирса. Элемент ИЛИ-НЕ реализует функцию «стрелка Пирса»: f =
x + y = x ↓ y (функция F8 в табл. 2.3). Условные обозначения объединяют в себе
обозначение элемента ИЛИ и кружок — символ операции отрицания (НЕ).
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Таблица 3.6. Логическая операция ИЛИ-НЕ, Стрелка Пирса (NOT OR)

Россия МЭК Европа США LabVIEW

Исключающее ИЛИ, неравнозначность, сложение по модулю два означает «едини-
ца и только одна единица»: f = x · y + x · y = x⊕ y (функция F6 в табл. 2.3).

Таблица 3.7. Логическая операция Исключающее ИЛИ (eXclusive OR, XOR)

Россия МЭК США LabVIEW

Исключающее ИЛИ-НЕ, равнозначность: f = x · y + x · y = x⊕ y (функция F9 в
табл. 2.3).

Таблица 3.8. Логическая операция Исключающее ИЛИ-НЕ (NOT eXclusive OR)

Россия МЭК США LabVIEW

3.2 Синтез логического устройства

Для построения логической схемы необходимо логические элементы (ЛЭ), предна-
значенные для выполнения логических операций, указанных в ФАЛ, располагать от
входа в порядке, определенном булевым выражением.

Пример 3.1 Построить структурную схему логического устройства по ФАЛ из
примера 2.1, т. е. определенную ФАЛ вида:
z (x2, x1, x0) = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0.

Решение. Для реализации заданной ФАЛ в виде структурной логической схемы нам
понадобятся три ЛЭ, реализующих операцию НЕ, т. к. исходная ФАЛ формируется
тремя переменными (x2, x1, x0), которые входят в нее как в прямом, так и в инверсном
виде. Операция дизъюнкции должна быть выполнена четыре раза над тремя перемен-
ными, таким образом, для ее реализации нам понадобятся четыре ЛЭ, реализующих
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операцию 3И. Последней выполняется операция конъюнкции над четырьмя выражени-
ями, для реализации которой потребуется ЛЭ, реализующий операцию 4ИЛИ. Пример
структурной логической схемы, реализующей заданную ФАЛ, приведен на рис. 3.1.

Рис. 3.1. Структурная схема логического устройства, реализующая ФАЛ вида
z (x2, x1, x0) = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0

�

3.3 Переход от логической схемы к логической
функции

Можно решить обратную задачу, т. е. по схеме логического устройсва перейти к
логической функции. Обратная задача решается в несколько этапов:

• заданная схема разбивается по ярусам;

• начиная с последнего, выходы каждого элемента обозначаются проиндексирован-
ными функциями в зависимости от яруса, к которому относится элемент;

• записываются выходные функции каждого элемента в виде формул в соответствии
с выбранными обозначениями логических операций;

• производится подстановка одних выходных функций через другие, используя вход-
ные переменные;

• записывается получившаяся булева функция через входные переменные;
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Пример 3.2 По заданной логической схеме (рис. 3.2) составить булеву функцию.

Рис. 3.2. Пример логической схемы устройства

Решение. Согласно приведённому выше алгоритму разобьём схему на ярусы, пронуме-
руем получившиеся ярусы, произведём индексирование выходных функций для каждо-
го элемента (рис. 3.2). Запишем все функции, начиная с 1-го яруса:

1-й ярус : f1 = f21 · f22 · x4.

2-ой ярус :

f21 = f31 + x2; f22 = f32 · x1.

3-й ярус :

f31 = x̄1; f32 = x2 + x3.

Запишем все функции, подставляя входные переменные x1, x2, x3 и x4:

f21 = x1 + x2; f22 = x1 · (x2 + x3).

Окончательно получим:

f1 = f(x4, x3, x2, x1) = x1 · (x1 + x2) · (x2 + x3) · x4.

�

Лабораторная работа №1.
Знакомство с образовательной платформой
NI ELVIS II+ и системой графического
программирования LabVIEW

Цель работы:
Целью лабораторной работы является знакомство с образовательной платфор-
мой National Instruments (NI) ELVIS II+. Знакомство со средой графического
проектирования NI LabVIEW. Приобретение базовых знаний и навыков иерархи-
ческого (модульного) проектирования цифровых схем, обучение созданию базо-
вых элементов (sub–VI) и компоновке низкоуровневых функциональных блоков в
графической среде программирования NI LabVIEW. Результаты проектирования
необходимо проверить на оценочном модуле DE FPGA Board.
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Задание на проектирование:
Создать в системе графического проектирования схему, представленную на рис. 3.1
и реализующую ФАЛ вида: z = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0.

Выполнение задания:
Схема должна быть иерархической; используя функции самого низкого уровня,
необходимо создать т. н. sub–VI — блоки, которые затем послужат функциональ-
ными блоками более высокого уровня.

Для реализации логической схемы, представленной на рис. 3.1, понадобятся ло-
гические элементы, реализующие: операцию НЕ (NOT); операцию И (AND) над
тремя входными переменными — 3И; операцию ИЛИ (OR) над четырьмя входны-
ми выражениями — 4ИЛИ. Блоки, выполняющие указанные логические операции,
необходимо реализовать в виде функциональных sub–VI — блоков в среде графи-
ческого проектирования LabVIEW. Затем при помощи указанных функциональ-
ных блоков собрать логическую схему (рис. 3.1). Проверить работоспособность
схемы в оценочном модуле DE FPGA Board.

ЛР1.1. Запуск LabVIEW и создание нового проекта

После того, как NI ELVIS II+ с установленной на ней платой подключена к ком-
пьютеру, все кабели скоммутированны, питание включено, можно запустить пакет
LabVIEV на персональном компьютере.

Появится окошко, в котором необходимо выбрать Launch LabVIEW. Если при сле-
дующем запуске программы вы хотите проходить этот этап в автоматическом режиме,
установите галочку Do not show this dialog again.
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В окне «Getting Started» из меню File выбираем пункт меню New Project.

В «Project Explorer» нажимаем правую кнопку мышки на иконке My Computer, и
выбираем New → Targets and Device, как это показано на левой панели рис. 3.3.

Рис. 3.3. Подключение нового оборудования к проекту

В окне диалога «Add Targets and Devices on My Computer» обязательно необхо-
димо установить флажок в позицию New Target or Device. После этого в папке NI
ELVIS выбрать DE FPGA Board (правая панель на рис. 3.3) и нажать OK.

Сохраним проект (нажимаем комбинацию клавиш «Ctrl+S»), в диалоговом режиме
создадим новую папку со своим именем (например «IVANOV»), в этой папке создадим
папку «Lab01», в которую сохраним новый проект под именем Lab01.lvproj.
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ЛР1.2. Создание функциональных блоков

Для выполнения лабораторной работы нам понадобятся логические элементы НЕ,
3И, 4ИЛИ. В LabVIEW имеются примитивы, реализующие логические операции НЕ,
2И, 2ИЛИ. Таким образом, в первую очередь необходимо создать функциональные
блоки, реализующие необходимые нам логические операции. Такие функциональные
блоки в LabVIEW называются элементарными виртуальными приборами — Sub–VI.

В диалоговом окне «Project Explorer» щелкните правой кнопкой мышки по пункту
FPGA Target (Board1, DE FPGA Board) и выберите New → VI (см. рис. 3.4).

Рис. 3.4. Выбор — создание нового функционального блока
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Появится окно «Front Panel», нажмите комбинацию клавиш Ctrl-E — откроется окно
«Block Diagramm» (рис. 3.5).

Рис. 3.5. Окна для создания нового функционального блока

Щелкните правой кнопкой мыши где–нибудь на белом поле (в рабочей области). В
палитре функций откройте субпалитру Boolean (рис. 3.6). Вы можете также найти ее
щелчком по кнопке Search. Выберите двухвходовый элемент And и поместите его на
рабочую область блок–диаграммы.

Рис. 3.6. Субпалитра функций Boolean
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Щелкните левой кнопкой мышки по элементу и при помощи комбинаций квавиш
Ctrl-C и Ctrl-V размножьте элемент And (так, чтобы получилось два элемента). Пере-
местите курсор на левый угол первого элемента And и обратите внимание, что курсор
принял вид инструмента соединения. Щелкните правой кнопкой мыши и выберите
Create → Control. Создастся элемент управления с именем x (по умолчанию). Изме-
ните имя на a_in.

Аналогично создайте второй элемент управления (для второго входа первого элемента
And) и присвойте ему имя b_in. Соедините выход первого элемента And с первым
входом второго элемента And. Создайте третий элемент управления (для второго входа
второго элемента And) и присвойте ему имя c_in. Создайте индикатор для выхода
второго элемента And и присвойте ему имя and3_out.

Перегруппируйте элементы управления и индикатор так, чтобы блок–диаграмма стала
похожей на показанную ниже.

Перейдите в окно «Front Panel» и при помощи мышки перегруппируйте элементы
управления функционального блока, как это показано на рисунке.
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Щелкните правой кнопкой мышки по иконке, расположенной в правом верхнем
углу, и выберите Show Connector.

Еще раз щелкните правой кнопкой мыши по иконке, выберите пункт Patterns (шабло-
ны), а затем –– подходящий шаблон с достаточным количеством блоков для входов и
выходов вашего VI.

Щелкните по входу в левом верхнем углу окна коннектора, а затем щелкните по кнопке
a_in;
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щелкните по входу в центре окна коннектора, а затем щелкните по кнопке b_in; щелк-
ните по входу в левом нижнем углу окна коннектора, а затем по кнопке c_in; щелкни-
те по крайнему правому блоку коннектора, а затем по индикатору выхода and3_out.

Важно: эти операции необходимо выполнять именно в таком порядке (вначале ––
коннектор, затем элемент управления или индикатор). Если проделаеть это в другом
порядке, то подключения получатся другими.

Щелкните правой кнопкой мыши по окну коннектора и выберите Edit Icon.

В окне редактора иконок выберите Edit→Clear All для очистки рисунка.
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В палитре инструментов выберите инструмент ввода текста (T). В очищенном окошке
введите LAB1 (нажмите на клавишу Enter), а затем AND3. В палитре инструментов
выберите инструмент рисования прямоугольника и нарисуйте в окошке прямоугольник.

Щелкните по кнопке ОК и сохраните функциональный блок под именем — Lab01_and3.vi.
Аналогично создайте 4-х входовой элемент ИЛИ — (4ИЛИ). Блок–диаграмма долж-

на выглядеть так, как показано на рисунке ниже.

Порядок соединения коннекторов и элементов управления приведен на рис. 3.7.
Сохраните функциональный блок под именем Lab01_or4.vi.
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Рис. 3.7. Порядок соединения элементов управления в логическом элементе 4ИЛИ

Контрольное задание 1. Составьте таблицы истинности для разработанных функ-
циональных блоков, реализующих логические функции 3И и 4ИЛИ. Занесите полу-
чившиеся таблицы истинности в отчет по лабораторной работе №1.

ЛР1.3. Проектирование схемы, реализующую заданную ФАЛ

В предыдущем разделе мы научились создавать простые функциональные блоки
(sub–VI в терминологии LabVIEW). На основе этих простых блоков создадим более
сложную схему, реализующую заданную ФАЛ (z = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0),
структурная схема которой представлена на рис. 3.1.

Проектирование схемы начнем с того, что зададим каналы ввода–вывода. Для этого
в окне «Project Explorer» щелкнем правой кнопкой мышки по пункту меню FPGA
Target (Board1, DE FPGA Board) и выберем пункт меню New→FPGA I/O, как
показано ниже.

Доступные в оценочном модуле DE FPGA Board каналы ввода–вывода отобразятся
в левой части окна выбора (рис. 3.8). В секции «Available Resources» раскроем папку
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Рис. 3.8. Доступные в DE FPGA Board каналы ввода–вывода

Slde Swithes и, пользуясь комбинацией клавиш Ctrl+Shift, выберем переключатели
SW0, SW1 и SW2. Нажатием кнопки Add (обведено красным овалом на рис. 3.8)
добавим выбранные элементы в проект. Аналогично, раскроем папку «LEDs», выберем
светодиод LED0 и добавим его в проект.

Данные виртуальные каналы ввода–вывода соответствуют реальным переключате-
лям и светодиодам, расположенным на оценочной плате. В частности, задействованные
в схеме переключатели и светодиод показаны на рис. 3.9 (обведены желтыми овалами).

Рис. 3.9. Реальные каналы ввода–вывода на оценочной плате

После выполненных манипуляций в «Project Explorer», кроме уже присутствующих
там функциональных блоков Lab01_and3.vi и Lab01_or4.vi, появятся добавлен-
ные нами переключатели и светодиод в соответствующих папках (рис. 3.10).
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Рис. 3.10. Требуемый набор функциональных блоков

В «Project Explorer» нажмем на правую кнопку мышки на FPGA Target (Board1,
DE FPGA Board) и при помощи меню New→VI создадим новый функциональный
блок. При помощи коммбинации клавиш Ctrl+E откроем окно «Block Diagramm».
Мышкой перетащим туда из «Project Explorer» переключатели (SW0, SW1, SW2),
светодиод (LED0) и созданные нами функциональные блоки логических элементов
(3И, 4ИЛИ). Так как для реализации структурной схемы необходимы 4 логических
элемента 3И, то при помощи мышки и комбинаций клавиш Ctrl+C и Ctrl+V размно-
жим этот элемент. Далее нажатием правой кнопки мышки в рабочей области окна
«Block Diagramm» откроем палитру функций, в которой из субпалитры Boolean выбе-
рем логический элемент Not — НЕ (см. рис. 3.11).

Рис. 3.11. Выбор элемента НЕ

Для реализации схемы, представленной на рис. 3.1, потребуются три таких элемен-
та.

Затем при помощи мышки выстраиваем все функциональные блоки и соединяем
их проводниками согласно заданной схемы. В результате получится блок–диаграмма,
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похожая на представленную на рис. 3.12.

Рис. 3.12. Блок–диаграмма, реализующая ФАЛ

Необходимо отметить, что блок-диаграмма, представленная на рис. 3.12, не соот-
ветствует схеме, представленной на рис. 3.1 и, следовательно, описывается ФАЛ от-
личной от полученной в примере 2.3 СДНФ.

Контрольное задание 2. Используя описанную в 3.3 методику, запишите ФАЛ,
соответствующую блок–диаграмме, представленной на рис. 3.12. Занесите полученную
ФАЛ в отчет по лабораторной работе №1.

Добавим в блок–диаграмму индикаторы для переключателей и выхода, для этого
щелкните правой кнопкой мышки по соответствующему проводнику и в контекстном
меню выберите Create→Indicator.

Переименуйте индикаторы согласно названиям входов (x0, x1, x2), выходной индикатор
назовем OUT.

43



Переключитесь на «Front Panel» (комбинация клавиш Ctrl+E), на ней будут три
индикатора входов и индикатор выхода. Можно при помощи мышки изменить их ком-
поновку и внешний вид. Один из вариантов показан на рис. 3.13.

Рис. 3.13. Блок–диаграмма и лицевая панель

Сохраните проект в папку Lab01 под тем же именем — Lab01.

ЛР1.4. Проверка результатов проектирования
при помощи DE FPGA Board

После того, как схема собрана, проверим её работоспособность при помощи оценоч-
ного модуля DE FPGA Board.

Убедимся, что питание на ELVIS II+ подано (на рис. 1.3 показано как должны
гореть индикаторы), кабель JTAG–программатора подключен к оценочной платформе
DE FPGA Board (рис. 1.4).

На лицевой панели («Front Panel») нажимаем кнопку Run

Начнется процесс компиляции проекта, это может занять определенное время. Снача-
ла будет сгенерирован промежуточный файл. Затем запустится компилятор, который
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создаст двоичный код, необходимый для «прошивки» ПЛИС. По окончании процесса
компиляции код будет автоматически загружен в FPGA Board, она сконфигурируется,
и в зависимости от положения переключателей выходной диод будет либо гореть, либо
нет.

Если изменять состояния переключателей, то светодиод не будет реагировать, так
как программа однократно выполнилась и остановилась.

Для того, чтобы посмотреть работу программы при различных положениях пере-
ключателей, необходимо сначала изменить их положение (см. рис. 3.9), а затем нажать
кнопку Run. Двоичный код конфигурации FPGA загрузится через USB–JTAG кабель.
В зависимости от установок входных переменных (x0, x1, x2), определямых состоянием
переключателей SW0, SW1 и SW2 на оценочной плате, светодиод LED0 (и индикатор
OUT на лицевой панели) будет либо гореть либо нет.

Если воспользоваться кнопкой запуска Run Continuosly (Запустить в непрерывном
режиме),

то можно, изменяя состояния переключателей, наблюдать изменения состояния свето-
диода LED0 на оценочной платформе DE FPGA Board и индикатора OUT на лицевой
панели («Front Panel») в непрерывном режиме, как показано на рис. 3.14.

Рис. 3.14. Проверка результатов проектирования с помощью оценочного модуля

Остановить работу оценочного модуля в непрерывном режиме можно при помощи
кнопки Abort Execution на лицевой панели.
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Контрольное задание 3. Запустите собранную схему в непрерывном режиме. Ис-
пользуя разные комбинации включения переключателей SW0÷SW2, проверьте пра-
вильность работы схемы. Результаты проверки занесите в таблицу истинности.

Сравните получившиеся результаты с данными, приведенными в таблице истинно-
сти, описывающей данную схему (табл. 2.4). Результаты сравнения занесите в отчет
по лабораторной работе №1.

Выводы по лабораторной работе №1

В этой работе:

• познакомились с образовательной платформой NI ELVIS II+ и ситемой графиче-
ского программирования LabVIEW;

• научились создавать элементарные функциональные блоки sub-VI на основе при-
митивов;

• научились проектировать иерархические схемы, реализующие заданные функции
алгебры логики, с использованием созданных функциональных блоков;

• ознакомились с работой отладочной платы DE FPGA Board;

• приобрели навыки проверки результатов проектирования с использованием отла-
дочной платы DE FPGA Board.
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Отчет по лабораторной работе №1

Контрольное задание 1. Составьте таблицы истинности для логических элементов,
реализующих операции 3И и 4ИЛИ:

3И
x2 x1 x0 z

4ИЛИ
x3 x2 x1 x0 z

Контрольное задание 2. Запишите ФАЛ, соответствующую блок–диаграмме, приве-
денной на рисунке
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Контрольное задание 3. Используя разные комбинации включения переключателей
SW0÷SW2, заполните таблицу истинности (слева):

x2 x1 x0 z
(SW2) (SW1) (SW0) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

x2 x1 x0 z
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Сравните получившийся результат с таблицей истинности, приведенной справа
(отметьте галочкой соответствующий результат).

Таблицы совпадают — � Таблицы не совпадают — �

Работу выполнил студент гр. / /

« » 201 г.

Оценка (балла(ов))

Работу принял / /

« » 201 г.
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Глава 4

МИНИМИЗАЦИЯ ФУНКЦИЙ
АЛГЕБРЫ–ЛОГИКИ

В предыдущей главе было показано, что логическую схему, реализующую заданный
алгоритм преобразования сигналов, можно синтезировать непосредственно по выраже-
нию, представленному в виде СДНФ или СКНФ. Однако полученная при этом схема,
как правило, не оптимальна с точки зрения ее практической реализации. Поэтому
исходные ФАЛ обычно минимизируют.

Целью минимизации логической функции является уменьшение стоимости ее тех-
нической реализации. Следует отметить, что сам критерий, в соответствии с которым
выполняется минимизация ФАЛ, далеко не однозначен и зависит как от типа реша-
емой задачи, так и уровня развития технологии. Так, в те времена, когда цифровые
устройства строились на дискретных элементах, минимизация числа этих элементов
и числа построенных на их основе элементарных логических узлов однозначно опре-
деляла и уменьшение стоимости технической реализации. С появлением больших и
сверхбольших интегральных схем (БИС и СБИС), стоимость которых определяется в
основном площадью схемы на кристалле и мало зависит от числа входящих в нее тран-
зисторов и других элементов, критерии минимизации ФАЛ претерпели существенные
изменения. На первое место при проектировании самих ИС выдвигается требование
регулярности их внутренней структуры и минимизация числа внешних соединений да-
же за счет увеличения числа элементов и внутренних соединений. Эти требования
диктуются требованиями повышения надежности электронных средств.

Однако при проектировании аппаратуры с применением БИС и СБИС требование
уменьшения числа корпусов ИС и количества их соединений между собой по-прежнему
остается весьма важным.

Требование уменьшения числа элементарных ЛЭ, входящих в разрабатываемое уст-
ройство, в настоящее время также не потеряло своей актуальности. Объясняется это
все более широким использованием при проектировании электронных средств програм-
мируемых логических СБИС широкого применения и полузаказных СБИС на основе
базовых матричных кристаллов. Эти СБИС и БИС, как правило, содержат отдельные
нескоммутированные между собой элементарные ЛЭ, например Стрелка Пирса или
Штрих Шеффера (см. таблицу 2.3), или просто наборы транзисторов, резисторов и
диодов, которые могут быть соединены между собой в соответствии с заданным ал-
горитмом обработки логических сигналов. Поскольку число элементов в одной СБИС
задано из технологических соображений, то минимизация ФАЛ по критерию уменьше-
ния числа используемых элементов позволяет на одном кристалле решать более слож-
ные задачи логической обработки сигналов, т.е. в конечном счете уменьшать число
требуемых ИС и связей между ними. Это снижает стоимость и повышает надежность
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электронной аппаратуры.
Рассмотрим ряд методов, позволяющих провести минимизацию ФАЛ по критерию

уменьшения числа элементарных ЛЭ.

4.1 Минимизация функций алгебры-логики
при помощи кубических представлений

Наиболее просто и наглядно задача минимизации ФАЛ решается с использованием
ее кубических представлений (см. раздел 2.3.5). Ранее было показано, что любая ло-
гическая функция n-переменных характеризуется своим кубическим комплексом K(z),
образованным кубическими комплексами K0, K1, . . . , Kn−1. Из кубического комплекса
K(z) всегда можно выделить множество кубов Π(z) таких, что каждый член комплекса
K0, т.е. вершина куба, будет включен по крайней мере в один куб из множества Π(z).
Множество кубов Π(z) называется покрытием комплекса K(z), или покрытием логи-
ческой функции. Очевидно, что для любой ФАЛ существует несколько ее покрытий.
В свою очередь, каждому покрытию Π(z), так же как и самому комплексу, соответ-
ствует своя дизъюнктивная нормальная форма, получаемая логическим суммированием
логических произведений, соответствующих выделенным кубам ФАЛ.

Сложность полученной таким образом ДНФ принято характеризовать понятием
«цена покрытия» (ЦП), которая равна сумме цен всех кубов, составляющих данное
покрытие Π(z): ЦП =

∑
ЦК. В свою очередь, цена одного r-куба ФАЛ n-переменных

определяется как разность полного числа входных переменных и ранга соответствую-
щего куба, т.е. равна числу переменных в соответствующей дизъюнкции: ЦK = n − r.
Так, для ФАЛ трех переменных цена 0-куба равна трем, а 2-куба - единице.

В соответствии со сказанным, задача минимизации ФАЛ сводится к поиску покры-
тия Π(z) кубического комплекса K(z), имеющего минимальную цену.

Покрытие Π(z) комплекса K(z), имеющее минимальную цену, называется покры-
тием Квайна, а соответствующая этому покрытию ДНФ — называется минимальной
дизъюктивной нормальной формой (МДНФ).

Пример 4.1 Минимизировать ФАЛ, заданную в виде словесного описания в приме-
ре 2.1. Составить структурную схему логического устройства.

Решение. Как было показано в примере 2.3, СДНФ для данной ФАЛ запишется в виде
z = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0.

Представим ФАЛ в виде трехмерного куба (рис. 4.1). Запишем кубический комплекс
K(z) = (011, 101, 110, 111, 11−, 1− 1,−11). Нулевой кубический комплекс включает все
вершины куба (зелёные точки на рис. 4.1):

Π1(z) = K0 = (011, 101, 110, 111).

Найдем цену покрытия: ЦП1
=

∑
ЦК0

= (3− 0) + (3− 0) + (3− 0) + (3− 0) = 12.
Все вершины куба включаются так же в единичный кубический комплекс K1 (ребра

куба, выделенные красным на рис. 4.1), поэтому и он образует покрытие ФАЛ:

Π2(z) = K1 = (11−, 1− 1,−11).

Найдем цену покрытия: ЦП2
=

∑
ЦК1

= (2− 1) + (2− 1) + (2− 1) = 3.
Перебирая сочетания кубов различных рангов, можно получить и другие покрытия

ФАЛ, но здесь очевидно, что Π2(z) для данной ФАЛ будет иметь минимальную цену,
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Рис. 4.1. Геометрическое представление кубического комплекса для ФАЛ

т. е. является покрытием Квайна. Соответствующая этому покрытию МДНФ запишется
в виде:

z2(x2, x1, x0) = x2x1 + x2x0 + x1x0. (4.1)

Анализируя получившееся выражение для ФАЛ, можно сказать, что для реализации
этой функции в виде структурной схемы потребуются 3 логических элемента 2И и один
элемент 3ИЛИ (рис.4.2) в отличие от структурной схемы, представленной на рис 3.1,
не потребуется ЛЭ реализующих операцию НЕ. �

Рис. 4.2. Структурная схема логического устройства, реализующая МДНФ ФАЛ

Таким образом, полученная в результате минимизации функция и ее структурная
схема проще. Техническая реализация такой схемы будет дешевле и надежней.

4.2 Минимизация функций алгебры–логики
с использованием карт Вейча

Данный метод базируется на табличном представлении ФАЛ. Он широко исполь-
зуется при ручной, без применения ЭВМ, минимизации ФАЛ, число переменных в
которой обычно не превышает пяти.

Карта Вейча — это прямоугольная таблица, число клеток в которой для ФАЛ n-
переменных равно 2n, каждой из клеток поставлен в соответствие некоторый набор
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входных переменных, причем рядом расположенным клеткам соответствуют соседние
наборы входных переменных (кодов), а в самих клетках записаны значения функций,
определенные для этих кодов.

Рассмотрим построение карт Вейча для функций двух, трех и четырех переменных.
Карта Вейча функции двух переменных приведена в таблице 4.1. Она содержит

четыре клетки и является плоской фигурой. Для удобства использования по краям
карты указаны значения входных переменных, которые для соответствующих строк
и столбцов остаются постоянными. Набор переменных для заданной клетки таблицы
определяется как совокупность аргументов, постоянных для строк и столбцов, на пе-
ресечении которых она расположена.

Таблица 4.1. Карта Вейча функции двух переменных

x1 x̄1

x0 f(x1, x0) f(x̄1, x0)
x̄0 f(x1, x̄0) f(x̄1, x̄0)

Карта Вейча функции трех переменных приведена в таблице 4.2. Она содержит
восемь клеток. Наборы входных переменных, соответствующие крайним левому и пра-
вому столбцам, являются соседними. Поэтому данную карту удобно представить как
поверхность цилиндра и она, в отличие от карты двух переменных, является объемной
фигурой.

Таблица 4.2. Карта Вейча функции трёх переменных

x1 x1 x̄1 x̄1

x0 f(x̄2, x1, x0) f(x2, x1, x0) f(x2, x̄1, x0) f(x̄2, x̄1, x0)
x̄0 f(x̄2, x1, x̄0) f(x2, x1, x̄0) f(x2, x̄1, x̄0) f(x̄2, x̄1, x̄0)

x̄2 x2 x2 x̄2

Карта Вейча функции четырех переменных приведена в таблице 4.3. Она содержит
16 клеток. Очевидно, что наборы входных переменных, соответствующие крайним ле-
вому и правому столбцам, как и в карте для трех переменных, являются соседними.
Кроме этого соседние коды содержатся в нижней и верхней строках карты. Поэтому
данная карта тоже является объемной фигурой и может быть представлена как поверх-
ность тора.

Таблица 4.3. Карта Вейча функции четырёх переменных

x1 x1 x̄1 x̄1

x0 f(x̄3, x̄2, x1, x0) f(x3, x̄2, x1, x0) f(x3, x̄2, x̄1, x0) f(x̄3, x̄2, x̄1, x0) x̄2

x0 f(x̄3, x2, x1, x0) f(x3, x2, x1, x0) f(x3, x2, x̄1, x0) f(x̄3, x2, x̄1, x0) x2

x̄0 f(x̄3, x2, x1, x̄0) f(x3, x2, x1, x̄0) f(x3, x2, x̄1, x̄0) f(x̄3, x2, x̄1, x̄0) x2

x̄0 f(x̄3, x̄2, x1, x̄0) f(x3, x̄2, x1, x̄0) f(x3, x̄2, x̄1, x̄0) f(x̄3, x̄2, x̄1, x̄0) x̄2

x̄3 x3 x3 x̄3

Еще более сложную форму имеет карта Вейча функции пяти переменных. Ее мож-
но представить как две карты Вейча функции четырех переменных, расположенные
одна над другой и отличающиеся лишь значением одной переменной. Геометрически
это можно представить как два тора, один из которых расположен в другом. Сосед-
ним кодам тут дополнительно соответствуют клетки, расположенные на разных торах
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одна под другой. Ввиду сложности работы с такими картами данный способ редко
используется при минимизации ФАЛ пяти переменных.

При минимизации ФАЛ используют либо ее нулевые, либо единичные значения. В
обоих случаях получают равносильные выражения, которые, однако, могут отличаться
по числу членов (т. е. цене) и выполняемым логическим операциям.

Алгоритм минимизации ФАЛ сводится к следующему.

1. На карте Вейча ФАЛ n–переменных выделяют прямоугольные области, объеди-
няющие выбранные значения функции (лог. 0 или лог. 1). Каждая область должна
содержать 2k клеток, где k – целое число. Выделенные области могут пересекать-
ся, т. е. одна или несколько клеток могут включаться в различные области.

2. Каждой из выделенных областей соответствует k-куб исходной ФАЛ, который
представляется самостоятельным логическим произведением переменных, значе-
ния которых в рамках выделенной области остаются постоянными. Каждое про-
изведение содержит n− k переменных и носит название импликанты.

3. Из полученного множества выбирают минимальное число максимально больших
областей, включающих все выбранные значения ФАЛ.

4. Логически суммируют импликанты, соответствующие выбранным областям. По-
лученная сумма образует МДНФ, т.е. является покрытием ФАЛ минимальной
стоимости (покрытием Квайна).

При объединении клеток с единичными значениями ФАЛ получают МДНФ самой
функции, а при объединении клеток с нулевыми значениями ФАЛ — МДНФ функции,
инверсной заданной. Последнее легко объясняется при помощи тождеств, данных в
таблице 2.2.

Пример 4.2 Минимизировать ФАЛ, заданную в виде словесного описания в при-
мере 2.1 при помощи карты Вейча. Получить МДНФ для самой функции и для
функции, инверсной заданной. Сравнить цены покрытия.

Решение. В примере 2.3 была получена СДНФ для данной ФАЛ →
z = x̄2x1x0 + x2x̄1x0 + x2x1x̄0 + x2x1x0. Составим карту Вейча для заданной функции

x1 x1 x̄1 x̄1

x0 f(x̄2, x1, x0) = 1 f(x2, x1, x0) = 1 f(x2, x̄1, x0) = 1 f(x̄2, x̄1, x0) = 0
x̄0 f(x̄2, x1, x̄0) = 0 f(x2, x1, x̄0) = 1 f(x2, x̄1, x̄0) = 0 f(x̄2, x̄1, x̄0) = 0

x̄2 x2 x2 x̄2

Для удобства дальнейшей работы перепишем карту Вейча в виде:

x1 x1 x̄1 x̄1

x0 1 1 1 0
x̄0 0 1 0 0

x̄2 x2 x2 x̄2

Получим МДНФ самой функции, т. е. проведем минимизацию по тем значениям
функции, на которых она равна лог. 1. Согласно приведенному выше алгоритму, на
данной карте Вейча можем выделить три единичных куба.
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Первый — x1x0; второй — x2x1; третий — x2x0. Таким образом, МДНФ самой функции
будет: z = x2x1 + x2x0 + x1x0, т. е. получили тот же результат, что и в примере 2.7.

Получим МДНФ для функции, инверсной заданной. При выделении кубов учтем,
что наборы входных переменных, соответствующие крайним левому и правому столб-
цам, являются соседними.

В этом случае так же, как и в предыдущем, можем выделить только три единичных
куба: первый — x̄1x̄0; второй — x̄2x̄1; третий — x̄2x̄0. Таким образом, МДНФ обратной
функции будет:

z̄ = x̄2x̄1 + x̄2x̄0 + x̄2x̄0. (4.2)

Нетрудно убедиться, что цена покрытия МДНФ обратной функции так же, как и самой
функции, равна 3, т. е. они равнозначны.

Как было показано в главе 2 дизъюкктивная и конъюнктивная нормальные формы
являются равнозначными. Покажем это на данном примере.

Для доказательства инвертируем обе части равенства 4.2:

z = x2x1 + x2x0 + x1x0.

Используя законы ассоциативности, основные тождества и теоремы Де–Моргана, за-
пишем:

z = x2x1 · x2x0 + x1x0 = x2x1 · x2x0 · x1x0 = (x2 + x1) · (x2 + x0) · (x1 + x0).

Окончательно получим МКНФ:

z = (x2 + x1) · (x2 + x0) · (x1 + x0). (4.3)

Нетрудно убедиться, что аналогичное выражение мы могли бы получить, просто
произведя логическое умножение Макстермов логической функции. �
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Лабораторная работа №2.
Реализация минимальной дизъюктивной и минимальной
конъюнктивной нормальных форм в виде логического
устройства

Цель работы:
Целью лабораторной работы является создать в LabVIEW логические схемы, ре-
ализующие МДНФ (4.1) и МКНФ (4.3) фукции алгебры–логики, полученные
в разделе 4.1. Результаты проектирования проверить на оценочном модуле DE
FPGA и системе NI ELVIS II+.

Выполнение задания:
Синтезированные схемы должны быть иерархическими; используя функции низ-
кого уровня, необходимо создать т. н. sub-VI — блоки, которые затем послужат
функциональными блоками более высокого уровня.

ЛР2.1. Синтез логического устройства, описанного МДНФ

Схема реализующая МДНФ ФАЛ (4.1), представлена на рис. 4.2. Для её синте-
за понадобятся логические элементы реализующие: операцию И над двумя входными
переменными (2AND); операцию ИЛИ над тремя входными выражениями (3OR).

Порядок выполнения упражнения:

• запустите LabVIEW на персональном компьютере;

• в своей дирректории создайте новую папку Lab02;

• используя методики, освоенные в процессе выполнения лабораторной работы №1,
создайте требуемые функциональные sub-VI — блоки в среде графического про-
ектирования;

• используя указанные функциональные блоки, соберите логическую схему, пред-
ставленную на рис. 4.2. Входные переменные x2, x1, x0 должны задаваться при
помощи движковых переключателей SW2, SW1, SW0 соответственно. Состояние
выходного сигнала (z) должно отображаться при помощи светодиода LED0;

• сохраните новый проект под именем Lab02_1;

• запустите проект в непрерывном режиме. Используя разные комбинации включе-
ния переключателей SW0÷SW2, проверьте правильность работы схемы. Резуль-
таты проверки занесите в таблицу;

• сравните получившиеся результаты с данными, полученными в ходе выполнения
лабораторной работы №1;

• результаты сравнения занесите в отчет о выполнении лабораторной работы №2;
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ЛР2.2. Синтез логического устройства, описанного МКНФ

Порядок выполнения упражнения:

• проаналируйте МКНФ ФАЛ (4.3). Самостоятельно синтезируйте логическую схе-
му, реализующую данное выражение. Для обозначения логических операций ис-
пользуйте условные графические обозначения согласно ГОСТ 2.743-91;

• занесите схему в отчет по лабораторной работе №2;

• создайте в LabVIEW новый проект и сохраните его под именем Lab02_2 в папку
Lab02;

• создайте требуемые функциональные sub-VI — блоки в среде графического про-
ектирования;

• используя созданные функциональные блоки, соберите логическую схему, реали-
зующую МКНФ ФАЛ (4.3). Входные переменные x2, x1, x0 должны задаваться
при помощи движковых переключателей SW2, SW1, SW0 соответственно. Состо-
яние выходного сигнала (z) должно отображаться при помощи светодиода LED0;

• сохраните и откомпилируйте проект;

• запустите собранную схему в непрерывном режиме (т. е. с использованием кноп-
ки Run Continuosly). Используя разные комбинации включения переключателей
SW0÷SW2, проверьте правильность работы схемы. Результаты проверки занеси-
те в таблицу;

• сравните получившиеся результаты с результатами, полученными в ходе выпол-
нения пункта ЛР2.1;

• результаты сравнения занесите в отчет о выполнении лабораторной работы №2.

Выводы по лабораторной работе №2

В этой работе:

• познакомились с принципами и некоторыми методами минимизации ФАЛ;

• научились самостоятельно синтезировать логические схемы, реализующие ФАЛ;

• убедились в эквивалентности представления ФАЛ в виде дизъюнктивной нор-
мальной формы и коньюнктивной нормальной формы.
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Отчет по лабораторной работе №2

Контрольное задание 1. Используя разные комбинации включения переключателей
SW0÷SW2, проверьте правильность работы схемы, собранной по МДНФ ФАЛ.
Результаты проверки занесите в таблицу:

x2 x1 x0 z
(SW2) (SW1) (SW0) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните эту таблицу с таблицей истинности, полученной в лабораторной работе
№1 (отметьте галочкой соответствующий результат).

Таблицы совпадают — � Таблицы не совпадают — �

Контрольное задание 2. Нарисуйте логическую схему, реализующую МКНФ ФАЛ
(4.3). Для обозначения логических операций используйте условные графические
обозначения согласно ГОСТ 2.743-91.
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Контрольное задание 3. Используя разные комбинации включения переключателей
SW0÷SW2, проверьте правильность работы схемы, собранной по МКНФ ФАЛ.
Результаты проверки занесите в таблицу:

x2 x1 x0 z
(SW2) (SW1) (SW0) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните получившиеся результаты с результатами, полученными в ходе выпол-
нения упражнения ЛР2.1 (отметьте галочкой соответствующий результат).

Таблицы совпадают — � Таблицы не совпадают — �

Объясните результат (в письменной форме):

Работу выполнил студент гр. / /

« » 201 г.

Оценка (балла(ов))

Работу принял / /

« » 201 г.
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4.3 Минимизация системы функций алгебры логики

В общем случае на выходе логического устройства формируется m–разрядный дво-
ичный код (см. рис. 2.1), таким образом, его поведение описывается системой, состоя-
щей из M ФАЛ. Минимизация структуры такого устройства может быть выполнена с
использованием вышеприведенных методов при раздельной минимизации M структур,
на выходе каждой из которых формируется только один выходной сигнал. Однако с
точки зрения всего устройства такая структура, как правило, не будет оптимальной.

С точки зрения минимизации всей структуры необходимо, чтобы цепь формирова-
ния каждого выходного сигнала была выполнена не минимальным, а некоторым опти-
мальным способом, обеспечивающим, в конечном счете, минимальность общей струк-
туры устройства. Минимизация в этом случае обеспечивается за счет использования
общих цепей формирования сигнала для получения нескольких выходных функций.
Последнее достигается выделением на картах Вейча различных выходных функций
одинаковых областей.

Пример 4.3 Минимизировать структуру устройства, алгоритм работы которого
задан следующей таблицей истинности:

Таблица 4.4. Таблица истинности устройства с тремя логическими выходами

Вход Выход
x2 x1 x0 z2 z1 z0
0 0 0 0 0 0
0 0 1 0 0 0
0 1 0 1 1 1
0 1 1 1 0 0
1 0 0 1 1 1
1 0 1 0 0 1
1 1 0 1 1 1
1 1 1 0 1 0

Решение. Нарисуем карты Вейча для каждой ФАЛ, входящей в заданную систему.
Минимизируем данную систему ФАЛ по каждому выходу отдельно по известному
алгоритму, как это показано на рис. 4.3.

Рис. 4.3. Карты Вейча для системы ФАЛ, пример 4.3
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Используя приведенные на рис. 4.3 карты Вейча, для заданной таблице истинности
можно записать следующую систему минимальных ФАЛ:

z0 = x1x̄0 + x2x̄1,

z1 = x1x̄0 + x2x̄0 + x2x1,

z2 = x̄2x1 + x2x̄0.

(4.4)

Техническая реализация данной системы потребует семь элементов 2И, два элемента
2ИЛИ и один элемент 3ИЛИ, т.е. всего десять элементов (вариант решения задачи «в
лоб»).

Внимательно рассмотрев систему ФАЛ (4.4) и карты Вейча (рис. 4.3), можно найти
еще два варианта решения поставленной задачи.

Первый вариант.
Нетрудно заметить, что полученные выражения (4.4) содержат общие члены x1 ·x0

и x2 ·x0. Поэтому техническую реализацию устройства можно упростить. При ис-
пользовании общих для нескольких элементов выходов для реализации потребу-
ется: пять элементов 2И, два элемента 2ИЛИ и один элемент 3ИЛИ, т. е. всего
восемь элементов.

Второй вариант.
Анализ приведенных на рис. 4.3 карт Вейча показывает, что на входных кодах
010, 100 и 110 все три функции принимают единичное значение. Поэтому можно
записать:

z0 = x1x̄0 + x2x̄0 + x2x̄1 = x̄0 (x2 + x1) + x2x̄1,

z1 = x1x̄0 + x2x̄0 + x2x1 = x̄0 (x2 + x1) + x2x1,

z2 = x1x̄0 + x2x̄0 + x̄2x1 = x̄0 (x2 + x1) + x̄2x1.

(4.5)

Реализация этой схемы потребует четыре элемента 2И и четыре элемента 2ИЛИ,
т.е. всего также восемь элементов. Однако из схемы исключен трехвходной эле-
мент, что, в конечном счете, приводит к упрощению ее технической реализации.

�

Таким образом, выделение при минимизации системы ФАЛ общих областей на кар-
тах Вейча позволяет получить наиболее простую ее техническую реализацию. При этом
следует иметь ввиду, что общие области могут выделяться не на всех картах, а лишь
на части из них. Как правило, это приводит к упрощению технической реализации.

Лабораторная работа №3.
Синтез оптимальной схемы
комбинацонного логического устройства

Цель работы:
Целью лабораторной работы является синтезировать в LabVIEW логические схе-
мы, реализующие системы фукций алгебры–логики, полученные в разделе 4.3.
Результаты проектирования проверить на оценочном модуле DE FPGA Bord и
системе NI ELVIS II+.
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Задание на проектирование:

1. Синтезировать схему логического устройства, описанную системой уравне-
ний 4.4.

2. Упростить полученную на предыдущем этапе схему с учетом того, что в
систему ФАЛ 4.4 входит ряд общих членов.

3. Синтезировать схему логического устройства, описанную системой уравне-
ний 4.5.

В проектируемой схеме три входа и три выхода. Входные логические перемен-
ные x2, x1, x0 должны задаваться при помощи движковых переключателей SW2,
SW1, SW0 соответственно. Состояние выходных логических переменных z2, z1,
z0 должно отображаться при помощи светодиодов LED2, LED1, LED0 соответ-
ственно.

Выполнение заданий:
В лабораторных работах №1 и №2 был создан ряд простейших функциональных
узлов (логических элементов), которые могут быть использованы при выполнении
настоящей лабораторной работы. Для этого в своей директории создайте папку
с именем Lab03 и скопируйте в неё из папок Lab01 и Lab02 Sub-VI — блоки
двух– и трехвходовых элементов (И и ИЛИ), созаданных в ходе выполнения
предыдущих лабораторных работ.

ЛР3.1. Синтез логического устройства,
описанного тремя функциями алгебры–логики

Порядок выполнения упражнения:

• проаналируйте систему ФАЛ (4.4). Самостоятельно синтезируйте логическую
схему, реализующую данную систему логических функций. Для обозначения
логических операций используйте условные графические обозначения согласно
ГОСТ 2.743-91;

• занесите схему в отчет по лабораторной работе №3;

• включите питание образовательной платформы NI ELVIS II+ с установленной на
ней оценочной платой DE FPGA Board. Запустите на ПК пакет LabVIEW;

• создайте в LabVIEW новый проект и сохраните его под именем Lab03_1 в папку
Lab03;

• используя готовые функциональные sub-VI — блоки, соберите логическую схему,
реализующую систему ФАЛ (4.4);

• сохраните и откомпилируйте проект;

• запустите собранную схему в непрерывном режиме (т. е. с использованием кноп-
ки Run Continuosly). Используя разные комбинации включения переключателей
SW0÷SW2, проверьте правильность работы схемы. Результаты проверки занеси-
те в таблицу.

• сравните полученный результат с таблицей 4.4;

• результаты сравнения занесите в отчет о выполнении лабораторной работы №3.
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ЛР3.2. Синтез упрощенной схемы логического устройства

До настоящего упражнения мы запускали синтезированные схемы при помощи
кнопки Run Continuosly. Данная конфигурация подразумевает, что собранные схе-
мы тактируются от внешнего источника синхронизации, т. е. компьютера. Если в та-
кой конфигурации отключить USB–кабель (см. рис. 1.4), то программа и логическое
устройство работать перестанут. Проверим это:

• запустить созданную в п. ЛР3.1 схему логического устройства в непрерывном
режиме (Run Continuosly);

• выдернуть USB–кабель из разъема 17 (рис. 1.2);

• результат работы устройства занести в отчет по лабораторной работе №3;

• вставьте USB–кабель обратно в разъем 17.

Однако реальные цифровые логические устройства должны работать без помощи
персонального компьютера. Для этого на «борту» DE FPGA Board имееется собствен-
ный задающий тактовый генератор. Для того, чтобы программа запускалась в непре-
рывном режиме (т. е. по нажатии кнопки Run), необходимо задействовать внутренний
генератор тактовых импульсов ПЛИС. Выполним эту операцию в настоящем упражне-
нии.

Порядок выполнения упражнения:

• упростите полученную в п.ЛР3.1 схему с учетом того, что все уравнения системы
ФАЛ 4.4 содержат общие члены x1 · x0 и x2 · x0;

• синтезируйте логическую схему, реализующую данную систему логических функ-
ций. Для обозначения логических операций используйте условные графические
обозначения согласно ГОСТ 2.743-91;

• занесите схему в отчет по лабораторной работе №3.

• переконфигурируйте схему, созданную в проекте Lab03_1 согласно новой схемы;

• щелкните правой кнопкой мышки где-нибудь в рабочей области окна «Block
Diagramm» и выберите из палитры Structures структуру While loop.

.
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Нарисуйте прямоугольник, заключающий в себе созданную блок–диаграмму;

• сохраните новый VI командой меню File→Save As под именем Lab03_2. Появит-
ся окно:

.

Щелкните по кнопке Continue. . . ;

• щелкните правой кнопкой мыши в окне Block–Diagram и добавьте функцию
Wait из палитры Programming→Timing.

.
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Выберите единицу счета mSec

и нажмите кнопку OK;

• щелкните правой кнопкой мыши по пиктограмме Wait и выберите
Create→Constant

.

Измените значение константы с 0 на 500;

• щелкните правой кнопкой мыши по терминалу Loop Condition
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и выберите из палитры Boolean константу,

например, False Constant ( ). В этом случае терминал Loop Condition дол-
жен быть красного цвета, если выбрать True Constant ( ), то терминал Loop
Condition должен быть белого цвета. Переключение цветов (т. е. состояние тер-
минала Loop Condition) осуществляется при помощи мышки;

• запустите схему при помощи кнопки Run. Работающую в непрерывном режиме
схему можно отключить при помощи кнопки Stop

;
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• используя разные комбинации включения переключателей SW0÷SW2, проверьте
правильность работы схемы. Результаты проверки занесите в таблицу;

• сравните полученный результат с таблицей 4.4;

• результаты сравнения занесите в отчет о выполнении лабораторной работы №3;

• удалите USB–кабель из разъема 17 (рис. 1.2). На экране компьютера появится
сообщение об ошибке. Виртуальный прибор (VI), созданный в системе LabVIEW,
прекратит свою работу, однако прошивка ПЛИС на DE FPGA Board продолжит
свою работу. Убедитесь в этом, задавая различные входные коды при помощи
движковых переключателей SW0÷SW2;

• результат работы прибора занесите в отчет по лабораторной работе №3;

• закройте проект Lab03_2;

• вставьте USB–кабель обратно в разъем 17.

ЛР3.3. Синтез оптимальной схемы логического устройства

Спроектированная в п.ЛР3.2 схема работала как тактируемая, т. к. код логики был
включен в структуру While loop. Это увеличивает задержку, поскольку за один такт
синхронизации операции выполняются только на одном логическом уровне. Кроме это-
го, необходимы еще два такта синхронизации на осуществеление задержкиWhile loop.
Если необходимо, чтобы созданная схема или ее часть работала как комбинационное
устройство1, необходимо заключить код в структуру Single-Cycle Timed Loop.

В этом упражнении рассмотрим создание комбинационной схемы логического устрой-
ства, реализующего систему ФАЛ (4.5).

Порядок выполнения упражнения:

• проаналируйте систему ФАЛ (4.5). Самостоятельно синтезируйте оптимальную
схему логического устройства. Для обозначения логических операций используй-
те условные графические обозначения согласно ГОСТ 2.743-91;

• занесите схему в отчет по лабораторной работе №3;

• создайте в LabVIEW новый проект и сохраните его под именем Lab03_3;

• соберите в LabVIEW схему согласно синтезированной оптимальной схемы и со-
храните проект;

• создайте структуру Single-Cycle Timed Loop. Для этого щелкните правой кноп-
кой мышки в окне «Block Diagramm», в открывшемся окне «Functions» нажмите
на кнопку Structures, в появившемся меню выберите пункт Timed Structures,
где щелкните по пункту Timed Loop

1Разработка типовых схем комбинационных логических устройств будет рассмотрена во второй части
лабораторного практикума.
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;

• появится инструмент для рисования временного цикла. С помощью этого ин-
струмента заключите схему логического устройства в Single-Cycle Timed Loop
структуру. Блок–диаграмма должна выглядеть так:

;

• добавьте константу для управления циклом, как это было описано в п.ЛР3.2

67



;

• сохраните проект и нажмите кнопку Run;

• используя разные комбинации включения переключателей SW0÷SW2, проверьте
правильность работы схемы. Результаты проверки занесите в таблицу;

• сравните полученный результат с таблицей 4.4. Убедитесь, что результаты совпа-
дают с полученными в пп.ЛР3.1 и ЛР3.2;

• результаты сравнения занесите в отчет о выполнении лабораторной работы №3;

• удалите USB–кабель из разъема 17 (рис. 1.2). На экране компьютера появится
сообщение об ошибке. Виртуальный прибор (VI), созданный в системе LabVIEW,
прекратит свою работу, однако прошивка ПЛИС на DE FPGA Board продолжит
работу. Убедитесь в этом, задавая различные входные коды при помощи движко-
вых переключателей SW0÷SW2;

• результат работы прибора занесите в отчет по лабораторной работе №3;

• закройте проект Lab03_3;

• вставьте USB–кабель в разъем 17.

Выводы по лабораторной работе №3

В этой работе:

• познакомились с принципами оптимизации структуры логических устройств, опи-
сываемых системой ФАЛ;

• на практике убедились в идентичности результатов, получаемых при различных
подходах, применяемых при минимизации системы логических уравнений;

• научились создавать в системе LabVIEW тактируемые и комбинационные схемы
логических устройств.
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Отчет по лабораторной работе №3

Контрольное задание 1. Нарисуйте логическую схему, реализующую систему ФАЛ
(4.4). Для обозначения логических операций используйте условные графические
обозначения согласно ГОСТ 2.743-91.

Используя разные комбинации включения переключателей SW0÷SW2, проверьте
правильность работы схемы. Результаты проверки занесите в таблицу:

Вход Выход
x2 x1 x0 z2 z1 z0

(SW2) (SW1) (SW0) (LED2) (LED1) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните полученный результат с таблицей 4.4 (отметьте галочкой соответ-
ствующий результат).
Таблицы совпадают — � Таблицы не совпадают — �

Удалите USB–кабель из разъема 17 (см. рис. 1.2).
Работа виртуального прибора (Sub-VI–блока) продолжается?
Да — � Нет — �
Работа DE FPGA Board продолжается по заданному алгоритму?
Да — � Нет — �
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Контрольное задание 2. Нарисуйте логическую схему с учетом того, что все уравне-
ния системы ФАЛ 4.4 содержат общие членыe x1 · x0 и x2 · x0. Для обозначения
логических операций используйте условные графические обозначения согласно
ГОСТ 2.743-91.

Используя разные комбинации включения переключателей SW0÷SW2, проверьте
правильность работы схемы. Результаты проверки занесите в таблицу:

Вход Выход
x2 x1 x0 z2 z1 z0

(SW2) (SW1) (SW0) (LED2) (LED1) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните полученный результат с таблицей 4.4 (отметьте галочкой соответ-
ствующий результат).
Таблицы совпадают — � Таблицы не совпадают — �

Удалите USB–кабель из разъема 17 (см. рис. 1.2).
Работа виртуального прибора (Sub-VI–блока) продолжается?
Да — � Нет — �
Работа DE FPGA Board продолжается по заданному алгоритму?
Да — � Нет — �
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Контрольное задание 3. Нарисуйте оптимальную схему логического устройства, ре-
ализующую систему ФАЛ (4.5). Для обозначения логических операций исполь-
зуйте условные графические обозначения согласно ГОСТ 2.743-91.

Используя разные комбинации включения переключателей SW0÷SW2, проверьте
правильность работы схемы. Результаты проверки занесите в таблицу:

Вход Выход
x2 x1 x0 z2 z1 z0

(SW2) (SW1) (SW0) (LED2) (LED1) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните полученный результат с таблицей 4.4 (отметьте галочкой соответ-
ствующий результат).
Таблицы совпадают — � Таблицы не совпадают — �

Удалите USB–кабель из разъема 17 (см. рис. 1.2).
Работа виртуального прибора (Sub-VI–блока) продолжается?
Да — � Нет — �
Работа DE FPGA Board продолжается по заданному алгоритму?
Да — � Нет — �
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Объясните получившиеся результаты, сделайте собственные выводы (в письменной
форме):

Работу выполнил студент гр. / /

« » 201 г.

Оценка (балла(ов))

Работу принял / /

« » 201 г.
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Глава 5

ФУНКЦИОНАЛЬНО ПОЛНАЯ
СИСТЕМА ЛОГИЧЕСКИХ
ЭЛЕМЕНТОВ

5.1 Принцип двойственности

При сравнении таблиц истинности для операций И и ИЛИ (см. раздел 2.1) легко
заметить, что если в условиях, определяющих операцию И, значения всех переменных
и самой функции заменить инверсией, а знак логического умножения — знаком логи-
ческого сложения, получим постулаты, определяющие операцию ИЛИ, и наоборот (см.
табл. 2.2, теоремы Де-Моргана):

если x1 · x0 = z, то x̄1 + x̄0 = z̄;
если x1 + x0 = z, то x̄1 · x̄0 = z̄.

(5.1)

Это свойство взаимного преобразования постулатов операций логического сложения и
умножения носит название принципа двойственности.

Важным практическим следствием принципа двойственности является тот факт,
что при записи логических выражений и, следовательно, построении логических схем,
можно обойтись только двумя типами операций, например операциями И и НЕ или
операциями ИЛИ и НЕ.

5.1.1 Функционально полная система логических элементов

Функционально полной системой называется совокупность ЛЭ, позволяющая реа-
лизовывать логическую схему произвольной сложности. Таким образом, системы двух
элементов И и НЕ, а также ИЛИ и НЕ наравне с системой из трех элементов (И,
ИЛИ, НЕ) являются функционально полными. На практике широкое применение полу-
чили ЛЭ, совмещающие функции элементов указанных выше функционально полных
систем. Это ЛЭ, реализующие операции штрих Шеффера (F14 в табл. 2.3, операция
И-НЕ) и стрелка Пирса (F8 в табл. 2.3, операция ИЛИ-НЕ). По определению, каждый
из этих ЛЭ также образует функционально полную систему. Условные графические
обозначения для операции И-НЕ приведены в табл.3.5, а для операции ИЛИ-НЕ в
табл. 3.6.

В качестве примера рассмотрим реализацию логических операций И, ИЛИ и НЕ с
использованием только элемента ИЛИ-НЕ.

Если ЛЭ 2ИЛИ-НЕ включен по схеме, показанной на рис. 5.1, то при подаче на
его вход логической переменной A на его выходе получим логическое выражение вида
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Рис. 5.1. Реализация ЛЭ НЕ на элементе ИЛИ-НЕ

A + A, но согласно основным аксиомам алгебры–логики (см. табл. 2.2) можем записать
A + A = A. Таким образом, мы получили элемент, реализующий операцию логического
отрицания (НЕ).

Рис. 5.2. Реализация ЛЭ ИЛИ на элементах ИЛИ-НЕ

Если на входы ЛЭ ИЛИ-НЕ поданы логические переменные A и B, тогда на его
выходе получим выражение A + B. Для реализации операции конъюнкции получивше-
еся выражение необходимо инвертировать, что можно реализовать, применив к нему
операцию отрицания (второй элемент ИЛИ-НЕ в структурной логической схеме на
рис. 5.2). Таким образом, мы получили элемент, реализующий операцию конъюнкции
(ИЛИ). Если на входы структурной схемы, изображенной на рис. 5.3, подать логиче-

Рис. 5.3. Реализация ЛЭ И на элементах ИЛИ-НЕ

ские переменные A и B, то на выходе мы будем иметь выражение A + B. Применяя
теорему Де-Моргана к этому выражению, получим A + B = A · B, далее, последова-
тельно применяя тождества из табл.2.2 к A и B, запишем A · B = A · B, т.е. данная
структурная схема (рис. 5.3) реализует операцию дизъюнкции (И).

На основе аналогичных рассуждений можно показать выполнение основных логи-
ческих операций с использованием только элемента И-НЕ.
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5.2 Синтез логических схем в заданном
базисе логических элементов

При построении логических схем обычно не пользуются функционально полной
системой ЛЭ, реализующих все три основные логические операции: И, ИЛИ и НЕ.
На практике с целью сокращения номенклатуры элементов пользуются функционально
полной системой элементов, включающей только два элемента, выполняющие операции
И-НЕ и ИЛИ-НЕ, или даже только один из этих элементов. Причем число входов этих
элементов, как правило, задано. Поэтому вопросы синтеза логических устройств в
заданном базисе ЛЭ имеют большое практическое значение.

На основании примеров, рассмотренных в параграфе 5.1.1, любую ФАЛ можно запи-
сать в требуемом базисе ЛЭ. При этом используются два технических приема: двойное
инвертирование исходного выражения или его части и применение теорем Де–Моргана.

Если требуется привести ФАЛ к базису ЛЭ И-НЕ, то указанными приемами функ-
ция преобразуется к виду, содержащему только операции логического умножения и
инверсии. Далее она переписывается через условные обозначения операции И-НЕ. Ана-
логично поступают при преобразовании ФАЛ к базису ЛЭ ИЛИ-НЕ. В этом случае в
выражении оставляют только операции логического сложения и инверсии. Проиллю-
стрируем сказанное примерами.

Пример 5.1 Синтезировать схему логического устройства, реализующую МДНФ
ФАЛ (4.1), полученную в примере 4.2, в базисе двухвходовых логических элементов
2И-НЕ (Штрих Шеффера).

Решение. В первую очередь приведем МДНФ ФАЛ (4.1) к базису логических эле-
ментов Штрих Шеффера. Воспользуемся описанными выше техническими приемами.
Перепишем выражение

z = x2 · x1 + x2 · x0 + x1 · x0

в виде
z = x2 · x1 + [x2 · x0 + x1 · x0].

Дважды инвертируем выражение в скобках

z = x2 · x1 + [x2 · x0 + x1 · x0].

Воспользуемся теоремами Де–Моргана и перепишем выражение в виде

z = x2 · x1 + [x2 · x0 · x1 · x0].

Операция вида A ·B = A|B — называется Штрих Шеффера, т. е. можем переписать
ФАЛ следующим образом:

z = x2 · x1 + [(x2|x0)|(x1|x0)].

Аналогично, дважды инвертируем все выражение:

z = x2 · x1 + [(x2|x0)|(x1|x0)].

Применяем теоремы Де–Моргана:

z = x2 · x1 · [(x2|x0)|(x1|x0)].
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И окончательно получаем:

z = (x2|x1)|[(x2|x0)|(x1|x0)]. (5.2)

Синтезируем схему логического устройства. Всего в выражение (5.2) входят пять
элементов, реализующих логическую операцию 2И-НЕ. Однако нам необходимо выпол-
нить еще и операцию инверсии для выражения, заключённого в квадратные скобки.
Для этого потребуется еще один логический элемент 2И-НЕ, при помощи которого
выполним операцию НЕ. Таким образом, всего потребуется шесть таких элементов.

Синтезированная схема логического устройства показана на рис. 5.4.

Рис. 5.4. Реализация ФАЛ в базисе логических элементов Штрих Шеффера

�

Пример 5.2 Синтезировать схему логического устройства, реализующую МКНФ
ФАЛ (4.3), полученную в примере 4.2, в базисе двухвходовых логических элементов
2ИЛИ-НЕ (Стрелка Пирса).

Решение.
Приведём полученную в примере 4.2 МКНФ (4.3) к логической операции Стрелка

Пирса. Воспользуемся законом ассоциативности и дважды инвертируем выражение в
квадратных скобках:

z = (x2 + x1) · [(x2 + x0) · (x1 + x0)].

Используя теремы Де–Моргана, перепишем это выражение в виде:

z = (x2 + x1) · [(x2 + x0) + (x1 + x0)].

Операция вида A + B = A ↓ B — называется Стрелка Пирса, перепишем ФАЛ следу-
ющим образом:

z = (x2 + x1) · [(x2 ↓ x0) ↓ (x1 ↓ x0)].

По аналогии с примером 5.1 дважды инвертируем полученное выражение:

z = (x2 + x1) · [(x2 ↓ x0) ↓ (x1 ↓ x0)] = (x2 + x1) + [(x2 ↓ x0) ↓ (x1 ↓ x0)].

Окончательно получим:

z = (x2 ↓ x1) ↓ [(x2 ↓ x0) ↓ (x1 ↓ x0)]. (5.3)
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Рис. 5.5. Реализация ФАЛ в базисе логических элементов itСтрелка Пирса

Синтезируем схему логического устройства. Всего в выражение (5.3) входят пять
элементов, реализующих логическую операцию 2ИЛИ-НЕ. Кроме этого потребуется
еще один элемент 2ИЛИ-НЕ для реализации операции инверсии над частью выраже-
ния, заключённого в квадратных скобках, т. е. всего необходимо шесть элементов.

Синтезированная схема логического устройства показана на рис. 5.5.
�

Лабораторная работа №4.
Создание логической схемы в заданном
базисе логических элементов

Цель работы: Целью лабораторной работы является создать в LabVIEW логическую
схему, реализующую фукцию алгебры–логики в заданном базисе логических эле-
ментов. Результаты проектирования проверить на оценочном модуле DE FPGA и
при помощи виртуального тестера.

Задание на проектирование: 1. Создать в системе графического проектирования
схему, представленную на рис. 5.4, реализующую ФАЛ (5.2). Проверить ра-
ботоспособность схемы при помощи оценочного модуля DE FPGA Board.

2. Создать в системе графического проектирования схему, представленную на
рис. 5.5, реализующую ФАЛ (5.3). Проверить работоспособность схемы при
помощи виртуального тестера.

Входные переменные x2, x1, x0 должны задаваться при помощи движковых пере-
ключателей SW2, SW1, SW0 соответственно. Состояние выходного сигнала (z)
должно отображаться при помощи светодиода LED0.

Выполнение задания: Включите персональный компьютер и подайте питание на об-
разовательную платформу NI ELVIS II+ с установленной на ней платой DE FPGA
Board. Создайте в своей рабочей директории папку с именем Lab04.

При выполнении заданий воспользуйтесь логическими элементами Not And и
Not Or, входящими в палитру Boolean.

77



ЛР4.1. Синтез логической схемы в базисе
логических элементов 2И–НЕ

Порядок выполнения упражнения:

• запустите LabVIEW и создайте в нем новый проект, сохраните проект под именем
Lab04_1 в папке Lab04;

• используя логические элементы Шртих Шеффера (Not And), соберите схему
логического устройства, представленного на рис. 5.4;

• по освоенной в ходе выполнения лабораторной работы №3 методике реализуйте
данную схему как комбинационную (т. е. заключите её в структуру Single-Cycle
Timed Loop);

• запустите проект нажатием кнопки Run. Используя разные комбинации включе-
ния переключателей SW0÷SW2, проверьте правильность работы схемы. Резуль-
таты проверки занесите в таблицу.

• сравните получившиеся результаты с данными, полученными в ходе выполнения
лабораторных работ №1 и №2;

• таблицу и результаты сравнения занесите в отчет о выполнении лабораторной
работы №4;

• закройте проект Lab04_1.

ЛР4.2. Синтез логической схемы в базисе
логических элементов 2ИЛИ–НЕ

Работоспособность схемы, исследуемой в этом упражнении, необходимо будет про-
верить при помощи виртуального тестера. Виртуальный тестер — это виртуальный
прибор (Sub–VI — блок), предназначенный для тестирования правильности работы
цифровых логических схем.

На рабочем столе персонального компьютера находится папка Виртуальный Те-
стер, откройте её и скопируйте все находящиеся в ней файлы в папку Lab04.

Порядок выполнения упражнения:

• создайте в LabVIEW новый проект и сохраните его под именем Lab04_2;

• в окне «Block Diagramm», используя логические элементы Стрелка Пирса (Not
Or), соберите схему логического устройства, представленного на рис. 5.5;

• в «Project Explorer» нажмите правую кнопку мышки на FPGA Target и выберите
New→FPGA I/O;

• в открывшемся окне щелкните по General Purpose FPGA Lines, выберите GPIO0,
GPIO1, GPIO2 и GPIO8
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.

Добавьте их в проект и нажмите OK. Линии GPIO2, GPIO1 и GPIO0 будут ис-
пользоваться для передачи сигналов соответствующих значений логических пере-
менных x2, x1, x0, а линия GPIO8 для записи состояния выходной переменной z.

• в «Project Explorer» выберите линии ввода/вывода (GPIO. . . ) и перетащите их
мышкой в «Block Diagramm». По умолчанию все GPIO. . . линии настроены на
чтение информации из FPGA Board. Линию GPIO8 необходимо перенастроить
на запись. Щелкните правой кнопкой мышки по GPIO8, и в контекcтном меню
выберите Change to Write;

• проведите оставшиеся соединительные линии;

• используя методику, освоенную при выполнении упражнения ЛР3.2, преобразуй-
те схему в тактируемую от внутреннего генератора ПЛИС. Для константы Wait
установите значение 500 mSec. Сохраните проект. Собранная схема должна вы-
глядеть примерно так1:

1Обратите внимание, на каких логических элементах собрана приведенная на рисунке схема. Отметь-
те этот факт в отчете по лабораторной работе №4.
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;

• нажмите кнопку Run, запустится процесс компиляции проекта. После того, как
процесс компиляции завершится и двоичный код загрузится в ПЛИС, закрой-
те окно компилятора, нажав на кнопку OK. FPGA Board готова для работы с
виртуальным тестером, а программа Lab04_2 выполняется;

• настроим виртуальный тестер для работы со схемой. В окне «Project Explorer» на-
жмите правую кнопку мышки на иконке My Computer (показано красной стрел-
кой), в контекстном меню выберите Add→File. . .

.
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В появившемся окне выберите виртуальный прибор Simple FPGA Tester и нажми-
те кнопку Add File

;

• окно «Project Explorer» должно выглядеть следующим образом:

;

• возьмите у инженера (под расписку) четыре соединительных провода для макет-
ной платы;

• физически соедините контакты разъемов BB2 (13 на рис. 1.2) и BB5 (11 на
рис. 1.2) согласно следующей таблицы

Разъём BB2 Разъём BB5
GPIO0 DIO0
GPIO1 DIO1
GPIO2 DIO2
GPIO8 DIO8

.
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Зона макетирования должна выглядеть, как показано на рисунке:

;

• продемонстрируйте инженеру собранную схему. Если схема собрана правильно,
он должен расписаться в отчете о выполнении лабораторной работы №4. Дальней-
шее выполнение лабораторной работы без разрешения инженера ЗАПРЕЩЕНО;

• нажмите на стрелку в поле Elvis II/II+ Device Name и выберите устройство,
соответствующее Elvis II

;

• измените Number of Inputs на 3 и Number of Outputs на 1. Измените время
Wait. . . на 500 ms
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;

• нажмите кнопку Browse ( ) на Input List File и добавьте файл InputTestData.txt
из папки, в которой находится проект;

;

• таким же образом добавьте в проект файл ExpectedTestOutput.txt. Файлы InputTest-
Data.txt и ExpectedTestOutput.txt являются обычными текстовыми файлами. Ис-
пользуя Проводник Windows или любой другой файловый менеджер, откройте
их в Блокноте. В файле InputTestData.txt хранятся входные коды (x2, x1 и x0).
Файл ExpectedTestOutput.txt содержит ожидаемые состояния выходного кода (z)
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.

Отредактируйте эти файлы таким образом, чтобы входные и выходные коды со-
ответствовали таблице истинности 2.4. Сохраните эти файлы.

• убедитесь, что проект Lab04_2 продолжает выполняться. Нажмите на кнопку
Run на лицевой панели виртуального тестера.

.

Тест запустится на исполнение, результаты отобразятся на лицевой панели, если
данные в файлы внесены корретно, то в виртуальном тестере появится надпись
Test Passed (тест прошёл);

• остановите работу виртуального тестера (кнопка Stop в окне «Simpe FPGA Tester»);

• измените в файле ожидаемых значений (ExpectedTestOutput.txt) какое-либо зна-
чение с 0 на 1, сохраните этот файл и опять нажмите кнопку Run;
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При достижении ошибочного ожидаемого выходного кода выполнение программы
прервётся, появится сообщение об ошибке Test Failed, а при помощи инди-
каторов (Input/Output — коды) будет показан входной код, состояние сигнала на
котором не соответствует ожидаемому выходному значению;

• проделайте предыдущий пукт для трёх–четырёх различных выходных кодов. Ре-
зультаты проверки занесите в отчет по лабораторной работе №4;

• остановите исполнение Lab04_2.vi, закройте проект, закройте LabVIEW, вы-
ключите питание оценочного модуля DE FPGA Board и NI ELVIS II+.

Выводы по лабораторной работе №4

В этой работе:

• познакомились с принципами построения цифровых схем в заданном базисе ло-
гических элементов;

• научились проверять результаты проектирования при помощи виртуального те-
стера.
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Отчет по лабораторной работе №4

Контрольное задание 1. Используя разные комбинации включения переключателей
SW0÷SW2, проверьте правильность работы схемы, собранной на логических эле-
ментах Штрих Шеффера. Результаты проверки занесите в таблицу:

x2 x1 x0 z
(SW2) (SW1) (SW0) (LED0)
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

Сравните получившиеся результаты с данными, полученными в ходе выполнения
лабораторных работ №1 и №2, сделайте выводы (в письменной форме):

Контрольное задание 2. Синтезируйте в LabVIEW схему на логических элементах
Стрелка Пирса

Физически соедините контакты разъемов BB2 (13 на рис. 1.2) и BB5 (11 на
рис. 1.2), продемонстрируйте инженеру собранную схему.

Схема собрана правильно,
дальнейшее выполнение лабораторной работы разрешено,

инженер по лаборатории / /

Опишите работу виртуального тестера для различных кодов в файле Ожидае-
мых значений, сделайте выводы:
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