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UDK 530.145INTERNAL SPACE-TIME SYMMETRIES ACCORDINGTO EINSTEIN, WIGNER, DIRAC, AND FEYNMANY.S. Kim, M.E. NozAbstra
tWhen Einstein formulated his spe
ial relativity in 1905, he established the law of Lorentztransformations for point parti
les. It is now known that parti
les have internal spa
e-timestru
tures. Parti
les, su
h as photons and ele
trons, have spin variables. Protons and otherhadrons are regarded as bound states of more fundamental parti
les 
alled quarks whi
h havetheir internal variables. It is still one of the most outstanding problems whether these internalspa
e-time variables are transformed a

ording to Einstein's law of Lorentz transformations.It is noted that Wigner, Dira
, and Feynman made important 
ontributions to this problem.By integrating their e�orts, it is then shown possible to 
onstru
t a pi
ture of the internalspa
e-time symmetry 
onsistent with Einstein's Lorentz 
ovarian
e.Key words: internal spa
e-time symmetries, Wigner's little groups, Lorentz 
ovarian
e,Lorentz squeeze, standing waves, bound states, harmoni
 os
illators.Introdu
tionIt took Issa
 Newton twenty years to extend his law of gravity from two parti
lesto two extended obje
ts, su
h as the sun and the earth. To do this, he had to developa new mathemati
s now 
alled integral 
al
ulus.When Einstein formulated his spe
ial relativity in 1905, his transformation law wasfor point parti
les. We still do not know what happens to 
lassi
al rigid bodies, butquantum me
hani
s allows us to repla
e those by standing waves. In the 
ase of hydrogenatom, one 
an argue that the 
ir
ular orbit appears as an ellipse to a moving observer [1℄,but not mu
h has been done beyond this.In quantum me
hani
s, the hydrogen atom is a lo
alized probability distribution
onstru
ted from a standing wave solution of S
hr�odinger's wave equation. We do notobserve too often hydrogen atoms moving with relativisti
 speed, but relativisti
-speedprotons are abundantly produ
ed from a

elerators. Like the hydrogen atom, the protonis a bound state. The 
onstituents are the quarks.In 1939 [2℄, Eugene Wigner published a paper on the little groups of the Lorentzgroup whose transformations leave the four-momentum of a given parti
le invariant.He showed that the little groups for parti
les with non-zero mass are isomorphi
 tothe three-dimensional rotation group. If the parti
le is at rest, this symmetry group isthe three-dimensional rotation group. In this way, Wigner was able to de�ne the par-ti
le's spin as a spa
e-time variable in the Lorentz-
ovariant world. In 1939, 
ompositeparti
les, su
h as hadrons in the quark model, were unthinkable.In a series of papers from 1927 to 1963, Paul A.M. Dira
 attempted to 
onstru
ta Lorentz-
ovariant pi
ture of lo
alized wave fun
tions. In 1927 [3℄, he produ
ed the
on
ept of the 
-number time-energy un
ertainty relation and noted the basi
 spa
e-timeasymmetry. In 1945 [4℄, he 
onsidered the possibility of harmoni
 os
illators whi
h 
anbe Lorentz-transformed. In 1949 [5℄, he formulated the te
hnique of light-
one variablesto deal with Lorentz boosts. In 1963 [6℄, Dira
 observed that two 
oupled os
illators 
an
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e the symmetry of the Lorentz group of three spa
e 
oordinates and two timevariables.In 1971 [7℄, Feynman et al. attempted to understand the hadroni
 mass spe
tra interms of the degenera
ies of the three-dimensional harmoni
 os
illator. In so doing, theywrote down a harmoni
 os
illator di�erential equation whi
h takes the same form forall Lorentz frames. This Lorentz-invariant di�erential equation has many di�erent solu-tions, but they 
hose a set of solutions that violate all the rules of quantum me
hani
sand relativity. We show in this paper that their equation 
an have solutions whi
h are
onsistent with the observations made earlier by both Wigner and Dira
.In 1969 [8, 9℄, Feynman had observed that the ultra-fast proton 
an appear like a
olle
tions of partons while the proton is like a bound state of quarks. Sin
e the partonshave properties quite di�erent than those of the quarks, Feynman's parton pi
turepresents a nontrivial 
ovarian
e problem. In 1905, Einstein had the problem of showingthat the energy-momentum relation takes di�erent forms for slow and fast parti
les.In this paper, we review the e�orts made by Wigner, Dira
, and Feynman in Se
-tions 1, 2, and 3 respe
tively. We then integrate their 
ontributions in Se
tion 4 toprodu
e a Lorentz-
ovariant pi
ture of quantum bound states. Finally, in Se
tion 5, wedis
uss experimental 
onsequen
es of this 
ovariant formalism.1. Wigner's little groupsIn his 1939 [2℄, Wigner 
onstru
ted subgroups of the Lorentz group whose transfor-mations leave the four-momentum of a given parti
le invariant. They are 
alled the littlegroups. The little groups are isomorphi
 to the O(3) and to O(2, 1) groups if the parti
lemomentum is time-like and spa
e-like respe
tively. If the four-momentum is light-like,the little group is isomorphi
 to the two-dimensional Eu
lidean group. Sin
e the mo-mentum remains invariant, the little groups di
tate the internal spa
e-time symmetriesof parti
les in the Lorentz-
ovariant world.Sin
e it is well known that the SL(2, c) group serves as the 
overing group of theLorentz group, it is possible to explain Wigner's little groups in terms of two-by-twomatri
es. Let us 
onsider the unimodular matrix
(

A B
C D

)

,where all four elements are real numbers with (AD − BC) = 1. There are thus threeindependent parameters. This matrix 
an then be rotated to one of the following equi-diagonal matri
es.
(

cos θ −e−η sin θ
eη sin θ cos θ

)

,

(

coshλ e−η sinhλ
eη sinhλ coshλ

)

,

(

1 0
γ 1

)

. (1)This is purely a mathemati
al statement. However, they form the basis for Wigner'slittle groups for massive parti
les, imaginary-mass parti
les, and massless parti
les re-spe
tively [10℄.Let us look at the �rst matrix in (1). It 
an be written as
(

e−η/2 0

0 eη/2

) (

cos θ sin θ
sin θ cos θ

) (

eη/2 0

0 e−η/2

)

,whi
h 
orresponds to a Lorentz boost of the rotation matrix along the z dire
tion. Therotation matrix performs a rotation around the y axis. The little group for the massiveparti
le is a Lorentz-boosted rotation group.
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e of the energy-momentum relation, and 
ovarian
eof the internal spa
e-time symmetry groupsMassive, Slow COVARIANCE Massless, Fast
E = p2/2m Einstein's E = mc2 E = cp

S3 S3Wigner's Little Group
S1, S2 Gauge Trans.

 Harmonic 

Oscillators Feynman 

Diagrams

Einstein
Wigner

Fig. 1. A

ording to Einstein, point parti
les obey the Lorentz transformation law. We ex-pe
t that the extended parti
les should obey the same law. Transformations of Wigner's littlegroups leave the external momentum invariant, but 
hange the internal spa
e-time variables.In quantum �eld theory, Feynman diagrams des
ribe running waves a

ording to Einstein'sLorentz 
ovarian
e. It is possible to 
onstru
t an os
illator-based model for internal spa
e-timestru
ture 
onsistent with Wigner and thus with EinsteinWigner noted in 1939 that, for a massive parti
le, there is a Lorentz frame where theparti
le is at rest. In this frame, rotations leave the parti
le four-momentum invariant;it 
an rotate internal spa
e-time variables. The parti
le spin is the prime example.Wigner noted further that the third matrix of Eq. (1) 
orresponds to the little groupfor massless parti
les. Then there are two questions. The �rst question is what physi
alvariable does γ 
orrespond to? The se
ond question is whether this triangular matrixis a limiting 
ase of the �rst matrix.Let us answer the se
ond question �rst. If the parti
le mass approa
hes zero, the ηparameter be
omes in�nitely large. If it is allowed to be
ome large with θeη/2 = γ, theangle θ has to be
ome zero with cos θ = 1. The variable γ is for the gauge transfor-mation. These answers have a stormy history, but a geometri
 pi
ture was developedby Kim and Wigner in 1990 [11℄. Wigner's little group is 
ompared with Einstein'senergy-momentum relation in Table 1.In 1939, it was unthinkable that the proton is a 
omposite parti
le and is a boundstate of the quarks. It 
an also move with a speed very 
lose to that of light. In Se
tion 3,we shall see whether this quantum bound state has the symmetry of Wigner's little groupusing harmoni
 os
illators. This plan is illustrated in Fig. 1.2. Dira
's attempts to make quantum me
hani
s Lorentz-
ovariantPaul A.M. Dira
 made it his lifelong e�ort to make quantum me
hani
s 
onsistentwith spe
ial relativity. In 1927 [3℄, Dira
 notes that there is an un
ertainty relationbetween the time and energy variables whi
h manifests itself in emission of photonsfrom atoms. He notes further that there are no ex
itations along the time or energyaxis, unlike Heisenberg's un
ertainty relation whi
h allows quantum ex
itations. Thus,
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Quantum Mechanics Lorentz Covariance

Lorentz-covariant Quantum Mechanics 

In the Real World

Proton Form Factor

   (1973)

Feynman's Parton Picture

   (1977)Fig. 2. Spa
e-time pi
ture of quantum me
hani
s. In his 1927 paper, Dira
 noted that thereis a 
-number time-energy un
ertainty relation, in addition to Heisenberg's position-momentumun
ertainty relations, with quantum ex
itations. This idea is illustrated in the �rst �gure (upperleft). In his 1949 paper, Dira
 produ
ed his light-
one 
oordinate system as illustrated in these
ond �gure (upper right). It is then not di�
ult to produ
e the third �gure, for a Lorentz-
ovariant pi
ture of quantum me
hani
sthere is a serious di�
ulty in 
ombining these relations in the Lorentz-
ovariant world.In 1945 [4℄, Dira
 
onsidered a four-dimensional harmoni
 os
illator and attemptedto 
onstru
t a representation of the Lorentz group using the os
illator wave fun
tions.However, he ended up with wave fun
tions whi
h do not appear to be Lorentz-
ovariant.In 1949 [5℄, Dira
 
onsidered three forms of relativisti
 dynami
s whi
h 
an be
onstru
ted from the ten generators of the Poin
ar�e group. He then imposed subsidiary
onditions ne
essitated by the existing form of quantum me
hani
s. In so doing, he endedup with in
onsisten
ies in all three of the 
ases he 
onsidered. On the other hand, heintrodu
ed the light-
one 
oordinate system whi
h allows us to perform Lorentz boostsas squeeze transformations [12℄In 1963 [6℄, he 
onstru
ted a representation of the O(3, 2) deSitter group using twoharmoni
 os
illators. Using step-up and step-down operators, he 
onstru
ted a beautifulalgebra, but he made no attempt to exploit the physi
al 
ontents of his algebra. Indeed,his representation now serves as the fundamental s
ienti�
 language for squeezed statesof light, further enfor
ing the point that Lorentz boosts are squeeze transformations [13℄.We 
an 
ombine Dira
's time-energy un
ertainty relations and his light-
one 
oor-dinate system to obtain a Lorentz-
ovariant pi
ture of quantum me
hani
s, as shownin Fig. 2. 3. Feynman's phenomenologi
al equationfor both s
attering and bound statesIn order to explain the hadron as a bound state of quarks, Feynman et al. start withtwo quarks whose spa
e-time 
oordinates are xa
µ and xb

µ respe
tively [7℄ by using the
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{

−
1

2

[

(

∂

∂xa
µ

)2

+

(

∂

∂xb
µ

)2
]

+
1

16

(

xa
µ − xb

µ

)2
+m2

0

}

φ
(

xa
µ, x

b
µ

)

= 0. (2)If we use the hadroni
 and the quark separation 
oordinates as
Xµ =

1

2

(

xa
µ + xb

µ

)

, xµ =
1

2
√

2

(

xa
µ − xb

µ

)

, (3)respe
tively, it is possible to 
onsider the separation of the variables:
φ

(

xa
µ, x

b
µ

)

= f (Xµ)ψ (xµ) .Then the di�erential equation 
an be separated into the following two equations.
{

(

∂

∂Xµ

)2

+m2
0 + (λ+ 1)

}

f (Xµ) = 0 (4)for the hadroni
 
oordinate, and
1

2

{

−

(

∂

∂xµ

)2

+ x2
µ

}

ψ (xµ) = (λ + 1)ψ (xµ) , (5)for the 
oordinate of quarks inside the hadron.The di�erential equation of Eq. (4) is a Klein �Gordon equation for the Lorentz-invariant hadroni
 
oordinate. The di�erential equation of Eq. (2) 
ontains thes
attering-state equation for the hadron, and the bound-state equation for the quarksinside the hadron. Additionally, it is Lorentz-invariant.However, in their paper [7℄, Feynman et al. did not 
onsider whether their solutionsare 
onsistent with the symmetry of Wigner's little group explained in Se
tion 1 of thepresent paper. Let us now 
onstru
t a representation of Wigner's little group using theos
illator solutions. As noted earlier [14, 15℄, a set of solutions for the os
illator equationof Eq. (5) 
orresponds to a representation of Wigner's O(3)-like little group for massiveparti
les. If the hadron is at rest, its wave fun
tion should satisfy the O(3) symme-try. We 
an a
hieve this goal by keeping the time-like os
illation in its ground state,and 
onstru
t an O(3)-symmetri
 spatial wave fun
tion using the spheri
al 
oordinatesystem. We 
an then write the solution as
ψ(x, y, z, t) =

[

(

1

π

)1/4

exp

(

−t2

2

)

]

ψ(x, y, z), (6)where the form of ψ(x, y, z) in the spheri
al 
oordinate system is well known. This spher-i
al solution 
an also be written as a linear 
ombination of solutions in the Cartesian
oordinate system, whi
h take the form
[

1

π
√
π2(a+b+n)a!b!n!

]1/2

Ha(x)Hb(y)Hn(z) exp

{

−

(

x2 + y2 + z2

2

)}

, (7)where Hn(z) is the Hermite polynomial.It is now possible to boost this solution along the z dire
tion. Sin
e the transverse
x and y 
oordinates are not a�e
ted by this boost, we 
an separate out these variablesin the os
illator di�erential equation of Eq. (5), and 
onsider the di�erential equation

1

2

{[

−

(

∂

∂z

)2

+ z2

]

−

[

−

(

∂

∂t

)2

+ t2

]}

ψ(z, t) = nψ(z, t). (8)
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z′ = (cosh η)z − (sinh η)t, t′ = (cosh η)t− (sinh η)z, eη =

√

1 + β

1 − β
, (9)where β = v/c .If we suppress the ex
itations along the t 
oordinate, the normalized solution of thisdi�erential equation is

ψ(z, t) =

(

1

π2nn!

)1/2

Hn(z) exp

{

−

(

z2 + t2

2

)}

. (10)We 
an boost this wave fun
tion by repla
ing z and t by z′ and t′ of Eq. (9) respe
-tively. 4. Lorentz-
ovariant wave fun
tionswith physi
al interpretationWhile the wave fun
tion given in Eq. (10) is a solution of the os
illator equationof Feynman et al. given in Eq. (5), we should extra
t meaningful physi
s from it. Todo this, we examine whether it is possible to 
onstru
t lo
alized quantum probabilitydistributions in the Lorentz-
ovariant world.In terms of the light-
one variables de�ned in [5℄, the wave fun
tion of Eq. (10) 
anbe written as
ψn

0 (x, t) =

[

1

πn!2n

]1/2

Hn

(

u+ v
√

2

)

exp

{

−

(

u2 + v2

2

)}

, (11)and
ψn

η (x, t) =

[

1

πn!2n

]1/2

Hn

(

e−ηu+ eηv
√

2

)

exp

{

−

(

e−2ηu2 + e2ηv2

2

)}

, (12)for the rest and moving hadrons respe
tively. This form 
an be expanded as [15℄
ψn

η (z, t) =

(

1

cosh η

)(n+1)
∑

k

[

(n+ k)!

n!k!

]1/2

(tanh η)kχn+k(z)χn(t), (13)where χn(z) is the n-th ex
ited state os
illator wave fun
tion whi
h takes the familiarform
χn(z) =

[

1
√
π2nn!

]1/2

Hn(z) exp

(

−z2

2

)

.If the hadron is at rest, there are no time-like os
illations, but there are when thehadron moves. This is the way in whi
h the spa
e 
oordinates mix with the time variable
ovariantly. This mixture provides a resolution of the spa
e-time asymmetry pointed outby Dira
 in his 1927 paper [3℄.4.1. Probability interpretations. The Lorentz-
ovariant solution given inEq. (10) is totally self-
onsistent with the quantum probability interpretation. How-ever, this requires an interpretation of os
illator ex
itations along the time-separation
oordinate t [15, 16℄. We shall study this in terms of two harmoni
 os
illators. Let usstart with a two-os
illator system with the Hamiltonian of the form
H+ =

1

2

{[

−

(

∂

∂x1

)2

+ x2
1

]

+

[

−

(

∂

∂x2

)2

+ x2
2

]}

, (14)
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H+ψ (x1, x2) = (n1 + n2 + 1)ψ (x1, x2) . (15)This is the S
hr�odinger equation for the two-dimensional harmoni
 os
illator. The dif-ferential equation is separable in the x1 and x2 variables, and the wave fun
tion 
anbe written

ψ (x1, x2) = χn1
(x1)χn2

(x2) ,where χn(z) is the n-th ex
ited-state os
illator wave fun
tion whi
h takes the form
χn(x) =

[

1
√
π2nn!

]1/2

Hn(x) exp

(

−x2

2

)

. (16)Thus,
ψ (x1, x2) =

[

1

π2(n1+n2)n1!n2!

]1/2

Hn1
(x1)Hn2

(x2) exp

[

−
1

2

(

x2
1 + x2

2

)

]

. (17)If the system is in ground state with n1 = n2 = 0 , the above wave fun
tion be
omes
ψ (x1, x2) =

[

1

π

]1/2

exp

[

−
1

2

(

x2
1 + x2

2

)

]

. (18)If only the x2 
oordinate is in its ground state, the wave fun
tion (with n = n1 )be
omes
ψ (x1, x2) =

[

1

π2nn!

]1/2

Hn (x1) exp

[

−
1

2

(

x2
1 + x2

2

)

]

. (19)If we introdu
e the normal 
oordinate system with
y1 =

1
√

2
(x1 + x2) , y2 =

1
√

2
(x1 − x2) , (20)and set

y1 → eηy1, y2 → e−ηy1,we 
an derive the equation [13, 15℄
ψn

η (x1, x2) =

(

1

cosh η

)(n+1)
∑

k

[

(n+ k)!

n!k!

]1/2

(tanh η)kχn+k (x1)χn (x2) . (21)This wave fun
tion is a linear 
ombination of the eigen fun
tions whi
h satis�es theeigenvalue equation with the Hamiltonian H− , where
H− =

1

2

{[

−

(

∂

∂x1

)2

+ x2
1

]

−

[

−

(

∂

∂x2

)2

+ x2
2

]}

. (22)Then
H−χn (x1)χm (x2) = (n−m)χn (x1)χm (x2) .If the x2 
oordinate is in its ground state,

H−ψ (x1, x2) = nψ (x1, x2) . (23)If we repla
e the notations x1 and x2 by z and t respe
tively, this Hamiltonian be
omesthat of Eq. (8).
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ovariant harmoni
os
illators in terms of the two 
oupled os
illators. In the 
ase of the 
oupled os
illators,
oordinates for both os
illators are well de�ned and 
arry their physi
al interpretation.However, in the 
ovariant os
illators, the time-separation variable is still problemati
.This variable exists a

ording to Einstein, and the di�erential equation of Eq. (5)is Lorentz-invariant be
ause of this time-separation variable. Yet, its role has not beende�ned in the present form of quantum me
hani
s. On the other hand, it is possibleto explain this variable in terms of Feynman's rest of the universe [17�19℄. The failureto observe this variable 
auses an in
rease in entropy and an additon of statisti
alun
ertainty to the system.5. Lorentz-
ovariant quark modelWe started this paper with the Lorentz-invariant di�erential equation of Eq. (2). Thisphenomenologi
al equation 
an explain the hadron spe
tra based on Regge traje
toriesand hadroni
 transition rates.If we separate this equation using hadroni
 and quark variables, the equation 
andes
ribe a hadron with a de�nite value for its four-momentum and its internal angularmomentum. Furthermore, the hadroni
 mass is determined by the internal dynami
sof the quarks. Our next question is whether these wave fun
tions, parti
ularly theirLorentz 
ovarian
e properties, are 
onsistent with what we observe in the real world.The number of quarks inside a stati
 proton is three, while Feynman observed thatin a rapidly moving proton the number of partons appears to be in�nite [9, 15℄. Thequestion then is how the proton looking like a bound state of quarks to one observer
an appear di�erent to an observer in a di�erent Lorentz frame? Feynman made thefollowing systemati
 observations:a) The pi
ture is valid only for hadrons moving with velo
ity 
lose to that of light.b) The intera
tion time between the quarks be
omes dilated, and partons behave asfree independent parti
les.
) The momentum distribution of partons be
omes widespread as the hadron movesfast.d) The number of partons seems to be in�nite or mu
h larger than that of quarks.Be
ause the hadron is believed to be a bound state of two or three quarks, ea
hof the above phenomena appears as a paradox, parti
ularly b) and 
) together. How
an a free parti
le have a wide-spread momentum distribution? We have addressed thisquestion extensively in the literature, and 
on
luded that Gell �Mann's quark model andFeynman's parton model are two di�erent manifestations of the same Lorentz-
ovariantquantity [15, 16, 20�22℄.As for experimental observations of hadroni
 wave fun
tions, it was noted by Hofs-tadter and M
Allister in 1955 that the proton is not a point parti
le but has a spa
e-timeextension [23℄. This dis
overy led to the study of ele
tromagneti
 form fa
tor of the pro-ton. As early as in 1970, Fujimura et al. 
al
ulated the ele
tromagneti
 form fa
tor ofthe proton using the wave fun
tions given in this paper and obtained the so-
alled�dipole� 
ut-o� of the form fa
tor [24℄.In our 1973 paper [12℄, we attempted to explain the 
ovariant os
illator wave fun
-tion in terms of the 
oheren
e between the in
oming signal and the width of the
ontra
ted wave fun
tion. This aspe
t was explained in the overlap of the energy-momentum wave fun
tion in our book [15℄. Without this 
oheren
e, the form fa
tor
ould de
rease exponentially for in
reasing (momentum transfer)2 . With this 
oher-en
e, the de
rease is slower and, as shown experimentally, inversely proportional to the
(momentum transfer)2 .
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lusionsThe fo
al point of this paper is the Lorentz-invariant di�erential equation of Feyn-man et al. given in Se
tion 3. This equation 
an be separated into the Klein �Gordonequation for the hadron and a harmoni
-os
illator equation for the quarks inside thehadron.From the solutions of this equation, it is possible to 
onstru
t a representationof Wigner's little group for massive parti
les. These solutions are 
onsistent with bothquantum me
hani
s and spe
ial relativity. Those os
illator solutions also explain Dira
'se�orts summarized in Fig. 2. In this way, we have 
ombined the 
ontributions made byWigner, Dira
 and Feynman to make quantum me
hani
s of bound states 
onsistentwith relativity.We have also 
ompared the 
ovariant formalism with what we observe in high-energyphysi
s, spe
i�
ally the proton form fa
tor and Feynman's parton pi
ture.�åçþìåß.Ñ. Êèì, Ì.Ý. Íîç. Âíóòðåííèå ñèììåòðèè ïðîñòðàíñòâà-âðåìåíè ñîãëàñíî À. Ýéí-øòåéíó, Þ. Âèãíåðó, Ï.À.Ì. Äèðàêó è �.Ô. Ôåéíìàíó.Êîãäà Ýéíøòåéí ñ�îðìóëèðîâàë ñïåöèàëüíóþ òåîðèþ îòíîñèòåëüíîñòè â 1905 ãîäó,îí óñòàíîâèë çàêîí ïðåîáðàçîâàíèé Ëîðåíöà äëÿ òî÷å÷íûõ ÷àñòèö. Ñåé÷àñ èçâåñòíî, ÷òîïðîñòðàíñòâî-âðåìÿ ÷àñòèö îáëàäàåò âíóòðåííåé ñòðóêòóðîé. Òàêèå ÷àñòèöû, êàê �î-òîíû è ýëåêòðîíû, îïèñûâàþòñÿ ñïèíîâûìè ïåðåìåííûìè. Ôîòîíû è äðóãèå àäðîíûðàññìàòðèâàþòñÿ êàê ãðàíè÷íûå ñîñòîÿíèÿ äëÿ áîëåå �óíäàìåíòàëüíûõ ÷àñòèö, êâàð-êîâ, îïèñûâàåìûõ ñâîèìè âíóòðåííèìè ïåðåìåííûìè. Äî ñèõ ïîð íåðåøåííûì ÿâëÿ-åòñÿ âîïðîñ î âîçìîæíîñòè ïðèìåíåíèÿ ïðåîáðàçîâàíèé Ëîðåíöà äëÿ ýòèõ âíóòðåííèõïðîñòðàíñòâåííî-âðåìåííûõ ïåðåìåííûõ. Îòìå÷åíî, ÷òî Þ. Âèãíåð, Ï.À.Ì. Äèðàê è�.Ô. Ôåéíìàí âíåñëè âàæíûé âêëàä â ðåøåíèå ýòîé ïðîáëåìû. Â íàñòîÿùåé ñòàòüå ìûîáúåäèíÿåì èõ äîñòèæåíèÿ è ïîêàçûâàåì âîçìîæíîñòü ïîñòðîåíèÿ ìîäåëè âíóòðåííèõñèììåòðèé ïðîñòðàíñòâà-âðåìåíè, ñîãëàñóþùåéñÿ ñ ýéíøòåéíîâñêèì ïðèíöèïîì ëîðåí-öåâîé êîâàðèàíòíîñòè.Êëþ÷åâûå ñëîâà: âíóòðåííèå ñèììåòðèè ïðîñòðàíñòâà-âðåìåíè, ìàëûå ãðóïïû Âèã-íåðà, ëîðåíöåâà êîâàðèàíòíîñòü, ëîðåíöåâî ñæàòèå, ñòîÿ÷èå âîëíû, ñâÿçàííûå ñîñòîÿíèÿ,ãàðìîíè÷åñêèå îñöèëëÿòîðû.
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