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Abstract

When Einstein formulated his special relativity in 1905, he established the law of Lorentz
transformations for point particles. It is now known that particles have internal space-time
structures. Particles, such as photons and electrons, have spin variables. Protons and other
hadrons are regarded as bound states of more fundamental particles called quarks which have
their internal variables. It is still one of the most outstanding problems whether these internal
space-time variables are transformed according to Einstein’s law of Lorentz transformations.
It is noted that Wigner, Dirac, and Feynman made important contributions to this problem.
By integrating their efforts, it is then shown possible to construct a picture of the internal
space-time symmetry consistent with Einstein’s Lorentz covariance.
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Introduction

It took Issac Newton twenty years to extend his law of gravity from two particles
to two extended objects, such as the sun and the earth. To do this, he had to develop
a new mathematics now called integral calculus.

When Einstein formulated his special relativity in 1905, his transformation law was
for point particles. We still do not know what happens to classical rigid bodies, but
quantum mechanics allows us to replace those by standing waves. In the case of hydrogen
atom, one can argue that the circular orbit appears as an ellipse to a moving observer [1],
but not much has been done beyond this.

In quantum mechanics, the hydrogen atom is a localized probability distribution
constructed from a standing wave solution of Schrédinger’s wave equation. We do not
observe too often hydrogen atoms moving with relativistic speed, but relativistic-speed
protons are abundantly produced from accelerators. Like the hydrogen atom, the proton
is a bound state. The constituents are the quarks.

In 1939 [2], Eugene Wigner published a paper on the little groups of the Lorentz
group whose transformations leave the four-momentum of a given particle invariant.
He showed that the little groups for particles with non-zero mass are isomorphic to
the three-dimensional rotation group. If the particle is at rest, this symmetry group is
the three-dimensional rotation group. In this way, Wigner was able to define the par-
ticle’s spin as a space-time variable in the Lorentz-covariant world. In 1939, composite
particles, such as hadrons in the quark model, were unthinkable.

In a series of papers from 1927 to 1963, Paul A.M. Dirac attempted to construct
a Lorentz-covariant picture of localized wave functions. In 1927 [3], he produced the
concept of the c-number time-energy uncertainty relation and noted the basic space-time
asymmetry. In 1945 [4], he considered the possibility of harmonic oscillators which can
be Lorentz-transformed. In 1949 [5], he formulated the technique of light-cone variables
to deal with Lorentz boosts. In 1963 [6], Dirac observed that two coupled oscillators can
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produce the symmetry of the Lorentz group of three space coordinates and two time
variables.

In 1971 [7], Feynman et al. attempted to understand the hadronic mass spectra in
terms of the degeneracies of the three-dimensional harmonic oscillator. In so doing, they
wrote down a harmonic oscillator differential equation which takes the same form for
all Lorentz frames. This Lorentz-invariant differential equation has many different solu-
tions, but they chose a set of solutions that violate all the rules of quantum mechanics
and relativity. We show in this paper that their equation can have solutions which are
consistent with the observations made earlier by both Wigner and Dirac.

In 1969 [8, 9], Feynman had observed that the ultra-fast proton can appear like a
collections of partons while the proton is like a bound state of quarks. Since the partons
have properties quite different than those of the quarks, Feynman’s parton picture
presents a nontrivial covariance problem. In 1905, Einstein had the problem of showing
that the energy-momentum relation takes different forms for slow and fast particles.

In this paper, we review the efforts made by Wigner, Dirac, and Feynman in Sec-
tions 1, 2, and 3 respectively. We then integrate their contributions in Section 4 to
produce a Lorentz-covariant picture of quantum bound states. Finally, in Section 5, we
discuss experimental consequences of this covariant formalism.

1. Wigner’s little groups

In his 1939 [2], Wigner constructed subgroups of the Lorentz group whose transfor-
mations leave the four-momentum of a given particle invariant. They are called the little
groups. The little groups are isomorphic to the O(3) and to O(2, 1) groups if the particle
momentum is time-like and space-like respectively. If the four-momentum is light-like,
the little group is isomorphic to the two-dimensional Euclidean group. Since the mo-
mentum remains invariant, the little groups dictate the internal space-time symmetries
of particles in the Lorentz-covariant world.

Since it is well known that the SL(2,c) group serves as the covering group of the
Lorentz group, it is possible to explain Wigner’s little groups in terms of two-by-two
matrices. Let us consider the unimodular matrix

A B
C D)’
where all four elements are real numbers with (AD — BC') = 1. There are thus three

independent parameters. This matrix can then be rotated to one of the following equi-
diagonal matrices.

cos) —e "sinf coshA e 7sinh A 1 0 (1)

esinf cos ’ e sinh A\ cosh A ’ v 1)
This is purely a mathematical statement. However, they form the basis for Wigner’s
little groups for massive particles, imaginary-mass particles, and massless particles re-

spectively [10].
Let us look at the first matrix in (1). It can be written as

e 2 0 cosf sinf\ [e/? 0
0 e”?) \sinf cosf 0 e 2)
which corresponds to a Lorentz boost of the rotation matrix along the z direction. The

rotation matrix performs a rotation around the y axis. The little group for the massive
particle is a Lorentz-boosted rotation group.
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Table 1

Covariance of the energy-momentum relation, and covariance
of the internal space-time symmetry groups

Massive, Slow COVARIANCE Massless, Fast
E =p?*/2m Einstein’s E = mc? E=cp
Sg SB
Wigner’s Little Group
51,52 Gauge Trans.

. Einstein
Harmonic
Oscillators /' Feynman

Diagrams

Fig. 1. According to Einstein, point particles obey the Lorentz transformation law. We ex-
pect that the extended particles should obey the same law. Transformations of Wigner’s little
groups leave the external momentum invariant, but change the internal space-time variables.
In quantum field theory, Feynman diagrams describe running waves according to Einstein’s
Lorentz covariance. It is possible to construct an oscillator-based model for internal space-time
structure consistent with Wigner and thus with Einstein

Wigner noted in 1939 that, for a massive particle, there is a Lorentz frame where the
particle is at rest. In this frame, rotations leave the particle four-momentum invariant;
it can rotate internal space-time variables. The particle spin is the prime example.
Wigner noted further that the third matrix of Eq. (1) corresponds to the little group
for massless particles. Then there are two questions. The first question is what physical
variable does v correspond to? The second question is whether this triangular matrix
is a limiting case of the first matrix.

Let us answer the second question first. If the particle mass approaches zero, the n
parameter becomes infinitely large. If it is allowed to become large with e/2 = ~, the
angle 6 has to become zero with cosf = 1. The variable ~ is for the gauge transfor-
mation. These answers have a stormy history, but a geometric picture was developed
by Kim and Wigner in 1990 [11]. Wigner’s little group is compared with Einstein’s
energy-momentum relation in Table 1.

In 1939, it was unthinkable that the proton is a composite particle and is a bound
state of the quarks. It can also move with a speed very close to that of light. In Section 3,
we shall see whether this quantum bound state has the symmetry of Wigner’s little group
using harmonic oscillators. This plan is illustrated in Fig. 1.

2. Dirac’s attempts to make quantum mechanics Lorentz-covariant

Paul A.M. Dirac made it his lifelong effort to make quantum mechanics consistent
with special relativity. In 1927 [3], Dirac notes that there is an uncertainty relation
between the time and energy variables which manifests itself in emission of photons
from atoms. He notes further that there are no excitations along the time or energy
axis, unlike Heisenberg’s uncertainty relation which allows quantum excitations. Thus,
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Quantum Mechanics Lorentz Covariance
t | cnumber Dirac 1949
Dirac 1927 | Time-energy
Uncertainty

(N -
kj Heisenberg z
Uncertainty

Lorentz-covariant Quantum Mechanics

t

In the Real World

Proton Form Factor
(1973)

z Feynman's Parton Picture
(1977)

Fig. 2. Space-time picture of quantum mechanics. In his 1927 paper, Dirac noted that there
is a c-number time-energy uncertainty relation, in addition to Heisenberg’s position-momentum
uncertainty relations, with quantum excitations. This idea is illustrated in the first figure (upper
left). In his 1949 paper, Dirac produced his light-cone coordinate system as illustrated in the
second figure (upper right). It is then not difficult to produce the third figure, for a Lorentz-
covariant picture of quantum mechanics

there is a serious difficulty in combining these relations in the Lorentz-covariant world.

In 1945 [4], Dirac considered a four-dimensional harmonic oscillator and attempted
to construct a representation of the Lorentz group using the oscillator wave functions.
However, he ended up with wave functions which do not appear to be Lorentz-covariant.

In 1949 [5], Dirac considered three forms of relativistic dynamics which can be
constructed from the ten generators of the Poincaré group. He then imposed subsidiary
conditions necessitated by the existing form of quantum mechanics. In so doing, he ended
up with inconsistencies in all three of the cases he considered. On the other hand, he
introduced the light-cone coordinate system which allows us to perform Lorentz boosts
as squeeze transformations [12]

In 1963 [6], he constructed a representation of the O(3,2) deSitter group using two
harmonic oscillators. Using step-up and step-down operators, he constructed a beautiful
algebra, but he made no attempt to exploit the physical contents of his algebra. Indeed,
his representation now serves as the fundamental scientific language for squeezed states
of light, further enforcing the point that Lorentz boosts are squeeze transformations [13].

We can combine Dirac’s time-energy uncertainty relations and his light-cone coor-
dinate system to obtain a Lorentz-covariant picture of quantum mechanics, as shown
in Fig. 2.

3. Feynman’s phenomenological equation
for both scattering and bound states

In order to explain the hadron as a bound state of quarks, Feynman et al. start with

two quarks whose space-time coordinates are xj, and xz respectively [7] by using the
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equation

B AR
2 |\ 0za oxb,
If we use the hadronic and the quark separation coordinates as

(25 = 7). (3)

+E(x2x2)2+mg}¢(zz,x2) =0. (2)

1 a
Xy=z (:EMJr:cZ), Ty

1
2 C2V2

respectively, it is possible to consider the separation of the variables:

¢ (a5, 2) = F(Xu) ¥ (2,).

Then the differential equation can be separated into the following two equations.

{(8)8() +m3+<x+1>}f<xﬂ>o (@)

for the hadronic coordinate, and

1 2
! {— (52) +xi}w<xu> = 1) (), Q
for the coordinate of quarks inside the hadron.

The differential equation of Eq. (4) is a Klein—Gordon equation for the Lorentz-
invariant hadronic coordinate. The differential equation of Eq. (2) contains the
scattering-state equation for the hadron, and the bound-state equation for the quarks
inside the hadron. Additionally, it is Lorentz-invariant.

However, in their paper [7], Feynman et al. did not consider whether their solutions
are consistent with the symmetry of Wigner’s little group explained in Section 1 of the
present paper. Let us now construct a representation of Wigner’s little group using the
oscillator solutions. As noted earlier [14, 15], a set of solutions for the oscillator equation
of Eq. (5) corresponds to a representation of Wigner’s O(3)-like little group for massive
particles. If the hadron is at rest, its wave function should satisfy the O(3) symme-
try. We can achieve this goal by keeping the time-like oscillation in its ground state,
and construct an O(3)-symmetric spatial wave function using the spherical coordinate
system. We can then write the solution as

Va2 1) = [(%)/ exp <7t>] V(.. 2), ©)

where the form of ¢ (x,y, z) in the spherical coordinate system is well known. This spher-
ical solution can also be written as a linear combination of solutions in the Cartesian
coordinate system, which take the form

|| Y Ha @) ) () exp (=) o

where H,,(z) is the Hermite polynomial.

It is now possible to boost this solution along the z direction. Since the transverse
x and y coordinates are not affected by this boost, we can separate out these variables
in the oscillator differential equation of Eq. (5), and consider the differential equation

HEG) -G

}1/)(2,15) :nw(zat)' (8)
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This differential equation remains invariant under the Lorentz boost

2 = (coshm)z — (sinhn)t, ¢ = (coshn)t — (sinhn)z, €=,/ %, (9)

where 5 =v/ec.
If we suppress the excitations along the ¢ coordinate, the normalized solution of this
differential equation is

U(et) = (ﬂin!)m m@en{- (55} (10)

We can boost this wave function by replacing z and ¢ by 2z’ and ¢’ of Eq. (9) respec-
tively.

4. Lorentz-covariant wave functions
with physical interpretation

While the wave function given in Eq. (10) is a solution of the oscillator equation
of Feynman et al. given in Eq. (5), we should extract meaningful physics from it. To
do this, we examine whether it is possible to construct localized quantum probability
distributions in the Lorentz-covariant world.

In terms of the light-cone variables defined in [5], the wave function of Eq. (10) can

be written as
N 1 12 U+ u? + v?
-] () (552

1/2 _ _
e ] " () (D))

for the rest and moving hadrons respectively. This form can be expanded as [15]

(n+1) n 171/2
Coslhn> {%} (tanh 1) xnk(2)xn (), (13)

and

w0 = (

where y,,(z) is the n-th excited state oscillator wave function which takes the familiar
form

u(2) = {ﬁ} v Ho(2) exp <TZQ>

If the hadron is at rest, there are no time-like oscillations, but there are when the
hadron moves. This is the way in which the space coordinates mix with the time variable
covariantly. This mixture provides a resolution of the space-time asymmetry pointed out
by Dirac in his 1927 paper [3].

4.1. Probability interpretations. The Lorentz-covariant solution given in
Eq. (10) is totally self-consistent with the quantum probability interpretation. How-
ever, this requires an interpretation of oscillator excitations along the time-separation
coordinate t [15, 16]. We shall study this in terms of two harmonic oscillators. Let us
start with a two-oscillator system with the Hamiltonian of the form

H+%{[<a%l)2+zf <6%2)2+z§ }, (14)

+
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and the equation
Hytp (z1,22) = (n1 +n2 + 1) ¢ (21, 22) - (15)
This is the Schrodinger equation for the two-dimensional harmonic oscillator. The dif-

ferential equation is separable in the z; and x5 variables, and the wave function can
be written

(0 (1'1; 1'2) = Xny (931) Xno (932) )

where x,,(z) is the n-th excited-state oscillator wave function which takes the form

1 1/2 g
) = || Hawen () (16)
Thus,
1 1/2 1
Y (w1, 22) = [m] Hy, (z1) Hp, (22) exp [—5 (2% + I%)] (17)
If the system is in ground state with n; = no = 0, the above wave function becomes
112 1
Y (21, 12) = {;} exp [5 (23 + x%)} (18)

If only the x5 coordinate is in its ground state, the wave function (with n = nq)
becomes

1/2
1 1
banen) = | e [3 (0 + o). (19)
If we introduce the normal coordinate system with
1 1
ylzﬁ(xl +z2) y2zﬁ($1_3€2)7 (20)

and set
y1 — €y, y2 — e Ty,

we can derive the equation [13, 15]

coshn nlk!

1/2
o ) = | G o v o). )

This wave function is a linear combination of the eigen functions which satisfies the
eigenvalue equation with the Hamiltonian H_ , where
} . (22)

1 o\, o\

H_xn (21) Xm (22) = (n — m)Xn (1) Xm (T2) -

If the x5 coordinate is in its ground state,

H_1p (w1, 22) = n) (1, 22) . (23)

Then

If we replace the notations 1 and z2 by z and ¢ respectively, this Hamiltonian becomes
that of Eq. (8).
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4.2. Time-separation variable. We now understand the covariant harmonic
oscillators in terms of the two coupled oscillators. In the case of the coupled oscillators,
coordinates for both oscillators are well defined and carry their physical interpretation.
However, in the covariant oscillators, the time-separation variable is still problematic.

This variable exists according to Einstein, and the differential equation of Eq. (5)
is Lorentz-invariant because of this time-separation variable. Yet, its role has not been
defined in the present form of quantum mechanics. On the other hand, it is possible
to explain this variable in terms of Feynman’s rest of the universe [17-19]. The failure
to observe this variable causes an increase in entropy and an additon of statistical
uncertainty to the system.

5. Lorentz-covariant quark model

We started this paper with the Lorentz-invariant differential equation of Eq. (2). This
phenomenological equation can explain the hadron spectra based on Regge trajectories
and hadronic transition rates.

If we separate this equation using hadronic and quark variables, the equation can
describe a hadron with a definite value for its four-momentum and its internal angular
momentum. Furthermore, the hadronic mass is determined by the internal dynamics
of the quarks. Our next question is whether these wave functions, particularly their
Lorentz covariance properties, are consistent with what we observe in the real world.

The number of quarks inside a static proton is three, while Feynman observed that
in a rapidly moving proton the number of partons appears to be infinite [9, 15]. The
question then is how the proton looking like a bound state of quarks to one observer
can appear different to an observer in a different Lorentz frame? Feynman made the
following systematic observations:

a) The picture is valid only for hadrons moving with velocity close to that of light.

b) The interaction time between the quarks becomes dilated, and partons behave as
free independent particles.

¢) The momentum distribution of partons becomes widespread as the hadron moves
fast.

d) The number of partons seems to be infinite or much larger than that of quarks.

Because the hadron is believed to be a bound state of two or three quarks, each
of the above phenomena appears as a paradox, particularly b) and c¢) together. How
can a free particle have a wide-spread momentum distribution? We have addressed this
question extensively in the literature, and concluded that Gell -Mann’s quark model and
Feynman’s parton model are two different manifestations of the same Lorentz-covariant
quantity [15, 16, 20-22].

As for experimental observations of hadronic wave functions, it was noted by Hofs-
tadter and McAllister in 1955 that the proton is not a point particle but has a space-time
extension [23]. This discovery led to the study of electromagnetic form factor of the pro-
ton. As early as in 1970, Fujimura et al. calculated the electromagnetic form factor of
the proton using the wave functions given in this paper and obtained the so-called
“dipole” cut-off of the form factor [24].

In our 1973 paper [12], we attempted to explain the covariant oscillator wave func-
tion in terms of the coherence between the incoming signal and the width of the
contracted wave function. This aspect was explained in the overlap of the energy-
momentum wave function in our book [15]. Without this coherence, the form factor
could decrease exponentially for increasing (momentum transfer)?. With this coher-
ence, the decrease is slower and, as shown experimentally, inversely proportional to the
(momentum transfer)?.
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Conclusions

The focal point of this paper is the Lorentz-invariant differential equation of Feyn-
man et al. given in Section 3. This equation can be separated into the Klein — Gordon
equation for the hadron and a harmonic-oscillator equation for the quarks inside the
hadron.

From the solutions of this equation, it is possible to construct a representation
of Wigner’s little group for massive particles. These solutions are consistent with both
quantum mechanics and special relativity. Those oscillator solutions also explain Dirac’s
efforts summarized in Fig. 2. In this way, we have combined the contributions made by
Wigner, Dirac and Feynman to make quantum mechanics of bound states consistent
with relativity.

We have also compared the covariant formalism with what we observe in high-energy
physics, specifically the proton form factor and Feynman’s parton picture.

Pesome

A.C. Kum, M.9. Hos. BuyTpenuue cuMMeTpuu NpoCTPaHCTBAa-BpeMeHu coryiacio A. Diiu-
wreiiny, FO. Buruepy, [I.A.M. Tupaky u P.®. ®eiinmany.

Korma Ditamreiin chopmyaupoBas crenuaabHyo Teopuio oraocureabaoctu B 1905 romy,
OH YCTAHOBMJI 3aKOH Tpeobpazosanmii Jlopenmna st Touednsix gactur. Ceildac U3BECTHO, UTO
MPOCTPAHCTBO-BpEMsI YacTUIl 00J1a/1aeT BHYTpeHHeH cTpykTypoil. Takme wacTursl, Kak do-
TOHBI U 3JIEKTPOHBI, OMUCHIBAIOTCS CIOUHOBBIMU MepeMeHHbIMU. DOTOHBI W Ipyrue aJapOHbBI
PacCMATPUBAIOTCS KaK TDAHUYHBIE COCTOSTHUS st Oosee (byHIAMEHTAJIbHBIX YACTHI], KBap-
KOB, OINMCHIBAEMBIX CBOMMU BHYTPEHHUMU IepeMeHHbIMH. [0 CHX TOp HEepereHHBIM SBJIs-
eTCsi BOIIPOC O BO3MOXKHOCTHU TPUMEHeHHus mpeobpa3oBanwmii JIopeHIa /i 3TUX BHYTPEHHUX
MMPOCTPAHCTBEHHO-BPEMEHHBIX TiepeMeHHBIX. OTmeueno, uro FO. Burmep, II.A.M. Tupak u
P.®. Qeitavan BHeC/IM BayKHBIN BKJIAJ B perieHue 3Toi nmpobiiembl. B HacTodmel crarbe Mbl
o0bequHsIeM WX [JOCTUKEHHS W MOKA3bIBAEM BO3MOYKHOCTH MOCTPOEHUS MO/ BHYTPEHHUX
CUMMETpHIi TPOCTPAHCTBA-BPEMEHN, COTJIACyIOMeica ¢ SMHMTERHOBCKUM TPUHITATIOM JIOPEH-
TIeBOU KOBapPUAHTHOCTH.

KiroueBble ciioBa: BHYTPEHHNIE CHMMETPHUHU IPOCTPAHCTBA-BPEMEHN, MaJIble Ipy bl Bur-
Hepa, JIOPEHIeBa KOBAPUAHTHOCTD, JIOPEHIIEBO CKATHUE, CTOSINE BOJIHBI, CBI3aHHBIE COCTOSIHMUS,
TapMOHHYECKHE OCIHUIIATOPHIL.
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