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UDK 530.145INTERNAL SPACE-TIME SYMMETRIES ACCORDINGTO EINSTEIN, WIGNER, DIRAC, AND FEYNMANY.S. Kim, M.E. NozAbstratWhen Einstein formulated his speial relativity in 1905, he established the law of Lorentztransformations for point partiles. It is now known that partiles have internal spae-timestrutures. Partiles, suh as photons and eletrons, have spin variables. Protons and otherhadrons are regarded as bound states of more fundamental partiles alled quarks whih havetheir internal variables. It is still one of the most outstanding problems whether these internalspae-time variables are transformed aording to Einstein's law of Lorentz transformations.It is noted that Wigner, Dira, and Feynman made important ontributions to this problem.By integrating their e�orts, it is then shown possible to onstrut a piture of the internalspae-time symmetry onsistent with Einstein's Lorentz ovariane.Key words: internal spae-time symmetries, Wigner's little groups, Lorentz ovariane,Lorentz squeeze, standing waves, bound states, harmoni osillators.IntrodutionIt took Issa Newton twenty years to extend his law of gravity from two partilesto two extended objets, suh as the sun and the earth. To do this, he had to developa new mathematis now alled integral alulus.When Einstein formulated his speial relativity in 1905, his transformation law wasfor point partiles. We still do not know what happens to lassial rigid bodies, butquantum mehanis allows us to replae those by standing waves. In the ase of hydrogenatom, one an argue that the irular orbit appears as an ellipse to a moving observer [1℄,but not muh has been done beyond this.In quantum mehanis, the hydrogen atom is a loalized probability distributiononstruted from a standing wave solution of Shr�odinger's wave equation. We do notobserve too often hydrogen atoms moving with relativisti speed, but relativisti-speedprotons are abundantly produed from aelerators. Like the hydrogen atom, the protonis a bound state. The onstituents are the quarks.In 1939 [2℄, Eugene Wigner published a paper on the little groups of the Lorentzgroup whose transformations leave the four-momentum of a given partile invariant.He showed that the little groups for partiles with non-zero mass are isomorphi tothe three-dimensional rotation group. If the partile is at rest, this symmetry group isthe three-dimensional rotation group. In this way, Wigner was able to de�ne the par-tile's spin as a spae-time variable in the Lorentz-ovariant world. In 1939, ompositepartiles, suh as hadrons in the quark model, were unthinkable.In a series of papers from 1927 to 1963, Paul A.M. Dira attempted to onstruta Lorentz-ovariant piture of loalized wave funtions. In 1927 [3℄, he produed theonept of the -number time-energy unertainty relation and noted the basi spae-timeasymmetry. In 1945 [4℄, he onsidered the possibility of harmoni osillators whih anbe Lorentz-transformed. In 1949 [5℄, he formulated the tehnique of light-one variablesto deal with Lorentz boosts. In 1963 [6℄, Dira observed that two oupled osillators an



INTERNAL SPACE-TIME STRUCTURE. . . 205produe the symmetry of the Lorentz group of three spae oordinates and two timevariables.In 1971 [7℄, Feynman et al. attempted to understand the hadroni mass spetra interms of the degeneraies of the three-dimensional harmoni osillator. In so doing, theywrote down a harmoni osillator di�erential equation whih takes the same form forall Lorentz frames. This Lorentz-invariant di�erential equation has many di�erent solu-tions, but they hose a set of solutions that violate all the rules of quantum mehanisand relativity. We show in this paper that their equation an have solutions whih areonsistent with the observations made earlier by both Wigner and Dira.In 1969 [8, 9℄, Feynman had observed that the ultra-fast proton an appear like aolletions of partons while the proton is like a bound state of quarks. Sine the partonshave properties quite di�erent than those of the quarks, Feynman's parton piturepresents a nontrivial ovariane problem. In 1905, Einstein had the problem of showingthat the energy-momentum relation takes di�erent forms for slow and fast partiles.In this paper, we review the e�orts made by Wigner, Dira, and Feynman in Se-tions 1, 2, and 3 respetively. We then integrate their ontributions in Setion 4 toprodue a Lorentz-ovariant piture of quantum bound states. Finally, in Setion 5, wedisuss experimental onsequenes of this ovariant formalism.1. Wigner's little groupsIn his 1939 [2℄, Wigner onstruted subgroups of the Lorentz group whose transfor-mations leave the four-momentum of a given partile invariant. They are alled the littlegroups. The little groups are isomorphi to the O(3) and to O(2, 1) groups if the partilemomentum is time-like and spae-like respetively. If the four-momentum is light-like,the little group is isomorphi to the two-dimensional Eulidean group. Sine the mo-mentum remains invariant, the little groups ditate the internal spae-time symmetriesof partiles in the Lorentz-ovariant world.Sine it is well known that the SL(2, c) group serves as the overing group of theLorentz group, it is possible to explain Wigner's little groups in terms of two-by-twomatries. Let us onsider the unimodular matrix
(

A B
C D

)

,where all four elements are real numbers with (AD − BC) = 1. There are thus threeindependent parameters. This matrix an then be rotated to one of the following equi-diagonal matries.
(

cos θ −e−η sin θ
eη sin θ cos θ

)

,

(

coshλ e−η sinhλ
eη sinhλ coshλ

)

,

(

1 0
γ 1

)

. (1)This is purely a mathematial statement. However, they form the basis for Wigner'slittle groups for massive partiles, imaginary-mass partiles, and massless partiles re-spetively [10℄.Let us look at the �rst matrix in (1). It an be written as
(

e−η/2 0

0 eη/2

) (

cos θ sin θ
sin θ cos θ

) (

eη/2 0

0 e−η/2

)

,whih orresponds to a Lorentz boost of the rotation matrix along the z diretion. Therotation matrix performs a rotation around the y axis. The little group for the massivepartile is a Lorentz-boosted rotation group.



206 Y.S. KIM, M.E. NOZ Table 1Covariane of the energy-momentum relation, and ovarianeof the internal spae-time symmetry groupsMassive, Slow COVARIANCE Massless, Fast
E = p2/2m Einstein's E = mc2 E = cp

S3 S3Wigner's Little Group
S1, S2 Gauge Trans.

 Harmonic 

Oscillators Feynman 

Diagrams

Einstein
Wigner

Fig. 1. Aording to Einstein, point partiles obey the Lorentz transformation law. We ex-pet that the extended partiles should obey the same law. Transformations of Wigner's littlegroups leave the external momentum invariant, but hange the internal spae-time variables.In quantum �eld theory, Feynman diagrams desribe running waves aording to Einstein'sLorentz ovariane. It is possible to onstrut an osillator-based model for internal spae-timestruture onsistent with Wigner and thus with EinsteinWigner noted in 1939 that, for a massive partile, there is a Lorentz frame where thepartile is at rest. In this frame, rotations leave the partile four-momentum invariant;it an rotate internal spae-time variables. The partile spin is the prime example.Wigner noted further that the third matrix of Eq. (1) orresponds to the little groupfor massless partiles. Then there are two questions. The �rst question is what physialvariable does γ orrespond to? The seond question is whether this triangular matrixis a limiting ase of the �rst matrix.Let us answer the seond question �rst. If the partile mass approahes zero, the ηparameter beomes in�nitely large. If it is allowed to beome large with θeη/2 = γ, theangle θ has to beome zero with cos θ = 1. The variable γ is for the gauge transfor-mation. These answers have a stormy history, but a geometri piture was developedby Kim and Wigner in 1990 [11℄. Wigner's little group is ompared with Einstein'senergy-momentum relation in Table 1.In 1939, it was unthinkable that the proton is a omposite partile and is a boundstate of the quarks. It an also move with a speed very lose to that of light. In Setion 3,we shall see whether this quantum bound state has the symmetry of Wigner's little groupusing harmoni osillators. This plan is illustrated in Fig. 1.2. Dira's attempts to make quantum mehanis Lorentz-ovariantPaul A.M. Dira made it his lifelong e�ort to make quantum mehanis onsistentwith speial relativity. In 1927 [3℄, Dira notes that there is an unertainty relationbetween the time and energy variables whih manifests itself in emission of photonsfrom atoms. He notes further that there are no exitations along the time or energyaxis, unlike Heisenberg's unertainty relation whih allows quantum exitations. Thus,
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   (1977)Fig. 2. Spae-time piture of quantum mehanis. In his 1927 paper, Dira noted that thereis a -number time-energy unertainty relation, in addition to Heisenberg's position-momentumunertainty relations, with quantum exitations. This idea is illustrated in the �rst �gure (upperleft). In his 1949 paper, Dira produed his light-one oordinate system as illustrated in theseond �gure (upper right). It is then not di�ult to produe the third �gure, for a Lorentz-ovariant piture of quantum mehanisthere is a serious di�ulty in ombining these relations in the Lorentz-ovariant world.In 1945 [4℄, Dira onsidered a four-dimensional harmoni osillator and attemptedto onstrut a representation of the Lorentz group using the osillator wave funtions.However, he ended up with wave funtions whih do not appear to be Lorentz-ovariant.In 1949 [5℄, Dira onsidered three forms of relativisti dynamis whih an beonstruted from the ten generators of the Poinar�e group. He then imposed subsidiaryonditions neessitated by the existing form of quantum mehanis. In so doing, he endedup with inonsistenies in all three of the ases he onsidered. On the other hand, heintrodued the light-one oordinate system whih allows us to perform Lorentz boostsas squeeze transformations [12℄In 1963 [6℄, he onstruted a representation of the O(3, 2) deSitter group using twoharmoni osillators. Using step-up and step-down operators, he onstruted a beautifulalgebra, but he made no attempt to exploit the physial ontents of his algebra. Indeed,his representation now serves as the fundamental sienti� language for squeezed statesof light, further enforing the point that Lorentz boosts are squeeze transformations [13℄.We an ombine Dira's time-energy unertainty relations and his light-one oor-dinate system to obtain a Lorentz-ovariant piture of quantum mehanis, as shownin Fig. 2. 3. Feynman's phenomenologial equationfor both sattering and bound statesIn order to explain the hadron as a bound state of quarks, Feynman et al. start withtwo quarks whose spae-time oordinates are xa
µ and xb

µ respetively [7℄ by using the
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, (3)respetively, it is possible to onsider the separation of the variables:
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= f (Xµ)ψ (xµ) .Then the di�erential equation an be separated into the following two equations.
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f (Xµ) = 0 (4)for the hadroni oordinate, and
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}

ψ (xµ) = (λ + 1)ψ (xµ) , (5)for the oordinate of quarks inside the hadron.The di�erential equation of Eq. (4) is a Klein �Gordon equation for the Lorentz-invariant hadroni oordinate. The di�erential equation of Eq. (2) ontains thesattering-state equation for the hadron, and the bound-state equation for the quarksinside the hadron. Additionally, it is Lorentz-invariant.However, in their paper [7℄, Feynman et al. did not onsider whether their solutionsare onsistent with the symmetry of Wigner's little group explained in Setion 1 of thepresent paper. Let us now onstrut a representation of Wigner's little group using theosillator solutions. As noted earlier [14, 15℄, a set of solutions for the osillator equationof Eq. (5) orresponds to a representation of Wigner's O(3)-like little group for massivepartiles. If the hadron is at rest, its wave funtion should satisfy the O(3) symme-try. We an ahieve this goal by keeping the time-like osillation in its ground state,and onstrut an O(3)-symmetri spatial wave funtion using the spherial oordinatesystem. We an then write the solution as
ψ(x, y, z, t) =

[

(
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)1/4

exp
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−t2

2

)

]

ψ(x, y, z), (6)where the form of ψ(x, y, z) in the spherial oordinate system is well known. This spher-ial solution an also be written as a linear ombination of solutions in the Cartesianoordinate system, whih take the form
[
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π
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, (7)where Hn(z) is the Hermite polynomial.It is now possible to boost this solution along the z diretion. Sine the transverse
x and y oordinates are not a�eted by this boost, we an separate out these variablesin the osillator di�erential equation of Eq. (5), and onsider the di�erential equation
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ψ(z, t) = nψ(z, t). (8)
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z′ = (cosh η)z − (sinh η)t, t′ = (cosh η)t− (sinh η)z, eη =

√

1 + β

1 − β
, (9)where β = v/c .If we suppress the exitations along the t oordinate, the normalized solution of thisdi�erential equation is

ψ(z, t) =
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)1/2

Hn(z) exp

{

−

(

z2 + t2

2

)}

. (10)We an boost this wave funtion by replaing z and t by z′ and t′ of Eq. (9) respe-tively. 4. Lorentz-ovariant wave funtionswith physial interpretationWhile the wave funtion given in Eq. (10) is a solution of the osillator equationof Feynman et al. given in Eq. (5), we should extrat meaningful physis from it. Todo this, we examine whether it is possible to onstrut loalized quantum probabilitydistributions in the Lorentz-ovariant world.In terms of the light-one variables de�ned in [5℄, the wave funtion of Eq. (10) anbe written as
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, (12)for the rest and moving hadrons respetively. This form an be expanded as [15℄
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(tanh η)kχn+k(z)χn(t), (13)where χn(z) is the n-th exited state osillator wave funtion whih takes the familiarform
χn(z) =
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.If the hadron is at rest, there are no time-like osillations, but there are when thehadron moves. This is the way in whih the spae oordinates mix with the time variableovariantly. This mixture provides a resolution of the spae-time asymmetry pointed outby Dira in his 1927 paper [3℄.4.1. Probability interpretations. The Lorentz-ovariant solution given inEq. (10) is totally self-onsistent with the quantum probability interpretation. How-ever, this requires an interpretation of osillator exitations along the time-separationoordinate t [15, 16℄. We shall study this in terms of two harmoni osillators. Let usstart with a two-osillator system with the Hamiltonian of the form
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H+ψ (x1, x2) = (n1 + n2 + 1)ψ (x1, x2) . (15)This is the Shr�odinger equation for the two-dimensional harmoni osillator. The dif-ferential equation is separable in the x1 and x2 variables, and the wave funtion anbe written

ψ (x1, x2) = χn1
(x1)χn2

(x2) ,where χn(z) is the n-th exited-state osillator wave funtion whih takes the form
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. (16)Thus,
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. (17)If the system is in ground state with n1 = n2 = 0 , the above wave funtion beomes
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. (18)If only the x2 oordinate is in its ground state, the wave funtion (with n = n1 )beomes
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. (19)If we introdue the normal oordinate system with
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(x1 − x2) , (20)and set

y1 → eηy1, y2 → e−ηy1,we an derive the equation [13, 15℄
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(tanh η)kχn+k (x1)χn (x2) . (21)This wave funtion is a linear ombination of the eigen funtions whih satis�es theeigenvalue equation with the Hamiltonian H− , where
H− =

1

2

{[

−

(

∂

∂x1

)2

+ x2
1

]

−

[

−

(

∂

∂x2

)2

+ x2
2

]}

. (22)Then
H−χn (x1)χm (x2) = (n−m)χn (x1)χm (x2) .If the x2 oordinate is in its ground state,

H−ψ (x1, x2) = nψ (x1, x2) . (23)If we replae the notations x1 and x2 by z and t respetively, this Hamiltonian beomesthat of Eq. (8).



INTERNAL SPACE-TIME STRUCTURE. . . 2114.2. Time-separation variable. We now understand the ovariant harmoniosillators in terms of the two oupled osillators. In the ase of the oupled osillators,oordinates for both osillators are well de�ned and arry their physial interpretation.However, in the ovariant osillators, the time-separation variable is still problemati.This variable exists aording to Einstein, and the di�erential equation of Eq. (5)is Lorentz-invariant beause of this time-separation variable. Yet, its role has not beende�ned in the present form of quantum mehanis. On the other hand, it is possibleto explain this variable in terms of Feynman's rest of the universe [17�19℄. The failureto observe this variable auses an inrease in entropy and an additon of statistialunertainty to the system.5. Lorentz-ovariant quark modelWe started this paper with the Lorentz-invariant di�erential equation of Eq. (2). Thisphenomenologial equation an explain the hadron spetra based on Regge trajetoriesand hadroni transition rates.If we separate this equation using hadroni and quark variables, the equation andesribe a hadron with a de�nite value for its four-momentum and its internal angularmomentum. Furthermore, the hadroni mass is determined by the internal dynamisof the quarks. Our next question is whether these wave funtions, partiularly theirLorentz ovariane properties, are onsistent with what we observe in the real world.The number of quarks inside a stati proton is three, while Feynman observed thatin a rapidly moving proton the number of partons appears to be in�nite [9, 15℄. Thequestion then is how the proton looking like a bound state of quarks to one observeran appear di�erent to an observer in a di�erent Lorentz frame? Feynman made thefollowing systemati observations:a) The piture is valid only for hadrons moving with veloity lose to that of light.b) The interation time between the quarks beomes dilated, and partons behave asfree independent partiles.) The momentum distribution of partons beomes widespread as the hadron movesfast.d) The number of partons seems to be in�nite or muh larger than that of quarks.Beause the hadron is believed to be a bound state of two or three quarks, eahof the above phenomena appears as a paradox, partiularly b) and ) together. Howan a free partile have a wide-spread momentum distribution? We have addressed thisquestion extensively in the literature, and onluded that Gell �Mann's quark model andFeynman's parton model are two di�erent manifestations of the same Lorentz-ovariantquantity [15, 16, 20�22℄.As for experimental observations of hadroni wave funtions, it was noted by Hofs-tadter and MAllister in 1955 that the proton is not a point partile but has a spae-timeextension [23℄. This disovery led to the study of eletromagneti form fator of the pro-ton. As early as in 1970, Fujimura et al. alulated the eletromagneti form fator ofthe proton using the wave funtions given in this paper and obtained the so-alled�dipole� ut-o� of the form fator [24℄.In our 1973 paper [12℄, we attempted to explain the ovariant osillator wave fun-tion in terms of the oherene between the inoming signal and the width of theontrated wave funtion. This aspet was explained in the overlap of the energy-momentum wave funtion in our book [15℄. Without this oherene, the form fatorould derease exponentially for inreasing (momentum transfer)2 . With this oher-ene, the derease is slower and, as shown experimentally, inversely proportional to the
(momentum transfer)2 .



212 Y.S. KIM, M.E. NOZConlusionsThe foal point of this paper is the Lorentz-invariant di�erential equation of Feyn-man et al. given in Setion 3. This equation an be separated into the Klein �Gordonequation for the hadron and a harmoni-osillator equation for the quarks inside thehadron.From the solutions of this equation, it is possible to onstrut a representationof Wigner's little group for massive partiles. These solutions are onsistent with bothquantum mehanis and speial relativity. Those osillator solutions also explain Dira'se�orts summarized in Fig. 2. In this way, we have ombined the ontributions made byWigner, Dira and Feynman to make quantum mehanis of bound states onsistentwith relativity.We have also ompared the ovariant formalism with what we observe in high-energyphysis, spei�ally the proton form fator and Feynman's parton piture.�åçþìåß.Ñ. Êèì, Ì.Ý. Íîç. Âíóòðåííèå ñèììåòðèè ïðîñòðàíñòâà-âðåìåíè ñîãëàñíî À. Ýéí-øòåéíó, Þ. Âèãíåðó, Ï.À.Ì. Äèðàêó è �.Ô. Ôåéíìàíó.Êîãäà Ýéíøòåéí ñ�îðìóëèðîâàë ñïåöèàëüíóþ òåîðèþ îòíîñèòåëüíîñòè â 1905 ãîäó,îí óñòàíîâèë çàêîí ïðåîáðàçîâàíèé Ëîðåíöà äëÿ òî÷å÷íûõ ÷àñòèö. Ñåé÷àñ èçâåñòíî, ÷òîïðîñòðàíñòâî-âðåìÿ ÷àñòèö îáëàäàåò âíóòðåííåé ñòðóêòóðîé. Òàêèå ÷àñòèöû, êàê �î-òîíû è ýëåêòðîíû, îïèñûâàþòñÿ ñïèíîâûìè ïåðåìåííûìè. Ôîòîíû è äðóãèå àäðîíûðàññìàòðèâàþòñÿ êàê ãðàíè÷íûå ñîñòîÿíèÿ äëÿ áîëåå �óíäàìåíòàëüíûõ ÷àñòèö, êâàð-êîâ, îïèñûâàåìûõ ñâîèìè âíóòðåííèìè ïåðåìåííûìè. Äî ñèõ ïîð íåðåøåííûì ÿâëÿ-åòñÿ âîïðîñ î âîçìîæíîñòè ïðèìåíåíèÿ ïðåîáðàçîâàíèé Ëîðåíöà äëÿ ýòèõ âíóòðåííèõïðîñòðàíñòâåííî-âðåìåííûõ ïåðåìåííûõ. Îòìå÷åíî, ÷òî Þ. Âèãíåð, Ï.À.Ì. Äèðàê è�.Ô. Ôåéíìàí âíåñëè âàæíûé âêëàä â ðåøåíèå ýòîé ïðîáëåìû. Â íàñòîÿùåé ñòàòüå ìûîáúåäèíÿåì èõ äîñòèæåíèÿ è ïîêàçûâàåì âîçìîæíîñòü ïîñòðîåíèÿ ìîäåëè âíóòðåííèõñèììåòðèé ïðîñòðàíñòâà-âðåìåíè, ñîãëàñóþùåéñÿ ñ ýéíøòåéíîâñêèì ïðèíöèïîì ëîðåí-öåâîé êîâàðèàíòíîñòè.Êëþ÷åâûå ñëîâà: âíóòðåííèå ñèììåòðèè ïðîñòðàíñòâà-âðåìåíè, ìàëûå ãðóïïû Âèã-íåðà, ëîðåíöåâà êîâàðèàíòíîñòü, ëîðåíöåâî ñæàòèå, ñòîÿ÷èå âîëíû, ñâÿçàííûå ñîñòîÿíèÿ,ãàðìîíè÷åñêèå îñöèëëÿòîðû.
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