






 3 

Table of contents 

 

Introduction ..………...…………………….………..……….………… 4 

Part 1. MECHANICS ………………………………..………………… 14 

111. Straight-line motion …………………………….……..………..… 14 

113. Forces on an inclined plane ……………………………………..… 24 

121. Oberbeck's pendulum …………………………..………………… 32 

122. Moment of inertia of a flywheel ………………………………….. 41 

131. Torsional pendulum ………………………………….…………… 46 

132. Maxwell's wheel …………………………………….…………..… 51 

141. Simple pendulum ……………………………………….………… 58 

142. Kater's pendulum ………………………………………….….…... 61 

Part 2. MOLECULAR PHYSICS ……………………………………… 65 

211. Kinematic parameters of air molecule ...………………………...... 65 

212. The adiabatic index and heat capacity of air at constant volume … 71 

221. The surface tension …………………………………………….…. 76 

222. Measuring viscosity of liquid by Stokes' method ……………..….. 80 

223. Measuring viscosity of liquid by Stokes' method, variant 2 ……… 84 

224. Measuring viscosity by Poiseuille's method ……………………… 87 

Appendix ..……………………………………………………………… 92 

 

Acknowledgments 

We thank the staff of Medical physics department of Kazan Federal 

University. The results of their preliminary work allowed us to compile 

this digest. 

We also thank the reviewers of this text. Special thanks to the authors 

of the books listed in the List of literature. 

We welcome any feedback from students and professors, especially 

concerning errors or deficiencies. Please, feel free to contact us: 

Sergey Efimov                and    Alex Turanov 

sergej.efimov@kpfu.ru            anturanov@kpfu.ru 

  



 4 

Introduction 

 

Standards and units 

Physics is an experimental science. Experiments require 

measurements, and we usually use numbers to describe the results 

of measurements. Any number that is used to describe a physical 

phenomenon quantitatively is called a physical quantity. For example, two 

physical quantities that describe you are your weight and height. Some 

physical quantities are fundamental, so we can define them only by 

describing how to measure them. Such a definition is called an operational 

definition. Some examples are measuring a distance by using a ruler, and 

measuring a time interval by using a stopwatch. In other cases we define a 

physical quantity by describing how to calculate it from other quantities 

that we can measure. Thus, we might define the average speed of a moving 

object as the distance travelled divided by the time of travel. 

When we measure a quantity, we always compare it with some gold 

standard. The metre is a unit of distance, and the second is a unit of time. 

To make accurate, reproducible measurements, we need units 

of measurement that do not change and that can be duplicated by observers 

in various locations. The system of units used by scientists and engineers 

around the globe is commonly called “the metric system,” but since 1960 

it has been known officially as the International System, or SI 

(the abbreviation for its French name, Systéme International). 

The definitions of the basic units of the metric system have evolved 

over the years. When the metric system was established in 1791 by the 

French Academy of Sciences, the metre was defined as one ten-millionth 

of the distance from the North Pole to the equator. The second was defined 

as the time required for a pendulum one metre long to swing from one side 

to the other. These definitions were cumbersome and hard to duplicate 

precisely, and by international agreement they have been replaced with 

more refined definitions. 
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Time. The present standard, adopted in 1967, is very precise. It is 

based on an atomic clock, which uses the energy difference between 

the two lowest energy states of the caesium atom. When bombarded by 

microwaves of precisely the proper frequency, caesium atoms undergo 

a transition from one of these states to the other. One second is defined as 

the time required for 9,192,631,770 cycles of this radiation. 

Length. In November 1983 the length standard was changed. 

The speed of light in a vacuum was defined to be precisely 299,792,458 

m/s. The metre is defined to be consistent with this number and with the 

above definition of the second. Hence the new definition of the metre is 

the distance that light travels in a vacuum in 1/299,792,458 second. 

This provides a much more precise standard of length than the one based 

on a wavelength of light. 

Mass. The standard of mass, the kilogram, is defined to be the mass 

of a particular cylinder of platinum-iridium alloy. That cylinder is kept at 

the International Bureau of Weights and Measures at Sévres, near Paris. 

An atomic standard of mass would be more fundamental, but at present we 

cannot measure masses on an atomic scale with as much accuracy as on 

a macroscopic scale. 

 

Unit prefixes 

Once we have defined the fundamental units, it is easy to introduce 

larger and smaller units for the same physical quantities. In the metric 

system these other units are always related to the fundamental units by 

multiples of 10 or 1/10. Thus, one kilometre (1 km) is 1000 metres, and 

one centimetre (1 cm) is 1/100 metre. We usually express multiples of 10 

or 1/10 in exponential notation: 1000 = 10
3
, 1/1000= 10

–3
, and so on. With 

this notation, 1 km = 10
3
 m and 1 cm=10

–2
 m. 

The names of the additional units are derived by adding a prefix to 

the name of the fundamental unit. Here are several examples of the use 

of multiples of 10 and their prefixes with the units of length, mass, and 

time. 
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TIME 

1 nanosecond = 1 ns = 10
–9

 s 

1 microsecond = 1 μs = 10
–6

 s 

1 millisecond = 1 ms = 10
–3

 s 

LENGTH 

1 nanometre = 1 nm = 10
–9

 m 

1 micrometre = 1 μm = 10
–6

 m 

1 millimetre = 1 mm = 10
–3

 m 

1 centimetre = 1 cm = 10
–2

 m 

1 kilometre = 1 km = 10
3
 m 

 

MASS 

1 microgram = 1 μg = 10
–9

 kg 

1 milligram = 1 mg =10
–6

 kg 

1 gram = l g = 10
–3

 kg 

1 kilogram = 1 kg = 10
3
 grams = 10

3
 g. 

 

Uncertainty and significant figures 

Measurements always have uncertainties. The distinction between two 

measurements is in their uncertainty. The uncertainty is also called 

the error, because it indicates the maximum difference there is likely to be 

between the measured value and the true value. The uncertainty or error 

of a measured value depends on the measurement technique used. 

We often indicate the accuracy of a measured value meaning, how 

close it is likely to be to the real value – by writing the number, the symbol 

±, and a second number indicating the uncertainty of the measurement. 

If the diameter of a steel rod is given as 56.47 ± 0.02 mm, this means that 

the real value is unlikely to be less than 56.45 mm or greater than 

56.49 mm. The degree of this likelihood (confidence level) is usually 

stipulated beforehand. In a commonly used shorthand notation, the number 

1.6454(21) means 1.6454 ± 0.0021. The numbers in parentheses show 

the uncertainty in the final digits of the main number. 

We can also express accuracy in terms of the maximum likely 
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fractional error or percent error (also called fractional uncertainty and 

percent uncertainty). A resistor labelled “47 ohms ± 10%” likely has 

a factual resistance differing from 47 ohms but no more than 10% from 

47 ohms, that is, roughly 5 ohms. Thus, the resistance is between 42 and 

52 ohms. 

In many cases the uncertainty is not stated explicitly. Instead, 

the uncertainty is stated by a number of the meaningful digits, or 

significant figures, of the measured value. For example, a thickness of 

smartphone is 2.91 mm, which is three significant figures. This means that 

the first two digits are accurate, while the third digit is uncertain. The last 

digit is in the hundredths place, so the uncertainty is about 0.01 mm. Two 

values with the same number of significant figures may have different 

uncertainties; a distance given as 137 km also has three significant figures, 

but the uncertainty is about 1 km. 

If one uses numbers with uncertainties to compute another numbers, 

the computed numbers also have uncertainties. It is important to keep in 

mind when comparing a number obtained from measurements with 

the theoretical prediction. Suppose, one wants to verify the value of π, by 

taking the ratio of a circle perimeter to a diameter. The correct value 

of this ratio to ten digits is 3.141592654. To make this calculation, one 

should draw a large circle and measure its diameter and circle perimeter to 

the nearest millimetre. Assume one measured the following values 

270 mm and 848 mm for the circle diameter and circle perimeter, 

respectively. A calculator helps us to take the ratio between two numbers 

and obtain 3.140740741. Does this value agree with the expected π value 

or not really? 

Firstly, the last seven digits in this number are meaningless; they 

imply a smaller uncertainty than the uncertainty of the circle diameter and 

perimeter measurements. When values are multiplied or divided, 

the number of significant figures in the result can be no greater than in 

the number with the fewest significant figures. For example: 

3.1416×2.34×0.58 = 4.3. Obtained circle diameter and perimeter values 

had three significant figures, so the calculated value of π, equal to 
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(424 mm)/(135 mm), should have only three significant figures. It should 

be rounded to 3.14. Within the limit of three significant figures, this value 

does agree with the expected π value. 

Secondly, when one adds or subtracts numbers, it's the position 

of the decimal point matters, not a number of the significant figures. For 

example, 123.62 + 8.9 = 132.5. Although, 123.62 has an uncertainty 

of about 0.01, 8.9 has an uncertainty of about 0.1. So, their sum has an 

uncertainty of about 0.1 and should be written as 132.5, not 132.52. 

Finally, let's note that precision is not the same as accuracy. A cheap 

digital watch that says the time is 10:35:17 A.M. is quite precise (the time 

is given to the second), but if the watch runs several minutes slow, then 

this value isn't very accurate. On the other hand, a grandpa clock might be 

very accurate (that is, display the correct time), but if the clock has no 

second hand, it isn't very precise. A high-quality measurement is always 

precise and accurate same time. 

 

Estimates and orders of magnitude 

We have stressed the importance of knowing the accuracy of numbers 

that represent physical quantities. But even a very crude estimate 

of a quantity often gives us useful information. Sometimes we know how 

to calculate a certain quantity but have to guess at the data we need for the 

calculation. Or the calculation might be too complicated to carry out 

exactly, so one can make some rough approximations. In either case 

the result is a guess, but such a guess can be useful even if it is uncertain 

by a factor of two, ten, or more. Such calculations are known as an order-

of-magnitude estimates. 

 

Vectors 

Some physical quantities, such as time, temperature, mass, density, 

and electric charge, can be expressed by a single value with a unit 

of measurement. But many other important quantities have a direction 

associated with them and cannot be described by a single value. Such 
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quantities play an essential role in many of the central topics of physics, 

including motion and the phenomena of electricity and magnetism. 

A simple example of a quantity with direction is the motion of an airplane. 

To describe such motion completely, one should state not only how fast 

the airplane is moving, but also in what direction. A velocity 

of the airplane combined with its direction of motion together constitute 

a quantity called velocity. Another example is force, which in physics 

means a push or pull exerted on a body. Giving a complete description 

of a force means describing both how hard the force pushes or pulls on 

the body and the direction of a push or pull. 

When a physical quantity is described by a single number, we call it 

a scalar quantity. In contrast, a vector quantity has both a magnitude and 

a direction in space. Calculations with scalar quantities use the operations 

of ordinary arithmetic. However, combining vectors requires a different set 

of operations. 

To understand more about vectors and how they combine, we start 

with the simplest vector quantity, displacement. Displacement is simply 

a change in position of a point. (The point may represent a particle or 

a small body.) Fig. 1 (left) represents the change of position from point P1 

to point P2, by a line from P1 to P2, with an arrowhead at P2, showing 

the direction of motion. Displacement is a vector quantity because one 

should state not only how far the particle moves, but also in what 

direction. 

One represents a vector quantity such as displacement by a single 

letter, such as  ⃗ in Fig. 1 (left). When drawing any vector, one always 

draws a line with an arrowhead at its tip. The length of the line shows 

the vector's magnitude, and the direction of the line shows the vector's 

direction. Displacement is always a straight-line segment, directed from 

the starting point to the end point, even though the actual path 

of the particle may be curved. Note that a displacement does not relate 

directly to the total distance travelled. 
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Figure 1. Vectors and vector addition 

 

If two vectors have the same direction, they are parallel. If they have 

the same magnitude and the same direction, they are equal, no matter 

where they are located in space. The vector   ⃗⃗⃗⃗  from point P3 to point P4 

has the same length and direction as the vector  ⃗ from P1 to P2. These two 

displacements are equal, even though they start at different points. We 

write this as  ⃗    ⃗⃗⃗⃗ . Two vector quantities are equal only when they have 

the same magnitude and the same direction. 

The vector  ⃗⃗ in Fig. 1 (left), however, is not equal to  ⃗ because its 

direction is opposite to that of  ⃗. One defines the negative vector as 

the vector having the same magnitude as the original vector but 

the opposite direction. The negative vector  ⃗ is denoted as   ⃗. Thus, 

the relation between  ⃗ and  ⃗⃗ of Fig. 1 (left) may be written as  ⃗    ⃗⃗. 

When two vectors  ⃗ and  ⃗⃗ have opposite directions, whether their 

magnitudes are the same or not, they are antiparallel. 

One represents the magnitude of a vector quantity (its length in the 

case of a displacement vector) by the same letter used for the vector, in 

italic type but with no arrow on top. An alternative notation is the vector 

symbol with vertical bars on both sides: (magnitude of  ⃗) = A = | ⃗|. By 

definition the magnitude of a vector quantity is a scalar quantity 

(a number) and is always positive. 

 



A

B

C
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Vector addition 

Suppose a particle undergoes a displacement  ⃗⃗, followed by a second 

displacement  ⃗ (Fig. 1 (right)). The final result is the same as if 

the particle had started at the same initial point and undergone a single 

displacement  ⃗, as shown. It calls displacement  ⃗ the vector sum. One 

expresses this relationship symbolically as  ⃗   ⃗⃗   ⃗. To conduct the 

vector addition one places the tail of the second vector at the head, or tip, 

of the first vector (Fig. 1 (right)). 

                . 

To add more than two vectors, one should start with finding of the 

vector sum of any two vectors, then add this vectorially to the third, and so 

on. A vector quantity such as a displacement can be multiplied by a scalar 

quantity (an ordinary number). The displacement 2 ⃗ is a displacement 

(vector quantity) in the same direction as the vector  ⃗ but twice as long. 

The scalar quantity used to multiply a vector may also be a physical 

quantity having units. 

Projections of vectors 

To define the projections of a vector, one begins with a rectangular 

(Cartesian) coordinate system (Fig. 2). We then draw the vector  ⃗, 

considering with its tail at O, the origin of the coordinate system. One can 

represent any vector lying in the xy-plane as the sum of a vector parallel to 

the x-axis and a vector parallel to the y-axis. These two vectors are labelled 

 ⃗  and  ⃗  in the figure, they are called the components of vector  ⃗, and 

their vector sum is equal to  ⃗. By definition, each component vector lies 

along a coordinate-axis direction. Thus, one needs a single number to 

describe each component, since their directions are fixed by the directions 

of the system axes. When the component  ⃗  points in the positive 

x-direction, it defines the number Ax. One defines the number Ay, in the 

same way. These two numbers Ax and Ay are called the projections of  ⃗ on 
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the x- and y-axes respectively. 
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Figure 2. Components and projections of a vector 

 

One can calculate the projections of the vector  ⃗ if based on 

the magnitude A and its direction. Let's describe the direction of a vector 

by its angle relative to positive x-axis, and the angle between vector  ⃗ and 

the positive x-axis is θ. If θ is measured in this way, then from 

the definition of the trigonometric functions, 

          and          . 

 

How to draw a Report on the results of your lab work 

1. Write the title of the lab, describe the tasks to solve. 

2. Attach the graphics. 

3. Make conclusions corresponding to the goals of the work. Explain 

the shape of each observed dependence (linear, quadratic) based on 

the theory and formulas. For example: Describe how the path, velocity, 

and acceleration change as the weight load increases. Determine the mean 

velocity on the whole trolley's path for each weight used. 
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Part 1. MECHANICS 

 

111. Straight-line motion 

 

Objective 

Determine the dependence of the coordinate, velocity, and 

acceleration on time in the case of straight-line motion with constant 

acceleration. 

 

Task 

Analyse the obtained results, compare them with the theory. 

The motion is the way that matter exists. In a common sense, motion 

includes any change, all processes occurring in the Universe, from 

mechanical motion to the thinking process. 

The mechanical motion is the simplest form of motion. It is a change 

of the mutual disposition of bodies or their parts in space with time. 

The field of science studying basic laws of mechanical motion and 

equilibrium of material bodies is called mechanics. Classical mechanics 

considers a motion of absolutely rigid bodies (which are not deformed 

when moving) with speeds negligible compared to the speed of light. 

The motion of a mass point is an example of the simplest mechanical 

motion. 

Mass point is a body whose size and shape are unimportant. If 

the sizes of a body are small compared to the way which is passed and to 

the distance to other bodies considered in a given task, then this body may 

be considered as a mass point. 

Motion of material bodies takes place in space and time. 

Space and time are forms of existence and changing the states 

of the matter; they are inherent attributes of the matter. To describe 

the motion, one needs a frame of reference. The reference frame should 

include a reference body (a real or abstract one), a system of coordinates 

bound to that body, and a method of measuring time. For example, 
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the position of a mass point in any instance may be fixed in a Cartesian 

frame of reference (Fig. 111.1). 
 

M

z

x

yO

r

 
 

Figure 111.1. Cartesian frame 

 

As the mass point moves, its coordinates change with time: 

x=f(t), 

y=g(t),       (111.1) 

z=h(t). 

The motion of the point is fully described, if equations (111.1) are 

known. Three equations can be rewritten in a brief vector form: 

       ⃗   ⃗( ) ,     (111.2) 

where  ⃗ is the radius vector connecting the origin of the reference frame 

with the moving mass point. 

Any mechanical motion has a relative nature. A particular way 

of motion, defined by the trajectory, way, displacement, velocity and 

acceleration, depends on the choice of the reference frame. Let us clarify it 

by a few examples. 

Imagine a ship travelling uniformly along a straight line on a river. 

A material body detaches from the top of its mast and falls down. In 

the reference frame bound to the ship (in other words, to an observer on 

the ship's deck) the trajectory of the body is a vertical line, but for 

an observer staying on the river bank the trajectory of the same body looks 

like a curved line (a parabola). 
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Imagine also a man sitting in a carriage in a moving train. In the 

reference frame bound to the carriage, the speed of the man is zero, 

whereas with respect to the railway the speed of the man equals the speed 

of the train. 

Ways covered by a body may also be different in different reference 

frames, and so on. 

Kinematics 

Kinematics is a part of mechanics studying the laws of motion without 

considering the reasons which makes the bodies move. 

Physical notions characterising the kinematics of a mass point 

The trajectory is a line passed in space by a moving mass point. 

Depending on the shape of the trajectory, one can speak about straight-line 

(rectilinear) or curvilinear motion. Path (distance) is the length 

of a trajectory segment, which was passed by the mass point in a certain 

time range. Displacement is the vector connecting the initial and current 

positions of the mass point. 

In Fig. 111.2 A stands for the initial position (at t = 0), B is its position 

at time t, the arc AaB is the trajectory, the length of the arc AaB is 

the distance (ΔS), and   ⃗   ⃗   ⃗  is the displacement. 

 

B
A

a

y

x

O

z

r
2r

1

r


B

 
 

Figure 111.2. Trajectory, path, displacement, and velocity 

 

Average velocity is a vector value characterising the rate and direction 

of the motion of the mass point:  
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 ⃗  
  ⃗

  
 . 

Instantaneous velocity equals the first derivative of the displacement 

with respect to time:  

 ⃗         
  ⃗

  
 

  ⃗

  
 . 

It follows that in the case of curvilinear (not straight-line) motion, 

the velocity vector is tangent to the trajectory in the corresponding point 

(slope of the line on graph). See  ⃗  on Fig. 111.2. 

Acceleration is a vector value describing the rate at which the velocity 

changes (in a general case, both in the absolute value and direction). 

The acceleration vector is the first derivative of the velocity with respect 

to time: 

 ⃗     
    

 ⃗⃗   ⃗⃗ 

  
        

  ⃗⃗

  
 

  ⃗⃗

  
 . 

Evidently, acceleration of straight-line motion equals the first 

derivative of the absolute value of the speed with respect to time. 

Uniform straight-line motion 

Motion along a straight line at a constant speed is called uniform and 

rectilinear. In this case ΔS = v·Δt or S = v·t. 

The unit in which the speed is measured is metre per second (m/s). 

The dependence of the speed v(t) can be plotted as a diagram with 

time corresponding to the horizontal (x-coordinate) axis and the speed 

shown by the vertical axis. In the case of the uniform motion, v = const, 

and the plot looks like a horizontal line parallel to the x-coordinate axis 

(Fig. 111.3 (left)). 
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Figure 111.3. Speed and distance in the case of uniform straight-line 

motion as a function of time 

 

The area of the figure bounded by the speed plot, horizontal time axis, 

and two vertical lines corresponding to the time moments of beginning and 

end of the motion, is equal to the distance passed by the mass point in the 

corresponding time range. 

Fig. 111.3 (right) is a distance plot (the horizontal axis shows the time; 

the vertical axis, the path). It is a straight line starting at the origin O (t = 0, 

S = 0). The slope of the line is speed: tan α = ΔS / Δt = v. 

Straight-line motion with a constant acceleration 

When the velocity of a mass point changes with time, the motion is 

called variable motion. Uniformly variable motion is characterised by 

some constant value of the acceleration a, and in the case of straight-line 

motion dv = a·dt, and  

  ∫           . 

The integration constant C can be found from the boundary condition: 

v = v0 at t = 0, therefore, C = v0. Finally,         . 

Acceleration (absolute value) of a uniformly variable straight-line 

motion is equal to the change in the speed per time unit. Positive sign of a 

corresponds to the accelerated motion (    ); negative, to the 

decelerated motion (    ). Unit of measurement for acceleration is m/s
2
. 

Now we can calculate the path: 

  ∫     
 

 
 ∫ (      )    

 

 
    ∫   

 

 
   ∫     

 

 
      

    

 
 . 
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Let us consider now the diagrams of the speed and path of straight-

line motion with a constant acceleration (deceleration). Analytical 

dependence of the speed on time is the equation of a straight line which 

crosses the vertical axis at the value of    (Fig. 111.4). The slope of the 

line is a = tan α. 

 

t'


0




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 =
0
+at

   
t'


0




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0
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Figure 111.4. Speed dependence of motion with a constant acceleration 

(deceleration) 

 

The shaded area in Fig. 111.4 shows the path covered by the mass point 

for motion time t'. The area of this trapezium is 

  
(    )   

 
 

(          )   

 
       

    
 

 
   . 

This is the second order polynomial, and its plot is a curved line 

(a parabola). In the case of accelerated motion this parabola has its convex 

downwards; in the case of decelerated motions, upwards (Fig. 111.5.). 
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Figure 111.5. Coordinate dependence of motion with a constant 

acceleration (deceleration) 

 

Dynamics 

Dynamics is the part of mechanics studying motion of bodies and its 

reasons (interaction between the bodies). Dynamics is based on three laws 

of Newton. 

Newton's first law states that every object will remain at rest or 

in uniform motion in a straight line unless compelled to change its state by 

the action of an external force. 

The second law: acceleration gained by a body as a result of some 

forces acting on it is proportional to the geometrical (vector) sum of these 

forces and reciprocal mass of this body. 

 ⃗  
∑  ⃗ 

 
   

 
 

 ⃗ 

 
 , 

here  ⃗ is the acceleration of the body; m is its mass; ∑  ⃗ 
 
    is the vector 

sum of all external forces acting on the body;  ⃗  is the symbol for the net 

force. Note that the direction of acceleration is the same as the direction 

of the net force. 

Force is a quantitative description of the interaction between two 

bodies or between a body and its environment (fields). The SI unit of the 

magnitude of force is the newton (N). Mass characterises the inertia 

properties of the body (kg) in this case. 
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The third law states that for every action (force) in nature, there is an 

equal and opposite reaction. In other words, if object A exerts a force on 

object B, then object B also exerts an equal force on object A. Notice that 

the forces act on different objects. Mathematically, this can be written as: 

 ⃗    ⃗ . 

 

Experimental setup 

1. Rails 

2. CASSY 

3. Trolley 

4. Fixed pulley with passage light sensor 

5. Rope 

6. Fastening for weights (10 gram) 

7. Weights (10 gram). 

 

Assembly of the setup 

Before starting the assembly, check if somebody has already done 

some steps. 

Put the trolley on the rails. Check that it does not fall off the rails. 

Take the rope, fasten one end of the rope to the trolley and the other 

to the fastening for weights. Pass the rope over the pulley. 

Algorithm of measurements 

1. Turn the laptop on. 

2. Connect the CASSY unit to the laptop via USB. 

3. Run the file Linear motion (Desktop\Students\Labs). 

In the window which will appear, press the button Close. 

4. Move the trolley on the rail to the right side as far as the rope 

allows it. Zero the reading of the path s1. To do this, press the reading 

in the s1 window with the right mouse button and then press >0< button 

in the pop-up menu. 

5. Then release the trolley and start the measurements simultaneously. 

The measurements are started by either pressing F9 on the keyboard or by 

the Measurement… button on the top of the programme window. 
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When the trolley reaches the leftmost position, stop the measurements 

(again, either by the F9 key or by the Measurement… button). 

6. Two plots will appear in the window. They may be seen in the Path 

and Velocity tabs. They show the time dependencies of the path and speed, 

respectively. 

7. Repeat steps 4, 5 three times. 

8. Analyse the obtained data on the speed (Velocity tab). 

(a) Press the diagram area by the right mouse (or touchpad) button, 

choose Approximation --> Line in the appearing menu. 

(b) Press the analysed graphic with the left mouse button and drag 

the cursor (while holding the button) till the end of the linear segment. 

Thus, you can omit “bad” points in the beginning and in the end of the 

graphic. Release the button. A straight line passing through 

the experimental points should appear. 

(c) Press the keys Alt + T, then press OK in the arising window. 

Move the cursor to the graphic to be analysed and press the left mouse 

button. An equation should appear nearby. 

(d) In this equation the coefficient A is the acceleration a with which 

the trolley had been moving. 

9. Save the obtained plots. 

10. Write down the acceleration values and the mass of the weight 

used. 

11. Add a new weight to the rope, and repeat steps 4–6. 

12. Build a plot for the dependence of the acceleration on the weight 

mass a(m) (mass on the horizontal axis, acceleration on the vertical axis). 

 

Questions 

1. What is the difference between vector and scalar quantities 

(give examples of vector and scalar in physics). 

2. Give definitions: material point, radius vector, path, 

displacement, speed, velocity, acceleration. What are the units 

of measurements in SI? 
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3. What is the difference between average and instantaneous 

velocity? Write the formulas for both cases. 

4. Write the equation and draw plots of the dependence of the 

path, speed, and acceleration versus time for uniform straight-line motion. 

5. Write the equation and draw plots of the dependence 

of the path, speed and acceleration versus time for straight-line motion 

with a constant acceleration. 

6. How to get the equation of motion if the velocity and 

acceleration of the body are known at each moment of time? 

7. What statement is contained in Newton's first law? What 

system is called inertial? What is inertia? Give examples to demonstrate 

the inertia of the bodies. 

8. Formulate Newton's second law. Show, using an example from 

this work, how to write Newton's second law, if several forces act on 

the body. 

9. Formulate Newton's third law. Give examples of forces 

of action and reaction. 

10. Why the obtained plot of acceleration versus the mass 

of the trolley a(m) does not pass through the origin (0,0)? 
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113. Forces on an inclined plane 

 

Objective 

Studying the forces applied to a body placed on an inclined plane. 

 

Tasks 

Applying the Newton's second law to describe the motion of the body 

on the inclined plane. 

Determination of coefficients of static and kinetic friction. 

Forces acting on a body on an inclined plane 

Gravity force  ⃗  is the force of attraction between the body and 

the Earth. The force is applied to the centre of mass of the body and 

directed down, towards the earth, 

gmFg


  , 

where m is mass of the body (kg). In this case, the mass characterises the 

gravitational interactions. Suppose, one has several particles (parts), with 

masses m1, m2, and so on. Let the position vector of m1 be  ⃗ (x1, y1, z1), 

those of m2 be  ⃗ (x2, y2, z2), and so on. One defines the centre of mass 

of the system as the point having the position vector given by 

 ⃗   
    ⃗      ⃗      ⃗   

          
 

∑     ⃗  

∑    
 . 

The value of acceleration due to gravity | ⃗| is approximately 9.8 m/s
2
 at or 

near the earth's surface. In fact, the value of acceleration of free fall down 

varies from point to point on the earth's surface, from 9.78 to 9.82 m/s
2
, 

because the earth is not perfectly spherical and because of effects due to its 

rotation and orbital motion. Other factors can influence as well. 

Weight of the body  ⃗⃗ is the force which body applies due to gravity or 

acceleration (including centrifugal force) to the support or suspension, 

which prevents the body from falling. The force is also directed down. 

Reaction force  ⃗⃗⃗ is the force applied from the support to the body. 

The force is applied perpendicularly to the support's plane towards 

the body. 
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When one body is sliding on the surface of another object, kinetic 

friction force appears which hinders this motion. Friction appears due to 

the roughness of the surfaces, interaction of microscopic protrusions and 

bulges on the surfaces. In addition, forces of molecular attraction arise at 

the points where two objects come into contact with each other. 

Friction forces arise pairwise (the first body acts on the second and 

vice versa) and are oriented antiparallel to the velocity vectors 

of the relative movement of the bodies (Fig. 113.1.). 

According to Newton's third law: 2fr1 frFF


 . 

 

 

 

Figure 113.1. Friction forces 

 

The kind of friction that acts when a body slides over a surface is 

called a kinetic friction force. The value of the kinetic friction force 

depends on the relative speed of the object relative to the surface: the 

higher the speed, the less the friction force. 

In many cases, the magnitude of the kinetic friction force is found 

experimentally to be approximately proportional to the magnitude 

of the normal force: 

               ,     (113.1) 

where    is the coefficient of kinetic friction (unitless). It is the scalar 

relation between the magnitudes of the two perpendicular forces, not 

a vector equation. Sometime, for simplicity, the kinetic friction force 

can be assumed equal to the static friction force. 

Static friction force arises when we try to slide an object across 

the surface, but object does not move at all             , where 
stat  is 

the coefficient of static friction (unitless). 
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The coefficient of friction depends on the materials from which 

the bodies are made and on the surface state (rough or polished), and it is 

specific for each pair of materials. It is found from experiments. 

Rolling friction force appears when a round body is rolling on 

the surface (for example, a wheel on a road). Rolling does not require 

the bodies to cling to and detach from microscopic roughness, and hence it 

is much smaller than the kinetic friction force. When the wheel rolls on 

a surface, it presses in a small dip (Fig. 113.2). Part of the energy is spent 

to make this deformation, therefore rolling friction is smaller on rigid 

surfaces (clearly, it is easier to ride a bicycle on a stone road than on 

the sand). 

 

 
 

Figure 113.2. Rolling friction force 

 

Task 1. Determining the coefficient of kinetic friction. 

A body with the mass m is pulled up at a constant speed across 

the surface of inclined plane. This is achieved by applying a constant force 

F parallel to the plane. The plane is lifted to the height h at one of its ends; 

its basement (projection to the horizontal table) has the length L. The task 

is to find the coefficient    . 

Draw a schematic and mark all forces acting in the system 

(Fig. 113.3). 
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Figure 113.3. Scheme of the experiment 

 

There are four forces acting on the body: friction Ffr, normal force N, 

gravity force mg, and the force F, making the body move (action 

of the hand). The Newton's second law in this case is written as 

    frFNFgmam


 .    (113.2) 

Let's choose the coordinate system so that the x-axis is parallel to 

the plane and looks up, and the y-axis is perpendicular to x and oriented as 

shown in Fig. 113.3. The acceleration 0a


, so we have straight-line 

motion with constant velocity. Projection of the forces onto the chosen 

axes leads to the following system of equations from Eq. (113.2): 









0y)(for  ,cos0

0x)(for  ,sin0 f





mgN

mgFF r

.    (113.3) 

Friction force can now be expressed as 

      sinfr mgFF  .   (113.4) 

Eq. (113.4) can then be rewritten using expressions (113.1) and (113.3): 

                       .   (113.5) 

The coefficient of kinetic friction can be calculated as 

       
 

      
      .    (113.6) 

Trigonometric expressions can be reformulated using the geometric 

parameters of the experimental setup h and L: 

    Lh /tan   and 
22/cos LhL     (113.7) 
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Now, combining Eqs. (113.6) and (113.7), we obtain the working 

formula for calculating the coefficient of kinetic friction    : 

        
  √ 

    

    
 

 

 
 .    (113.8) 

 

Task 2. Determining the static friction coefficient. 

The body is on an inclined plane, is motionless and is influenced by 

three forces: friction force Ffr, normal force N, and the gravity force mg. 

The static friction force reaches its maximum value when the inclination 

angle α achieves its maximum, after which the body begins to slide. 

The coefficient μstat can be found at this point in time. The base and the 

height of inclined plate are denoted by L and h, respectively. 

The task is solved in the same way as in previous case. Let's draw up 

Fig. 113.4, all forces and the coordinate system. The motion equation 

(113.9) is based on Newton's second law, its equivalent form in terms 

of projections is (113.10). 

 

 

 

Figure 113.4. To the task of finding the static friction coefficient 

 

     fr0 FNgm


 ;    (113.9) 

   {
              (      ) 
            (      )

 .    (113.10) 
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The static friction force is calculated as Ffr = μstat‧N. Substituting that 

into Eqs. (113.10), we get 

     cossin statmgmg   .    (113.11) 

Finally 

     Lh  tanstat  .    (113.12) 

 

Experimental setup 

1. Inclined plane 

2. Ruler 

3. Body (wooden brick with a hook) 

4. Dynamometer (spring balance) 

5. Movable support (a wooden bar). 

 

Algorithm of measurements 

 

Task 1 

1. Determine the weight of the body P. To do this, hang it 

on the dynamometer and record the reading. This is the weight P = mg. 

2. Rise the plane on a small angle. This can be done by placing the 

bar near 35 cm mark. Put the brick with the hook onto the plane. 

3. Move the brick upwards along the plane with a dynamometer. 

Keep it parallel to the plane and try to save constant velocity. 

4. Record the dynamometer reading F to the table. 

5. Repeat steps 3 and 4 three times. Record h and L also.  

6. Repeat steps 2–5 for three different angles. 

7. Calculate average force F  for each chosen angle α. 

8. Calculate the coefficient of kinetic friction μk using Eq. (113.8) 

and insert it also into table. 
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Table. Finding of the friction force 

 h, m L, m F, N <F>, N μk 

1      

 

 

2 …     

3      

 

Task 2 

1. Put the brick with the hook onto the plane and move the bar 

slowly to increase the inclination angle. Determine the maximum angle 

at which the brick begins to slide. 

2. Repeat step 1 five times. Record the readings h and L to table 2. 

3. Calculate coefficient of static friction using Eq. (113.12). 

 

Analysis of results 

Compare the coefficients of friction obtained in the two tasks. 

 

Questions 

1. What is a vector? 

2. What is force? 

3. Write Newton's second law. 

4. What is the vector sum of all external forces acting on 

the body? 

5. What is the weight of a body? To which objects is the weight 

force applied, which is its direction? 

6. Reaction force. What is the reason for the reaction force? How 

is it related to weight? 

7. Three forces act on the body: 0.4 N to the right and up at angle 

of 30° to the horizon, 0.7 N to the right and up at angle of 45°, and 0.8 N 

to the right and up at angle of 60° to the horizon. Find the projection of the 

resultant of these forces onto the vertical axis. 
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8. A body with the mass of 200 g lies on a horizontal table; the 

coefficient of friction is μ = 0.07. Find the static friction force acting on 

the body. 

9. A body lies on a plane. How does the friction force depend on 

the angle between the plane and the horizon? 

10. Which factors determine the kinetic friction force?  

11. Which factors determine the rolling friction force? 

12. Imagine a dynamometer that reads 0.04 N at no load. What type 

of error is it? How should this be resolved? 

13. Let 12 consecutive measurements of the same force under the 

same conditions give the following series of readings: 0.13; 0.12; 0.13; 

0.14; 0.12; 0.13; 0.12; 0.14; 0.25; 0.13; 0.14; 0.12 N. Which types of error 

are here? How should they be considered?     
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121. Oberbeck's pendulum 

 

Objective 

Verification of rotational analogue of Newton's second law for a rigid 

body using the Oberbeck's pendulum. 

 

Task 1 

Rotational motion of a rigid body can be described in terms of the rate 

of change of angle θ in radians (360º = 2π radians). For example, a rotating 

body makes an angle θ1 with x-axis at time t1 and θ2 at time t2. The average 

angular velocity   in time interval Δt = t2 – t1 is the ratio of the angular 

displacement Δθ = θ2 – θ1 to Δt:   
  

  
. In an analogous way to 

description of straight-line motion, the average angular acceleration is 

  
  

  
, the usual unit is rad/s

2
. In case of fixed-axis rotation with constant 

angular acceleration:           
    

 
. 

The moment of inertia of the body I is the quantity, obtained by 

multiplying the mass of each particle by the square of its distance from 

the axis of rotation: 

  ∑      
 

 , SI unit is kg·m
2
. 

Rotational analogue of Newton's second law for a rigid body in the 

case of a stationary axis is written as: 

      zz IM  ,     (121.1) 

where Mz is the projection of the resultant moment of force (torque) to 

the rotation axis, unit is the newton-metre N·m; Iz is the moment of inertia 

of the object about this axis; β is the angular acceleration. The quantitative 

measure of the tendency of a force F to cause or change the rotational 

motion of a body is torque Mz=F·l, the distance l is called the “lever arm”. 

If the moment of inertia of the studied system is constant, then 

a change in the resultant torque causing the motion should lead to 

a proportional change in the angular acceleration of the system: 

      
2

1

2

1






z

z

M

M
 if Iz = const.  (121.2) 
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A few remarks should be made regarding the movement 

of the plummet, pulley (about the axis Zp), and the cross-piece (about 

the axis Z; see Fig. 121.1). Friction in the bearing of the cross-peace and 

the pulley can be neglected in further analysis (the friction coefficient in 

rolling bearings treated with industrial lubricants is small, ~0.001). In our 

experiment, the mass of the movable pulley, the mass and deformation 

of the rope (fibre) are also small, so the pulley can be considered 

weightless, and the rope can be considered weightless and inextensible. 

This means that the tension is the same along the whole rope's length. 

Hence, the cross-piece is rotating under the action of the moment 

of the rope tension force  ⃗⃗.  

Constant forces (the gravity force m ⃗ and the rope tension force  ⃗⃗) act 

on falling plummet m, so the acceleration of the plummet is also constant 

(no changes with time). Then, we can conclude using the Newton's second 

law that 

      Tmgma      (121.3) 

and 

      )( agmT  .    (121.4) 

 

 
 

Figure 121.1. Forces in the system 



 34 

If a body falls with a constant acceleration from the height h during 

the time t with the zero initial velocity, then its acceleration can be found 

as 

      2

2

t

h
a  .     (121.5) 

Therefore, the rope tension force is 

     









2

2

t

h
gmT .     (121.6) 

Note that if the rope does not slip, the acceleration of the plummet is 

the same (in absolute value) as the tangential acceleration of the points at 

the pulley's rim around which the rope is wound. Hence, for the cross-

piece rotating with the angular acceleration β we can conclude that a = βR, 

where R is the radius of the pulley level on which the rope is wound. Using 

equation (5), we obtain 

     
Rt

h
2

2
 .      (121.7) 

The projection of the tension force  ⃗⃗ on the axis of rotation Z is 

defined as follows: 

    









2

2

t

h
gmRTRM z .     (121.8) 

Substituting the parameters calculated using Eqs. (121.7) and (121.8) 

into the initial Eq. (121.2) we can conclude that the rotational analogue 

of Newton's second law for a rigid body in the case of a stationary axis 

is correct. 

 

Task 2 

According to Eq. (121.2), a change in the moment of inertia 

of the cross-piece should lead to a change in the angular acceleration 

of the system if the resultant moment remains constant, i.e. 

    
1

2

2

1






z

z

I

I
 if Mz = const.    (121.9) 
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Note that in this experiment the work of the friction forces is 

negligible. The masses of the pulley and the rope are also small, so their 

mechanical energy can be neglected. Therefore, to determine the moment 

of inertia of the cross-piece with plummets about the rotation axis Z, one 

can use the law of conservation of mechanical energy for the system 

of bodies including the cross-piece with plummets m0, the light movable 

pulley, an inextensible weightless rope, and the plummet m. 

Wind the rope around the pulley of the cross-piece to lift the plummet 

m to the position where the plummet's bottom is at the level of the upper 

photosensor. Since the distance between the sensors is h, the plummet m 

receives the potential energy U = mgh relative to the lower sensor's level. 

If the plummet is released, it will move downward with the acceleration a, 

and the cross-peace will rotate with the angular acceleration β. 

The plummet's (m) potential energy U will be converted into the kinetic 

energy of translational motion mv
2
/2 and into the kinetic energy of rotation 

of the cross-piece with plummets m0 and the two-level pulley Izω
2
/2 (ω is 

the angular velocity). The law of conservation of energy requires that 

    
22

22 zImv
mgh  ,     (121.10) 

where the falling plummet's speed v and the angular velocity ω correspond 

to the time moment when the plummet m is at the level of the lower 

photosensor. 

From Eq. (121.5) and knowing that v = at we get the proportion 

     
t

h
v

2
 .      (121.11) 

The angular velocity of the cross-piece ω is related to the plummets 

speed of falling as 

     
Rt

h

R

v 2
 ,     (121.12) 

where R is the radius of the pulley's level on which the rope is wound. 

Combining the Eqs. (121.11), (121.12), and (121.10), we can get 

the expression for determination of the moment of inertia of the cross-

piece with the plummets and the pulley: 
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     







 1

2

2
2

h

gt
mRI .    (121.13) 

Substituting the values found from Eqs. (121.7) and (121.13) into 

Eq. (121.9) we can see that the rotational analogue of Newton's second law 

for a rigid body in the case of a stationary axis is correct. 

 

Experimental setup 

1. Cruciform Oberbeck's pendulum 

2. Electronic unit with photoelectric sensors 

3. Rope with plummet 

4. Ruler 

5. Callipers 

The setup for studying rotational motion about a stationary axis is 

shown in Fig. 121.2. The column 1 is attached to the base 2; the pendulum, 

lower fixed support 5 and upper movable support 6, lower and upper 

sleeves 7 and 8 are attached to the column 1. The pendulum consists 

of the cross-piece 3 with detachable plummets 4 having the mass of m0 and 

the two-level pulley 11, which can freely rotate around the stationary 

horizontal axis. A movable light block 9 is attached to the upper sleeve 8. 

The rope 10 passes through the block 9; one end of the rope is fixed on 

the two-level pulley 11 having the radii of levels R1 and R2. 

At the other end of the rope the plummet 12 of the mass m is fixed. 

The lower sleeve also holds a board 13 with an electromagnet 14 which is 

used to fix the cross-piece by a friction clutch. Both supports hold 

photoelectric sensors 15 separated by a distance h which can be changed 

by moving the support 6 along the column. This distance is measured by 

a scale drawn on the column. On the moment when the plummet 12 passes 

through the upper sensor, the timer begins measuring the time. 

The measurement ends when the plummet passes through the lower 

photosensor; brake electromagnet 14 is activated at the same moment. 

Thus, the time t necessary for the plummet 12 to go through the distance h 

between the photosensors 15 is measured. 
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Figure 121.2. Experimental setup 

 

Algorithm of measurements 

1. Switch up the setup by pressing the Сеть/Power button. Lamps 

of the photosensors and the timer display should start to light up. 

2. Press the Пуск/Start button and wind the rope around 

the pullet of the cross-piece to lift the plummet m to the position where 

the plummet's bottom is at the level of the upper photosensor. 
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The plummet must not cross the light beam in the sensor. In this position 

the plummet has the height h relative to the lower sensor. 

3. Push up the Пуск/Start button; the electromagnet of the clutch 

should switch on and hold the cross-piece in its initial position. 

4. Press the Сброс/Clear button to prepare the timer. 

5. Press the Пуск/Start button. The magnet is switched off 

releasing the cross-piece, and the plummet m begins to move downward. 

The duration of the descent is measured by the electronic timer, which 

switches on and off when the plummet crosses the photosensors' light 

beams. 

 

Algorithm of measurements for task 1 

1. Fasten plummets m0 on the rods of the cross-piece at equal 

distances r from the axis of rotation (choose the value of r yourself). 

2. Measure the radii of the pulley's levels R1 and R2 using 

callipers. 

3. Measure the height h (the distance between the sensors 15) by 

scale on the column 1. 

4. Fasten the rope with the plummet m (the mass m is reported by 

the teacher) on the pulley's level R1. Release the plummet and measure 

the falling time t1 from height h. Repeat the measurements 3-5 times and 

find the average value 1t . 

5. Repeat step 4 with R2 and find 2t . 

6. Substitute obtained values into Eq. (121.7) to calculate 

the angular accelerations of the cross-piece β1 and β2, and in Eq. (121.8) to 

calculate the projections of the resultant moments of forces Mz1 and Mz2. 

7. To check the rotational analogue of Newton's second law for 

a rigid body in the case of a stationary axis, substitute the values β1 and β2, 

Mz1 and Mz2 into the proportion (121.2). 

8. Estimate the accuracy of one of the obtained parameters. 

9. Draw your conclusions. 
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Algorithm of measurements for task 2 

1. Fasten plummets m0 on the rods of the cross-piece at equal 

distances r1 from the axis of rotation (the value of r1 is reported by 

the teacher). 

2. Measure the radii of the pulley's levels R1 and R2 using calipers 

(use the same level in all further measurements!). 

3. Measure the height h (the distance between the sensors 15) by 

scale on the column 1. 

4. Fasten the rope with the plummet m (the mass m is reported by 

the teacher) on the pulley's level R1 or R2, depending on your choice. 

Release the plummet and measure the falling time t1 from height h. Repeat 

the measurements 3-5 times and find the average value 1t . 

5. Move the plummets m0 on the rods to a new position r2 

(at the choice of the teacher). 

6. Measure the time t2 3-5 times as in step 4 and find the average 

value 2t . 

7. Substitute obtained values into Eq. (121.7) to calculate 

the angular accelerations of the cross-piece β1 and β2, and in Eq. (121.13) 

to calculate the moments of inertia Iz1 and Iz2. 

8. To check the rotational analogue of Newton's second law for 

a rigid body in the case of a stationary axis, substitute the values β1 and β2, 

Iz1 and Iz2 into the proportion (121.9). 

9. Estimate the accuracy of one of the obtained parameters. 

10. Draw your conclusions. 

 

Questions 

1. Definition of an absolutely rigid body.  

2. What is the difference between translational and rotational 

motion of a rigid body? Give some examples. 

3. Definition of the rotation axis of a rigid body. Definition 

of the angular velocity. What is the direction of the angular velocity 

vector? 
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4. Relationship between linear and angular velocities. 

5. How many times the angular velocity of the minute hand 

of a mechanical watch is greater than the angular velocity of the hour 

hand? 

6. Definition of a torque. Draw a figure with an explanation. 

7. Definition of the angular acceleration. 

8. Definition of the moment of inertia of the body. Write 

the formula and units of measure. 

9. Why, speaking about the magnitude of the moment of inertia 

of the body, it is necessary to indicate, about which axis it is determined? 

10. Rotational analogue of Newton's second law for a rigid body. 
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122. Moment of inertia of a flywheel 

 

Objective 

Studying the parallel axis theorem (Huygens–Steiner theorem). 

 

Tasks 

Acquaintance with the method of measuring the moment of inertia 

of a body using oscillations. 

Determination of the moment of inertia of a flywheel. 

The moment of inertia of the body I is the quantity, obtained by 

multiplying the mass of each particle by the square of its distance from 

the axis of rotation: 

  ∑      
 

 , SI unit is kg·m
2
. 

 

 
From https://sites.google.com/site/mrloboscience/ 
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There is a simple relationship between the moment of inertia Icm 

of a body of mass m about an axis through its centre of mass and 

the moment of inertia Ip about any other axis parallel to the original one 

but displaced from it by a distance d: Ip = Icm+m·d
2
 (the parallel axis 

theorem). 

 

Experimental setup 

1. Flywheel on a mount 

2. Additional body 

3. Timer 

4. Callipers 

5. Balance 

The experimental setup (Fig. 122.1 (left)) is a massive flywheel which 

can rotate about a horizontal axis with almost without friction. The axis 

passes through the centre of mass of the wheel, so the wheel is in the state 

of indifference. If an additional body is fixed on the wheel rim, then 

a position of stable equilibrium appears. If the system is taken out of this 

equilibrium position by rotating it at an angle αm, and then released, 

the wheel will begin to oscillate with a period T. If the angle αm is small, 

the oscillation can be considered as harmonic oscillation following 

the formula α = αm sin(ω0t). 

When the perturbed system passes through the equilibrium position, 

its angular velocity reaches the maximum value αm·ω0, so the maximum 

kinetic energy is 

2

2

0

2m
m

I
E  . 

The moment of inertia I of the system includes the moment of inertia 

Iw of the flywheel itself and of the additional body Ib. 
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Figure 122.1. Setup 

 

On the other hand, the potential energy of the system is E = mgh, 

where m is the mass of the additional body, and h is the height to which 

it is raised from the equilibrium position. Geometrical consideration 

(Fig. 122.1 (right)) shows that 

2
sin2cos 2  dddh  , 

where d is the distance from the centre of the wheel to the centre of mass 

of the additional body. 

In the case of small-amplitude oscillations (only such oscillations can 

be considered as harmonic in our case) we can use the approximation 

sinα ~ α. If friction can be neglected, we can assume that the maximum 

values of potential and kinetic energies are equal (based on the law 

of conservation of energy). If ω0 is rewritten using the period, we get 

the following expression for the moment of inertia of the flywheel: 

     bbw I
T

mgdIII 
2

2

4
.   (122.1) 

The values on the right side of Eq. (122.1) can be measured directly 

(g is gravity acceleration or acceleration of free fall), and the value of Ib 

can be found using the parallel axis theorem: 
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2

0 mdIIb  .     (122.2) 

Here, I0 is the moment of inertia of the additional body about the axis 

through the body's centre of mass and parallel to the system's (wheel's) 

axis of rotation. In this work, the cylindrical body used with the moment 

of inertia: 

     2/2

0 mRI  ,     (122.3) 

where R is the radius of the cylinder. 

 

Algorithm of measurements 

1. Unscrew the additional body and measure its mass. 

2. Find the diameter 2R of the body and the distance d 

(Fig. 122.1). 

3. Using Eqs. (122.2) and (122.3), calculate the moments 

of inertia of the additional body about its axis of symmetry (I0) and the 

axis of rotation of the wheel (Ib). 

4. Attach the body to the wheel rim. 

5. Rotate the wheel a little and release it. The wheel will oscillate. 

6. Find time t corresponding to as many oscillations as possible 

(N), but no less than 10. Find the average period of one oscillation: T = t/N. 

7. Repeat steps 5–6 five times and find the average of the period 

T . 

8. Calculate the moment of inertia of the wheel using Eq. (122.1). 

Estimate the accuracy of the experiment. 

 

Questions 

1. Write down the equation of motion of the flywheel with an 

additional body on the rim, estimate at what angles the solution of this 

equation can be considered a harmonic function within the level 

of accuracy of the instruments in this work. 

2. Derive Eq. (122.1). 
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3. How does the friction force affect the accuracy 

of measurements? Which features of the experimental setup allow 

neglecting the friction force? 

4. How do the moment of inertia and mass of the additional body 

affect the accuracy of measurements? What requirements should meet 

the body? 

5. Compare the method described here with other methods 

of measuring the moment of inertia that you know. 

6. Draw plot dependencies of the angular coordinate, angular 

velocity, angular acceleration of the wheel with the additional body versus 

time. 
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131. Torsional pendulum 

 

Objective 

Studying the laws of conservation in dynamics of rotational motion. 

 

Task 

Finding the speed of a bullet. 

Let`s consider a particle of constant mass m. The product 

of the particle`s mass and velocity  ⃗ is the momentum:  ⃗     ⃗. SI unit 

is kg·m/s. 

If the vector sum of the external forces on a system is zero, the total 

momentum of the system is constant. This is simplest form of the principle 

of conservation of momentum. 

If in isolated system the forces between bodies are conservative, so 

the total kinetic energy of the system is the same after the collision as 

before. Such a collision is called a completely elastic collision. A collision 

in which the total kinetic energy after the collision is less than before, 

the collision is called an inelastic collision. A collision in which the 

colliding bodies stick together and move as one body after the collision is 

called a completely inelastic collision. 

 

Experimental setup 

This work is performed on a rotational ballistic (torsional) pendulum 

(Fig. 131.1). Base 1 stands on levelling legs 2. The base holds the column 

3 with fixed arms 4, 5, 6. The middle arm 5 holds a shooting device 7, 

a transparent screen 8 with a goniometer, and a photoelectric sensor 9. 

Arms 4 and 6 have clamps for attaching a steel wire 10. The pendulum 

hangs on this wire and consists of two rods 11, plasticine covered plates 

12, and two movable plummets 13. Photoelectric sensor is connected to 

a timer 14 which is used for measuring the oscillation period 

of the pendulum. 
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Figure 131.1 Setup 

 

After the bullet hits the pendulum, it is beginning to oscillate about 

the vertical axis. If the interaction between the bullet and the pendulum is 

fast enough (the time of interaction is much shorter than the period of 

oscillation), then the angular momentum should remain the same before 

and after the shot: 

        (      ) ,     (131.1) 

where m is the bullet's mass, υ is its speed, l is the distance from 

the rotation axis to the point at which the bullet hits, I1 is the moment 

of inertia of the pendulum about the rotation axis, and ω is the angular 

velocity that the pendulum acquires after the shot. 

If friction is neglected, the mechanical energy should conserve during 

the oscillations. Then the maximum value of the kinetic energy is equal 

to the maximum value of the potential energy: 

    (      )        
   .   (131.2) 
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Here D is the torsion constant (the proportionality factor in the ratio 

between the moment of tension forces (torque) and the angle of rotation, 

similar to the stiffness of a spring in the Hooke's law), and αm is the angle 

of the maximum deviation of the pendulum. 

Eqs. (131.1) and (131.2) allow finding the following expression for 

the bullet's speed: 

      
  

  
√ (      ).    (131.3) 

Since in our experiment ml
2
 << I1, we can simplify this formula and 

write down: 

       
  

  
 √     .    (131.4) 

To find I1 and D, free oscillations of the pendulum can be used. 

The motion of equation is written using the derivative of the unknown 

function of time α(t): 

        
           (131.5) 

The solution of this differential equation is the harmonic function 

α = αmcos(2πt/T + φ0) with the period T depending on the properties 

of the system as: 

         √
  

 
.     (131.6) 

If the distance between plummets 13 is changed (Fig. 131.1), 

the moment of inertia of the pendulum also changes, and hence, the period 

of oscillations. For two different positions of plummets, we can write 

periods: 

         √
  

 
,         √

  

 
,   (131.7) 

moments of inertia are  

              
 ,              

 .  (131.8) 

Here I0 is the moment of inertia of the pendulum itself without 

the plummets; R1 and R2 are the distances from the rotation axis to 

the plummets' centres, and M is the mass of the plummet. The values of I1 

and D can be calculated from these equations, but we do not need to know 

the numerical values. If corresponding analytical expressions substitute 
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into Eq. (131.3), the working formula for finding the bullet's speed can be 

written as: 

      
     

  

  

  
    

 (  
    

 ).   (131.9) 

 

Algorithm of measurements 

1. Switch on the setup by pressing the Сеть/Power and 

Сброс/Clear buttons in subsequence on the front panel. Zeros should start 

to glow on the digital display. Check if the lamp in the photoelectric sensor 

is also working. 

2. Place the plummets 13 on the rods at the maximum distance 

from each other, measure R1. 

3. Set the angle in the zero position, if necessary, by rotating 

the element holding the wire in the arms 4 and 6. 

4. Insert the bullet into the shooting device, turn the clamp, 

compress the spring, and make a shot by turning the handle. 

5. Measure the maximum angle of rotation of the pendulum. 

6. Skip two or three first oscillation and measure the duration 

of the next 10–15 periods by starting the timer with the Сброс/Clear 

button and stopping it with the Стоп/Stop button. The number 

of oscillations counted is shown on the display Периоды/Periods. 

Calculate T1. 

7. Place the plummets 13 at the minimum distance R2; measure it. 

8. Rotate the pendulum by hand (manually) at an angle equal to 

αm and release it. Find T2 like in the step 6. 

9. Measure the bullet's mass m. 

10. Calculate the bullet's speed from Eq. (131.9). The mass 

of the plummet is indicated on it. 

Questions 

1. Mechanics of collision (impact), basic features of this 

phenomenon. 

2. Completely elastic and completely inelastic collisions: common 

features and differences. 
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3. Examples of completely inelastic collisions. 

4. Describe the experimental setup and the method of measuring 

the bullet's speed. 

5. Is it possible to measure any speed of a bullet? Is it possible to 

deal with a bullet of any mass? 
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132. Maxwell's wheel 

 

Objective 

Calculating and measuring the moment of inertia of a cylindrical solid 

about the axis of symmetry. 

 

Tasks. Moments of inertia determination of the Maxwell's wheel and 

rings. 

Energy is the quantitative property that must be transferred to a body 

or physical system to perform work on the body, or to heat it. The energy 

is possibility for work. SI unit is joule J. Energy is never created or 

destroyed; it changes form only. The kinetic energy:   
    

 
, rotational 

kinetic energy:   
    

 
, gravitational potential energy U = m·g·h, elastic 

potential energy   
    

 
, m is body mass, υ is speed, I is moment 

of inertia, ω is the magnitude of the body's angular velocity, g is 

acceleration of free fall down 9.8 m/s
2
, h is height, k is the force constant 

of the spring, x is distance of stretching. 

Moment of inertia of a material point of the mass m about some 

rotation axis is the value I = mr
2
, where r is the distance between the point 

and the axis. A rigid body can be considered as the system of material 

points having the masses mi and located at the distances ri from the axis, so 

its moment of inertia will be 

        ∑     
 

 .    (132.1) 

In the case of continuous distribution of mass, the expression for I 

takes the following form: 

        ∫     .    (132.2) 

The limits of integration should include the whole body. 

It can be calculated that for a cylinder having the radius R and mass m, 

the moment of inertia about its axis of symmetry is: 

        
 

 
   ,    (132.3a) 
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and for the cylinder having a coaxial cavity drilled out along its axis (in 

other words, a thick-walled cylindrical tube with open ends having the 

inner radius R1 and the outer radius R2), the moment of inertia is 

       
 

 
 (  

    
 ).    (132.3b) 

Maxwell's wheel is a massive disk with the axis suspended on two 

ropes that can wound about the axis (Fig. 132.1 (left)). If you wind the 

rope, the wheel goes upward; if the wheel is released, it performs 

reciprocating motion in the vertical plane, while the wheel rotates about its 

axis at the same time. 

 

 
 

Figure 132.1. Maxwell's wheel 

 

The forces acting in the system are shown in Fig. 132.1 (right). To 

analyse the motion of the wheel, it is convenient to choose the frame of 

reference with the centre at the centre of mass A of the wheel. The centre 

of mass moves down with a linear acceleration  ⃗. The equation of motion 

of the wheel's centre of mass is written as 

        ⃗     ⃗   ⃗⃗,    (132.4) 

where  ⃗⃗ is the resulting tension force of both ropes, and m is the wheel's 

mass. 

In addition, the wheel performs rotational motion about the horizontal 

axis (through the centre of mass) due to the moment of the rope tension 

force: M = R0T, where M is the moment of the force  ⃗⃗, and R0 is the 

moment arm (radius of the rod). 
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Rotational analogue of Newton's second law for a rigid body in the 

case of a stationary axis is written as: 

      ⃗⃗⃗   ⃗   ⃗,     (132.5) 

where  ⃗⃗⃗ is the moment of force (torque) to the rotation axis;  ⃗ is the 

moment of inertia of the object about this axis;  ⃗ is the angular 

acceleration. Projection on the x-axis        . We can write 

the expressions for scalars now: 

     {
           

       
           

(     )
(     )

 

The distance x that the centre goes down is equal to the length 

of the rope unwound from the rod: 

     x = φR0,      (132.8) 

where φ is the total angle of rotation. Differentiating this expression twice 

with respect to time, we get 

       
   

   
   

   

   
    ,   (132.9) 

and taking Eq. (132.9) into account, we can rewrite Eq. (132.7) as 

            
 

  
 or      

 

  
 .  (132.10) 

Combining Eqs. (132.6) and (132.10), we get 

       
  

        
 ,     (132.11) 

       
  

  
   

 

   

.     (132.12) 

Eqs. (132.11) and (132.12) showed that acceleration and the rope 

tension force are constant (independent of time). Therefore, if the wheel 

coordinate is determined from the upper attachment point, then time 

dependence of the coordinate will be 

     x = at
2
/2.      (132.13) 

Substituting (132.13) into (132.11), we obtain the following 

expression for the moment of inertia of the Maxwell's wheel: 

           
 (

   

  
  )    (132.14) 

or 
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(
   

  
  ),    (132.15) 

which contains parameters that are easy to measure. R0 (D0) is the outer 

radius (diameter) of the rod together with the rope wound on (about) it, t is 

the time required for the wheel to go down by the distance x, and m is 

the wheel's mass. The mass is summed up from the mass of the rod m0, 

the disk md, and a ring mr which, if desired, could be put on the disk. 

 

Experimental setup 

The base (Fig. 132.2) stands on levelling legs. The base holds 

the column 1 with fixed upper arm 2 and movable lower arm. The upper 

arm holds the electromagnet, photoelectric sensor 3, and the knob for 

fixing and regulating the length of the rope 4. The lower arm with 

the photosensor 5 can be moved and fixed in different positions on 

the column. 

The wheel 6 is set on the cylindrical rod 7; rings (thick-walled 

cylindrical tubes with open ends) 8 can be put on the wheel to change 

the moment of inertia of the system. 

The wheel (with a ring) is kept in the upper position by 

the electromagnet. The column has a millimetre scale to measure 

the displacement x of the wheel. Photoelectric sensors are connected to 

the timer 9. 

The front panel of the timer is shown in Fig. 132.2. The Сеть/Power 

button switches the setup on; the lamps in the photosensors should start to 

glow. The Сброс/Clear button is used to set the timer to zero. 

The Пуск/Start button controls the electromagnet: when this button 

is pressed, the magnet is turned off and the timer goes to the time 

measurement mode. 

 

Algorithm of measurements 

The lower arm of the setup should be set to the lowest position. 

1. Put one of the rings on the wheel by pressing it on the side as 

much as possible. 
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2. Choose the rope length so that the edge of the metal ring in 

the lowest position is two millimetres below the photoelectric sensor. 

At the same time, correct the position of the wheel so that its axis is 

parallel to the base (horizontal). Adjustment is made using the knob 8 

(Fig. 132.2). 

 

 

 

Figure 132.2 Setup 

 



 56 

3. Press the Сеть/Power button. 

4. Wind the rope about the rod coil by coil. Check the winding for 

uniformity. 

5. Fix the wheel at the magnet and rotate it at a small angle (~5°). 

6. Press the Сброс/Clear button. 

7. Press the Пуск/Start button. 

8. Insert the measured value of fall time t into the table. 

9. Take 10 measurements of fall time and calculate the average 

value of tav. 

10. Find the distance x using the scale on the column. 

11. Find the diameter of the rope Dr and the wheel's rod in several 

different directions transverse to axis D; calculate the average values. 

Calculate D0 = D + Dr (R0 = D0/2).  

12. Find the wheel's mass, including the mass of the ring 

(all necessary data are indicated on the parts used). 

13. Next steps depend on the task. 

 

Task 1. Moments of inertia determination of the Maxwell's wheel 

1. Calculate the moment of inertia theoretically Itheor using 

formulas (132.3a) and (132.3b). The final result is the sum of the moments 

of inertia of the rod Ir, the disk Id, and the additional ring Iring. 

Abovementioned formulas show that    
 

 
    

 , where mr and R0 are the 

mass and radius of the rod,    
 

 
  (  

    
 ), where R1 is the outer 

radius of the disk, and       
 

 
     (  

    
 ), where R2 is the outer 

radius of the ring. 

2. Find the moment of inertia experimentally Iexp using 

Eq. (132.14). 

3. Analyse the results. 
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Task 2. Moments of inertia determination of the rings  

1. Calculate the moment of inertia theoretically Itheor using 

Eq. (132.3b). The mass mring is indicated on the ring; R1 and R2 are 

the inner and outer radii of the ring,       
 

 
     (  

    
 ). 

2. Determine experimentally the moment of inertia I1 

of the Maxwell's wheel without the ring. 

3. Determine experimentally the moment of inertia I2 

of the Maxwell's wheel with rings. 

4. Find the moment of inertia of the rings Iexp. 

5. Analyse the results, i.e. build plot Iexp vs. Itheor for rings. 

 

Table 

№ mr, 

kg 

md, 

kg 

mring, 

kg 

R0, 

m 

R1, m R2, m x, m t, s tav, s 

…          

 

Questions 

1. The theorem of the motion of the mass centre of a system 

of material points. 

2. Definition of the moment of inertia of a material point and 

a system of material points. 

3. Equation of motion of the Maxwell's wheel. 

4. Dependence (behaviour) of the acceleration, velocity, and 

the rope tension force during the wheel's motion. 

5. Dependence (behaviour) of the mechanical energy 

of the Maxwell's wheel during the motion. 
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141. Simple pendulum 

 

Objective 

Measurement of acceleration of free fall (gravity acceleration). 

 

Tasks 

Studying the method of measuring of the acceleration of free fall with 

the help of a simple pendulum. 

Estimation of possibility of describing the given real pendulum by 

the model of a simple pendulum. 

Acceleration of free fall  ⃗ is the acceleration with respect to the Earth 

at which a released body begins to fall down. This acceleration is defined 

by the sum of the force of gravity (attraction to the Earth) and 

the centrifugal force of inertia. 

A simple (mathematical) pendulum is an imaginary pendulum with all 

its mass located at one point, while the distance l from this point to 

the centre of suspension (pivot) being constant during oscillations. Simple 

calculations show that at small angles of deviation from the vertical, 

the period of oscillations of the pendulum is: 

     
g

l
T 2 .      (141.1) 

Now, the idea of one possible approach to determining 

the acceleration of free fall is clear: it is necessary to measure the length 

and period of a simple pendulum. 

However, a question arises whether properties of a real pendulum are 

properly described by the model of a simple pendulum? 

Note that Eq. (141.1) shows that the period of oscillations 

of the simple pendulum is proportional to l
0.5

. If this correlation is true for 

a given real pendulum, it can be considered a simple pendulum, and 

the acceleration of free fall will be defined from the formula: 

     2

24

T

l
g


 .       (141.2) 
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Experimental setup 

1. Massive ball on inextensible rope 

2. Ruler 

3. Timer 

 

Algorithm of measurements 

1. Shorten the rope so that its length is 10-15 cm. 

2. Measure the length of the pendulum l, which is the distance 

between the centre of suspension (pivot) and the centre of the ball. 

3. Deflect the ball so that the angle between the rope and 

the vertical does not exceed 10°, and release the ball. 

4. Measure the duration of 10 full oscillations t10 and find 

the period T = t10/10. 

5. Add 5-10 cm to the length of the pendulum (use a roller at 

the attachment point). 

6. Repeat steps 2-4. 

7. Repeat steps 5-6 until the pendulum is over 100 cm long. 

8. Analyse the results. 

Fill in the table with results of your measurements and calculations. 

 

N l, cm t10, s T, s T
2
, s

2
 

1     

2     

…     

 

Plot the graph T
2
 versus l. Do a linear approximation, find slope 

(acceleration of free fall) and intercept (141.2). Carry out a standard 

statistical analysis of this plot: calculate average value 〈 〉, dispersion, and 

error of determination of the acceleration of free fall. 
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Questions 

1. Forces of inertia. 

2. Equations of motion of a material point relative to a rotating 

frame (the Earth). 

3. The reasons for the dependency of the acceleration of free fall 

on the position on the Earth's surface. 

4. Vector and vector's components; vector coordinates; projection 

of a vector onto a given direction. 

5. Angular velocity and angular acceleration. 

6. Inertial and non-inertial coordinate system. 

7. Moment of inertia. 

8. Centre of masses. 

9. Acceleration of free fall. 
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142. Kater's pendulum 

 

Objective 

Measurement of acceleration of free fall. 

 

Tasks 

Studying the method of measuring of the acceleration of free fall with 

the help of a Kater's pendulum. 

Acceleration of free fall  ⃗ is the acceleration with respect to the Earth 

with which a body begins to fall. This acceleration is determined by 

the sum of gravitational interaction with the Earth and the centrifugal 

inertia force. 

The value of g can be found using a physical pendulum. A physical 

pendulum is an absolutely rigid body that can swing (oscillate) about 

a stationary horizontal axis. If there are no friction forces, the pendulum's 

equation of motion looks like: 

      
   

   
         ,    (142.1) 

where m is the mass of the body, I is its moment of inertia relative to 

the point of suspension, d is the distance from the point of suspension 

(pivot) to the centre of mass of the pendulum, and φ is the angle by which 

the pendulum deviates from the equilibrium position. In the case of small 

oscillations, we can replace sinφ by φ in the above eq. This gives the 

equation for harmonic oscillations having the period: 

         √
 

   
.     (142.2) 

A special case of a physical pendulum is the so-called simple 

pendulum. This is an idealized pendulum, the total mass of which is 

concentrated at one point. In this case, we can simplify Eq. (142.2) since 

I = ml
2
, and d = l (length of the pendulum), and finally get for g: 

     2

24

T

l
g


 .      (142.3) 
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Thus, an idea how to measure the acceleration of free fall is clear: 

the length and the period of oscillations of a simple pendulum should be 

measured. 

Comparing Eqs. (142.2) and (142.3) we can see that a physical 

pendulum oscillates in the same way (with the same period) as a simple 

pendulum having the length of l = I/(m·d). This value is called the reduced 

pendulum length. The point lying on a straight line passing through 

the centre of mass at the distance l from the point of suspension is called 

the centre of oscillation. If a pendulum is suspended at its centre 

of oscillation, then the period of oscillations will not change (this 

statement is called parallel axis theorem, or Huygens–Steiner theorem). 

It is important to note that the same period can also be achieved, when 

the pendulum is suspended at any of the points from a certain infinite set 

of points. According to this definition, the point of suspension and centre 

of oscillations are the respective points, but they are not the only possible 

pair of such points. That is why the distance between respective points 

(which is easy to find by checking the equality of the periods) is not 

always the reduced length. The distance between respective points is equal 

to the reduced pendulum length only if these points lie on the same line 

with the centre of mass and on opposite sides of the centre of mass. 

 

Experimental setup 

Kater's (reversible) pendulum consists of a steel rod with two fixed 

supporting prisms P1 and P2 made of steel and a steel lentil A between 

them (see Fig. 142.1). Another lentil B is placed on one of the rod's ends 

(not between the prisms); it can be moved along the rod and fixed in 

a required place. By moving this lentil, one can make the two periods 

of oscillations equal, when the points of suspension are the edges 

of the prisms P1 and P2. When the equality of periods is achieved, the 

prisms' edges will be the respective points, and they will be asymmetric 

about the centre of mass C. Hence, when the equality of periods is 

achieved, the distance between the prisms is equal to the reduced length l 
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of the physical pendulum. Having measured its period of oscillations T, we 

can calculate g using Eq. (142.3). 

 

 

Figure 142.1 Kater's pendulum 

 

Algorithm of measurements 

1. Measure the distance l between the prisms with a ruler. 

2. Suspend the pendulum by one of the prisms and deviate it by 

a small angle. 

3. Count several total oscillations (the more, the better) and find 

the corresponding time t using the timer; calculate the period 

of oscillations T1. 

4. Suspend the pendulum by another prism and find the period T2. 

5. Repeat steps 3-4 (find T1 and T2 values) for 7-10 different 

positions of the lentil B. 

6. Plot the dependencies of the periods T1 and T2 versus 

the position of the lentil B on a single plot. 
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7. Find the point of intersection of the plots and determine 

corresponding period for the respective points (where T = T1 = T2). 

8. Calculate g using Eq. (142.3). 

9. Analyse the results. 

 

Questions 

1. What are “inertia forces”? 

2. Newton's law of universal gravitation. 

3. Force of gravity, acceleration of free fall. 

4. Draw a physical point in a reference frame bound to the rotating 

Earth. Which forces act on it? Estimate the contribution of the centrifugal 

force to the acceleration of free fall. 

5. The concept of “weight.” 

6. Describe the method for finding the value of g used in this 

work. Derive the formulas. Which approximations have been made in 

the construction of the experimental setup? 
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Part 2. MOLECULAR PHYSICS 

 

211. Kinematic parameters of air molecules 

 

Objective: determination of kinematic parameters of air molecules. 

 

Tasks: 

Acquaintance with Poiseuille's method for measuring the viscosity 

of a fluid. 

Air viscosity measurement. 

Estimation of the mean free path, frequency, and cross section of air 

molecules. 

 

According to the kinetic theory of gases, a gas consists of many 

individual particles (molecules, atoms, ions). For simplicity, these particles 

can be considered as absolutely rigid spheres. Observations of Brownian 

motion allow suggesting that molecules are in constant motion. The high 

compressibility of gases indicates that their molecules are at a large 

average distance from each other. The question arises of estimating 

the kinematic parameters of this phenomenon. These are: the mean free 

path 〈 〉 (i.e. the distance that a molecule travels between subsequent 

collisions with other particles) and the mean cross section (the effective 

collision area) 〈 〉    〈 〉 , where D is the distance between the centres 

of colliding molecules, at which their velocities change (the effective 

diameter of the molecule in the case of identical molecules or sum 

of molecular radii in case of different molecules). Mean cross section is 

a quantitative parameter that characterizes the intensity of collisions: 

the larger the cross section is, the more often collisions occur. 

Obviously, the mean collisions' frequency 〈 〉 is proportional to 

the collision cross section. If the concentration of molecules is n (number 

of molecules in a unit volume) and the mean speed of the thermal motion 

of the molecules is 〈 〉, then 
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     〈 〉  √      〈 〉.    (211.1) 

The additional factor takes into account the fact that the mean relative 

speed of molecules (with respect to each other) is √  times greater than 

their mean speed 〈 〉 in the laboratory frame. 

The mean free path 〈 〉 can be derived as the average distance that 

a molecule moves per time unit (in fact, this value is the mean speed) 

divided by the number of collisions occurring during the same time: 

    〈 〉  
〈 〉

〈 〉
 

 

√     
 

 

  √  〈 〉   
 .   (211.2) 

Thus, simple mechanistic concepts make it possible to relate 

the microscopic parameters of a gas to each other. 

On the other hand, the correlation between the dynamical viscosity η 

and microscopic parameter can be found provided that the Maxwell–

Boltzmann distribution for the speed takes place: 

 ( )  (
 

 
)
  ⁄

 (
 

  
)
  ⁄

       ( 
    

    
) , 

where f is the fraction of the particles with a speed  , m is the particle 

mass, k = 1.381×10
–23

 J⋅K–1
 is the Boltzmann constant, and T is 

the absolute temperature (K). In this case, we can write down: 

       
 

 
   〈 〉  〈 〉,    (211.3) 

where ρ is the density of the gas. 

The Maxwell–Boltzmann distribution is true at equilibrium state, 

which predicts that the average speed of molecules is 

      〈 〉  √
     

   
 ,    (211.4) 

where R = 8.3145 J·mol
–1

·K
–1

 is the ideal gas constant, μ is the molar mass 

of the substance. 

Thus, we can express the mean free path as a function of macroscopic 

parameters: 

     〈 〉  
   

  〈 〉
 

   

 
√

   

     
 .    (211.5) 
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So, knowing the molecular mass of air and measuring its viscosity and 

absolute temperature, we can calculate the free path 〈 〉 using Eq. (211.5), 

and then estimate the mean cross section from Eq. (211.2). 

 

Experimental setup 

The idea of the experiment is based on the Poiseuille's equation for the 

volumetric flow rate Q which passes as a laminar flow through 

a cylindrical pipe of radius r and length l under the action of a constant 

pressure drop Δp at the ends of the pipe: 

       
    

     
    .     (211.6) 

Thus, to find the viscosity of a gas η, it is necessary to measure its 

volumetric flow rate through a capillary of known length and inner radius 

together with the pressure drop, and then: 

       
    

   
 
  

 
 .     (211.7) 

Experiment is carried out on a setup drawn in figure 211.1. Capillary 

pipe T is attached to the vessel V and a water manometer (pressure 

gauges) M. Water is released through a regulated valve R1 in order to 

create the needed pressure difference Δp on the ends of the capillary 

(the valve R2 should be closed). Created rarefaction is monitored by 

the manometer M (Δp = ρw·g·Δh, where ρw is the density of water at 

the ambient temperature, g is the free fall acceleration, and Δh is 

the difference of the water levels in the manometer). As a result, air will 

enter the system through the capillary and come into the vessel V. The 

volume of water flowing per time unit is determined by a gauge glass and 

a timer; this value is equal to the volume of air passing through the pipe T 

at the same time. Valve R2 with a funnel is used to return water from 

the gauge glass back to the vessel before a new measurement. 
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Fig. 211.1. Scheme of the setup. Auxiliary vessel is not shown 

 

Algorithm of measurements 

1. Put an auxiliary vessel under the valve R1 and smoothly open 

the valve to create the maximal possible pressure drop Δh on 

the manometer. Wait until the flow stabilizes and the reading from 

the manometer stop changing quickly; measure Δh1. Do not touch 

the valve now and replace the vessel with the measuring cup C. 

Measure the duration of the flowing of a certain portion of water V 

and the pressure difference Δh2 which will be shown by 

the manometer at the end of this process. Close the valve R1. (N.B. 

The duration of the process must exceed 5 s due to the limited human 

reaction time.) Pour the water from the measuring cup and 

the auxiliary vessel back into the funnel inserted to the valve R2. 

Water can be returned from the funnel to the vessel V after the funnel 

is filled to half of its height. 
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2. Calculate the average pressure drop at the ends of the capillary 

during the process: 

        
       

 
 . 

3. Measure the water temperature (or room temperature) to find its 

density. 

4. Calculate the volumetric flow rate of air as Q = V/t. 

5. Repeat steps 1-4 with several (8 to 10) different ∆p values, big or 

small, to plot Q (vertical axis) vs. ∆p (horizontal axis). 

6. Analyse the obtained dependence of Q vs. Δp. Does it correspond to 

the Poiseuille's Eq. (211.6)? At the limit of small Δp's, 

the dependence should be linear, and Q(0) = 0. Otherwise, 

the measurements should be repeated more accurately. 

7. Calculate the average viscosity of air using your experimental data 

and Eq. (211.7). The capillary dimensions (l and r) are indicated on 

the setup. 

8. Calculate the mean free path of air molecules using Eq. (211.5). 

9. Measure atmospheric pressure with the barometer (if there is no 

barometer, take the value of mean sea-level pressure). 

10. Calculate the mean cross section from Eq. (211.2). 

The concentration (number of molecules per unit volume) can be 

found as n = p/kT . 

11. Estimate the diameter of an air molecule and the mean collisions' 

frequency. 

 

Questions 

1. Correlation between microscopic and macroscopic parameters 

of gases. The basic equation of the kinetic theory of gases. 

2. How is the phenomenon of viscous flow in gases explained within 

the framework of kinetic theory of gases? 

3. How does the viscosity of a gas depend on temperature and 

pressure? 
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4. How do the mean free path and the mean collisions' frequency 

depend on temperature and pressure? 

5. Physical meaning of the mean cross section. 

6. How big is the average speed of thermal motion of air molecules at 

room temperature? What is the mean collisions' frequency under these 

conditions? 

7. Why does the indication Δh from the manometer decreases as 

the liquid flows out of the vessel V? 
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212. The adiabatic index and heat capacity of air at constant volume 

 

Objective: measurement of the adiabatic index and molar heat 

capacity of air at constant volume. 

 

Tasks: 

Calculation of the adiabatic index according to the kinetic theory 

of gases. 

Acquaintance with the theoretical foundations of method for 

measuring the adiabatic index. 

Estimation of the number of degrees of freedom of air molecules. 

 

The adiabatic index (also called Laplace's coefficient) γ is the ratio 

of the molar heat capacity at constant pressure, Cp, to the molar heat 

capacity at constant volume, CV: 

      V

p

C

C


 .     (212.1) 

This index appears in the relation describing an adiabatic process: 

      constpV  .    (212.2) 

Since the Mayer's relation is fulfilled for ideal gases: 

      
RCC Vp 

 ,    (212.3) 

then measurement of γ allows to find the molar heat capacity at constant 

volume as 
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
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 .    (212.4) 

Having measured γ and using the conclusions of the kinetic theory 

of gases, we can obtain the information about the number of excited 

degrees of freedom i at a given temperature because 
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C

C
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 ,    (212.5) 
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and thus make assumption about the number of atoms that make up the air 

molecules. 

 

Experimental setup 

In what follows, we will use the assumption that air at room 

temperature exhibits the properties of an ideal gas. The setup is shown in 

figure 212.1. Glass vessel A (with a bag of silica gel inside to keep air dry) 

can be vented to the atmosphere through valve B. Manometer (pressure 

gauge) C measures the gauge pressure (pressure in the vessel above or 

below atmospheric pressure). Initially, when valve B is open, the air in 

the vessel is at atmospheric pressure p0 and room temperature T0. If a small 

amount of air is quickly pumped into vessel A and immediately after that 

valve B is closed, the pressure and temperature in the vessel will increase. 

Since there is a heat flow through the walls of the vessel, after a while 

the temperature inside the vessel will become equal to the ambient (room) 

temperature, and the pressure will slightly decrease to a new value 

      101 hpp  ,    (212.6) 

where h1 is the manometer reading. Let's call this gas state with T1 = T0 

and pressure p1 the first state. 

 

 

Fig. 212.1. Scheme of the setup 
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If the valve is opened quickly, the air in the vessel A will experience 

adiabatic expansion, the pressure will equal with the atmospheric pressure, 

and the temperature will fall to a new value T2. This will be the second 

state with parameters T2 and p2 = p0. 

If the valve is closed immediately after that (when the pressure 

reaches the value p2), then a process will begin in which the temperature 

inside will grow and, finally, will reach T0, and the pressure will become 

equal to the new equilibrium value p3. This will be the third state with 

parameters T3 = T0 and 

      303 hpp  ,    (212.7) 

where h3 is the pressure manometer reading in the third state of the gas. 

The laws of the ideal gas are formulated for a fixed amount of the gas. 

Therefore, we will consider an imaginary volume of the gas never leaving 

the vessel in the following discussion. For this volume we can write down 

the relations (212.8) and (212.9), taking into account that the transition 

from state 1 to state 2 is the adiabatic process, and the transition 2 → 3 is 

the isochoric process: 
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and 
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Combining Eqs. (212.6) and (212.8), we obtain: 
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equation can be represented as an expansion in an infinite series (  

 )         , and the first two terms of the series will give a fairly 

good approximation: 
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The left-hand side in the last equation is actually h3. For clarity of this 

statement, we substitute p3 from Eq. (212.7) into (212.9), and then express 

h3 in terms of the remaining parameters, we obtain: 
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The working formula is easily derived from the latter expression: 
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Thus, to find the adiabatic index using this method, we do not need to 

calibrate the manometer; the only requirement is that the calibration 

dependence h(p) be linear. 

 

Algorithm of measurements 

1. Check that the U-shaped manometer is filled with water. Open 

the valve B and wait for 2-3 minutes. Attach the rubber bulb to the outlet 

of the valve B. Pump air into the vessel by a quick squeezing of the bulb 

and close the valve. Repeat the pumping again so that the liquid level 

difference h in the manometer reaches 20-40 cm. 

2. Wait for the pressure to stabilize due to heat conductivity 

(usually it takes about 5-6 minutes) and read the value h1. 

3. Open the valve B and close it after the hissing of escaping air is 

heard no longer. Wait until the pressure to stabilize. Read h3 value. 

4. Repeat steps 1-3 at least 8 times. 

5. Calculate γ using Eq. (212.10) and estimate the uncertainty 

(error) assuming that this value is the result of direct measurement. 

6. Calculate the molar heat capacities of air CV and Cp using 

Eqs. (212.4) and (212.3). 

7. Find the number of degrees of freedom for air according to 

Eq. (212.5). 

8. Draw conclusions about the correctness of kinetic theory 

of gases and quantum concepts about composition of air molecules. 
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9. Draw conclusions about the number of atoms in an air 

molecule. 

 

Questions 

1. Heat capacity. The value of capacity at constant volume. 

2. The concept of the number of the freedom degrees 

of a molecule. 

3. The adiabatic index and its relation to the number 

of the degrees of freedom. 

4. Mayer's law. 

5. Which of the relations written here are correct for ideal gas 

only? Which of them are fulfilled for a fixed amount of gas? 

6. Present in a qualitative manner the processes in the gas 

occurring at each stage of the experiment on one diagram. Write down 

corresponding equations. 

7. What condition must be met for the transition from the state 1 

to state 2 to be an adiabatic process? 

8. Why is it recommended waiting a few minutes before reading 

the pressure gauge? What if you do not follow this rule? 

9. Is the ratio of the volumes of the rubber bulb and the vessel 

important? 

10. What requirements must the vessel fulfil? Think about 

the volume, thickness, and rigidity of the wall, the colour and transparency 

of the walls, the shape of the vessel. 

11. Analyse the relative uncertainty (error) of the measurements 

of γ and CV. Draw conclusions. 
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221. The surface tension 

 

Objective: determination of the surface tension of a liquid by 

the method of detaching droplet. 

 

Tasks: 

Acquaintance with the theory of the phenomenon of surface tension. 

Measurement of surface tension by the detaching droplet method. 

 

The phenomenon of surface tension is associated with the interaction 

between molecules. Figure 221.1 shows that the molecules in the volume 

and the molecules on the surface experience different effects from their 

neighbours, since the number of neighbouring molecules in these two 

cases is obviously different. Note that on the other side of the boundary 

(interface) there may be another material, such as air, but the interaction 

between molecules of different types is not the same as between molecules 

of the same type. The resulting force is directed tangentially to the liquid 

surface. 

 

 

 

Fig. 221.1. Forces acting on molecules on the surface and in the volume 

of a liquid 

 

The surface tension coefficient can be expressed in terms of force or 

in terms of energy. For example, the ratio of the change in free energy to 
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the corresponding change in surface area (at constant temperature) is equal 

to the surface tension of the liquid: SE  / . 

Surface tension influences the process of drop falling from an outlet 

of a vessel in the gravitational field. The larger the coefficient σ, the more 

massive the drop will be detached from the outlet. 

Figure 221.2 shows the process of drop formation. Before the moment 

of separation, a "neck" appears. This word denotes a region of a liquid that 

has parallel boundaries and a smaller diameter than the diameter 

of the drop itself. The force of surface tension acts along the neck; at 

the moment of detachment, it is equal to the weight of the drop. If the neck 

diameter is D, then the resulting surface tension force is π·D·σ. Therefore, 

the drop separation condition can be written as: 

        DP .    (221.1) 

 

 
 

Fig. 221.2 Drop formation process 

 

The surface tension coefficient of a liquid can be calculated by 

measuring the weight P of the fallen drop and the diameter of the neck at 

the moment of detachment. 

It is known from observations that if drops of various liquids fall from 

a thin spout (capillary), then the diameter of the neck becomes the same 

for all liquids, provided that the diameter of the spout is small enough. 

In this case, Eq. (221.1) for two different liquids 1 and 2 gives the relation 
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where Vi are the volumes of various liquid drops, and ρi are their densities. 

Thus, if the surface tension σs is known for some liquid (let's call it 

"standard liquid"), then for any other liquid we can write: 
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where ns and n are the number of drops that can be formed from the same 

volumes of the standard and investigated liquids, respectively. Therefore, 

if there is a spout from which drops with the same neck diameters fall, it 

can be calibrated to measure surface tension. The value K = ns·σs/ρs should 

first be determined from an experiment with a fixed volume V of a liquid 

with known σs and ρs (e.g., water), in which the number of drops ns should 

be counted. Then the same amount V of the investigated liquid with 

a density ρ should be poured through the spout and count 

the corresponding number of drops n. Then the surface tension 

of the investigated liquid can be calculated by the expression: 
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 .    (221.2) 

 

Algorithm of measurements 

1. Wash (rinse) the burette with a thin spout with distilled water. 

2. Fill the burette with distilled water (standard liquid) up to half its 

height. 

3. Open the valve slightly so that water drips slowly. 

4. Count the number of drops n corresponding to 1 ml of spilled 

water. 

5. Repeat steps 3 and 4 three or four times and find the arithmetic 

mean 〈 〉. 

6. Pour water from the burette and wash (rinse) it with a small 

amount of ethanol (or other investigated liquid). 
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7. Fill the burette with ethanol and repeat the measurements of n in 

a same way (steps 3–5). 

8. Calculate the value of σ for ethanol. 

 

Questions  

1. Physical meaning of the surface tension coefficient. Why is it 

necessary to introduce this concept and to measure it? 

2. Do the properties of an ambient gas or other liquid (assuming 

the liquids do not mix with each other) have an influence on the surface 

tension coefficient? 

3. How does the surface tension depend on the temperature? 

Why? 

4. Laplace pressure. Derivation of formulas. 

5. How is surface tension related to the height of liquid rising in 

a capillary? 

6. Why does a small drop appear between the main large drop and 

the spout at the moment of detachment? 

7. How does viscosity affect the process of drop detachment? 

8. Is it possible to determine the temperature dependence 

of the surface tension of a liquid using the method described here? 
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222. Measuring viscosity of liquid by the Stokes' method 

 

Objective: measurement of viscosity of a liquid. 

 

Task: Acquaintance with the theoretical basis of the Stokes' method. 

 

A spherical body (hard ball or drop of liquid) of radius r falling in 

a liquid medium (viscosity η) with a speed of υ experiences the force 

of gravity Fg, the upward buoyant (Archimedes') force FA, and the resisting 

force of the medium Fr: 

 gVmgF bg  , VgFA  , and   rFr 6  .  (222.1) 

Here V is the ball's volume, ρb is its density, ρ is the density 

of the medium, and g is the free fall acceleration. The equation for Fr is 

called the Stokes' law. It was derived by G. Stokes assuming that (1) 

the Reynolds number, Re, is small (the flow is laminar), (2) liquid fills 

the whole space, and (3) liquid wets the ball (i.e., the closest molecular 

layer of the liquid moves with the ball). 

O. Reynolds famously studied the conditions in which the flow 

of fluid transitioned from laminar flow to turbulent flow: 

   
     

 
 , 

where L is a characteristic linear dimension. For flow in a circular pipe, L 

is exactly equal to the inside pipe diameter. For a sphere in a fluid, L is 

the diameter of the sphere. Laminar flow occurs at low Reynolds numbers 

(Re << Recritical), where viscous forces are dominant, and is characterized 

by smooth, constant fluid motion. Turbulent flow occurs at high Reynolds 

numbers (Re >> Recritical) and is dominated by inertial forces, which tend to 

produce chaotic eddies, vortices and other flow instabilities. The critical 

Reynolds number, Recritical, is different for every geometry. For flow in 

a circular pipe Recritical = 2300, for a sphere in a fluid Recritical = 10. 
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The speed of the ball falling in a liquid changes as 
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Evidently, it tends exponentially to a certain limit value: 
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The time characterising the increase in the speed of the ball is called 

the relaxation time: 
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Behind several τ periods, the ball's speed can be considered constant 

and equal to the limit value. 

After substituting the expression for the volume of the ball   
      

 

 
 

into Eq. (222.3), we get: 
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Thus, the coefficient of the internal friction (viscosity) can be found 

experimentally, if we know the values of rb, ρb and ρ and measure υ∞. 

In practical measurements, the ratio of the ball's radius rb to the radius R of 

the pipe with the liquid should be taken into account as follows: 
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If we use a drop of liquid in another liquid, the viscosity of the liquid 

of which the drop is made, ηd , should also be taken into account. To do 

this, we introduce an additional factor into Eq. (222.6): 
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If the ratio ηd/η is small (for example, if we consider a drop of water 

propagating through oil), we can assume that β = 3/2. 

 

Experimental setup: 

Cylindrical glass vessel with level marks, filled with investigated 

transparent oil; burette; distilled water; a lid for a vessel in the form 

of a cap; timer; ruler. 

 

Algorithm of measurements 

1. Measure the inner radius R of the cylinder and the distance 

between the level marks. 

2. Put on the cap. 

3. Fill the burette with distilled water. 

4. Carefully open the valve and find the position at which 

the drops fall into the cap slowly, one by one. 

5. Count how many drops are in one millilitre of water. From this 

value, find the volume and radius (rb) of an individual drop. 

6. Switch on the illumination behind the vessel. 

7. Remove the cap and let one drop fall into the oil. Return the cap 

to its place. Measure the time it takes for the ball to pass between the two 

marks. Check if the speed is constant by comparing the times of passage 

of two intervals drawn on the pipe. 

8. Calculate the speed of fall (between the two marks at 

the biggest distance). Repeat this measurement 6–10 times and find 

the average value of the speed υ∞. 

9. Calculate the viscosity of oil using Eq. (222.7). The density 

of the oil is written on the setup. Estimate the uncertainty (error). 

10. Calculate the relaxation time using Eq. (222.4). 

11. Calculate the resistance force of the medium using the Stokes' 

law. 

12. Calculate the Reynolds number. 
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Questions 

1. Internal friction in liquids. 

2. Dynamic and kinematic viscosity (physical meaning). 

3. Stokes' method of measuring the viscosity. 

4. What is the shape of a drop of water as it passes through oil? 
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223. Measuring viscosity of liquid by the Stokes' method, 

variant 2 

 

Objective: measurement of viscosity of a liquid. 

 

Task: Acquaintance with the theoretical basis of the Stokes' method. 

 

A spherical body (hard ball or drop of liquid) of radius r falling in 

a liquid medium (viscosity η) with a speed of υ, experiences the force 

of gravity Fg, the upward buoyant (Archimedes') force FA, and the resisting 

force of the medium Fr: 

  gVmgF bg  , VgFA  , and   rFr 6  . (223.1) 

Here V is the ball's volume, ρb is its density, ρ is the density 

of the medium, and g is the free fall acceleration. The equation for Fr is 

called the Stokes' law. It was derived by G. Stokes assuming that (1) 

the Reynolds number, Re, is small (the flow is laminar), (2) liquid fills 

the whole space, and (3) liquid wets the ball (i.e., the closest molecular 

layer of the liquid moves with the ball). 

O. Reynolds famously studied the conditions in which the flow 

of fluid transitioned from laminar flow to turbulent flow: 
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where L is a characteristic linear dimension. For flow in a circular pipe, L 

is exactly equal to the inside pipe diameter. For a sphere in a fluid, L is 

the diameter of the sphere. Laminar flow occurs at low Reynolds numbers 

(Re << Recritical), where viscous forces are dominant, and is characterized 

by smooth, constant fluid motion. Turbulent flow occurs at high Reynolds 

numbers (Re >> Recritical) and is dominated by inertial forces, which tend to 

produce chaotic eddies, vortices and other flow instabilities. The critical 

Reynolds number, Recritical, is different for every geometry. For flow in 

a circular pipe Recritical = 2300, for a sphere in a fluid Recritical = 10. 

The speed of the ball falling in a liquid changes as 
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Evidently, it tends exponentially to a certain limit value: 
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The time characterizing the increase in the speed of the ball is called 

the relaxation time: 
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Behind several τ periods, the ball's speed can be considered constant 

and equal to the limit value. 

After substituting the expression for the volume of the ball   
      

 

 
 

into Eq. (222.3), we get: 
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Thus, the coefficient of the internal friction (viscosity) can be found 

experimentally, if we know the values of rb, ρb and ρ and measure υ∞. 

In practical measurements, the ratio of the ball's radius rb to the radius R of 

the pipe with the liquid should be taken into account as follows: 

     
)4.21(9

)(2 2

R

r

rg

b

bb









 .    (223.6) 

 

Experimental setup: 

Cylindrical glass vessel with level marks, filled with the investigated 

transparent oil or glycerol; set of identical steel balls; timer; ruler. 

 

Algorithm of measurements 

1. Measure the inner radius R of the cylinder and the distance 

between the level marks. 
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2. Throw the ball into the vessel. Measure the time it takes for the 

ball to pass between the two marks. Check if the speed is constant by 

comparing the times of passage of two intervals drawn on the pipe. 

3. Calculate the speed of fall (between the two marks at 

the biggest distance). Repeat this measurement 6–10 times and find 

the average value of the speed υ∞. 

4. Calculate the viscosity using Eq. (223.6). The density 

of the liquid and the size of the ball are written on the setup. Estimate 

the uncertainty (error). 

5. Calculate the relaxation time using Eq. (223.4). 

6. Calculate the resistance force of the medium using the Stokes' 

law. 

7. Calculate the Reynolds number. 

 

Questions 

1. Internal friction in liquids. 

2. Dynamic and kinematic viscosity (physical meaning). 

3. Stokes' method of measuring the viscosity. 
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224. Measuring viscosity by the Poiseuille's method 

 

Objective: acquaintance with Poiseuille's method of measuring 

viscosity. 

 

Tasks: 

Learning theoretical basis, i.e., Poiseuille's equation. 

Acquaintance with the Ostwald viscometer. 

Measuring viscosity of ethanol by the Poiseuille's method. 

 

The Poiseuille's method is based on determination of fluid flow 

through a capillary of known dimensions due to a certain pressure drop at 

the ends of the capillary. 

Consider a cylindrical pipe with radius R and a length l. Let a liquid 

with a density ρ and a viscosity η flow through this capillary. The pressure 

drop at both ends of the pipe is Δp. 

Imagine a cylindrical part of volume in a flowing liquid, which is 

coaxial with the pipe and has a radius r and the length l (the same as 

the pipe). It experiences an external force Fe due to the pressure drop: 

prF  2
e 

 . 

In the case of a stationary flow (with no acceleration), this force is 

equal to the internal friction force, which is determined by the Newtonian 

law of viscosity: 

dr

d
lr

dr

d
SF





  2sideif , prpSFF  2

baseif  , 

where Sside and Sbas are the areas of the side wall and the basis 

of the imaginary volume element. From this relation, we derive 

the differential equation: 

rdr
l

p
d 









2  
. 

If the liquid wets the walls of the pipe, then we can assume that 

the layer closest to the wall is immobile. Thus, the flow speed changes 
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from 0 at the wall to some value υ in the volume of the capillary, and 

the previous differential equation can be integrated as follows: 

 




r

R

rdr
l

p
d






2
0

. 

Thus, at a given distance r from the axis the liquid flows at the speed 

of 

      2

0

22

44
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


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





 
.   (224.1) 

Obviously, υ0 is the speed in the central part of the capillary 

(on the axis). 

If we now consider a thin tube-like layer with an inner radius r and an 

outer radius (r + dr), then we can assume that liquid in it moves with 

a speed υ (if the layer is thin enough, then we can neglect the fact that 

the speeds on its inner wall and the outer wall are slightly different). Then 

the volumetric flow rate (the mass of the liquid which flows through its 

cross-sectional area dS per time unit) can be calculated as 

  )2(
4

22 rdrrR
l

p
dSdQ 


 




 
. 

Then the volumetric flow rate through the entire pipe of radius R is 

equal to 
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
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 . (224.2) 

This expression is called Poiseuille's equation. Using this formula, 

the viscosity can be determined by passing the liquid through a pipe 

of length l and the radius R. The measured parameters are the pressure 

drop at the ends of the pipe Δp and the volumetric flow rate Q. 

However, one nuance should be emphasized. We should be sure that 

internal friction has a significant effect on the flow value. Too small Q 

would make the measurement impractically slow; too fast Q will result in 

a turbulent flow rather than laminar flow. In the latter case all formulas 

above are not true. The minimal radius R is determined by the possibility 
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of manufacturing the thin glass pipe with a precisely known radius; it is on 

the order of 1 mm. The length should be about 100-1000 times larger than 

the diameter. 

An Ostwald viscometer consists of two communicating glass vessels 

of variable diameter, into which the liquid is poured through the wide neck 

of the elbow B (see figure 224.1). The principle of working is based on 

measuring the time during which a standard and investigated liquid 

samples of the same volume pass through the same capillaries C. Using 

a rubber bulb, the liquid is pumped from the elbow B to the bulb A above 

the M1 mark, and then it is allowed to flow back due to the force 

of gravity. The time t required for the liquid meniscus to pass between 

the marks M1 and M2 is measured by a timer. Direct use of Poiseuille's 

equation is difficult because too many parameters should be known. 

Therefore, it is easier to measure the ratio of the viscosities 

of the investigated and the standard liquids, e.g., water (having 

the viscosity ηw and passing between the marks of the viscometer during 

the time tw). Since the pressure drops at the capillary's ends are 

proportional to the liquid densities (ρ and ρw), we can write down: 

wwww
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
  . 

 

Experimental setup 

Thermometer, timer, two Ostwald viscometers. 

An Ostwald viscometer is a fragile device. For this reason, two 

identical viscometers already filled with water and ethanol are placed in 

a transparent case. A rubber bulb can be attached to a viscometer through 

a hose. 
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Fig. 224.1. Scheme of the setup 

 

Algorithm of measurements 

1. Close pipe B of the viscometer with your finger and pump 

the standard liquid (water) from the elbow B into the bulb A higher than 

the mark M1. To avoid rough inaccuracies, it is necessary that the bulb B is 

still partially filled with liquid. Also note that the hole above the bulb A is 

not blocked occasionally with a drop. 

2. Remove your finger. Measure the time tw during which water 

passes from mark M1 to mark M2. 

3. Repeat the measurements several times to find the mean value 

〈  〉 and the uncertainty (error). 

4. Repeat steps 1–3 for the investigated liquid (ethanol or 

isopropanol). 

5. Measure the temperature in the room. Using reference tables, 

find the data for water and ethanol (ρ, ρw, ηw). 

6. Calculate the viscosity of ethanol and estimate the uncertainty. 
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Questions 

1. Internal friction in liquids. Newtonian law of viscosity. 

2. Physical meaning of the coefficient of dynamic viscosity. 

3. Newtonian and non-Newtonian liquids. 

4. Which factors determine the friction force resisting the flow in 

a pipe? 

5. Design of the Ostwald viscometer. 

6. Estimate the pressure inside a syringe during injection. 
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Appendix 

 

Tables: 

 

Density of ethanol at different temperatures 

T, °C 0 10 20 30 40 50 60 70 80 90 100 

ρ, 

kg/m
3
 

812.1 801.4 790.5 779.3 768.0 756.4 744.6 732.4 720.0 707.3 694.2 

 

Density of isopropanol (2-propanol) at different temperatures 

T, °C 20 40 60 80 

ρ, kg/m
3
 786.5 769.2 750.2 729.3 

 

Density and dynamic viscosity of water at different temperatures 

T, °C 0 10 15 20 25 30 40 50 

ρ, 

kg/m
3
 

999.82 999.77 999.19 998.29 997.13 995.71 992.25 988.02 

η, 

mPa·s 
1.792 1.308 1.139 1.003 0.891 0.798 0.653 0.547 

 

Viscosities of some liquids, mPa·s (at atmospheric pressure) 

T, °C 0 20 50 70 100 

Glycerol 12100 1480 180 59 13 

Kerosene 2.2 1.5 0.95 0.75 0.54 

Oleum 

ricini 
 987 129 49  

Viscosity of alcohols 

T, °C 0 10 20 25 30 40 50 60 

Ethanol 1.773 1.466 1.200 1.096 1.003 0.834 0.702 0.592 

Isopropanol  3.308 2.381 2.012 1.724 1.326   
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Viscosities of some gases, μPa·s (at atmospheric pressure) 

T, K 150 200 250 300 400 

Nitrogen 10 12.9 15.5 17.9 22.1 

Hydrogen 5.57 6.78 7.90 8.94 10.9 

Air 10.3 13.2 16.0 18.5 23.0 

CO2  10.2 12.6 15.0 19.5 

 

Viscosity of air (μPa·s) at different temperatures and pressure 

p, bar T, °C 

0 25 100 

1 17.2 18.37 21.0 

20 17.53 18.65 22.02 

50 18.15 19.22 22.40 

100 19.70 20.60 23.35 

200 23.70 23.95 25.30 
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