УЧЕНЫЕ ЗАПИСКИ КАЗАНСКОГО УНИВЕРСИТЕТА

Том 155, кн. 1

Физико-математические науки

2013

УДК 535.012.21+530.182

О ПРЕОБРАЗОВАНИИ СПЕКТРА ФЕМТОСЕКУНДНЫХ ИМПУЛЬСОВ В АНИЗОТРОПНОЙ СРЕДЕ В УСЛОВИЯХ ВЫНУЖДЕННОГО КОМБИНАЦИОННОГО РАССЕЯНИЯ

А.Н. Бугай, С.В. Сазонов

Аннотация

С помощью численного моделирования исследовано вынужденное комбинационное рассеяние импульсов в несколько периодов колебаний в среде с одноосной анизотропией. Показано, что в ходе вынужденного комбинационного саморассеяния предельно коротких импульсов вместе со сдвигом спектра как целого в красную область происходит его сильное уширение. Сдвиг спектров обыкновенной и необыкновенной волн различен по величине.

Ключевые слова: предельно короткий импульс, спектральный суперконтинуум, вынужденное комбинационное рассеяние.

Введение

Перестройка частоты излучения является одной из актуальных задач лазерной физики [1]. Наряду с широко известными явлениями, такими как генерация суммарных и разностных частот, вынужденное комбинационное рассеяние (ВКР), в последнее время широкое применение получил эффект генерации спектрального суперконтинуума интенсивными сверхкороткими лазерными импульсами [2].

Спектральная ширина фемтосекундного лазерного импульса может перекрыть оптическую моду молекулярных колебаний, ответственных за ВКР. Вследствие этого уже в спектре входного импульса содержатся стоксовы фурье-компоненты, способные эффективно раскачивать молекулярные колебания. В этих условиях лазерный импульс, проходя через комбинационно-активную среду, испытывает в ней непрерывный сдвиг частоты в красную область, причём величина этого сдвига пропорциональна как входной интенсивности, так и величине пройденного им пути. Данное явление получило название вынужденного комбинационного саморассеяния (BKC) [3–5].

Отметим, что как генерация суперконтинуума [2], так и эффект ВКР [6] наиболее детально исследованы в случае изотропных сред типа оптических волокон. В то же время большинство нелинейных кристаллов, традиционно используемых для преобразования частот, является анизотропным. Настоящая работа посвящена исследованию трансформации спектра интенсивных фемтосекундных импульсов в комбинационно-активной анизотропной среде.

1. Нелинейные волновые уравнения

Рассмотрим процесс распространения интенсивного импульса в несколько периодов колебаний в комбинационно-активной нелинейной среде с одноосной анизотропией. Пусть распространение происходит в плоскости, перпендикулярной к оптической оси одноосного кристалла.

Рис. 1. Эволюция компонент E_o и E_e оптического импульса и их спектров F_o и F_e в отсутствие ВКС: генерация суперконтинуума. Пиковая интенсивность входного импульса $I = 1 \cdot 10^{13} \text{ Br/cm}^2$

Ввиду малой длительности лазерного импульса необходимо описывать эволюцию непосредственно его поля, а не огибающей. Самосогласованная система нелинейных волновых уравнений в рассматриваемой геометрии имеет вид [7]

$$\frac{\partial E_o}{\partial z} + \frac{n_o}{c} \frac{\partial E_o}{\partial t} - \delta_o \frac{\partial^3 E_o}{\partial t^3} + \sigma_o \int_{-\infty}^t E_o \, dt' + a_2 \frac{\partial E_e E_o}{\partial t} + a_3 \frac{\partial E_e^2 E_o}{\partial t} + + 3b_{3o} E_o^2 \frac{\partial E_o}{\partial t} + q_o \frac{\partial}{\partial t} \left(E_o \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} \left(\chi_o E_o^2 + \chi_e E_e^2 \right) dt_2 \right) = 0, \quad (1)$$

$$\frac{\partial E_e}{\partial z} + \frac{n_e}{c} \frac{\partial E_e}{\partial t} - \delta_e \frac{\partial^3 E_e}{\partial t^3} + \sigma_e \int_{-\infty}^t E_e \, dt' + 2a_2 E_o \frac{\partial E_o}{\partial t} + 2b_2 E_e \frac{\partial E_e}{\partial t} + a_3 \frac{\partial E_o^2 E_e}{\partial t} + 3b_{3e} E_e^2 \frac{\partial E_e}{\partial t} + q_e \frac{\partial}{\partial t} \left(E_e \int_{-\infty}^t dt_1 \int_{-\infty}^{t_1} (\chi_o E_o^2 + \chi_e E_e^2) \, dt_2 \right) = 0, \quad (2)$$

где E_o и E_e – поля обыкновенной и необыкновенной составляющих импульса, n_o и n_e – линейные безынерционные показатели преломления обыкновенной и необыкновенной волн соответственно, c – скорость света в вакууме. Слагаемые с коэффициентами δ и σ учитывают линейные эффекты дисперсии, обусловленные электронным и ионным откликом соответственно. Коэффициенты $a_2 = 2\pi \chi_{2o}/(n_o c)$,

Рис. 2. Эволюция компонент E_o и E_e оптического импульса и их спектров F_o и F_e в отсутствие ВКС: уширение спектра. Пиковая интенсивность входного импульса $I = 2 \cdot 10^{13}$ Вт/см²

 $b_2 = 2\pi \chi_{2e}/(n_o c)$, $b_{3o,e} = 2\pi \chi_{3o,e}/(n_{o,e}c)$ при нелинейных слагаемых соответствуют компонентам нелинейной восприимчивости $\chi_{2,3}$, образованной электронным откликом, в то время как последние слагаемые в (1), (2) соответствуют рамановской нелинейности.

Следует отметить асимметрию между волнами различной поляризации. Вследствие нелинейного взаимодействия, как следует из (1), (2), обыкновенная волна может породить необыкновенную, в то время как обратный процесс запрещён.

2. Результаты численного моделирования

При проведении численного моделирования системы (1), (2) использовался следующий набор параметров, характерный для одноосных кристаллов с отрицательным двулучепреломлением [8]: $n_o = 1.8$, $n_e = 1.7$, $\delta_o = 6.4 \cdot 10^{-43} \text{ c}^3 \text{ cm}^{-1}$, $\delta_e = 5.8 \cdot 10^{-43} \text{ c}^3 \text{ cm}^{-1}$, $\sigma_o = 2.7 \cdot 10^{15} \text{ c}^{-1} \text{ cm}^{-1}$, $\sigma_e = 1.8 \cdot 10^{15} \text{ c}^{-1} \text{ cm}^{-1}$. Нетрудно оценить, что вклад в показатель преломления на центральной частоте спектра, создаваемый ионной дисперсией, меньше на два-три порядка, чем вклад электронной дисперсии. Величины нелинейных восприимчивостей второго порядка составляют $\chi_{2o} = 0.47 \cdot 10^{-8}$ сгсэ, $\chi_{2e} = 0.95 \cdot 10^{-8}$ сгсэ, $\chi_{3o} = 1.7 \cdot 10^{-13}$ сгсэ, $\chi_{3oe} = 1.29 \cdot 10^{-13}$ сгсэ, $\chi_{3e} = 1.95 \cdot 10^{-13}$ сгсэ. Влияние эффекта ВКР исследовалось путём варьирования величины коэффициента $q_{o,e}$, пропорционального числу комбинационно-активных атомов N, которое бралось в диапазоне от N = 0 до $N_m = 10^{22}$ см⁻³.

Соотношение между нелинейной поляризацией рамановской природы и нелинейной поляризацией, учитывающей керровскую нелинейность, можно оценить

Рис. 3. Эволюция компонент E_o и E_e оптического импульса и их спектров F_o и F_e в условиях ВКС: квазисолитонный сдвиг спектра. Пиковая интенсивность входного импульса $I = 1 \cdot 10^{13} \text{ Br/cm}^2$

следующим образом [7]:

$$q\chi \frac{\partial}{\partial t} \left(E \int_{-\infty}^{t} dt_1 \int_{-\infty}^{t_1} dt_2 E^2 \right) / (b_3 E^2 \frac{\partial E}{\partial t}) \sim \frac{\omega_v}{\omega_e} (\omega \tau_p)^2, \tag{3}$$

где ω , τ_p – частота и длительность импульса, ω_v , ω_e – характерные частоты молекулярных колебаний и оптических переходов соответственно. Так при $\omega_e \sim 10^{15}$, $\omega_v \sim 10^{13}$ необходимо $\omega \tau_p \sim 10$. Очевидно, что при уменьшении длительности импульса до одного-двух периодов колебаний относительный вклад ВКР становится мал [6, 7].

В качестве начального условия рассматривался предельно короткий импульс лазерного излучения длительностью 15 фс и центральной частотой спектра 800 нм. Данная частота лежит в области нормальной дисперсии. Амплитуды полей и спектров составляющих импульса нормировались на начальное значение, а дистанция распространения задавалась в единицах длины дисперсионного расплывания (в мкм), обусловленной электронным откликом. Амплитуды обыкновенной и необыкновенной волн на входе считались равными.

В случае отсутствия рамановской нелинейности происходит характерная самомодуляция и уширение спектров (рис. 1), увеличивающиеся с ростом интенсивности (рис. 2). Наряду с этим возможна также генерация разностных и суммарных частот на квадратичной нелинейности. Из-за отсутствия синхронизма эффект незначителен.

Если же рамановская нелинейность имеет максимальное значение (рис. 3, 4), то для обыкновенной волны имеет место непрерывный сдвиг спектра как целого в красную область с одновременным его уширением, причём степень уширения,

Рис. 4. Эволюция компонент E_o и E_e оптического импульса и их спектров F_o и F_e в условиях ВКС: красный сдвиг суперконтинуума. Пиковая интенсивность входного импульса $I = 2 \cdot 10^{13} \text{ Br/cm}^2$

так же как и красный сдвиг, растет с увеличением интенсивности. Беспороговый эффект сдвига спектра импульса в красную область при существенном влиянии групповой дисперсии получил название солитонного режима ВКС [5]. В случае предельно коротких импульсов при малых интенсивностях процесс носит квазисолитонный характер, в то время как при высоких интенсивностях происходит сдвиг суперконтинуума как целого в красную область.

Отметим, что импульс необыкновенной поляризации испытывает более медленный сдвиг спектра в красную область, что объясняется меньшей величиной эффективной рамановской нелинейности. Вследствие разницы показателей преломления сдвиг происходит неравномерно. В начальный момент времени, когда импульсы перекрываются, вклад в эффективную рамановскую нелинейность даёт также обыкновенная волна, вследствие чего сдвиг спектра происходит быстрее. При постепенном взаимном расхождении импульсов уменьшаются эффективная нелинейность и сдвиг спектра. Отметим также уменьшение сдвига спектра по мере приближения к границе области прозрачности. Для более детального анализа данного эффекта необходимо уточнение используемой модели.

Заключение

В настоящей работе с помощью численного моделирования исследованы основные особенности вынужденного комбинационного рассеяния предельно коротких импульсов в оптически одноосной среде. Эффект ВКР становится существенным только для импульсов, квадрат числа колебаний в которых превосходит отношение характерной частоты оптических переходов к частоте молекулярных колебаний.

Вместе с непрерывным сдвигом спектра предельно короткого импульса в красную область происходит его сверхуширение. Сдвиг спектров обыкновенной и необыкновенной волн различен по величине, что обусловлено изменением величины эффективной нелинейности, возникающей при кросс-модуляции импульсов, а также отличиями в дисперсии для компонент с различными поляризациями.

Работа выполнена при финансовой поддержке РФФИ (проект № 09-02-00503). А.Н. Бугай также благодарит Фонд некоммерческих программ «Династия».

Summary

A.N. Bugay, S.V. Sazonov. On the Spectral Transformation of Femtosecond Pulses in an Anisotropic Medium under the Conditions of Stimulated Raman Scattering.

Stimulated Raman scattering of few-cycle pulses in a medium with uniaxial anisotropy is examined by numerical simulation. It is demonstrated that the stimulated Raman selfscattering of few-cycle pulses leads to the red shift of the pulse spectrum along with its broadening. The spectral shifts of ordinary and extraordinary waves are different.

Keywords: few-cycle pulse, spectral supercontinuum, stimulated Raman scattering.

Литература

- Сухоруков А.П. Нелинейные волновые взаимодействия в оптике и радиофизике. М.: Наука, 1988. – 232 с.
- 2. Желтиков А.М. Да будет белый свет: генерация суперконтинуума сверхкороткими лазерными импульсами // Усп. физ. наук. 2006. Т. 176, № 6. С. 623–649.
- Дианов Е.М., Карасик А.Я., Мамышев П.В., Прохоров А.М., Серкин В.Н., Стельмах М.Ф., Фомичев А.А. ВКР преобразование многосолитонных импульсов в кварцевых волоконных световодах // Письма в ЖЭТФ. – 1985. – Т. 41, № 6. – С. 242–244.
- Mitschke F.M., Molenauer L.F. Discovery of the soliton self-frequency shift // Opt. Lett. 1986. – V. 11, No 11. – P. 659–661.
- Серкин В.Н., Беллева Т.Л., Корро Г.Х., Агуеро Гранадос М. Вынужденное комбинационное саморассеяние фемтосекундных импульсов. Солитонный и несолитонный режимы когерентного саморассеяния // Квантовая электроника. – 2003. – Т. 33, № 4. – С. 325–330.
- Желтиков А.М. Комбинационное рассеяние света в фемто- и аттосекундной физике // Усп. физ. наук. – 2011. – Т. 181, No 1. – С. 33–58.
- Сазонов С.В., Соболевский А.Ф. О нелинейном распространении предельно коротких импульсов в оптически одноосных средах // Журн. эксперим. и теорет. физики. – 2003. – Т. 123, № 6. – С. 1160–1178.
- Nikogosyan D.N. Nonlinear Optical Crystals: A Complete Survey. N. Y.: Springer, 2005. - 440 p.

Поступила в редакцию 21.03.11

Бугай Александр Николаевич – кандидат физико-математических наук, научный сотрудник, Объединенный институт ядерных исследований, г. Дубна, Россия. E-mail: *bugay aleksandr@mail.ru*

Сазонов Сергей Владимирович – доктор физико-математических наук, ведущий научный сотрудник, Российский научный центр «Курчатовский институт»; профессор, Московский авиационный институт (государственный технический университет), г. Москва, Россия.

E-mail: sazonov.sergey@gmail.com