
КАЗАНСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ

ИНСТИТУТ ФИЗИКИ

Кафедра вычислительной физики и моделирования

физических процессов

Д.Т. ЯРУЛЛИН, Б.Н. ГАЛИМЗЯНОВ

ПРОВЕДЕНИЕ КЛАСТЕРНОГО АНАЛИЗА

НА ОСНОВЕ РЕЗУЛЬТАТОВ МОЛЕКУЛЯРНО-

ДИНАМИЧЕСКИХ РАСЧЕТОВ

Учебно-методическое пособие

Казань – 2022

2

УДК 538.9; 536.3; 53.03

ББК 22.311

Издается по решению Ученого совета Института физики

Казанского федерального университета

Рецензенты:

кандидат физико-математических наук,

доцент кафедры вычислительной физики КФУ Р.М. Хуснутдинов;

кандидат физико-математических наук,

доцент кафедры вычислительной физики КФУ И.И. Файрушин

Яруллин Д.Т., Галимзянов Б.Н.

Проведение кластерного анализа на основе результатов молекулярно-

динамических расчетов /

Д.Т. Яруллин, Б.Н. Галимзянов – Казань: Казан. ун-т, 2022. – 27 с.

В настоящем учебно-методическом пособии представлен теоретический и

практический материал по проведению кластерного и структурного анализа ре-

зультатов молекулярно-динамических расчетов. Учебное пособие предназна-

чено для студентов и аспирантов физических специальностей высших учебных

заведений при изучении дисциплин, связанных с компьютерным моделирова-

нием. Пособие составлено с целью повышения эффективности организации са-

мостоятельной работы и аудиторных занятий студентов очного отделения.

Методическое пособие выполнено при поддержке фонда развития теоре-

тической физики и математики «БАЗИС» (Проект No 20-1-2-38-3).

© Яруллин Д.Т., Галимзянов Б.Н., 2022

© Казанский университет, 2022

3

ОГЛАВЛЕНИЕ

Предисловие 4

§1. Молекулярно-динамическое моделирование кристаллизации в вычис-

лительном пакете LAMMPS

5

§1.1 Запуск расчетов 6

§1.2 Скрипт-файлы для моделирования кристаллизации 7

§1. 3 Идентификация кристаллических структур на основе результа-

тов молекулярно-динамических расчетов

11

§2. Программная реализация кластерного анализа результатов молеку-

лярно-динамического моделирования

14

§2.1 Подготовка скрипт-файла для проведения кластерного анализа 14

§2.2 Считывание координат частиц из dump-файлов 16

§2.3 Определение «частиц-соседей» 18

§2.4 Расчет параметров локального ориентационного порядка 19

§2.5 Идентификация частиц, участвующих в формировании кристал-

лических структур

22

Библиографический список 24

Приложение. Присоединенные полиномы Лежандра 26

4

Предисловие

В настоящем учебно-методическом пособии представлен теоретический и

практический материал по проведению кластерного и структурного анализа ре-

зультатов молекулярно-динамических расчетов. Пособие состоит из двух частей.

В первой части приводится краткий теоретический материал с инструкциями и

справочной информацией по работе с вычислительным пакетом LAMMPS. Пред-

ставленные инструкции позволяют выполнить численное моделирование про-

цесса кристаллизации модельной системы Леннарда-Джонса.

Во второй части представлены коды на языке C# для программной реали-

зации кластерного и структурного анализа результатов молекулярно-динамиче-

ских расчетов.

Учебное пособие предназначено для студентов и аспирантов физических

специальностей высших учебных заведений при изучении дисциплин, связанных

с компьютерным моделированием. Пособие составлено с целью повышения эф-

фективности организации самостоятельной работы и аудиторных занятий сту-

дентов очного отделения.

5

1. МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ

ПРОЦЕССА КРИСТАЛЛИЗАЦИИ В ВЫЧИСЛИТЕЛЬНОМ

ПАКЕТЕ LAMMPS

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - один

из наиболее известных вычислительных пакетов для выполнения молекулярно-

динамического моделирования. Широкая известность LAMMPS обусловлена

тем, что данный вычислительный пакет включает в себя большую обновляемую

библиотеку потенциалов межчастичного взаимодействия, позволяющих модели-

ровать поведение различных систем: металлов, полупроводников, биомолекул,

полимерных систем и др. Важным достоинством LAMMPS является возмож-

ность распараллеливания расчетов в соответствии с MPI (Message Passing

Interface), что позволяет многократно повысить производительность вычислений

на многопроцессорных компьютерах, вычислительных кластерах и суперкомпь-

ютерах. Возможна компиляция исходных кодов под различные операционные

системы (Linux, OS X, Windows), а также имеется большое количество различ-

ных опций компиляции, которые позволяют создавать исполняемый файл под

конкретную архитектуру процессора и архитектуру графического процессора.

Учебник с описанием всех возможностей данного пакета опубликован на офици-

альном сайте разработчиков по ссылке: https://www.lammps.org/tutorials.html. До-

полнительная полезная информация об основах проведения молекулярно-дина-

мических расчетов с помощью вычислительного пакета LAMMPS представлена

в работах [1-4].

6

1.1 Запуск расчетов

Для запуска расчетов в вычислительном пакете LAMMPS понадобятся сле-

дующие файлы:

• Исполняемый файл lmp_serial.exe (в случае однопоточных вычислений)

• script-файл, содержащий детали моделирования (примеры находятся по

следующему пути: корневая папка LAMMPS\Examples)

Данные файлы должны находиться в одной папке. LAMMPS не имеет гра-

фического интерфейса (только командный режим), поэтому запуск расчетов осу-

ществляется через командную строку. Командную строку можно запустить через

диалоговое окно «Выполнить» - для этого необходимо зажать сочетание клавиш

«WIN + R», в открывшемся окне ввести cmd. Альтернативный способ открытия

командной строки - в строке поиска (находится рядом с кнопкой «Пуск») ввести

cmd.

В командной строке для выбора директории следует набрать команду cd и

указать путь к папке, где располагаются script-файл и исполняемый файл. Далее

необходимо набрать lmp_serial.exe (название исполняемого файла) и <in.melt

(символ < + название скрипт-файла с символом) и нажать кнопку Enter. Пример

запуска расчетов с помощью командной строки представлен на рисунке 1.

7

Рис. 1. Пример запуска расчетов с помощью командной строки.

«lamps_LJmelt» – название папки, в которой располагаются script-файл

и исполняемый файл «lmp_serial.exe». «in.melt» – название script-файла

1.2 Скрипт-файлы для моделирования кристаллизации

Далее будут представлены скрипт-файлы, позволяющие смоделировать

кристаллизацию переохлажденной однокомпонентной системы Леннарда-

Джонса в LAMMPS.

Этап 1. Получение исходного образца

Скрипт-файл: in_equi.melt

8

Данный скрипт-файл позволяет получить систему 13500 частиц, взаимо-

действующих на основе потенциала Леннарда-Джонса. Температура и давление

системы составляют 2.5 𝜖/𝑘𝐵 и 2.0𝜖/𝜎3 , соответственно. В ходе выполнения

расчетов каждые 10’000 временных шагов будет создаваться конфигурационный

рестарт-файл, содержащий координаты всех частиц в исходном жидком образце.

Таким образом, в случае успешного завершения расчетов, состоящих из 100’000

временных шагов, в папке будет создано 10 рестарт-файлов (как показано на ри-

сунке 2).

Наличие рестарт-файлов необходимо для выполнения независимых симу-

ляций и проведения статистической обработки получаемых результатов.

Рис. 2. Результат выполнения скрипт-файла in_equi.melt

Отчет о выполненных расчетах помещается в файл «log.lammps». В этот

же файл записывается информация об ошибках, в случае их возникновения.

Следующий рестарт-файл «in_cool.melt» задает охлаждение жидких об-

разцов, полученных на начальном этапе.

9

Этап 2. Охлаждение исследуемого образца

Скрипт-файл: in_cool.melt

В результате выполнения данного скрипт-файла будет получен рестарт-

файл, содержащий информацию о положении частиц после охлаждения до тем-

пературы 0.5 𝜖/𝑘𝐵 при постоянном давлении 2.0 𝜖/𝜎3. Обратите внимание, что

в случае, когда в «read_restart» указывается только название рестарт-файла, дан-

ный файл должен находиться в одной папке с исполняемым и скрипт файлами.

В некоторых случаях более удобно указывать полный путь к файлу, содержащий

корневой каталог и все сопутствующие папки. Полный путь к файлу может ука-

зываться и в строках «restart», «dump». Пример полного пути к файлу:

«C:\Lammps\ restart_lj_T2.5_PT.equil.10000».

10

Этап 3. Получение dump-файлов кристаллизующейся системы

Скрипт-файл: in_dump.melt

После выполнения скрипт-файла in_dump.melt будет создан dump-файл

«S1_dump_ljmelt_T0.5_file.txt». Содержание дамп-файла представлено на ри-

сунке 3. Впоследствии на основе dump-файла производится идентификация

наличия упорядоченных структур в системе.

11

Рис. 3. Структура dump-файла

Как видно из рисунка, в dump-файле содержится детальная информация об

исследуемой ячейке моделирования: количество выполненных шагов моделиро-

вания, количестве частиц в системе, их координаты, параметры исследуемой

ячейки моделирования.

1.3 Идентификация кристаллических структур на основе результатов

молекулярно-динамических расчетов

Одним из наиболее часто применяемых методов при проведении кластер-

ного и структурного анализа является метод, основанный на расчете параметров

локального ориентационного порядка:

𝒒𝒎
𝒍 (𝒊) =

𝟏

𝑵𝒃(𝒊)
∑ 𝒀𝒎

𝒍 (𝒓𝒊𝒋)

𝑵𝒃(𝒊)

𝒋=𝟏

.

(1)

12

Здесь 𝑁𝑏(𝑖) - количество ближайших соседей у частицы 𝑖, 𝑙 - целочислен-

ный параметр, 𝑚 - параметр, принимающий значения от 𝑚 = −𝑙 до 𝑚 = +𝑙.

𝑌𝑚
𝑙 (𝒓) = 𝑌𝑚

𝑙 (𝜃(𝒓), 𝜙(𝒓)) − сферические гармоники, 𝜃(𝒓) и 𝜙(𝒓) − зенитный и

азимутальный углы, соответственно.

Рис. 4. Сферические координаты 𝜃 и 𝜙 для произвольной точки M

Связь между сферическими координатами 𝜃 и 𝜙 и декартовыми координа-

тами 𝑥, 𝑦, 𝑧 описывается следующими соотношениями:

𝝓 = 𝒂𝒓𝒄𝒕𝒈
𝒚

𝒙

(𝟐)

𝜽 = 𝐚𝐫𝐜𝐜𝐨𝐬
𝒛

√𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐

Расчет сферических гармоник производится на основе следующего выра-

жения:

13

𝑌𝑚
𝑙 (𝜃, 𝜙) = √

2𝑚 + 1

4𝜋

(𝑚 − 𝑙)!

(𝑚 + 𝑙)!
 𝑃𝑚

𝑙 (𝑐𝑜𝑠𝜃)𝑒𝑖𝑙𝜙,

(3)

где 𝑃𝑚
𝑙 - присоединенные полиномы Лежандра.

Идентификация частиц, участвующих в формировании кристаллических

структур, осуществляется на основе значения скалярного произведения усред-

ненных параметров локального ориентационного порядка 𝑞𝑚
𝑙 для частиц 𝑖 и 𝑗:

𝑆𝑖𝑗 = ∑ 𝑞6𝑚(𝑖)𝑞6𝑚
∗ (𝑗)

6

𝑚=−6

(4)

Частицы 𝑖 и 𝑗 являются «соединенными» в случае, если 𝑆𝑖𝑗 > 0.5. Частица

считается solidlike, то есть участвующей в формировании кристаллических

структур, если в её окружении имеется как минимум 6 частиц с выполняющимся

условием (4) [10,11].

14

2. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ

МД РАСЧЕТОВ

В данном параграфе представлена программная реализация основных про-

цедур, необходимых при проведении кластерного анализа результатов молеку-

лярно-динамических расчетов. Представленные программные коды написаны на

языке C#.

2.1 Подготовка скрипт-файлов для проведения кластерного анализа

Для задания условий проведения кластерного и структурного анализа ре-

зультатов молекулярно-динамических расчетов, как правило, применяется

скрипт-файл. На рисунке далее представлен пример скрипт-файла. В представ-

ленном скрипт-файле содержится информация о количестве частиц в исследуе-

мой ячейке моделирования, количество временных итераций, содержащихся в

dump-файле, путь к dump-файлу, а также задан шаг, с которого начинается про-

ведение кластерного и структурного анализа. Содержание скрипт-файла может

изменяться в зависимости от специфики проводимого кластерного анализа.

Рис. 5. Пример скрипт-файла «CS_Script.ini»

Считывание скрипт-файла реализуется при помощи кода, представленного

далее.

#region Load_Script

 Console.Write("Load parameters from script file: ");

 FileStream fscript = new FileStream("CS_Script.ini", FileMode.Open);

15

 StreamReader rscript = new StreamReader(fscript);

st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, idx + 1);

 _ddl.N = Convert.ToInt32(sts);

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 _ddl.Step = Convert.ToInt32(sts);

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 fstep = Convert.ToInt32(sts);

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 pos_address = sts;

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 _ddl.cutoff = Convert.ToSingle(sts);

 st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0,

idx + 1);

 Console.WriteLine("Completed");

 Console.WriteLine("Start the cluster analysis:");

 Console.WriteLine("--------------------------");

 #endregion

В представленном коде для чтения скрипт-файла применяются классы

«FileStream» и «StreamReader», входящие в состав пространства имен

«System.IO». (Детальная информация о пространстве имён «System.IO» распола-

гается по адресу: https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=net-

6.0). Метод ReadLine () считывает строку из указанного в FileStream входного

потока (файла). Извлечение интересующих численных значений происходит при

помощи метода IndexOf(). Обратите внимание, что файл «CS_Script.ini» должен

располагаться в той же папке, что и исполняемый файл программы кластерного

анализа.

16

2.2 Считывание координат частиц из dump-файлов

На следующем этапе необходимо считать координаты частиц, содержа-

щихся в dump-файле. Представленный далее программный код позволяет решить

поставленную задачу.

 FileStream fsp = new FileStream(pos_address, FileMode.Open);

 StreamReader strp = new StreamReader(fsp);

 for (int step = 1; step <= _ddl.Step; step++)

 {

 _ddl.VMDid_count++;

 _ddl.currentStep++;

 #region load_positions

 st = strp.ReadLine();

 st = strp.ReadLine();

 st = strp.ReadLine();

 st = strp.ReadLine();

 st = strp.ReadLine();

 st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" ");

 st1 = st.Substring(0, idx);

 sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ",");

 _ddl.box_x = Convert.ToSingle(dfg);

 // Переменные box_x, box_y, box_z несут информацию о параметрах

ячейки моделирования

 st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" ");

 st1 = st.Substring(0, idx);

 sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ",");

 _ddl.box_y = Convert.ToSingle(dfg);

 st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" ");

 st1 = st.Substring(0, idx);

 sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ",");

 _ddl.box_z = Convert.ToSingle(dfg);

 st = strp.ReadLine();

 for (int i = 0; i < _ddl.N; i++)

 {

 st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" ");

 st1 = st.Substring(0, idx);

 sts = st.Remove(0, idx + 1); idx = sts.IndexOf(" ");

 dfg = sts.Substring(0, idx); dfg = dfg.Replace(".", ",");

 st1 = dfg;

17

 st = sts.Remove(0, idx + 1); idx = st.IndexOf(" ");

 dfg = st.Substring(0, idx); dfg = dfg.Replace(".", ",");

 _ddl.pos[i, 0] = Convert.ToSingle(dfg);

 // В массив pos[][] записываются координаты частиц

 // Столбец pos[][0] - содержит координаты частиц по оси X,

//pos[][1] - по оси Y, pos[][2] - по оси Z

 sts = st.Remove(0, idx + 1); idx = sts.IndexOf(" ");

 dfg = sts.Substring(0, idx); dfg = dfg.Replace(".", ",");

 _ddl.pos[i, 1] = Convert.ToSingle(dfg);

 st = sts.Remove(0, idx + 1); idx = st.IndexOf(" ");

 st = st.Replace(".", ",");

 _ddl.pos[i, 2] = Convert.ToSingle(st);

 }

 #endregion

 Console.WriteLine("Step " + step.ToString() + ": ");

Для информирования пользователя о ходе выполнения программы реали-

зован вывод номера шага работы программы через метод Console.WriteLine().

Двумерный массив _ddl.pos[][] содержит информацию о координатах всех ча-

стиц системы. Схематическое представление массива _ddl.pos[][] представлено

на рисунке 6.

Рис. 6 Схематическое представление массива _ddl.pos[][]

18

Обратите внимание на то, что в языке C# индексация элементов массива

начинается с 0.

2.3 Определение «частиц-соседей»

Для того, чтобы рассчитать параметр ориентационного порядка, необхо-

димо составить список «ближайших соседей» каждой частицы исследуемой си-

стемы. Две частицы считаются «соседями», если они лежат на расстоянии 1.2𝑟0,

где 𝑟0 определяется минимумом потенциала Леннарда-Джонса. В более общем

случае 𝑟0 может определяться положением первого пика функции радиального

распределения 𝑔(𝑟). При таком определении все частицы первой координацион-

ной сферы будут считаться «ближайшими соседями».

Реализация поиска «частиц-соседей» может быть выполнена при помощи

процедуры genPair(), представленной далее.

void genPair()

 {

 for (int k=0; k<num; k++) { nnum[k] = 0; }

 // Элемент массива nnum[i] определяет количество "соседей" у частицы i

 for (int i = 0; i < num; i++)

 {

 for (int j = 0; j < num; j++)

 {

 if (i == j) { j++; }

 double dr2, drx, dry, drz;

 drx = q[i].x - q[j].x;

 dry = q[i].y - q[j].y;

 drz = q[i].z - q[j].z;

 #region block_distans

 _ddl.Sij1 = (float)(drx / _ddl.box_x);

 // Sij1 определяет расстояние между частицами i и j;

 _ddl.Sij2 = (float)(dry / _ddl.box_y);

 _ddl.Sij3 = (float)(drz / _ddl.box_z);

 if (Math.Abs(_ddl.Sij1) > 0.5) { _ddl.Sij1 = _ddl.Sij1 -

Math.Sign(_ddl.Sij1); }

 // Определение расстояний между частицами с учетом граничных условий

 if (Math.Abs(_ddl.Sij2) > 0.5) { _ddl.Sij2 = _ddl.Sij2 -

Math.Sign(_ddl.Sij2); }

 if (Math.Abs(_ddl.Sij3) > 0.5) { _ddl.Sij3 = _ddl.Sij3 -

Math.Sign(_ddl.Sij3); }

 dr2 = _ddl.box_x * _ddl.Sij1 * _ddl.box_x * _ddl.Sij1

 + _ddl.box_y * _ddl.Sij2 * _ddl.box_y * _ddl.Sij2

19

 + _ddl.box_z * _ddl.Sij3 * _ddl.box_z * _ddl.Sij3;

// dr2 - квадрат расстояния между частицами

 #endregion

 if (dr2 < cutoff * cutoff)

 {

 neighbor[i][nnum[i]++] = j;

 neighbor[j][nnum[j]++] = i;

// Элементы массива neighbor[i][] несут информацию об ID-номерах «соседей» i-ой

частицы

 }

 }

 }

 }

2.4 Расчет параметров локального ориентационного порядка

Ниже представлена функция «sphHarmonic», позволяющая рассчитывать

сферические гармоники, необходимые при расчете параметров локального ори-

ентационного порядка. Входными параметрами являются показатели 𝑙 и 𝑚, а

также 𝑐𝑜𝑠𝜃 и угол 𝜙.

complex sphHarmonic(int l, int m, double cosTheta, double phi)

 {

 int m1 = Math.Abs(m);

 double c = Math.Sqrt((2 * l + 1) * factorial(l - m1) / (4 * Math.PI *

factorial(l + m1)));

 c *= legendre(l, m1, cosTheta);

 // legendre выполняет расчет присоединенных полиномов Лежандра; '*'

применяется для сокращения записи c=c*legendre;

 complex y = new complex();

 double simp;

 if (m == 1) { simp = -1.0f; } else { simp = 1.0f; }

 if (m < 0)

 {

 y.r = Math.Cos(m1 * phi) * simp;

 y.i = -Math.Sin(m1 * phi) * simp;

 // разложение экспоненты exp(i*m*phi)на реальную и виртуальную ча-

сти в случае m<0;

 }

 else

 {

 y.r = Math.Cos(m1 * phi);

 y.i = Math.Sin(m1 * phi);

 // разложение экспоненты exp(i*m*phi)на реальную и виртуальную ча-

сти в случае m>0;

 }

 complex cmp = new complex();

20

 cmp.r = y.r * c;

 cmp.i = y.i * c;

 // cmp содержит итоговые значений реальной и мнимой частей сферической

гармоники ;

 return cmp;

 }

Расчет параметров локального ориентационного порядка производится

при помощи функции «w», представленной далее.

 public double w(int l, Vector[] p, int n)

 // p содержит координаты частицы, n - определяет количество "соседей";

 {

 if (n < 1) { return 1.0e-138f; }

 // Исключение из рассмотрения частиц без "соседей"

 cosTheta = new double[n];

 phi = new double[n];

 for (long i = 0; i < n; i++)

 {

 if (fzero(p[i].x))

 {

 if (fzero(p[i].y))

 {

 phi[i] = 0; // определение угла phi в случае x=0;y=0;

 }

 else

 {

 if (p[i].y > 0) //

 {

 phi[i] = Math.PI / 2.0;

 // Определение угла phi в случае x=0, y>0

 }

 else

 {

 phi[i] = 3.0 * Math.PI / 2.0;

// Определение угла phi в случае x=0; y<0

 }

 }

 }

 else

 { // Определение phi в случае ненулевого значения x

 phi[i] = Math.Atan(p[i].y / p[i].x);

 if (p[i].x < 0.0) { phi[i] += Math.PI; }

21

 else { if (p[i].y < 0) { phi[i] += 2.0 * Math.PI; } }

 }

 cosTheta[i] = p[i].z / Math.Sqrt(p[i].x * p[i].x + p[i].y * p[i].y

+ p[i].z * p[i].z);

 // Определение cosTheta

 }

 Q = new complex[2 * l + 1];

 // Q имеет размерность 2l+1, поскольку суммирование ведется от -l до

l, включая 0

 Q[l].r = 0; Q[l].i = 0;

 for (int j = 0; j < n; j++)

 // Суммирование ведется по числу "соседей" n

 {

 Q[l].r += sphHarmonic(l, 0, cosTheta[j], phi[j]).r;

 Q[l].i += sphHarmonic(l, 0, cosTheta[j], phi[j]).i;

 // Расчет реальной и мнимой частей Q при m=0;

 for (int m = 1; m <= l; m++)

 {

 c = new complex();

 c = sphHarmonic(l, m, cosTheta[j], phi[j]);

 Q[m + l].r += c.r;

 Q[m + l].i += c.i;

 double sign;

 if (m == 1) { sign = -1.0f; } else { sign = 1.0f; }

 Q[-m + l].r += sign * c.r;

 Q[-m + l].i += -sign * c.i;

 }

 }

 for (int m = -l; m <= l; m++)

 {

 Q[m + l].r /= n;

 Q[m + l].i /= n;

 // Расчет параметра qlm

 }

 double sum = 0;

 for (int m = -l; m <= l; m++)

 {

 sum += Q[m + l].r * Q[m + l].r + Q[m + l].i * Q[m + l].i;

 }

 if (l == 6)

22

 {

 for (int m = -l; m <= l; m++)

 {

 Q6m_tilda[iID - 1, m + l].r = Q[m + l].r / Math.Sqrt(sum);

 Q6m_tilda[iID - 1, m + l].i = Q[m + l].i / Math.Sqrt(sum);

 }

 }

 qLoad = Math.Sqrt((4.0 * Math.PI / (2.0 * l + 1)) * sum);

 // Расчет усредненного параметра ql

 return qLoad;

 }

2.5 Идентификация частиц, участвующих в формировании

кристаллических структур

_ddl.indexCount = 0;

 for (int i = 0; i < _ddl.N; i++) { _ddl.ClusterID[i] = 0; } // ClusterID

- принимает 0 для частиц материнской неупорядоченной фазы,

 // 1 для частиц, участвующих в формировании кристаллических структур

 for (int i = 0; i < num; i++)

 {

 n = nnum[i] + 1; // nnum считается в genpair на основе координат

частиц;

 if (n - 1 >= _ddl.minClSize)

// n - число частиц, образующих кристаллический зародыш

// minClSize - минимальный размер зародыша, определяемый условием корреллирован-

ности

 {

 lq = new int[n];

 lq[0] = i;

 for (int j = 1; j < n; j++) { lq[j] = neighbor[i][j - 1]; }

 idcl = true;

 for (int j = 0; j < n; j++)

 {

 res = 0;

 for (int m = -6; m <= 6; m++)

 {

 res += Q6m_tilda[i, m + 6].r * Q6m_tilda[lq[j], m +

6].r + Q6m_tilda[i, m + 6].i * Q6m_tilda[lq[j], m + 6].i;

// Расчет параметра коррелированности S;

 }

 if (Math.Abs(res) <= 0.5) { idcl = false; }

 }

 if (idcl)

 {

 _ddl.ClusterID[i] = 1; _ddl.indexCount++;

}

23

 }

 }

 _ddl.Total_Particles = _ddl.indexCount;

// _ddl.Total_Particles - определяет общее число частиц в системе, участвующих в

формировании кристаллических структур;

24

Библиографический список

1. Галимзянов, Б.Н. Основы моделирования молекулярной динамики: учеб-

ное пособие / А.В. Мокшин, Б.Н. Галимзянов. – М.–Ижевск: Институт компью-

терных технологий, 2018. – 106 с.

2. Галимзянов, Б.Н. Молекулярная динамика при структурных трансформа-

циях и фазовых переходах в неупорядоченных системах / Б.Н. Галимзянов, А.В.

Мокшин. – Казань: Казан. ун-т, 2017. – 159 с.

3. Хуснутдинов, Р.М. Конспект лекций по курсу «Вычислительная физика«

(учебно-методическое пособие) / Р.М. Хуснутдинов, А.В. Мокшин. – Казань:

РИЦ Школа, 2021. – 35 с.

4. Хуснутдинов, Р.М. Сборник задач по курсу «Вычислительная физика«

(учебно-методическое пособие) / Р.М. Хуснутдинов, А.В. Мокшин. – Казань:

РИЦ Школа, 2021. – 47 с.

5. Stukowski, A. Visualization and analysis of atomistic simulation data with

OVITO – the Open Visualization Tool Modelling / A. Stukowski. – Simul. Mater. Sci.

Eng. 18. – 2010. – p. 015012.

6. Allen, M.P. Computer Simulation of Liquids / M.P. Allen and D.J. Tildesley. –

Oxford: Clarendon Press, 1987. – 404 pp.

7. Гулд, Х. Компьютерное моделирование в физике / Х. Гулд, Я. Тобочник. –

М.: Мир, 1990. – 350 c.

8. Товбина, Ю.К. Метод молекулярной динамики в физической химии / Под

ред. проф. Ю.К. Товбина. – М.: Наука, 1996. – 334 c.

9. Браун, А.Г. Основы статистической физики: Учебное пособие / А.Г. Браун,

И.Г. Левитина. – 3-e изд. – М.: НИЦ ИНФРА-М, 2015. – 120 с.

10. Steinhardt, P.J. Bond-orientational order in liquids and glasses / P.J. Steinhardt,

D.R. Nelson, M. Ronchetti // Phys. Rev. B. -1983. -Vol.28. -P.784.

25

11. Wolde, P. Numerical Evidence for bcc Ordering at the Surface of a Critical fcc

Nucleus / P. ten Wolde, M. Ruiz-Montero, and D. Frenkel // Phys. Rev. Lett. -1995. -

Vol.75. -P.2714.

26

Приложение. Присоединенные полиномы Лежандра

Расчет присоединенных полиномов Лежандра 𝑃𝑛
𝑚 в случаях 𝑛 = 𝑚 и 𝑛 =

𝑚 + 1 производится на основе следующих выражений:

𝑃𝑙
𝑙(𝑥) = (−1)𝑙(2𝑙 − 1)‼ (1 − 𝑥2)

1

2 (1)

𝑃𝑙+1
𝑙 (𝑥) = 𝑥(2𝑙 + 1)𝑃𝑙

𝑙(𝑥). (2)

В выражении (1) применяется двойной факториал. Двойной факториал

числа 𝑛 определяется произведением всех натуральных чисел в отрезке [1, 𝑛],

имеющих ту же четность, что и 𝑛. В случае нечетного 𝑛:

𝑛‼ = 1 ⋅ 3 ⋅ 5 ⋅ … ⋅ 𝑛. (3)

В остальных случаях применяется рекуррентное соотношение:

(𝑙 − 𝑚)𝑃𝑙
𝑚(𝑥) = 𝑥(2𝑙 − 1)𝑃𝑙−1

𝑚 (𝑥) − (𝑙 + 𝑚 − 1)𝑃𝑙−2
𝑚 (𝑥). (4)

Расчет значений присоединенных полиномов Лежандра производится при

помощи функции «legendre», представленной ниже.

double legendre(int l, int m, double x)

 {

 double fact, pll, pmm, pmmp1, somx2;

 pll = new double();

 int i, ll;

 pmm = 1.0f;

 if (m > 0)

 {

 somx2 = Math.Sqrt((1.0 - x) * (1.0 + x));

 // Выражение (1-x^2)^(1/2)

 fact = 1.0f; // переменная fact участвует при расчете факториала

 for (i = 1; i <= m; i++)

 {

 pmm *= -fact * somx2;

 fact += 2.0f;

// каждую итерацию fact увеличивается на 2, таким образом достигается расчет двой-

ного факториала (2l-1)!!

 }

 // В цикле происходит расчет присоединенного полинома Лежандра P при l=m;

 }

27

 if (l == m) { return pmm; }

 else

 {

 pmmp1 = x * (2 * m + 1) * pmm;

 // Расчет присоединенного полинома Лежандра при l = m+1

 if (l == (m + 1)) { return pmmp1; }

 else

 {

 for (ll = m + 2; ll <= l; ll++)

 {

 pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) /

(ll - m);

 pmm = pmmp1;

 pmmp1 = pll;

 }

 // Расчет присоединенных полиномов Лежандра при помощи рекуррентных соот-

ношений

 return pll;

 }

 }

 }

