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Abstract—The theory of electromagnetic eigenwaves propa- devoted to a mini-review of unsolved problems and future
gating on open dielectric and metallic waveguides is reviewed. directions of research.
The main steps of the theoretical approach based on analytical
regularization of the problem are outlined and discussed. Gener- T
alized eigenwave problems for lossless dielectric waveguides are )
considered more comprehensively as examples of such approach. A. Start from the excitation problem
Some of the unsolved problems and the directions of future

BRIEF OVERVIEW OF MAIN POINTS

research are pointed out too. It is impossible to come to a reasonably general formulation
of the eigenwave problem from any other starting point than
I, INTRODUCTION the problem of the time-harmonic excitation exp(ikt/c)),

wherek > 0) of an open waveguide by the elementary electric
The theory of electromagnetic eigenwaves (also known aand magnetic current sources (Dirac dipoles). This is the same
natural waves, normal waves, and travelling waves) able tas determining the open waveguide Green's functions. Here,
propagate on open dielectric and metallic waveguides is stilh necessary assumption should be made, and finally verified,
cannot be considered as complete. Commonly it is supposetat arbitrary field can be presented as a convolution with the
that the field components of such a wave depend on th&reen’s functions.
longitudinal coordinaters and timet asexp(i(Bxs — kt/c))
where is the propagation constant (or wavenumbgrls the g Foyrier transform
free-space wavenumber, amdis the free-space propagation
velocity. Only in several simple cases, such as dielectric slab By virtue of infinite length of a regular waveguide
and coaxially-layered circular dielectric fiber, it is possiblealong thezs-axis, the Fourier transformation with the ker-
to study the eigenwaves explicitly. Such a study brings intd1€l exp(ifz3) is a natural instrument of bringing the problem
consideration a variety of waves: proper surface or guidegonsideration to the two-dimensional (2D) space, for the field
waves, leaky waves, complex surface waves, etc., differing bjyansforms as a function of cross-section= (z,22) and
the field behavior as a function of coordinates. However, if thdntegration parametes. Here, another necessary assumption
fiber cross-section is arbitrary, or if additional perfectly electricappears that the eigenwave fields are no more than the slow-
conducting (PEC) elements are present, as in the microstrip @owth functions ofzs; hence, the Fourier integrals should
slot lines, the theory meets certain problems. There are severd@ interpreted in terms of distributions. It is necessary to
important questions to be answered already at the stage #fstinguish between the open waveguides, whose elements
the mathematical formulation of the problem of eigenwaveshave a compact cross-section (embedded in free space) and
Clearly, it should be a sort of eigenvalue problem for thethose of noncompact cross-section, for example, compact
wavenumber3. However, what should be the domain of the open waveguides embedded into a flat-layered medium, whose
variation of the eigenvalue parameter? In what class should orf@0ss-section has infinite boundaries. Although two cases have
seek the wave field components as a function of coordinatgguch in common, the latter one is more complicated. In the
in the cross-section and along the waveguide? How we cafPrmer case, the Fourier transform enables one to reduce the
accurately compute them? dimensionality of excitation problem: Fourier-imagEséz, 3)
) ) of the field components must satisfy the Helmholtz equa-
Section Il is a summary of results related to the the-jop [A+k2e(2)u(z) — B2]F = 0 in the 2D open domain with
ory of propagation of time-harmonic electromagnetic waveshe houndary conditions (for the PEC and impedance elements)

on arbitrarily shaped open waveguides with compact crossang transmission conditions (for the dielectric elements) given
section. Most of them are also contained in the contributegt the hounded curves.

publications of the authors [1]—[38]. In Section IIl, we consider
more comprehensively generalized eigenwave problems fod':
two types of lossless dielectric waveguides: a “step-index™ "
waveguide with a smooth cross-sectional boundary and an The use of Fourier transform naturally brings a necessity
inhomogeneous, in cross-section, waveguide. Section IV isf analytic continuation of the field Fourier-imagé¥z, 3),

Analytic continuation
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from the realvalues of parametes to the complex domain. G. Generalized eigenwave problems
This complex domain is uniquely determined by the Green’s
function of the mentioned above 2D Helmholtz equation
(i/4)H$" (v/k?2o0 — 32|z — y|), and iscommonto all open
waveguides of compact cross-section. This is the infinite-she
Riemann surfacé of the functionln/k2s., — 32, wheree

is the dielectricconstant of environment.

The latter circumstance leads to a conclusion that the

‘eigenvalue problems about the natural waves of an open
aveguide can be studied independently of the excitation

%Yroblems. However, in view of the presented above chain

of considerations, it should be formulated in a generalized

sense. Namely, it should admit complgxon A and include

the Reichardt condition at the infinity in the cross-section. In

so doing one gets a universal framework to study all types

of known eigenwaves: surface waves, leaky waves, complex

On the mentioned Riemann surfade it is the Reichardt surface waves, etc., and hence trace the transitions of each

condition that serves as analytic continuation of the 2D Somwave from one type to another under variations of non-spectral

merfeld radiation condition (fof3| < k,/ex) and theexpo- ~ Parameters.

nential decay condition (fa3| > k,/e~) from therealaxis of

the “physical” sheet to all compleX. Due to this condition, but H. Discreteness of eigenwave spectrum

also due to the transmission-type conditions at the boundaries . . - i .

of dielectric elements, if they are present, these 2D problems For a wide class of virtually all realistic configurations of

for the analytic continuations of the field Fourier-images areoPen waveguides, the mentioned above generalized eigenwave

non-selfadjoint ones. Note that this condition permits theProPlems admit analytical regularization and are equivalently
Fourier-images to grow exponentially withrs| — oo if 3 reducible to a homogeneous Fredholm operator equation of

: p A the second kindI + A(3)]X = 0. The set of eigenvalues
is located at the sheets other than the “physical” sheet.of ot 5 on A forms the spectrum of the operatbrr A(B) and

Nevertheless, Reichardt condition guarantees the uniguene ; . ! ;

of solution provided thag is not an eigenvalue. coincides W|th the spectrum of generalized eigenwaves _of the
open waveguide. As one can see, the latter is purely discrete

on A. In particular, this enables one to conclude that the surface

E. Analytical regularization waves, whose wavenumbers are located on the finite interval
ke < |B] < ksup+/e of the realaxis of the “physical”

For a wide class of open waveguides, 2D boundary-valusheet, can be only of finite number.

problems for the Fourier images can be converted to the canon-

ical Fredholm operator equation§] + A)X = B, wherel | gymmetry of eigenwave spectrum

is identity operator,A is a compact operator, an and B

are linked to the Fourier images of the scattered and incident Some properties of the spectrum of eigenwaves can be

field, respectively, via some linear operators. Here, operator deduced directly from the formulation of the generalized

is a meromorphic function of on A, k, and all geometrical eigenwave problem. It is verified directly that on any open

and material parameters of the waveguide. Such a conversioraveguide the eigenvalue wavenumbers form symmetric

is based commonly on the analytical regularization of thepairs onA. Moreover, on the lossles waveguides, they form

singular integral equations equivalent to the original boundargonjugate quartets:3, £3 on A. Hence, itis enough to study

value problem. Here, the Reichardt condition guarantees thaiem only in one quadrant of each Riemann sheet.

arbitrary-source field can be represented as a convolution with

the 2D Green's functions and their normal derivatives for anyj. Free of spectrum domain

complexg.

D. Reichardt condition

Using the vector Green’s formula, it has been shown that
on A there exists a non-empty domain, which is free of the
F. Fredholm-Steinberg theorems spectrum of eigenwaves. This domain depends on the type
of the open waveguide. If it contains only PEC elements
Once a regularization has been done, one can use the theds\t has no material (dielectric or magnetic) elements, this
of Fredholm in the form generalized by Steinberg for thedomain includes the whole “physical” sheet/fin a lossless
operators depending on parameters. The results are as followsielectric waveguide, it includes the intervals| < k/zoo
it is possible to prove the existence of the bounded resolvengnd|@| > ksup /2 of the realaxis of the “physical” sheet; in

and hence, the existence of the Fourier transforms, as no mofe lossy case this whole real axis is free of spectrum, etc.
than meromorphic functions of on A. The poles have no

finite accumulation points ork. They can be of only finite
multiplicity. They are piece-wise continuous functions of the
geometry and piecewise-analytic functionstofind material The vector Green’s formula, applied to the eigenwave field,
parameters. The continuity or analyticity can be lost only atenables one to prove the orthogonality of the surface waves and
such a value of parameter that two or more poles coalescéhe complex surface waves, in the power sense. However if the
The poles can appear or disappear only at the boundary efavenumbegs is not located on the “physical” sheet &f this

the domain of meromorphicity: at infinity and in the branch proof fails. The Green'’s formula is also an instrument to study
points 8 = +k,/e. The residuesf the poles of the Fourier the properties of the power flux associated with a generalized
images satisfy certain 2D source-free boundary-value probleraigenwave. For example, it shows that any complex surface
(i.e. eigenvalue problem) for the mentioned above Helmholtavave on a lossless open waveguide can be only hybrid (i.e.,
equation, with the spectral parametetocated onA. has all six components of the electromagnetic field) and does

K. Orthogonality and power flux
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not carry pever, as its total flux in the cross-section is identical
zero. Another important conclusion is that, on open waveguide,
a surface wave can carry the power not only in the direction
of its propagation; the opposite direction is allowed, although
only for the hybrid waves. Still other conclusion is that the
analyticity of each spectrum point as a functionkoénables
one to validate the concept of the group velocity.

L. Radiation condition in 3D excitation problem

Strictly speaking, in the original 3D problem of the , _ _
elementary-source excitation of an arbitrary open waveguidd;9-1- A schematiovaveguide’s cross-section.
the classical Sommerfeld condition of radiation is not valid for
the extraction of unigque solution. The reason is the presence

of infinite alongx3 boundaries, and hence possible presenc%eneralized eigenvector (or eigenwave) of the problem cor-

of surface waves able 1o carry the power to infinity along theresponding to an eigenvalyg € A if the following relations
waveguide without attenuation. In view of the mentioned above, o™\ 2jiq [16]: the differential equations which follows from
results of study of the 2D problem for the field Fourier images, axwell's eqliations for: € R \ 7y

one can formulate a modified condition of radiation, adapte
to the open waveguide case. It has the form of asymptotic rotgE =iwpoH, rotgH = — iwepeE, (1)
request to the far-field behavior that explicitly involves the
surface waves. This condition guarantees uniqueness of tf

A nonzero vector{E,H} € US is referred to as a

Be transmission conditions far €

3D problem solution and validates the early assumption that vxEt=vxE", )
arbitrary-source field can be presented as a convolution with N B
the Green’s functions. Here, one comes to a necessity of taking vxH" =vxH", 3)

account of the direction of the power flux (or, equivalently, the;,4 the Reichardt radiation condition
sign of the group velocity) associated with each surface wave. -

The modified radiation condition enables one to formulate | E | Z A g (. ) (il)

the Principle of Radiation asNo waves bringing power H |~ B, [t Weer)exp(ulp), |z > Ry.
from infinity, in the scattered field It is only if the losses I==o0 @)

are introduced in the waveguide elements that the modifieglge, is the radian frequencyy, 1o are the free-space dielec-

radiation condition is reduced to the Sommerfeld one, as the;c 4y magnetic constants, respectively; differential operator

no surface waves exist. In that case the Principle of Radiatiop is optained from the standard operator by replacing the

is reduced to conventional form, “No waves propagating ffoMyenerating waveguide line derivative witt# multiplication

infinity, in the scattered field and Hl(l)(z) is the Hankel function of the first kind and
index [; » and ¢ are the polar coordinates of the point

[Il. GENERALIZED EIGENWAVE ROBLEMS FOR LOSSLESS Theorem 1 (see [24]).The imaginary axid and the real
DIELECTRIC WAVEGUIDES axis R of the sheet\; except the set
A. Generalized natural waves of a step-index dielectric waveg- G={BeR:kyew <|B] < ky/Ex}

uide are free of the eigenvalues of probleifi)—(4). Surface and
Let the three-dimensional space be occupied by an isotropieomplex eigenwaves correspond to real eigenvaldes G
source-free medium, and let the permittivity be prescribecand complex eigenvalues € Ao, respectively. Leaky eigen-
as a positive real-valued function = (=) independent of Wwaves correspond to complex eigenvalyésbelonging to
the longitudinal coordinate and equal to a constagt > 0  an “improper” sheet of A for which Imy.(3) < 0 and
outside a cylinder. In this section we consider the generalized7/2 < arg X (3) < 3m/2.
natural waves of a step-index optical fiber and suppose that
the permittivity is equal to a constamt. > ¢, inside the
cylinder. The axis of the cylinder is parallel to the longitudinal
coordinate and its cross section is a bounded dofaiwith

Theorem 1 generalizes the well-known results on the spec-
trum localization of a step-index circular dielectric waveguide
which were obtained by the separation of variables method.

a twice continuously differentiable boundaty (see Fig. 1). We use representation of eigenvectors of problem (1)—(4)
The domain(2; is a subset of a circle with radiug. in the form of single-layer potentials andv (see [15]):
Denote byQ,. the unbounded domaif, = R*\ Q;, by U

; ; i v ou
the spaceof complex-valued continuous and continuously Ei=5—= |pows—+85—,
differentiable inQ); and (., twice continuouslydifferentiable ke —p Oz Oz
in ©; and€2. functions, and by\ the Riemann surface of the — v u
function In x. (3), where x., = \/k?co — 32. Herek is a Ep = R (Mowax1 - ﬁ@@) ; Ez=u, (5)
given wavenumber. Denote hy, the principal (“physical”)
sheet of this Riemann surface specified by the following H, — ( ﬁﬂ . Ew%
conditions:Imy .. (3) > 0 and —7/2 < arg Yo (3) < 37/2. YT k2e — 32 \Toxy " 0m, )
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i v Ou h N, j = 1,2,3,4, and look for unk ffi-
Ho — 54_6&})) Hy—v, (6) Where,n € N, j =1,2,34, and look for unknown coeff
2T k-2 ( dxy 0wy ’ © cientsa!’) by the Galerkin method

u(@)] i [ ) N P AV () 27
[v(w)} 4 JHO Ocr/eo (B 2 = yl) {g+/oc(y)] ). /(Awn)(j)(t)exp(—ik:t)dt —0, k=—n,..,n, j=1,2,3,4.

(o
where z € ;. and unknown densities f, o, and 94/ Functionsexp(ikt) are orthogonal eigenfunctions of the singu-
belong to the space of dfder continuous functiong®<. lar integral operatord, : C0¢ — CL@ and § : 0@ — 0.

Original problem (1)—(4) is reduced [16] by single-layer po- - ; ; .
tential representation (5)—(7) to a nonlinear eigenvalue probgorrespondlng to the following eigenvalues:

lem for a set of singular integral equations on boundary /\7(#) = {In2if m =0, (2|m|)~*if m # 0},
This problem has the following operator form in the Banach
spaceW = (C%)4: A = L5 if m =0, isign(m) if m # 0}
A(B)yw = (I+ B(B))w =0, (8)  for the operators. and S respectively. Hence, the action of

. . . ) . the main (singular) parts of the integral operators in (8) on the
Here! is the identical operator anb(5) : W — Wisacom- oo g oo oce expressed explicitly.

pact operator consisting particularly of the boundary singular

integral operatord, : €% — C%® and S : 0% — (0« Denote byW [ the set of all trigonometric polynomials
defined by the following relationships: of the orders up ton. Denote byW, C W the space of
o the elementsy,, = (wf{));*:l wherew$) € WT. Using the
1 L t—T Galerkin method for numerical solution of problem (8) we get
Lp = _ﬂ/ln |sin [p(r)dr, t€0,2m], (9) 5 finite-dimensional nonlinear spectral problem
0
o o An(ﬂ)wn =0, A,:W,—W,. (11)
Sp = 1 /Ctggp(T)dTJr L/p(’]’)d’r, t € [0,27]. Theorem 3 (see [25]).1f 5 pelongs to the spect(um(A)
2m ) 2 2m ) of the operator-valued functior(3), then there exists a se-

(10)  quence{B,tnen, Bn € 0(Ay), such that3, — Sy, n € N. If
. ) ) {Bn}nen, Bn € 0(Ay), is a sequence such thay, — Gy € A,
Original problem (1)—(4) is spectrally equivalent [24] 10 then 3, € o(A). If 8, € o(An), An(Bn)wn = 0, and
problem (8) with a restriction. Namely, suppose that W' g . 3/ € A, w, — wo, n € N, ||w,|| = 1, then By € o(A)
is an eigenvector of the operator-valued functié(’) corre-  gnd A(Bo)wy = 0, |lwol| = 1.
sponding to an eigenvalygé € A, \ D, where

D={B3ecllu{BeR: 3 <k} B. Generalized natural waves of an inhomogeneous waveguide

Then using this vector we can construct the densities of the In this section we consider the generalized natural waves of
single-layer potential representation (5)-(7) of an eigenwav@n inhomogeneous optical fiber without a sharp boundary [22].
{E,H} € US of problem (1)—(4) corresponding to the sameLet the permittivitye belong to the spac€?(R?) of twice
eigenvalue. On the other side, any eigenwave of (1)—(4)continuously differentiable in R functions. Denote by
corresponding to an eigenvalgec Ay \ D can be represented the maximum of the functior in the domain(;. Suppose

in the form of single-layer potentials. The densities of thesghate, > e, > 0. A nonzero vecto{E,H} € (C2?(R?))% is
potentials constitute an eigenvectorc W of the operator- referred to as a generalized eigenvector (or eigenwave) of the
valued functiond(f3) corresponding to the same eigenvaltie ~ problem corresponding to an eigenvaliie A if the following

lati lid [31]: diff tial ti 1) forale R
Theorem 2 (see [24]) For eachfi & {4 € R: 32 > K%, } relations are valid [31]: differential equations (1) for alE

; and radiation condition (4).
the operatorA(8) has a bounded inverse operator. The set of
all eigenvalues? of the operator-valued functioA () can be Theorem 4 (see [31]).The imaginary axid and the real
only a set of isolated points ah. Each eigenvalued depends axisR of the sheet\, except the sef? are free of eigenvalues
continuously onv > 0, e, > 0, ande,, > 0 and can appear of the problem(1), (4). Surface and complex eigenwaves
and disappear only at the boundary &f i.e. at3 = +k,/ec  correspond to real eigenvalue8 € G and complex eigen-
and at infinity. valuess € Ag, respectively. Leaky eigenwaves correspond to

. complex eigenvalugs belonging to an “improper” sheet of\.
Theorem?2 generalizes the known results on the depen- P g & ging prop

dence of the propagation constaftof a step-index circular It is proved in [31] that if vecto{E, H} € (C?(R?))¢ is an
dielectric waveguide on wavenumbkrand permittivitye. eigenvector of problem (1), (4) corresponding to an eigenvalue

Describe a projection method [16] for numerical solutionﬁ €A, then

of problem (8). Denote byN the set of all integers. We 9 )
represent the approximate eigenvector of the operator-valued Bz) = k7 [ (e(y) — €oo) @ (B; 2, y)E(y)dy+

function A(3) in the form Q
n
w, = (wg));%:h wd () = Z Oé;(gj) exp(ikt), gradﬁ/(E,aflgrads)(y)q)(ﬂ;x,y)dy, reR? (12
k=—n Q;
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H(x) = —iweorotg / (e(y) — €00)®(B; 2, y)E(y)dy, = €R?,

Q;
(13)

B(B:,) = THE (xl9) 12— ).

Using the integral representation (12) for € ; we obtain
a nonlinear eigenvalue problem for an IE{x which can be
written in the operator form

A(B)F = (I - B(p))F =0, (14)

where the operatoB(3) : (L2(%))3 — (L2(%))? corre-

The statement similar to Theorem 3 for a scalar problem in
weakly guiding approximation is proved in [17]. A collocation
method as an alternative to Galerkin methods [16], [26] is
proposed in [38].

IV. DIRECTIONS OF FUTURE RESEARCH

A. Existence of natural waves

Non-emptiness of the spectrum of generalized eigenwaves
is the hardest point of the theory of open waveguides. It
can be proved in the “local sense” based on the operator

sponds to the right side of the integral representation (129eneralization of the Rusche theorem and explicit existence of

for x € Q. For anyg € A the operatoB(5) is compact [31].

It is proved in [31] that original problem (1), (4) is spec-
trally equivalent to problem (14) with a restriction. Namely,

suppose that vectofE,H} € (C?(R?))S is the eigenwave
of problem (1), (4) corresponding to an eigenvalties A.

ThenF = E ¢ [LQ(Q»L)]?)
valued function4(3) corresponding to the same eigenvaliie

Suppose thaF € [L2(€;)]? is an eigenvector of the operator-

valued functionA(3) corresponding to an eigenvaluee A
and that the same numbet is not an eigenvalue of the
following problem:

[A+ (K —p*)]u=0, z€eR® wueC?*R%, (15)
U = Z alHl(l) (xoor) exp (ily), T > Ry. (16)
l=—00

Let E = B(B)F andH = (iwpuo) ‘rotsE for € R%. Then
{E,H} € (C?(R*)® and {E, H} is an eigenvector of original
problem (1), (4) corresponding to the same eigenvalue

Theorem 5(see [31])For each € {3 € R: 3% > k%c, }

is an eigenvector of the operator-

eigenwaves of certain canonic open waveguides, as the zeros
of well known special functions or their combinations. This
once again needs a regularized form of the eigenvalue oper-
ator equation. However, to complete this proof to a “global”
existence, one needs some guaranty that a finite change of
non-spectral parameter cannot kick all the eigenvalues off to
infinity or annihilate them in the branch point. This proof needs
additional work. In particular case of surface waves of lossless
dielectric waveguides the operators are self-adjoint. In this case
the existence has been proven for several problems accurately
by the methods of the spectral theory of compact self-adjoint
operators in [19], [27], [30], [32], [33].

B. Multiple poles and “associated” natural waves

Unlike hollow closed waveguides, for the open waveg-
uides it is not possible to prove the simple character of the
poles of the field component Fourier-images, and hence the
generalized eigenvalues. This is similar to the impedance-
wall and multilayer closed waveguides. Hence, multiple poles,
of finite multiplicity M, can exist. In such case, besides of
the “parent” natural wave propagating asp(if8zs), a finite

the operator A(3) has a bounded inverse. The set of all chain of the “associated” natural waves appears that propagate

eigenvaluesd of the operator-valued functioml(3) can be
only a set of isolated points ah. Each eigenvalug depends
continuously onv > 0, 4 > 0, ande,, > 0 and can appear
and disappear only at the boundary &f i.e. atg = £k, /e
and at infinity.

as z§" exp(ifzs), m = 1, 2, ...M — 1. This consideration
validates the initial assumption, at the early stage of analysis
of the excitation problem, that the field functions should be
considered in the class of slow-growth functionsagf

Similar to Theorems 3, 4, and 5 results for integratedC- Defect of the model

optical guides are obtained in [28] and [29].

A close view at the mentioned in Section Il 3D radiation

Scalar problem (15), (16) is a problem on eigenwaves of gondition reveals one intrinsic defect of the original model
inhomogeneous optical fiber in weakly guiding approximation.Of the time-harmonic excitation of a lossless infinite open
In fiber optics, a weakly guiding fiber is one where the waveguide. If the parameters of a lossless waveguidekand

difference betweerr, and e, is very small (typically less

are such that “associated” surface waves exist, then it appears

than 1% ofz..). The statements similar to Theorems 4 and 50t possible to apply even the modified condition of radiation.

for scalar problem (15), (16) are proved in [23].

The reason is that in this situation both the “parent” surface
wave and the “associated” waves have zero total power flux

Initial problem (15), (16) for surface waves is reduced to ajn the infinite cross-section domain. Hence it is impossible to

linear eigenvalue problem for an integral operator with a realselect the proper sign of the eigenwave propagation constant
valued symmetric weakly singular kernel. The existence of thgwavenumber) that ensures solution uniqueness.

spectrum of this operator are proved in [37].

The collocation method for numerical approximation of D. Similarity betweerh and k£ as eigenparameters

weakly singular domain integral operators associated with
problem (15), (16) is proposed in [34] and is developed in
[35], [36]. The statement similar to Theorem 3 concerning

convergence of the collocation method is proved in [37].

From the formulation of the generalized eigenwave prob-
lem, one can notice that the parameté@ndk enter it in very
similar manner. Indeed, one can also study this problem for
the k-eignenvalues, with > 0. Much of the above theory is

The statements similar to Theorems 1 and 2 for the scalaralid in this case as well. For instance, the domain of analytic
problem in weakly guiding approximation are proved in [20]. continuation ink is the same Riemann surfade The same
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Reichardt condition andhe same analytical regularization [5]
approach bring us to the conclusions about the discreteness of
the k-spectrum om\ and about the properties of eigenvalues as

a function of3. However, the mentioned similarity is not total, [6]
and hence the other properties of the spectrum of generalized
eigenoscillations are to be studied in more detail. Analysis of
such a “dual” eigenvalue problem appears to be a natural stagg]
if one studies more general problem of the excitation of an
open waveguide by a-pulse or other time-dependent source

distributed along thers axis asexp(ifxs), with 8 = const. 8]

E. Extentions and unsolved problems ]
There are several possible directions of the extension of
the developed theory, each of them being associated with [a0]
separate class of problems. The results obtained for the regular
open waveguides can be generalized to the regular-periodic
open waveguides. This needs the use of a generalized versi?lq]
of the Fourier transform approach exploiting additionally the
Floquet-expansions i3, in the image domain. Then it is
possible to see that the domain of analytic continuatior? in [12]

is the Riemann surface of the function

—+o0

> (k- B —2mm/p)(k + 8+ 2rm/p),

m=—0o0

[13]

wherep is the period alonges. The other direction of work

is the theory of open waveguides with non-compact crosst4]
section, such as microstripline on infinitely wide dielectric
substrate. Here, the approach of the double Fourier transform
should be used. The study of the Green’s functions andtd
radiation condition should apparently bring into consideration
the surface waves of two types: those which are associated with
the strip and are deformed by the presence of the substrate, afig|
those which are associated with the substrate and are deformed
by the presence of the strip. Another interesting direction is
the theory of the open waveguide bends and branchings. Herg/]
the key problem is the one of a terminated (semi-infinite) open

aveguide in free space.
waveguide i p 8]
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