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Abstract—The theory of electromagnetic eigenwaves propa-
gating on open dielectric and metallic waveguides is reviewed.
The main steps of the theoretical approach based on analytical
regularization of the problem are outlined and discussed. Gener-
alized eigenwave problems for lossless dielectric waveguides are
considered more comprehensively as examples of such approach.
Some of the unsolved problems and the directions of future
research are pointed out too.

I. I NTRODUCTION

The theory of electromagnetic eigenwaves (also known as
natural waves, normal waves, and travelling waves) able to
propagate on open dielectric and metallic waveguides is still
cannot be considered as complete. Commonly it is supposed
that the field components of such a wave depend on the
longitudinal coordinatex3 and timet as exp(i(βx3 − kt/c))
whereβ is the propagation constant (or wavenumber),k is the
free-space wavenumber, andc is the free-space propagation
velocity. Only in several simple cases, such as dielectric slab
and coaxially-layered circular dielectric fiber, it is possible
to study the eigenwaves explicitly. Such a study brings into
consideration a variety of waves: proper surface or guided
waves, leaky waves, complex surface waves, etc., differing by
the field behavior as a function of coordinates. However, if the
fiber cross-section is arbitrary, or if additional perfectly electric
conducting (PEC) elements are present, as in the microstrip or
slot lines, the theory meets certain problems. There are several
important questions to be answered already at the stage of
the mathematical formulation of the problem of eigenwaves.
Clearly, it should be a sort of eigenvalue problem for the
wavenumberβ. However, what should be the domain of the
variation of the eigenvalue parameter? In what class should one
seek the wave field components as a function of coordinates
in the cross-section and along the waveguide? How we can
accurately compute them?

Section II is a summary of results related to the the-
ory of propagation of time-harmonic electromagnetic waves
on arbitrarily shaped open waveguides with compact cross-
section. Most of them are also contained in the contributed
publications of the authors [1]–[38]. In Section III, we consider
more comprehensively generalized eigenwave problems for
two types of lossless dielectric waveguides: a “step-index”
waveguide with a smooth cross-sectional boundary and an
inhomogeneous, in cross-section, waveguide. Section IV is

devoted to a mini-review of unsolved problems and future
directions of research.

II. B RIEF OVERVIEW OF MAIN POINTS

A. Start from the excitation problem

It is impossible to come to a reasonably general formulation
of the eigenwave problem from any other starting point than
the problem of the time-harmonic excitation (∼exp(ikt/c)),
wherek > 0) of an open waveguide by the elementary electric
and magnetic current sources (Dirac dipoles). This is the same
as determining the open waveguide Green’s functions. Here,
a necessary assumption should be made, and finally verified,
that arbitrary field can be presented as a convolution with the
Green’s functions.

B. Fourier transform

By virtue of infinite length of a regular waveguide
along thex3-axis, the Fourier transformation with the ker-
nel exp(iβx3) is a natural instrument of bringing the problem
consideration to the two-dimensional (2D) space, for the field
transforms as a function of cross-sectionx = (x1, x2) and
integration parameterβ. Here, another necessary assumption
appears that the eigenwave fields are no more than the slow-
growth functions ofx3; hence, the Fourier integrals should
be interpreted in terms of distributions. It is necessary to
distinguish between the open waveguides, whose elements
have a compact cross-section (embedded in free space) and
those of noncompact cross-section, for example, compact
open waveguides embedded into a flat-layered medium, whose
cross-section has infinite boundaries. Although two cases have
much in common, the latter one is more complicated. In the
former case, the Fourier transform enables one to reduce the
dimensionality of excitation problem: Fourier-imagesF (x, β)
of the field components must satisfy the Helmholtz equa-
tion [∆+k2ε(x)µ(x)−β2]F = 0 in the 2D open domain with
the boundary conditions (for the PEC and impedance elements)
and transmission conditions (for the dielectric elements) given
at the bounded curves.

C. Analytic continuation

The use of Fourier transform naturally brings a necessity
of analytic continuation of the field Fourier-imagesF (x, β),
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from the realvalues of parameterβ to the complex domain.
This complex domain is uniquely determined by the Green’s
function of the mentioned above 2D Helmholtz equation,
(i/4)H(1)

0 (
√

k2ε∞ − β2|x − y|), and iscommonto all open
waveguides of compact cross-section. This is the infinite-sheet
Riemann surfaceΛ of the functionln

√
k2ε∞ − β2, whereε∞

is the dielectricconstant of environment.

D. Reichardt condition

On the mentioned Riemann surfaceΛ, it is the Reichardt
condition that serves as analytic continuation of the 2D Som-
merfeld radiation condition (for|β| < k

√
ε∞) and theexpo-

nential decay condition (for|β| > k
√

ε∞) from therealaxis of
the “physical” sheet to all complexβ. Due to this condition, but
also due to the transmission-type conditions at the boundaries
of dielectric elements, if they are present, these 2D problems
for the analytic continuations of the field Fourier-images are
non-selfadjoint ones. Note that this condition permits the
Fourier-images to grow exponentially with|x3| → ∞ if β
is located at the sheets other than the “physical” sheet ofΛ.
Nevertheless, Reichardt condition guarantees the uniqueness
of solution provided thatβ is not an eigenvalue.

E. Analytical regularization

For a wide class of open waveguides, 2D boundary-value
problems for the Fourier images can be converted to the canon-
ical Fredholm operator equations,(I + A)X = B, whereI
is identity operator,A is a compact operator, andX and B
are linked to the Fourier images of the scattered and incident
field, respectively, via some linear operators. Here, operatorA
is a meromorphic function ofβ on Λ, k, and all geometrical
and material parameters of the waveguide. Such a conversion
is based commonly on the analytical regularization of the
singular integral equations equivalent to the original boundary
value problem. Here, the Reichardt condition guarantees that
arbitrary-source field can be represented as a convolution with
the 2D Green’s functions and their normal derivatives for any
complexβ.

F. Fredholm-Steinberg theorems

Once a regularization has been done, one can use the theory
of Fredholm in the form generalized by Steinberg for the
operators depending on parameters. The results are as follows:
it is possible to prove the existence of the bounded resolvent,
and hence, the existence of the Fourier transforms, as no more
than meromorphic functions ofβ on Λ. The poles have no
finite accumulation points onΛ. They can be of only finite
multiplicity. They are piece-wise continuous functions of the
geometry and piecewise-analytic functions ofk and material
parameters. The continuity or analyticity can be lost only at
such a value of parameter that two or more poles coalesce.
The poles can appear or disappear only at the boundary of
the domain of meromorphicity: at infinity and in the branch
pointsβ = ±k

√
ε∞. The residuesof the poles of the Fourier

images satisfy certain 2D source-free boundary-value problem
(i.e. eigenvalue problem) for the mentioned above Helmholtz
equation, with the spectral parameterβ located onΛ.

G. Generalized eigenwave problems

The latter circumstance leads to a conclusion that the
eigenvalue problems about the natural waves of an open
waveguide can be studied independently of the excitation
problems. However, in view of the presented above chain
of considerations, it should be formulated in a generalized
sense. Namely, it should admit complexβ on Λ and include
the Reichardt condition at the infinity in the cross-section. In
so doing one gets a universal framework to study all types
of known eigenwaves: surface waves, leaky waves, complex
surface waves, etc., and hence trace the transitions of each
wave from one type to another under variations of non-spectral
parameters.

H. Discreteness of eigenwave spectrum

For a wide class of virtually all realistic configurations of
open waveguides, the mentioned above generalized eigenwave
problems admit analytical regularization and are equivalently
reducible to a homogeneous Fredholm operator equation of
the second kind[I + A(β)]X = 0. The set of eigenvalues
of β on Λ forms the spectrum of the operatorI + A(β) and
coincides with the spectrum of generalized eigenwaves of the
open waveguide. As one can see, the latter is purely discrete
onΛ. In particular, this enables one to conclude that the surface
waves, whose wavenumbers are located on the finite interval
k
√

ε∞ < |β| < k sup
√

ε of the realaxis of the “physical”
sheet, can be only of finite number.

I. Symmetry of eigenwave spectrum

Some properties of the spectrum of eigenwaves can be
deduced directly from the formulation of the generalized
eigenwave problem. It is verified directly that on any open
waveguide the eigenvalue wavenumbers±β form symmetric
pairs onΛ. Moreover, on the lossles waveguides, they form
conjugate quartets±β, ±β on Λ. Hence, itis enough to study
them only in one quadrant of each Riemann sheet.

J. Free of spectrum domain

Using the vector Green’s formula, it has been shown that
on Λ there exists a non-empty domain, which is free of the
spectrum of eigenwaves. This domain depends on the type
of the open waveguide. If it contains only PEC elements
but has no material (dielectric or magnetic) elements, this
domain includes the whole “physical” sheet ofΛ; in a lossless
dielectric waveguide, it includes the intervals|β| < k

√
ε∞

and |β| ≥ k sup
√

ε of the realaxis of the “physical” sheet; in
the lossy case this whole real axis is free of spectrum, etc.

K. Orthogonality and power flux

The vector Green’s formula, applied to the eigenwave field,
enables one to prove the orthogonality of the surface waves and
the complex surface waves, in the power sense. However if the
wavenumberβ is not located on the “physical” sheet ofΛ, this
proof fails. The Green’s formula is also an instrument to study
the properties of the power flux associated with a generalized
eigenwave. For example, it shows that any complex surface
wave on a lossless open waveguide can be only hybrid (i.e.,
has all six components of the electromagnetic field) and does
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not carry power, as its total flux in the cross-section is identical
zero. Another important conclusion is that, on open waveguide,
a surface wave can carry the power not only in the direction
of its propagation; the opposite direction is allowed, although
only for the hybrid waves. Still other conclusion is that the
analyticity of each spectrum point as a function ofk enables
one to validate the concept of the group velocity.

L. Radiation condition in 3D excitation problem

Strictly speaking, in the original 3D problem of the
elementary-source excitation of an arbitrary open waveguide,
the classical Sommerfeld condition of radiation is not valid for
the extraction of unique solution. The reason is the presence
of infinite alongx3 boundaries, and hence possible presence
of surface waves able to carry the power to infinity along the
waveguide without attenuation. In view of the mentioned above
results of study of the 2D problem for the field Fourier images,
one can formulate a modified condition of radiation, adapted
to the open waveguide case. It has the form of asymptotic
request to the far-field behavior that explicitly involves the
surface waves. This condition guarantees uniqueness of the
3D problem solution and validates the early assumption that
arbitrary-source field can be presented as a convolution with
the Green’s functions. Here, one comes to a necessity of taking
account of the direction of the power flux (or, equivalently, the
sign of the group velocity) associated with each surface wave.
The modified radiation condition enables one to formulate
the Principle of Radiation as “No waves bringing power
from infinity, in the scattered field”. It is only if the losses
are introduced in the waveguide elements that the modified
radiation condition is reduced to the Sommerfeld one, as then
no surface waves exist. In that case the Principle of Radiation
is reduced to conventional form, “No waves propagating from
infinity, in the scattered field”.

III. G ENERALIZED EIGENWAVE ROBLEMS FOR LOSSLESS
DIELECTRIC WAVEGUIDES

A. Generalized natural waves of a step-index dielectric waveg-
uide

Let the three-dimensional space be occupied by an isotropic
source-free medium, and let the permittivity be prescribed
as a positive real-valued functionε = ε(x) independent of
the longitudinal coordinate and equal to a constantε∞ > 0
outside a cylinder. In this section we consider the generalized
natural waves of a step-index optical fiber and suppose that
the permittivity is equal to a constantε+ > ε∞ inside the
cylinder. The axis of the cylinder is parallel to the longitudinal
coordinate and its cross section is a bounded domainΩi with
a twice continuously differentiable boundaryγ (see Fig. 1).
The domain Ωi is a subset of a circle with radiusR0.
Denote byΩe the unbounded domainΩe = R2 \ Ωi, by U
the spaceof complex-valued continuous and continuously
differentiable inΩi andΩe, twice continuouslydifferentiable
in Ωi andΩe functions, and byΛ the Riemann surface of the
function ln χ∞(β), whereχ∞ =

√
k2ε∞ − β2. Here k is a

given wavenumber. Denote byΛ0 the principal (“physical”)
sheet of this Riemann surface specified by the following
conditions:Imχ∞(β) ≥ 0 and−π/2 < arg χ∞(β) < 3π/2.

Fig. 1. A schematicwaveguide’s cross-section.

A nonzero vector{E, H} ∈ U6 is referred to as a
generalized eigenvector (or eigenwave) of the problem cor-
responding to an eigenvalueβ ∈ Λ if the following relations
are valid [16]: the differential equations which follows from
Maxwell’s equations forx ∈ R2 \ γ

rotβE =iωµ0H, rotβH =− iωε0εE, (1)

the transmission conditions forx ∈ γ

ν × E+ = ν × E−, (2)

ν ×H+ = ν ×H−, (3)

and the Reichardt radiation condition
[

E
H

]
=

∞∑

l=−∞

[
Al

Bl

]
H

(1)
l (χ∞r) exp (ilϕ) , |x| ≥ R0.

(4)
Hereω is the radian frequency;ε0, µ0 are the free-space dielec-
tric and magnetic constants, respectively; differential operator
rotβ is obtained from the standard operator by replacing the
generating waveguide line derivative withiβ multiplication
and H

(1)
l (z) is the Hankel function of the first kind and

index l; r andϕ are the polar coordinates of the pointx.

Theorem 1 (see [24]).The imaginary axisI and the real
axis R of the sheetΛ0 except the set

G =
{
β ∈ R : k

√
ε∞ < |β| < k

√
ε+

}

are free of the eigenvalues of problem(1)–(4). Surface and
complex eigenwaves correspond to real eigenvaluesβ ∈ G
and complex eigenvaluesβ ∈ Λ0, respectively. Leaky eigen-
waves correspond to complex eigenvaluesβ belonging to
an “improper” sheet of Λ for which Imχ∞(β) < 0 and
−π/2 < arg χ∞(β) < 3π/2.

Theorem 1 generalizes the well-known results on the spec-
trum localization of a step-index circular dielectric waveguide
which were obtained by the separation of variables method.

We use representation of eigenvectors of problem (1)–(4)
in the form of single-layer potentialsu andv (see [15]):

E1 =
i

k2ε− β2

(
µ0ω

∂v

∂x2
+ β

∂u

∂x1

)
,

E2 =
−i

k2ε− β2

(
µ0ω

∂v

∂x1
− β

∂u

∂x2

)
, E3 = u, (5)

H1 =
i

k2ε− β2

(
β

∂v

∂x1
− ε0εω

∂u

∂x2

)
,
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H2 =
i

k2ε− β2

(
β

∂v

∂x2
+ ε0εω

∂u

∂x1

)
, H3 = v, (6)

[
u(x)
v(x)

]
=

i

4

∫

γ

H
(1)
0

(
χ+/∞(β) |x− y|)

[
f+/∞(y)
g+/∞(y)

]
dl(y),

(7)
where x ∈ Ωi/e and unknown densitiesf+/∞ and g+/∞
belong to the space of Ḧolder continuous functionsC0,α.
Original problem (1)–(4) is reduced [16] by single-layer po-
tential representation (5)–(7) to a nonlinear eigenvalue prob-
lem for a set of singular integral equations on boundaryγ.
This problem has the following operator form in the Banach
spaceW = (C0,α)4:

A(β)w ≡ (I + B(β))w = 0, (8)

HereI is the identical operator andB(β) : W → W is a com-
pact operator consisting particularly of the boundary singular
integral operatorsL : C0,α → C1,α and S : C0,α → C0,α

defined by the following relationships:

Lp = − 1
2π

2π∫

0

ln | sin t− τ

2
|p(τ)dτ, t ∈ [0, 2π], (9)

Sp =
1
2π

2π∫

0

ctg
τ − t

2
p(τ)dτ +

i

2π

2π∫

0

p(τ)dτ, t ∈ [0, 2π].

(10)

Original problem (1)–(4) is spectrally equivalent [24] to
problem (8) with a restriction. Namely, suppose thatw ∈ W
is an eigenvector of the operator-valued functionA(β) corre-
sponding to an eigenvalueβ ∈ Λ0 \D, where

D = {β ∈ I} ∪ {β ∈ R : β2 < k2ε∞}.
Then using this vector we can construct the densities of the
single-layer potential representation (5)–(7) of an eigenwave
{E, H} ∈ U6 of problem (1)–(4) corresponding to the same
eigenvalueβ. On the other side, any eigenwave of (1)–(4)
corresponding to an eigenvalueβ ∈ Λ0 \D can be represented
in the form of single-layer potentials. The densities of these
potentials constitute an eigenvectorw ∈ W of the operator-
valued functionA(β) corresponding to the same eigenvalueβ.

Theorem 2 (see [24]).For eachβ ∈ {β ∈ R : β2 ≥ k2ε+}
the operatorA(β) has a bounded inverse operator. The set of
all eigenvaluesβ of the operator-valued functionA(β) can be
only a set of isolated points onΛ. Each eigenvalueβ depends
continuously onω > 0, ε+ > 0, and ε∞ > 0 and can appear
and disappear only at the boundary ofΛ, i.e. atβ = ±k

√
ε∞

and at infinity.

Theorem2 generalizes the known results on the depen-
dence of the propagation constantsβ of a step-index circular
dielectric waveguide on wavenumberk and permittivityε.

Describe a projection method [16] for numerical solution
of problem (8). Denote byN the set of all integers. We
represent the approximate eigenvector of the operator-valued
function A(β) in the form

wn = (w(j)
n )4j=1, w(j)

n (t) =
n∑

k=−n

α
(j)
k exp(ikt),

where,n ∈ N , j = 1, 2, 3, 4, and look for unknown coeffi-
cientsα

(j)
k by the Galerkin method

2π∫

0

(Awn)(j)(t) exp (−ikt)dt = 0, k = −n, ..., n, j = 1, 2, 3, 4.

Functionsexp(ikt) are orthogonal eigenfunctions of the singu-
lar integral operatorsL : C0,α → C1,α andS : C0,α → C0,α

corresponding to the following eigenvalues:

λ(L)
m = {ln 2 if m = 0, (2|m|)−1 if m 6= 0},
λ(S)

m = {i if m = 0, i sign(m) if m 6= 0}
for the operatorsL and S respectively. Hence, the action of
the main (singular) parts of the integral operators in (8) on the
basis functions is expressed explicitly.

Denote byWT
n the set of all trigonometric polynomials

of the orders up ton. Denote byWn ⊂ W the space of
the elementswn = (w(j)

n )4j=1 wherew
(j)
n ∈ WT

n . Using the
Galerkin method for numerical solution of problem (8) we get
a finite-dimensional nonlinear spectral problem

An(β)wn = 0, An : Wn → Wn. (11)

Theorem 3 (see [25]). If β0 belongs to the spectrumσ(A)
of the operator-valued functionA(β), then there exists a se-
quence{βn}n∈N , βn ∈ σ(An), such thatβn → β0, n ∈ N . If
{βn}n∈N , βn ∈ σ(An), is a sequence such thatβn → β0 ∈ Λ,
then β0 ∈ σ(A). If βn ∈ σ(An), An(βn)wn = 0, and
βn → β0 ∈ Λ, wn → w0, n ∈ N , ‖wn‖ = 1, thenβ0 ∈ σ(A)
and A(β0)w0 = 0, ‖w0‖ = 1.

B. Generalized natural waves of an inhomogeneous waveguide

In this section we consider the generalized natural waves of
an inhomogeneous optical fiber without a sharp boundary [22].
Let the permittivity ε belong to the spaceC2(R2) of twice
continuously differentiable in R2 functions. Denote byε+

the maximum of the functionε in the domainΩi. Suppose
that ε+ > ε∞ > 0. A nonzero vector{E, H} ∈ (C2(R2))6 is
referred to as a generalized eigenvector (or eigenwave) of the
problem corresponding to an eigenvalueβ ∈ Λ if the following
relations are valid [31]: differential equations (1) for allx ∈ R2

and radiation condition (4).

Theorem 4 (see [31]).The imaginary axisI and the real
axisR of the sheetΛ0 except the setG are free of eigenvalues
of the problem(1), (4). Surface and complex eigenwaves
correspond to real eigenvaluesβ ∈ G and complex eigen-
valuesβ ∈ Λ0, respectively. Leaky eigenwaves correspond to
complex eigenvaluesβ belonging to an “improper” sheet ofΛ.

It is proved in [31] that if vector{E, H} ∈ (C2(R2))6 is an
eigenvector of problem (1), (4) corresponding to an eigenvalue
β ∈ Λ, then

E(x) = k2

∫

Ωi

(ε(y)− ε∞)Φ(β; x, y)E(y)dy+

gradβ

∫

Ωi

(
E, ε−1gradε

)
(y)Φ(β;x, y)dy, x ∈ R2, (12)

42



2014 International Conference on

Mathematical Methods in Electromagnetic Theory

H(x) = −iωε0rotβ

∫

Ωi

(ε(y)− ε∞)Φ(β;x, y)E(y)dy, x ∈ R2,

(13)

Φ(β;x, y) =
i

4
H

(1)
0 (χ∞(β) |x− y|) .

Using the integral representation (12) forx ∈ Ωi we obtain
a nonlinear eigenvalue problem for an IE inΩi which can be
written in the operator form

A(β)F ≡ (I −B(β))F = 0, (14)

where the operatorB(β) : (L2(Ωi))3 → (L2(Ωi))3 corre-
sponds to the right side of the integral representation (12)
for x ∈ Ωi. For anyβ ∈ Λ the operatorB(β) is compact [31].

It is proved in [31] that original problem (1), (4) is spec-
trally equivalent to problem (14) with a restriction. Namely,
suppose that vector{E,H} ∈ (C2(R2))6 is the eigenwave
of problem (1), (4) corresponding to an eigenvalueβ ∈ Λ.
Then F = E ∈ [L2(Ωi)]3 is an eigenvector of the operator-
valued functionA(β) corresponding to the same eigenvalueβ.
Suppose thatF ∈ [L2(Ωi)]3 is an eigenvector of the operator-
valued functionA(β) corresponding to an eigenvalueβ ∈ Λ
and that the same numberβ is not an eigenvalue of the
following problem:

[
∆ +

(
k2ε− β2

)]
u = 0, x ∈ R2, u ∈ C2(R2), (15)

u =
∞∑

l=−∞
alH

(1)
l (χ∞r) exp (ilϕ) , r ≥ R0. (16)

Let E = B(β)F and H = (iωµ0)−1rotβE for x ∈ R2. Then
{E, H} ∈ (C2(R2))6 and{E,H} is an eigenvector of original
problem (1), (4) corresponding to the same eigenvalueβ.

Theorem 5(see [31]).For eachβ ∈ {β ∈ R : β2 ≥ k2ε+}
the operator A(β) has a bounded inverse. The set of all
eigenvaluesβ of the operator-valued functionA(β) can be
only a set of isolated points onΛ. Each eigenvalueβ depends
continuously onω > 0, ε+ > 0, and ε∞ > 0 and can appear
and disappear only at the boundary ofΛ, i.e. atβ = ±k

√
ε∞

and at infinity.

Similar to Theorems 3, 4, and 5 results for integrated
optical guides are obtained in [28] and [29].

Scalar problem (15), (16) is a problem on eigenwaves of a
inhomogeneous optical fiber in weakly guiding approximation.
In fiber optics, a weakly guiding fiber is one where the
difference betweenε+ and ε∞ is very small (typically less
than 1% ofε∞). The statements similar to Theorems 4 and 5
for scalar problem (15), (16) are proved in [23].

Initial problem (15), (16) for surface waves is reduced to a
linear eigenvalue problem for an integral operator with a real-
valued symmetric weakly singular kernel. The existence of the
spectrum of this operator are proved in [37].

The collocation method for numerical approximation of
weakly singular domain integral operators associated with
problem (15), (16) is proposed in [34] and is developed in
[35], [36]. The statement similar to Theorem 3 concerning
convergence of the collocation method is proved in [37].

The statements similar to Theorems 1 and 2 for the scalar
problem in weakly guiding approximation are proved in [20].

The statement similar to Theorem 3 for a scalar problem in
weakly guiding approximation is proved in [17]. A collocation
method as an alternative to Galerkin methods [16], [26] is
proposed in [38].

IV. D IRECTIONS OF FUTURE RESEARCH

A. Existence of natural waves

Non-emptiness of the spectrum of generalized eigenwaves
is the hardest point of the theory of open waveguides. It
can be proved in the “local sense” based on the operator
generalization of the Rusche theorem and explicit existence of
eigenwaves of certain canonic open waveguides, as the zeros
of well known special functions or their combinations. This
once again needs a regularized form of the eigenvalue oper-
ator equation. However, to complete this proof to a “global”
existence, one needs some guaranty that a finite change of
non-spectral parameter cannot kick all the eigenvalues off to
infinity or annihilate them in the branch point. This proof needs
additional work. In particular case of surface waves of lossless
dielectric waveguides the operators are self-adjoint. In this case
the existence has been proven for several problems accurately
by the methods of the spectral theory of compact self-adjoint
operators in [19], [27], [30], [32], [33].

B. Multiple poles and “associated” natural waves

Unlike hollow closed waveguides, for the open waveg-
uides it is not possible to prove the simple character of the
poles of the field component Fourier-images, and hence the
generalized eigenvalues. This is similar to the impedance-
wall and multilayer closed waveguides. Hence, multiple poles,
of finite multiplicity M , can exist. In such case, besides of
the “parent” natural wave propagating asexp(iβx3), a finite
chain of the “associated” natural waves appears that propagate
as xm

3 exp(iβx3), m = 1, 2, . . .M − 1. This consideration
validates the initial assumption, at the early stage of analysis
of the excitation problem, that the field functions should be
considered in the class of slow-growth functions ofx3.

C. Defect of the model

A close view at the mentioned in Section II 3D radiation
condition reveals one intrinsic defect of the original model
of the time-harmonic excitation of a lossless infinite open
waveguide. If the parameters of a lossless waveguide andk
are such that “associated” surface waves exist, then it appears
not possible to apply even the modified condition of radiation.
The reason is that in this situation both the “parent” surface
wave and the “associated” waves have zero total power flux
in the infinite cross-section domain. Hence it is impossible to
select the proper sign of the eigenwave propagation constant
(wavenumber) that ensures solution uniqueness.

D. Similarity betweenh and k as eigenparameters

From the formulation of the generalized eigenwave prob-
lem, one can notice that the parametersβ andk enter it in very
similar manner. Indeed, one can also study this problem for
the k-eignenvalues, withβ > 0. Much of the above theory is
valid in this case as well. For instance, the domain of analytic
continuation ink is the same Riemann surfaceΛ. The same
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Reichardt condition andthe same analytical regularization
approach bring us to the conclusions about the discreteness of
thek-spectrum onΛ and about the properties of eigenvalues as
a function ofβ. However, the mentioned similarity is not total,
and hence the other properties of the spectrum of generalized
eigenoscillations are to be studied in more detail. Analysis of
such a “dual” eigenvalue problem appears to be a natural stage
if one studies more general problem of the excitation of an
open waveguide by aδ-pulse or other time-dependent source
distributed along thex3 axis asexp(iβx3), with β = const.

E. Extentions and unsolved problems

There are several possible directions of the extension of
the developed theory, each of them being associated with a
separate class of problems. The results obtained for the regular
open waveguides can be generalized to the regular-periodic
open waveguides. This needs the use of a generalized version
of the Fourier transform approach exploiting additionally the
Floquet-expansions inx3, in the image domain. Then it is
possible to see that the domain of analytic continuation inβ
is the Riemann surface of the function

+∞∑
m=−∞

ln(k − β − 2πm/p)(k + β + 2πm/p),

wherep is the period alongx3. The other direction of work
is the theory of open waveguides with non-compact cross-
section, such as microstripline on infinitely wide dielectric
substrate. Here, the approach of the double Fourier transform
should be used. The study of the Green’s functions and
radiation condition should apparently bring into consideration
the surface waves of two types: those which are associated with
the strip and are deformed by the presence of the substrate, and
those which are associated with the substrate and are deformed
by the presence of the strip. Another interesting direction is
the theory of the open waveguide bends and branchings. Here,
the key problem is the one of a terminated (semi-infinite) open
waveguide in free space.
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