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Предисловие 

 

В настоящем учебно-методическом пособии представлен теоретический и 

практический материал по проведению кластерного и структурного анализа ре-

зультатов молекулярно-динамических расчетов. Пособие состоит из двух частей. 

В первой части приводится краткий теоретический материал с инструкциями и 

справочной информацией по работе с вычислительным пакетом LAMMPS. Пред-

ставленные инструкции позволяют выполнить численное моделирование про-

цесса кристаллизации модельной системы Леннарда-Джонса.    

Во второй части представлены коды на языке C# для программной реали-

зации кластерного и структурного анализа результатов молекулярно-динамиче-

ских расчетов.  

Учебное пособие предназначено для студентов и аспирантов физических 

специальностей высших учебных заведений при изучении дисциплин, связанных 

с компьютерным моделированием. Пособие составлено с целью повышения эф-

фективности организации самостоятельной работы и аудиторных занятий сту-

дентов очного отделения. 
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1. МОЛЕКУЛЯРНО-ДИНАМИЧЕСКОЕ МОДЕЛИРОВАНИЕ 

ПРОЦЕССА КРИСТАЛЛИЗАЦИИ В ВЫЧИСЛИТЕЛЬНОМ 

ПАКЕТЕ LAMMPS 

 

LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) - один 

из наиболее известных вычислительных пакетов для выполнения молекулярно-

динамического моделирования. Широкая известность LAMMPS обусловлена 

тем, что данный вычислительный пакет включает в себя большую обновляемую 

библиотеку потенциалов межчастичного взаимодействия, позволяющих модели-

ровать поведение различных систем: металлов, полупроводников, биомолекул, 

полимерных систем и др. Важным достоинством LAMMPS является возмож-

ность распараллеливания расчетов в соответствии с MPI (Message Passing 

Interface), что позволяет многократно повысить производительность вычислений 

на многопроцессорных компьютерах, вычислительных кластерах и суперкомпь-

ютерах. Возможна компиляция исходных кодов под различные операционные 

системы (Linux, OS X, Windows), а также имеется большое количество различ-

ных опций компиляции, которые позволяют создавать исполняемый файл под 

конкретную архитектуру процессора и архитектуру графического процессора. 

Учебник с описанием всех возможностей данного пакета опубликован на офици-

альном сайте разработчиков по ссылке: https://www.lammps.org/tutorials.html. До-

полнительная полезная информация об основах проведения молекулярно-дина-

мических расчетов с помощью вычислительного пакета LAMMPS представлена 

в работах [1-4]. 
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1.1 Запуск расчетов 

 

Для запуска расчетов в вычислительном пакете LAMMPS понадобятся сле-

дующие файлы:  

• Исполняемый файл lmp_serial.exe (в случае однопоточных вычислений) 

• script-файл, содержащий детали моделирования (примеры находятся по 

следующему пути: корневая папка LAMMPS\Examples) 

Данные файлы должны находиться в одной папке. LAMMPS не имеет гра-

фического интерфейса (только командный режим), поэтому запуск расчетов осу-

ществляется через командную строку. Командную строку можно запустить через 

диалоговое окно «Выполнить» - для этого необходимо зажать сочетание клавиш 

«WIN + R», в открывшемся окне ввести cmd. Альтернативный способ открытия 

командной строки - в строке поиска (находится рядом с кнопкой «Пуск») ввести 

cmd.  

В командной строке для выбора директории следует набрать команду cd и 

указать путь к папке, где располагаются script-файл и исполняемый файл. Далее 

необходимо набрать lmp_serial.exe (название исполняемого файла) и <in.melt 

(символ < + название скрипт-файла с символом) и нажать кнопку Enter. Пример 

запуска расчетов с помощью командной строки представлен на рисунке 1. 
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Рис. 1. Пример запуска расчетов с помощью командной строки. 

«lamps_LJmelt» – название папки, в которой располагаются script-файл 

и исполняемый файл «lmp_serial.exe». «in.melt» –  название script-файла 

 

1.2 Скрипт-файлы для моделирования кристаллизации 

 

Далее будут представлены скрипт-файлы, позволяющие смоделировать 

кристаллизацию переохлажденной однокомпонентной системы Леннарда-

Джонса в LAMMPS. 

Этап 1. Получение исходного образца 

 

Скрипт-файл: in_equi.melt 
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Данный скрипт-файл позволяет получить систему 13500 частиц, взаимо-

действующих на основе потенциала Леннарда-Джонса. Температура и давление 

системы составляют 2.5 𝜖/𝑘𝐵 и 2.0𝜖/𝜎3 , соответственно. В ходе выполнения 

расчетов каждые 10’000 временных шагов будет создаваться конфигурационный 

рестарт-файл, содержащий координаты всех частиц в исходном жидком образце. 

Таким образом, в случае успешного завершения расчетов, состоящих из 100’000 

временных шагов, в папке будет создано 10 рестарт-файлов (как показано на ри-

сунке 2).  

Наличие рестарт-файлов необходимо для выполнения независимых симу-

ляций и проведения статистической обработки получаемых результатов.   

 

 

Рис. 2. Результат выполнения скрипт-файла in_equi.melt 

 

Отчет о выполненных расчетах помещается в файл «log.lammps». В этот 

же файл записывается информация об ошибках, в случае их возникновения.  

Следующий рестарт-файл «in_cool.melt»  задает охлаждение жидких об-

разцов, полученных на начальном этапе.  
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Этап 2. Охлаждение исследуемого образца 

 

 

Скрипт-файл: in_cool.melt 

 

В результате выполнения данного скрипт-файла будет получен рестарт-

файл, содержащий информацию о положении частиц после охлаждения до тем-

пературы 0.5 𝜖/𝑘𝐵 при постоянном давлении 2.0 𝜖/𝜎3. Обратите внимание, что 

в случае, когда в «read_restart» указывается только название рестарт-файла, дан-

ный файл должен находиться в одной папке с исполняемым и скрипт файлами. 

В некоторых случаях более удобно указывать полный путь к файлу, содержащий 

корневой каталог и все сопутствующие папки. Полный путь к файлу может ука-

зываться и в строках «restart», «dump». Пример полного пути к файлу: 

«C:\Lammps\ restart_lj_T2.5_PT.equil.10000». 
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Этап 3. Получение dump-файлов кристаллизующейся системы 

 

 

Скрипт-файл: in_dump.melt 

 

После выполнения скрипт-файла in_dump.melt будет создан dump-файл 

«S1_dump_ljmelt_T0.5_file.txt». Содержание дамп-файла представлено на ри-

сунке 3. Впоследствии на основе dump-файла производится идентификация 

наличия упорядоченных структур в системе.  
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Рис. 3. Структура dump-файла 

 

Как видно из рисунка, в dump-файле содержится детальная информация об 

исследуемой ячейке моделирования: количество выполненных шагов моделиро-

вания, количестве частиц в системе, их координаты, параметры исследуемой 

ячейки моделирования.  

 

1.3 Идентификация кристаллических структур на основе результатов 

молекулярно-динамических расчетов 

 

Одним из наиболее часто применяемых методов при проведении кластер-

ного и структурного анализа является метод, основанный на расчете параметров 

локального ориентационного порядка: 

𝒒𝒎
𝒍 (𝒊) =

𝟏

𝑵𝒃(𝒊)
∑ 𝒀𝒎

𝒍 (𝒓𝒊𝒋)

𝑵𝒃(𝒊)

𝒋=𝟏 

. 

 

(1) 
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Здесь 𝑁𝑏(𝑖) - количество ближайших соседей у частицы 𝑖, 𝑙 - целочислен-

ный параметр, 𝑚 - параметр, принимающий значения от 𝑚 = −𝑙 до 𝑚 = +𝑙.  

𝑌𝑚
𝑙 (𝒓) = 𝑌𝑚

𝑙 (𝜃(𝒓), 𝜙(𝒓)) −  сферические гармоники, 𝜃(𝒓) и 𝜙(𝒓) − зенитный и 

азимутальный углы, соответственно.  

 

 

Рис. 4. Сферические координаты  𝜃 и 𝜙 для произвольной точки M 

 

Связь между сферическими координатами 𝜃 и 𝜙 и декартовыми координа-

тами 𝑥, 𝑦, 𝑧 описывается следующими соотношениями:  

 

𝝓 = 𝒂𝒓𝒄𝒕𝒈
𝒚

𝒙
  

(𝟐) 

𝜽 = 𝐚𝐫𝐜𝐜𝐨𝐬
𝒛

√𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐
 

 

Расчет сферических гармоник производится на основе следующего выра-

жения: 
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𝑌𝑚
𝑙 (𝜃, 𝜙) = √

2𝑚 + 1

4𝜋

(𝑚 − 𝑙)!

(𝑚 + 𝑙)!
 𝑃𝑚

𝑙 (𝑐𝑜𝑠𝜃)𝑒𝑖𝑙𝜙, 

 

(3) 

 

где 𝑃𝑚
𝑙  - присоединенные полиномы Лежандра.  

Идентификация частиц, участвующих в формировании кристаллических 

структур, осуществляется на основе значения скалярного произведения усред-

ненных параметров локального ориентационного порядка 𝑞𝑚
𝑙  для частиц 𝑖 и 𝑗: 

𝑆𝑖𝑗 = ∑ 𝑞6𝑚(𝑖)𝑞6𝑚
∗ (𝑗)

6

𝑚=−6

 

 

(4) 

 

Частицы 𝑖 и 𝑗 являются «соединенными» в случае, если 𝑆𝑖𝑗 > 0.5. Частица 

считается solidlike, то есть участвующей в формировании кристаллических 

структур, если в её окружении имеется как минимум 6 частиц с выполняющимся 

условием (4) [10,11].  
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2. ПРОГРАММНАЯ РЕАЛИЗАЦИЯ ОБРАБОТКИ РЕЗУЛЬТАТОВ 

МД РАСЧЕТОВ  

 

В данном параграфе представлена программная реализация основных про-

цедур, необходимых при проведении кластерного анализа результатов молеку-

лярно-динамических расчетов. Представленные программные коды написаны на 

языке C#.  

 

2.1 Подготовка скрипт-файлов для проведения кластерного анализа  

 

Для задания условий проведения кластерного и структурного анализа ре-

зультатов молекулярно-динамических расчетов, как правило, применяется 

скрипт-файл. На рисунке далее представлен пример скрипт-файла. В представ-

ленном скрипт-файле содержится информация о количестве частиц в исследуе-

мой ячейке моделирования, количество временных итераций, содержащихся в 

dump-файле, путь к dump-файлу, а также задан шаг, с которого начинается про-

ведение кластерного и структурного анализа. Содержание скрипт-файла может 

изменяться в зависимости от специфики проводимого кластерного анализа.  

 

 

Рис. 5. Пример скрипт-файла «CS_Script.ini»  

 

Считывание скрипт-файла реализуется при помощи кода, представленного 

далее.  

#region Load_Script 

            Console.Write("Load parameters from script file: "); 

            FileStream fscript = new FileStream("CS_Script.ini", FileMode.Open); 
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            StreamReader rscript = new StreamReader(fscript); 

st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, idx + 1); 

            _ddl.N = Convert.ToInt32(sts); 

            st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

            _ddl.Step = Convert.ToInt32(sts); 

            st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

            fstep = Convert.ToInt32(sts); 

            st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

           st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

            pos_address = sts; 

            st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

            _ddl.cutoff = Convert.ToSingle(sts); 

            st = rscript.ReadLine(); idx = st.IndexOf(" "); sts = st.Remove(0, 

idx + 1); 

            Console.WriteLine("Completed"); 

            Console.WriteLine("Start the cluster analysis:"); 

            Console.WriteLine("--------------------------"); 

  #endregion 

 

 

В представленном коде для чтения скрипт-файла применяются классы 

«FileStream» и «StreamReader», входящие в состав пространства имен 

«System.IO». (Детальная информация о пространстве имён «System.IO» распола-

гается по адресу: https://docs.microsoft.com/ru-ru/dotnet/api/system.io?view=net-

6.0). Метод ReadLine () считывает строку из указанного в FileStream входного 

потока (файла). Извлечение интересующих численных значений происходит при 

помощи метода IndexOf(). Обратите внимание, что файл «CS_Script.ini» должен 

располагаться в той же папке, что и исполняемый файл программы кластерного 

анализа. 
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2.2 Считывание координат частиц из dump-файлов 

 

На следующем этапе необходимо считать координаты частиц, содержа-

щихся в dump-файле. Представленный далее программный код позволяет решить 

поставленную задачу. 

 
        FileStream fsp = new FileStream(pos_address, FileMode.Open); 

            StreamReader strp = new StreamReader(fsp); 

            for (int step = 1; step <= _ddl.Step; step++) 

            { 

                _ddl.VMDid_count++; 

                _ddl.currentStep++; 

                #region load_positions 

                st = strp.ReadLine(); 

                st = strp.ReadLine(); 

                st = strp.ReadLine(); 

                st = strp.ReadLine(); 

                st = strp.ReadLine(); 

                st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" "); 

                st1 = st.Substring(0, idx); 

                sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ","); 

                _ddl.box_x = Convert.ToSingle(dfg);  

                // Переменные box_x, box_y, box_z несут информацию о параметрах 

ячейки моделирования 

                st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" "); 

                st1 = st.Substring(0, idx); 

                sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ","); 

                _ddl.box_y = Convert.ToSingle(dfg);  

                st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" "); 

                st1 = st.Substring(0, idx); 

                sts = st.Remove(0, idx + 1); dfg = sts.Replace(".", ","); 

                _ddl.box_z = Convert.ToSingle(dfg); 

                st = strp.ReadLine(); 

                for (int i = 0; i < _ddl.N; i++) 

                { 

                    st = strp.ReadLine(); sts = st; idx = sts.IndexOf(" "); 

                    st1 = st.Substring(0, idx); 

                    sts = st.Remove(0, idx + 1); idx = sts.IndexOf(" "); 

                    dfg = sts.Substring(0, idx); dfg = dfg.Replace(".", ","); 

                    st1 = dfg; 
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                    st = sts.Remove(0, idx + 1); idx = st.IndexOf(" "); 

                    dfg = st.Substring(0, idx); dfg = dfg.Replace(".", ","); 

                    _ddl.pos[i, 0] = Convert.ToSingle(dfg);  

                    // В массив pos[][] записываются координаты частиц  

                    // Столбец pos[][0] - содержит координаты частиц по оси X,  

//pos[][1] - по оси Y, pos[][2] - по оси Z  

                    sts = st.Remove(0, idx + 1); idx = sts.IndexOf(" "); 

                    dfg = sts.Substring(0, idx); dfg = dfg.Replace(".", ","); 

                    _ddl.pos[i, 1] = Convert.ToSingle(dfg); 

                    st = sts.Remove(0, idx + 1); idx = st.IndexOf(" "); 

                    st = st.Replace(".", ","); 

                    _ddl.pos[i, 2] = Convert.ToSingle(st); 

                } 

                #endregion 

                Console.WriteLine("Step " + step.ToString() + ": "); 

 

Для информирования пользователя о ходе выполнения программы реали-

зован вывод номера шага работы программы через метод Console.WriteLine().  

Двумерный массив _ddl.pos[][]  содержит информацию о координатах всех ча-

стиц системы. Схематическое представление массива _ddl.pos[][] представлено 

на рисунке 6.  

 

 

Рис. 6 Схематическое представление массива _ddl.pos[][] 
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Обратите внимание на то, что в языке C# индексация элементов массива 

начинается с 0. 

2.3 Определение «частиц-соседей» 

 

Для того, чтобы рассчитать параметр ориентационного порядка, необхо-

димо составить список «ближайших соседей» каждой частицы исследуемой си-

стемы. Две частицы считаются «соседями», если они лежат на расстоянии 1.2𝑟0, 

где 𝑟0 определяется минимумом потенциала Леннарда-Джонса. В более общем 

случае 𝑟0 может определяться положением первого пика функции радиального 

распределения 𝑔(𝑟). При таком определении все частицы первой координацион-

ной сферы будут считаться «ближайшими соседями».  

Реализация поиска «частиц-соседей» может быть выполнена при помощи 

процедуры genPair(), представленной далее. 

void genPair() 

        { 

  for (int k=0; k<num; k++) { nnum[k] = 0; } 

  // Элемент массива nnum[i] определяет количество "соседей" у частицы i   

            for (int i = 0; i < num; i++)  

            { 

                for (int j = 0; j < num; j++) 

                {  

                    if (i == j) { j++; }  

 

                double dr2, drx, dry, drz; 

                drx = q[i].x - q[j].x; 

                dry = q[i].y - q[j].y; 

                drz = q[i].z - q[j].z; 

                #region block_distans 

 

                _ddl.Sij1 = (float)(drx / _ddl.box_x);  

    // Sij1 определяет расстояние между частицами i и j; 

                _ddl.Sij2 = (float)(dry / _ddl.box_y); 

                _ddl.Sij3 = (float)(drz / _ddl.box_z); 

                if (Math.Abs(_ddl.Sij1) > 0.5) { _ddl.Sij1 = _ddl.Sij1 - 

Math.Sign(_ddl.Sij1); }  

 // Определение расстояний между частицами с учетом граничных условий  

                if (Math.Abs(_ddl.Sij2) > 0.5) { _ddl.Sij2 = _ddl.Sij2 - 

Math.Sign(_ddl.Sij2); } 

                if (Math.Abs(_ddl.Sij3) > 0.5) { _ddl.Sij3 = _ddl.Sij3 - 

Math.Sign(_ddl.Sij3); } 

                dr2 = _ddl.box_x * _ddl.Sij1 * _ddl.box_x * _ddl.Sij1  

                    + _ddl.box_y * _ddl.Sij2 * _ddl.box_y * _ddl.Sij2 



19 

 

                    + _ddl.box_z * _ddl.Sij3 * _ddl.box_z * _ddl.Sij3; 

// dr2 - квадрат расстояния между частицами  

                #endregion 

                if (dr2 < cutoff * cutoff)  

       

                { 

                    neighbor[i][nnum[i]++] = j;   

                    neighbor[j][nnum[j]++] = i; 

// Элементы массива neighbor[i][] несут информацию об ID-номерах «соседей» i-ой 

частицы  

                } 

            } 

        } 

            } 

 
2.4 Расчет параметров локального ориентационного порядка 

 

Ниже представлена функция «sphHarmonic», позволяющая рассчитывать 

сферические гармоники, необходимые при расчете параметров локального ори-

ентационного порядка. Входными параметрами являются показатели 𝑙 и 𝑚, а 

также 𝑐𝑜𝑠𝜃 и угол 𝜙.  

 
complex sphHarmonic(int l, int m, double cosTheta, double phi) 

        { 

 

            int m1 = Math.Abs(m); 

            double c = Math.Sqrt((2 * l + 1) * factorial(l - m1) / (4 * Math.PI * 

factorial(l + m1)));  

            c *= legendre(l, m1, cosTheta); 

            // legendre выполняет расчет присоединенных полиномов Лежандра; '*' 

применяется для сокращения записи c=c*legendre; 

            complex y = new complex(); 

            double simp; 

            if (m == 1) { simp = -1.0f; } else { simp = 1.0f; } 

            if (m < 0) 

            { 

                y.r = Math.Cos(m1 * phi) * simp;   

                y.i = -Math.Sin(m1 * phi) * simp; 

                // разложение экспоненты exp(i*m*phi)на реальную и виртуальную ча-

сти в случае m<0; 

            } 

            else 

            { 

                y.r = Math.Cos(m1 * phi); 

                y.i = Math.Sin(m1 * phi); 

                // разложение экспоненты exp(i*m*phi)на реальную и виртуальную ча-

сти в случае m>0; 

            } 

            complex cmp = new complex(); 
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            cmp.r = y.r * c; 

            cmp.i = y.i * c; 

            // cmp содержит итоговые значений реальной и мнимой частей сферической 

гармоники ; 

            return cmp; 

        } 

 

Расчет параметров локального ориентационного порядка производится 

при помощи функции «w», представленной далее.  

  public double w(int l, Vector[] p, int n) 

            // p содержит координаты частицы, n - определяет количество "соседей"; 

        { 

            if (n < 1) { return 1.0e-138f; }  

            // Исключение из рассмотрения частиц без "соседей"  

            cosTheta = new double[n];  

            phi = new double[n]; 

            for (long i = 0; i < n; i++) 

            { 

                if (fzero(p[i].x))  

                { 

                    if (fzero(p[i].y)) 

                    { 

                        phi[i] = 0; // определение угла phi в случае x=0;y=0; 

                    } 

                    else 

                    { 

                        if (p[i].y > 0) //  

                        { 

                            phi[i] = Math.PI / 2.0; 

 // Определение угла phi в случае x=0, y>0  

                        } 

                        else 

                        { 

                            phi[i] = 3.0 * Math.PI / 2.0;  

// Определение угла phi в случае x=0; y<0  

                        } 

                    } 

                }  

                else 

                { // Определение phi в случае ненулевого значения x 

                    phi[i] = Math.Atan(p[i].y / p[i].x); 

                    if (p[i].x < 0.0) { phi[i] += Math.PI; }  
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                    else { if (p[i].y < 0) { phi[i] += 2.0 * Math.PI; } } 

                } 

                cosTheta[i] = p[i].z / Math.Sqrt(p[i].x * p[i].x + p[i].y * p[i].y 

+ p[i].z * p[i].z);  

                // Определение cosTheta  

            } 

            Q = new complex[2 * l + 1];  

            // Q имеет размерность 2l+1, поскольку суммирование ведется от -l до 

l, включая 0 

            Q[l].r = 0; Q[l].i = 0;  

            for (int j = 0; j < n; j++)  

                // Суммирование ведется по числу "соседей" n 

            { 

                Q[l].r += sphHarmonic(l, 0, cosTheta[j], phi[j]).r;  

                Q[l].i += sphHarmonic(l, 0, cosTheta[j], phi[j]).i;  

               // Расчет реальной и мнимой частей Q при m=0; 

                for (int m = 1; m <= l; m++) 

                { 

                    c = new complex(); 

                    c = sphHarmonic(l, m, cosTheta[j], phi[j]);   

                    Q[m + l].r += c.r; 

                    Q[m + l].i += c.i; 

                    double sign; 

                    if (m == 1) { sign = -1.0f; } else { sign = 1.0f; } 

                    Q[-m + l].r += sign * c.r; 

                    Q[-m + l].i += -sign * c.i; 

                } 

            } 

            for (int m = -l; m <= l; m++) 

            { 

                Q[m + l].r /= n; 

                Q[m + l].i /= n; 

                // Расчет параметра qlm 

            } 

     

            double sum = 0; 

            for (int m = -l; m <= l; m++) 

            { 

                sum += Q[m + l].r * Q[m + l].r + Q[m + l].i * Q[m + l].i; 

            } 

            if (l == 6) 
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            { 

                for (int m = -l; m <= l; m++) 

                { 

                    Q6m_tilda[iID - 1, m + l].r = Q[m + l].r / Math.Sqrt(sum); 

                    Q6m_tilda[iID - 1, m + l].i = Q[m + l].i / Math.Sqrt(sum); 

                } 

            } 

            qLoad = Math.Sqrt((4.0 * Math.PI / (2.0 * l + 1)) * sum); 

            // Расчет усредненного параметра ql 

            return qLoad; 

        } 

 

2.5 Идентификация частиц, участвующих в формировании 

кристаллических структур 

 

_ddl.indexCount = 0; 

            for (int i = 0; i < _ddl.N; i++) { _ddl.ClusterID[i] = 0; } // ClusterID 

- принимает 0 для частиц материнской неупорядоченной фазы,  

            // 1 для частиц, участвующих в формировании кристаллических структур 

            for (int i = 0; i < num; i++) 

            { 

                n = nnum[i] + 1; // nnum считается в genpair на основе координат 

частиц;  

                if (n - 1 >= _ddl.minClSize)  

// n - число частиц, образующих кристаллический зародыш 

// minClSize - минимальный  размер зародыша, определяемый условием корреллирован-

ности 

                { 

                    lq = new int[n]; 

                    lq[0] = i; 

                    for (int j = 1; j < n; j++) { lq[j] = neighbor[i][j - 1]; } 

                    idcl = true; 

                    for (int j = 0; j < n; j++) 

                    { 

                        res = 0; 

                        for (int m = -6; m <= 6; m++) 

                        { 

                            res += Q6m_tilda[i, m + 6].r * Q6m_tilda[lq[j], m + 

6].r + Q6m_tilda[i, m + 6].i * Q6m_tilda[lq[j], m + 6].i;   

// Расчет параметра коррелированности S; 

                        } 

                        if (Math.Abs(res) <= 0.5) { idcl = false; } 

                    } 

                    if (idcl) 

                    { 

                        _ddl.ClusterID[i] = 1; _ddl.indexCount++; 

} 
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                } 

            } 

            _ddl.Total_Particles = _ddl.indexCount; 

// _ddl.Total_Particles - определяет общее число частиц в системе, участвующих в 

формировании кристаллических структур; 
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Приложение. Присоединенные полиномы Лежандра 

 

Расчет присоединенных полиномов Лежандра 𝑃𝑛
𝑚 в случаях 𝑛 = 𝑚 и 𝑛 =

𝑚 + 1 производится на основе следующих выражений: 

𝑃𝑙
𝑙(𝑥) = (−1)𝑙(2𝑙 − 1)‼ (1 − 𝑥2)

1

2 (1) 

𝑃𝑙+1
𝑙 (𝑥) = 𝑥(2𝑙 + 1)𝑃𝑙

𝑙(𝑥). (2) 

 

В выражении (1) применяется двойной факториал. Двойной факториал 

числа 𝑛 определяется произведением всех натуральных чисел в отрезке [1, 𝑛], 

имеющих ту же четность, что и 𝑛. В случае нечетного 𝑛: 

𝑛‼ = 1 ⋅ 3 ⋅ 5 ⋅ … ⋅ 𝑛. (3) 

 

В остальных случаях применяется рекуррентное соотношение: 

(𝑙 − 𝑚)𝑃𝑙
𝑚(𝑥) = 𝑥(2𝑙 − 1)𝑃𝑙−1

𝑚 (𝑥) − (𝑙 + 𝑚 − 1)𝑃𝑙−2
𝑚 (𝑥). (4) 

 

Расчет значений присоединенных полиномов Лежандра производится при 

помощи функции «legendre», представленной ниже. 

double legendre(int l, int m, double x) 

        { 

            double fact, pll, pmm, pmmp1, somx2; 

            pll = new double(); 

            int i, ll; 

            pmm = 1.0f; 

            if (m > 0) 

            { 

                somx2 = Math.Sqrt((1.0 - x) * (1.0 + x));  

                // Выражение (1-x^2)^(1/2) 

                fact = 1.0f; // переменная fact участвует при расчете факториала 

                for (i = 1; i <= m; i++) 

                { 

                    pmm *= -fact * somx2; 

                    fact += 2.0f;  

// каждую итерацию fact увеличивается на 2, таким образом достигается расчет двой-

ного факториала (2l-1)!! 

 

                } 

         // В цикле происходит расчет присоединенного полинома Лежандра P при l=m;  

            } 
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            if (l == m) { return pmm; } 

            else 

            { 

                pmmp1 = x * (2 * m + 1) * pmm;   

                // Расчет присоединенного полинома Лежандра при l = m+1  

                if (l == (m + 1)) { return pmmp1; } 

                else 

                { 

                    for (ll = m + 2; ll <= l; ll++) 

                    { 

                        pll = (x * (2 * ll - 1) * pmmp1 - (ll + m - 1) * pmm) / 

(ll - m); 

                        pmm = pmmp1; 

                        pmmp1 = pll; 

                    } 

       // Расчет присоединенных полиномов Лежандра при помощи рекуррентных соот-

ношений 

                    return pll; 

                } 

            } 

        } 

 


