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UDK 519.63 EXACTLY EQUILIBRATED FIELDS,CAN THEY BE EFFICIENTLY USEDFOR A POSTERIORI ERROR ESTIMATION?I.E. Anufriev, V.G. Korneev, V.S. KostylevAbstratThe answer given in the paper to the question in the title: yes, they an. We advoate theapproah to the a posteriori error estimation, whih an be alled �lassial�, and for the theoryelastiity problems stems from the Lagrange and Castigliano variational priniples. In it, theenergy of the error of an approximate solution, satisfying geometrial restritions, is estimatedby the energy of the di�erene of the stress tensor orresponding to the approximate solutionand any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular pointof view that the onstrution of equilibrated stress �elds requires onsiderable omputationale�ort, we show that it an be pratially always done for the number of arithmeti operations,whih is asymptotially optimal. We derive also new general a posteriori estimates, in whihequilibrated �elds are replaed by arbitrary �elds of �uxes/stresses. Numerial experimentsshow that our a posteriori error estimators provide very good oe�ients of e�etiveness, whihin many ases an be onvergent to the unity. At the same time they have linear omplexityand are robust. 1. IntrodutionPubliations on a posteriori error estimates for approximate, e.g., numerial so-lutions of partial di�erential equations are numerous. The earliest a posteriori errorestimates were apparently known in mehanis from the time when the Lagrange andCastigliano priniples, whih, from the mathematial point of view, provide the primaland dual formulations in theory elastiity, obtained a mature form. Suh estimates arededued from the fat that approximate solutions obtained on the basis of these prini-ples approah the exat solution in the energy sense from the opposite diretions, and,namely, from above and from below, respetively. Let u be the vetor of exat displae-ments of a linearly elasti body, σ = σ (u) is the orresponding stress tensor, || · ||Uand || · ||σ are the potential energy norms expressed in displaements and stresses. If ũis an arbitrary displaement vetor of �nite energy, satisfying geometri boundary on-ditions, and τ is an arbitrary stress tensor of �nite energy, satisfying the equilibriumequations (inluding the boundary onditions in stresses), then the lassial a posterioriestimate is

||u − ũ||U ≤ ||σ (ũ) − τ ||σ. (1.1)and may be found, e.g., in the Mikhlin's book [33℄. In spite of its simple form andenormous amount of publiations on a posteriori estimates, the authors were unable to�nd referenes where it had been diretly used in pratial FE appliations.During several last deades, a few groups of a posteriori error estimation tehniqueshave been developed and, �rst of all, so alled residual-based tehniques found inBabu ška I and Reinbolt [5, 6℄, Verf ürth [51℄ Stewart and Hudges [48℄ and more re-ent publiations. Among them there are distinguished the expliit residual method,



EXACTLY EQUILIBRATED FIELDS. . . 95see Bernardi and Girault [9℄, Carstensen [11℄ and the related paper by Clement [12℄on speial interpolation, and the impliit and equilibrated residual methods, for whihwe refer to Babu ška I and Reinbolt [5℄, Kelly [18℄, Ladevese and Leguillon [31℄, andAinsworth, Demkowiz and Kim [1℄. Many papers are dediated to obtaining of india-tors of the error, whih do not neessarily bound it, but are approximately proportionalto the error, and, therefore, an be used for the mesh re�nement in adaptive omputa-tions. A pioneering paper Zienkiewiz and Zhu [55℄, see also Ainsworth and Oden [2℄,ommened the group of suh tehniques widely used in appliations and employingsuperonvergene properties of �nite element solutions. Many ontributions have beenrelated to a posteriori error estimation for spei� problems of mathematial physis.The development of a posteriori estimation tehniques in reent deades, as well asthe bibliography, are re�eted in the books of Aubin [3℄, Verf ürth [52℄, Ainsworth andOden [2℄ Babuska and Strobolis [7℄ and Neittaanm äki and Repin [35℄.The main idea of some of the mentioned approahes to the error estimation is touse �elds of stresses, whih an be obtained from the FE solution and at the same timeare most lose to the exat equilibrated �elds (i.e., representing the exat solution ofthe problem). An example is the equilibrated residual method, whih now gains moreattention as a method whih allow to obtain reliable bounds, often without solving someglobal systems of algebrai equations, see, e.g., Ainsworth, Demkowiz and Kim [1℄, Lueand Wohlmuth [32℄, Vejhodsk�y [50℄ and Braess and Sh�oberl [10℄. However, it is alsotrue that the purpose of most authors is to out�ank onstrution of exatly equilibrated�elds at all1. One way of obtaining equilibrated �elds2, whih approximate equilibrated�elds of the exat solution of the primal problem, is approximate solution of the dualproblem, whih in the theory of elastiity is expressed by the Castigliano priniple ofvirtual equilibrated states. As a rule a motivation for avoiding the use of equilibrated�elds is that the solution of the dual problem or other ways of �nding suh �elds areomputationally too expensive.The purpose of this paper is to illustrate that in many ases the estimate (1.1) anbe diretly used as an e�ient and heap error estimator. This is for the reason thatindeed equilibrated �elds are not di�ult to �nd in a variety of ways. As one of theoptions, as we will see not the most e�ient in many ases, the numerial solution ofthe dual problem an be onsidered. For advoating this option, the following fat isimportant: numerial solutions of the disretizations of the primal and dual problems,having the same (in the order) auray in the energy norm, an be found for the same(in the order) omputational ost. More over, under some onditions, the disretizationof the dual problem may be obtained in suh a way that its matrix will oinide with theFE matrix for the primal problem up to the boundary onditions. Therefore, pratiallythe same solver an be used for solution of the both disrete problems.From the above disussion, one onludes that the option of solving the dual problemfor evaluating the equilibrated �elds deserves examination. Suppose that disretizationsof the same order of auray are used for the primal and dual problems. In general,one an expet that the e�ieny oe�ient will onverge to the unity at h→ 0 , if theerror estimator is super-onvergent. In the pratie, suh onvergene was observed for anumber of alternative a posteriori error estimators, onsidered in this paper and papersof other authors, see, e.g., Lue and Wohlmuth [32℄. In our numerial experiments withthe use of lassial error estimate of the type (1.1) and of the equilibrated �elds, obtainedby solution of the dual problem with the same auray, the observed e�etivenessoe�ient remained lose to 1.25. Further improvement of the e�ieny oe�ient is
1In general disussions we use the theory elastiity problem for a model without speial remarks.
2In the paper the both terms equilibrated and exatly equilibrated �eld imply that a �eld satis�esequilibrium equations exatly in lassial or generalized sense.



96 I.E. ANUFRIEV ET AL.possible, e.g., if we solve the dual problem on a denser, then for the primal problem,mesh, whih results in a greater ost of an error estimator, than the ost of the solutionto be validated.At least not less promising approah an be referred as diret evaluation of theequilibrated �elds. It is based on the fat that the equilibrium equations (in stresses) areunder-determined. For instane, in the theory of elastiity, the symmetri stress tensor
σ = {σkl}3

k,l=1 with six stresses for the entries satis�es three equilibrium equations.Therefore, in order to satisfy the equilibrium equations it is su�ient to perform twosteps:1) to speify three stresses, say shear stresses
σkl, k 6= l, (1.2)by arbitrary su�iently smooth funtions and2) to �nd the rest stresses from the equilibrium equations by evaluating 1-d integrals.The presene of the boundary onditions for stresses does not make this proeduresigni�antly more di�ult. When this proedure is used in the a posteriori estimator,e.g., for the FE solution, the stresses (1.2) are found from the FE solution with theaurate use of its superonvergene properties.The approah of diret evaluation of the equilibrated �elds allows us not only todesign heap algorithms for evaluating a posteriori error estimators, often produingonvergent the e�ieny oe�ients, but to ome to a new type of general a posterioriestimates. For simpliity, let us onsider the Dirihlet problem for the Poisson equationin the retangle Ω = (a1, b1) × (a2, b2)

−∆u = f(x), x = (x1, x2) ∈ Ω, u
∣∣
∂Ω

= 0. (1.3)and any funtion v from H̊1(Ω) = {w ∈ H1(Ω) : u
∣∣
∂Ω

= 0} , whih is onsidered asan �approximation� for u . Then for any ǫ > 0 the error estimate an be written in theform
‖∇(v − u)‖2

0,Ω ≤ (1 + ǫ)‖∇v − y‖2
0,Ω+

+

(
1 +

1

ǫ

)
∥∥∥∥∥∥∥

∑

k=1,2

xk∫

ak(x3−k)

αk(f −∇ · y)(ηk, x3−k) dηk

∥∥∥∥∥∥∥

2

0,Ω

. (1.4)
y = (y1, y2)

⊤ is any su�iently smooth vetor-funtion, funtions αk = αk(x) satisfy
α1 + α2 ≡ 1 , and by onvention ∇ · y = div y . If f ∈ L2(Ω) and αk ∈ C(Ω) it isnatural to onsider y ∈ H(Ω, div) = {z : ∇·z ∈ L2(Ω)} . If v = ufem is the FE solution,then y may be obtained by the averaging of the derivatives ∂ufem/∂xk at the nodesand interpolation. In our numerial experiments, algorithms of that type almost alwaysprodued good and onvergent e�etiveness oe�ients. In the algorithms presentedin the paper we implement a variety of tehniques of diret evaluation of the exatlyequilibrated �elds for their use in the a posteriori estimators.Clearly, the estimate (1.4) fethes additional opportunities in omparison with theknown estimates of a lose appearane, in whih the seond term in the right part is,e.g., ‖f − ∇ · y‖−1,Ω . Numerial evaluation of this negative norm is not at all easy,whereas its replaement in (1.4) an be often omputed for a number of arithmetioperations proportional to the number of unknowns. In partiular, this is true for the FEdisretizations by means of the orthogonal grids. Another example is Galerkin methodswith the oordinate funtions spei�ed by analytial expressions in the whole domain. In



EXACTLY EQUILIBRATED FIELDS. . . 97the paper we disuss also the proedures, whih an provide the optimal omputationalost in more general situations.The equilibrium equations in the theories of thin shells and shells of moderate thik-ness, see, e.g., Gol'denweizer [17℄ Novozhilov [36, 37℄ and Reissner [44℄, are written interms of internal fores, i.g., shear fores and bending and twisting moments. Theseequations are more ompliated, than the equilibrium equations in the theory of elas-tiity. However, a quite similar approah an be implemented for obtaining the exatlyequilibrated funtions of internal fores. This approah originates from the papers de-voted to numerial methods for solving the bending thin plate and shell problems onthe basis of the Castigliano priniple and the method of splitting of the thin plate andshell partial di�erential equations, studied by Rozin [45, 46℄, Korneev/Rozin [29, 30℄,Korneev [19�21, 25, 27℄.Considerable part of the algorithms ontained in the paper were tested numerially.We present the graphs and tables of numbers illustrating the dependene of e�etivenessindies and arithmetial work on numbers of unknowns. Obviously, all tested algorithmsare optimal in the omputational work. Additionally to this, the pratial omputationalosts of the a posteriori error estimators and of the optimal multigrid solvers for theprimal problem were ompared. As a rule the latter exeeded the former in two timesat the least.The paper is arranged as follows. In Setion 2, we onsider a posteriori estimatorsfor the Poisson equation in the unite square and arbitrary Lipshits ontinuous domainwith di�erent boundary onditions. The speial ase of the di�erential operator with thedisontinuous oe�ient in the main term is treated in Subsetion 2.3. It is shown thatthe algorithms of a posteriori estimators are easily adjusted to this ase. The results ofnumerial tests for this ase, presented in Subsetion 5.2, show that disontinuity pra-tially does not a�et the e�ieny of the a posteriori error estimator. Setion 3 dealswith the a posteriori error estimators for the plane elastiity problem. All a posteriorierror estimators of Setions 2 and 3 are based on the diret evaluation of the balaned�uxes and equilibrated stress tensors, i.e., without solving any systems of algebraiequations. In Subsetion 4.1, we onsider an alternative approah based on solutionof the dual problem equivalent to the Castigliano priniple of virtual omplementarywork. We show that it is possible to hose a basis in the spae of the self-equilibratedtensors of stresses in suh a way that the system of algebrai equations will possesspratially the same properties as the FE system for the primal problem. Throughoutthe paper alongside with the general algorithms, we present the algorithms, whih wetested numerially. Results of numerial experiments are disussed in Setion 5.Throughout the paper, we use the notations listed below.
P p and Qp are the spaes of polynomials of the total order p and of the order pin eah variable, e1 = (1, 0), e2 = (0, 1) , d is the dimension.
L2(Ω) is the spae [L2(Ω)]d with the norm ‖ · ‖ = ‖ · ‖2,Ω and the same notation isused for the norm in L2(Ω) ,
| · |k,Ω , ‖ · ‖k,Ω stand for the semi-norm and the norm in the Sobolev spae Hk(Ω) ,i.e.,

| v |2k,Ω =
∑

|q|=k

∫

Ω

(Dq
xv)

2dx, ‖v‖2
k,Ω = ‖v‖2

0,Ω +

k∑

l=1

|v|2l,Ω,where
Dq

xv := ∂|q|v/∂xq1

1 ∂x
q2

2 , . . . , ∂x
qd

d , q = (q1, q2, . . . , qd), qk ≥ 0, |q| = q1+q2+· · ·+qd,

H̊1(Ω) :=
{
v ∈ H1(Ω) : v|∂Ω = 0

} is the subspae of funtions from H1(Ω) vanishingon the boundary ∂Ω .



98 I.E. ANUFRIEV ET AL.We use also the abbreviations: a.o. � arithmeti operations, FE � �nite element. Inthe vetors of the spae variables x = (x1, x2) or x = (x1, x2, x3) , sometimes we inter-hange the positions of variables and write x = (xk, x3−k) and x = (xk, xk+1, xk+2) ,assuming in the latter ase that indies k + l are taking values modulo 3.2. Poisson equation2.1. An outline of the approah. In this setion, we illustrate basis of theapproah of the diret evaluation of equilibrated �elds on a simple model problem. Letus onsider a boundary value problem for the Poisson equation in the unite square
Ω = (0, 1) × (0, 1) with the mixed boundary onditions

−∆u = f(x), x = (x1, x2) ∈ Ω, ∂Ω = ΓD ∪ ΓN ,

u|ΓD
= 0, ∂u/∂ν|ΓN

= 0.
(2.1)where

ΓD = {x| x1 ∈ (0, 1] , x2 = 1} ∪ {(x1, x2)| x1 = 1 , x2 ∈ (0, 1]} ,

ΓN = {x| x1 ∈ [0, 1) , x2 = 0} ∪ {(x1, x2)| x1 = 0 , x2 ∈ [0, 1)} ,
(2.2)and ν is the distane from the boundary along the outward normal. The generalizedformulation of this boundary value problem reads

a(u, v) = (f, v)Ω , ∀ v ∈ V(Ω), (2.3)where V(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}

a(v, w) =

∫

Ω

∇v · ∇w dx, (v, w)Ω =

∫

Ω

v w dx.Let V (Ω) be the �nite element spae of the piee wise bilinear funtions on theuniform square grid of size h = 1/n, n > 1, with the nodes x(i) = h(i1, i2), ik =
= 0, 1, . . . , n, and V 0(Ω) is the subspae of funtions from V (Ω) , vanishing on ΓD .By ufem is denoted the �nite element solution belonging to V 0(Ω) and satisfying theidentity

a(ufem, ṽ) = (f, ṽ)Ω , ∀ ṽ ∈ V 0(Ω). (2.4)In order to be able to e�iently implement the a posteriori estimate (1.1), it is neessarywith the use of the obtained FE solution ufem to onstrut the vetor valued funtion
t = (t1, t2)

⊤ , whih obeys the two onditions:
α) it satis�es the balane di�erential equation

−∇ · t = f, (2.5)and the boundary onditions
ν · t|ΓN

= 0, (2.6)where ν is a unite vetor normal to ∂Ω , and
β) is as muh lose as possible to the gradient ∇u of the exat solution.We shall use notations Qf , Q0 for the sets of funtions satisfying (2.5), (2.6) with thegiven f and f = 0 , respetively, from whih Q0 is learly a liner spae. The balane law(2.5) models equilibrium equations in the ase of the theory elastiity boundary valueproblems. Elements of Qf will be termed balaned or equilibrated, whereas elements of

Q0 � self-balaned or self-equilibrated. The sets Qf , Q0 an be de�ned onstrutively



EXACTLY EQUILIBRATED FIELDS. . . 99by means of the splitting tehnique, whih was introdued by Korneev and Rozin [27,29, 45℄ at developing numerial methods for solving problems of the theory of elastithin plates and shells in solid mehanis on the basis of the Castigliano priniple. For theproblem under onsideration onstrutive de�nition of the set Qf of the �equilibrated�vetors is quite simple. If q is an arbitrary su�iently smooth funtion, then the vetor
t = (t1, t2)

⊤ with the omponents
t1(x) =

x1∫

0

q(ξ1, x2) dξ1, t2(x) = −
x2∫

0

(f(x1, ξ2) + q(x1, ξ2)) dξ2 (2.7)satis�es equation (2.5) and boundary onditions (2.6). Clearly, Qf = Q0 + tf , where
tf any element of Qf , and Q0 is de�ned by (2.7) with f ≡ 0 . For all q ∈ L2(Ω) oneomes to the spae Q0 with the norm ||t||σ = ||t|| , where ‖ · ‖ stands for the [L2(Ω)]2norm.The estimate (1.1) takes the form

‖∇(u− ufem)‖ ≤ ‖∇ufem − t‖, ∀ t ∈ Qf . (2.8)Obviously, a better approximation of ∂u/∂x1 by t1 (e.g., with the use of values of thegradient of the �nite element solution at superonvergene points) will result in a bettera posteriori estimate. In turn, from (2.7) it is seen that the funtion q has the sense ofthe seond derivative ∂2u/∂x2
1 .Taking for αk, su�iently smooth funtions satisfying α1 + α2 = 1 , one an usemore �symmetri� formulas instead of (2.7):





t1(x) = −
x1∫

0

(α1f − q) (ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(α2f + q) (ξ1, x2) dξ2.

(2.9)They an provide more aurate a posteriori estimates, espeially with a good hoie offuntions αk, but require more a.o.If the approah, presented above, is used for a posteriori estimation, then di�erentboundary onditions should be given attention. Suppose, ũ is an approximate twiedi�erentiable solution of (2.1), (2.2), e.g., obtained by the Galerkin method or anyother funtion from V(Ω) . For instane, we an set q = ∂2ũ/∂x2
1 and ome to theexpressions

t1 =

x1∫

0

∂2ũ/∂x2
1(ξ1, x2) dξ1,

t2 = −
x2∫

0

(f + ∂2ũ/∂x2
1)(x1, ξ2) dξ2.

(2.10)



100 I.E. ANUFRIEV ET AL.Similarly, we an proeed from setting q = ∂2ũ/∂x2
2 , oming to the a posteriori esti-mates

‖∇(u− ũ)‖2 ≤
∫

Ω







 ∂ũ

∂xk
−

xk∫

0

∂2ũ

∂x2
k

(ξk, x3−k)d ξk




2

+

+


 ∂ũ

∂x3−k
+

x3−k∫

0

(f +
∂2ũ

∂x2
k

)(xk, ξ3−k)d ξ3−k




2



dx, k = 1, 2. (2.11)Taking into aount boundary onditions at ΓN and triangular inequality, one omesfrom (2.11) to

‖∇(u− ũ)‖ ≤
∑

k=1,2

∥∥∥∥
∂ũ

xk

∣∣
xk=0

∥∥∥∥
(0,1)

+

∥∥∥∥∥∥

x2∫

0

(f + ∆ũ)(x1, ξ2) dξ2

∥∥∥∥∥∥
(2.12)Another vetor t , whih belongs to Qf simultaneously with t from (2.10), is

t1 =

x1∫

0

(
α1∂

2ũ/∂x2
1 − α2(f + ∂2ũ/∂x2

2)
)
(ξ1, x2) dξ1,

t2 =

x2∫

0

(
α2∂

2ũ/∂x2
2 − α1(f + ∂2ũ/∂x2

1)
)
(x1, ξ2) dξ2.

(2.13)The orresponding a posteriori error estimates are
‖∇(u− ũ)‖ ≤

≤






∑

k=1,2

∫

Ω


 ∂ũ

∂xk
−

xk∫

0

(
αk
∂2ũ

∂x2
k

− α3−k(f +
∂2ũ

∂x2
3−k

)

)
(ξk, x3−k) dξk




2

d x






1/2

≤

≤
∑

k=1,2




∥∥∥∥
∂ũ

xk

∣∣∣
xk=0

∥∥∥∥
(0,1)

+

∥∥∥∥∥∥

xk∫

0

α3−k(f + ∆ũ)(ξk, x3−k) dξk

∥∥∥∥∥∥



 (2.14)whih for αk ≡ 0.5 is invariant with respet to xk, k = 1, 2. It easy to see, that addingand subtrating α3−k∂
2ũ/∂x2

k inside round brakets, taking into aount boundaryonditions at ΓN and triangular inequality, we obtain the same estimate (2.12).In the ase of the Dirihlet boundary value problem
a(u, v) = (f, v)Ω u, ∀ v ∈ V(Ω) = H̊1(Ω) , (2.15)the estimates (2.12),(2.14) take espeially simple forms. Instead of the latter we have

‖∇(u− ũ)‖ ≤
∑

k=1,2

∥∥∥∥∥∥

xk∫

0

α3−k(f + ∆ũ)(ξk, x3−k) dξk

∥∥∥∥∥∥
. (2.16)



EXACTLY EQUILIBRATED FIELDS. . . 101Let us onsider for simpliity the ase α2 ≡ 0 . Sine in this ase no boundary onditionsare imposed on the equilibrated �uxes, we an set
t1 = ∂ũ/∂x1,

t2 = ∂ũ/∂x2(x1, 0) −
x2∫

0

(f + ∂2ũ/∂x2
1)(x1, ξ2)dξ2,

(2.17)and, therefore,
∂ũ

∂x1
− t1 = 0,

∂ũ

∂x2
− t2 =

∂ũ

∂x2
− ∂ũ

∂x2
(x1, 0) +

x2∫

0

(
f +

∂2ũ

∂x2
1

)
(x1, ξ2) dξ2 =

x2∫

0

(f − ∆ũ)(x1, ξ2) dξ2,ompleting the proof. In the ase of an arbitrary su�iently smooth domain, the proofis similar.Lemma 2.1. Let Ω be Lipshits ontinuous domain, f ∈ L2(Ω) , u � solution of(2.15), and ũ be any funtion in H2(Ω) satisfying boundary ondition u
∣∣
∂Ω

= 0 . Thenthe error u− ũ satis�es a posteriori estimate (2.16).2.2. Examples of algorithms for �nite element solutions of Poisson equa-tion. Solutions obtained by FE methods ompatible in C , whih are primarily usedin pratie for seond order ellipti equations, do not have seond derivatives. Basially,three ways to out�ank this obstale an be distinguished. All of them start from theproedure of onstruting some smooth approximation of the seond, or �rst deriva-tives of FE solution, or the FE solution itself. In what follows, this proedure is termedsmoothing proedure. After smoothing proedure has been applied, we proeed in one ofthe ways desribed in Subsetion 2.1. The distintions between three types of a posteri-ori error estimation algorithms for our model problem an be illustrated on example of�nonsymmetri� algorithms, in whih 1-d integration of f is involved in the de�nitionof only one of the �uxes. Sine this �ux is uniquely de�ned by the balane equation andthe boundary ondition on ΓN , it is su�ient to point out the way of evaluation of one�ux, whih is alulated �rst. Brie�y, three types of suh a posteriori error estimationalgorithms are the following:a) Calulate seond derivative of the FE solution along one of the axes approxi-mately with the use of �nite di�erenes at some set of disrete points (e.g., FE nodes).De�ne q (e.g., as a funtion of the FE spae V (Ω)) by interpolation of the alulatedapproximate values of the seond derivative. De�ne the orresponding �ux by 1-d inte-gration of q (like in the �rst expression (2.7)) and by adding the boundary value of the�ux, given by the boundary onditions on ΓN .b) Calulate the �rst derivative of the FE solution in one of the diretions xk at thenodal points, e.g. by averaging. De�ne the tentative �ux in the hosen diretion as theFE funtion, whih belongs to V (Ω) and takes at the nodes alulated values. De�nethe �ux by adjustment of the tentative �ux to the boundary ondition on ΓN .) Construt twie di�erentiable approximation of the FE solution. De�ne the ten-tative �ux in one of the axes as the �rst derivative of the smoothed FE solution. De�nethe �ux by adjustment of the tentative �ux to the boundary ondition on ΓN .Indeed eah of a), b) and ) allows to de�ne two equilibrated �uxes t(k), k = 1, 2,orresponding to the diretion xk , the �ux along whih is de�ned �rst. The �ux for thea posteriori estimator an be de�ned as t = α1t
(1) + α2t

(2) .



102 I.E. ANUFRIEV ET AL.Apart from �symmetri� versions, other variations of the outlined algorithms arenumerous. For instane, in the smoothing proedures of a) and b) some other �nitedimensional funtional spaes W (Ω) an be used instead of the basi FE spae V (Ω) .Sine it is not neessary for q to be ontinuous, we an over Ω by some nonoverlappingsubdomains Ωj and in eah de�ne q by the list squares method with the use of poly-nomials of some spei� order pj . In the viinity of singularities in the exat solutionof the problem, speial representations for q , equilibrated �uxes or the smoothed FEsolution an be implemented. In the latter ase it is more appropriate to use the termpreproessed FE solution. It is also worth adding that in di�erent subdomains one anuse algorithms of di�erent types, i.e., a), b) or ), for obtaining equilibrated �uxes.In this subsetion, we present a few simple examples of the outlined algorithmsfor the Poisson equation in the unit square and arbitrary su�iently smooth domainwith di�erent boundary onditions. For the problems in the unit square, the FE spae
V (Ω) is the spae of ontinuous piee wise bilinear funtions on the square mesh of size
h = 1/n . For the nodes of this mesh we use notation x(i) = hi, i = (i1, i2). We startfrom the algorithm of the type ) for the problem (2.1)�(2.2).Algorithm 2.1.Step 1. For eah node x(i) ∈ ∂Ω alulate the value of the mesh funtion

vh = = (v
(i)
2,1)

n
i1,i2=0 , whih is the �nite-di�erene approximation of the seondderivative ∂2u/∂x1

2(x(i)) . For internal nodes of horizontal mesh lines x2 ≡ hi2,
i2 = 0, 1, . . . , n, use
v
(i)
2,1 =

ufem(h(i1 + 1), hi2) − 2ufem(hi1, hi2) + ufem(h(i1 − 1), hi2)

h2
, i1 = 1, . . . , n−1.For the nodes (0, i2) on the axis x1 ≡ 0 set

v
(i)
2,1 = ∂2ũ0/∂x1

2(0, hi2) ,where ũ0 is the 3-d order interpolation polynomial of x1 over the values ufem(x(i))for i1 = 0, 1, 2, and ∂ufem/∂x1(0, hi2) . For the nodes (n, i2) alulate
v
(i)
2,1 = ∂2ũ1/∂x1

2(1, hi2),where ũ1 is the 3-d order Lagrange interpolation polynomial of x1 over the values
ufem(x(i)) for i1 = n− 3, n− 2, n− 1, nStep 2. De�ne I2,1(x) ⊂ V (Ω) as the piee wise bilinear interpolation of vh .Step 3. De�ne t by evaluating the integrals

t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(f(x1, ξ2) + I2,1(x1, ξ2)) dξ2.

(2.18)Step 4. Evaluate the estimator η := ‖∇ufem − t‖2 .Remark 2.1. Formulas (2.18) orrespond to (2.7), (2.10). Sine I2,2 ∼ ∂2u/∂x1
2an be alulated in a similar way, a more �symmetri� formulas, orresponding to (2.9),
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t1 =

x1∫

0

[α1I2,1 − α2(f + I2,2)](ξ1, x2) dξ1 =

x1∫

0

[I2,1 − α2(f + I2,1 + I2,2)](ξ1, x2) dξ1,

t2 =

x2∫

0

[α2I2,2 − α1(f + I2,1)](x1, ξ2) dξ2 =

x2∫

0

[I2,2 − α1(f + I2,1 + I2,2)](x1, ξ2) dξ2.(2.19)In Step 1, we used �nite-di�erene approximations of the seond derivative
∂2u/∂x2

1 , whih provide the same order h2 of approximation for a su�iently smooth
u . In Step 3, the way of the evaluation of integrals of Iv and f may be di�erent.In partiular, in many ases the analytial integration an be performed. In general,proedures, used in Steps 3, depend on the way of evaluating the norm ‖∇ufem − t‖2in Step 4. For instane, for eah �nite element τi := h(i1 − 1, i1)×h(i2 − 1, i2) , we anuse quadratures exat for polynomials of some order pi ≥ 1 . Then it is neessary toevaluate tk only at the quadrature nodes, and for doing this other quadratures an beused. The type of the quadratures, used element wise for evaluating t2 and the norm
‖∇ufem − t‖2 may depend on the loal smoothness of f , if the integral of f is notevaluated exatly. Bounds for quadrature errors will enter the resulting error bound forthe FE solution with the right part depending only on ufem and f . However, we willnot elaborate on these subjets in the present paper aimed to illustrate main featuresof the approah.In the ase ΓN = ∅ , i.e. when only the Dirihlet boundary onditions are imposedin (2.1), then the estimate (2.8) is true for any vetor valued funtion t satisfying thebalane equation (2.5) and not subjeted any boundary onditions. But when boundaryonditions are di�erent from the ones onsidered above in (2.1) and ΓN 6= ∅ then someremedy should be done in order t to ful�ll the boundary onditions (2.6). For instane,let

ΓD = {(x1, x2)| x1 ∈ [0, 1], x2 = 1} , ΓN = ΓN,1 ∪ ΓN,2 ∪ ΓN,3,where
ΓN,1 = {(x1, x2)| x2 ∈ [0, 1], x1 = 0} ,
ΓN,2 = {(x1, x2)| x1 ∈ [0, 1], x2 = 0} ,
ΓN,3 = {(x1, x2)| x2 ∈ [0, 1], x1 = 1} ,and the boundary onditions are

u|ΓD
= 0, u|ΓN

= g, (2.20)where g ∈ C(ΓN ) and
g =





g1(x2), on ΓN,1,

g2(x1), on ΓN,2,

g3(x2), on ΓN,3.

(2.21)The estimate (2.8) is true, if the vetor valued funtion t satis�es the equation (2.5)and the boundary ondition (2.6). The steps 1 and 2 may be the same as in the algorithmaddued above, but they produe only a tentative �ux, whih should be adjusted to the



104 I.E. ANUFRIEV ET AL.boundary ondition (2.6). Let
t1(x) =

x1∫

0

(I2,1 + r)(ξ1, x2) dξ1 + g1(x2),

t2(x) = −
x2∫

0

(f + I2,1 + r)(x1, ξ2) dξ2 + g2(x1),

(2.22)where r(x) is hosen with the purpose to ful�ll the boundary ondition (2.6) on ΓN,3 .It is su�ient to take r depending only on x2

r(x1, x2) = g3(x2) − g1(x2) −
1∫

0

I2,1(ξ1, x2) dξ1 . (2.23)Hene
t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1 − x1

1∫

0

I2,1(ξ1, x2) dξ1 + (1 − x1)g1(x2) + x1g3(x2),

t2(x) = −
x2∫

0

(f + I2,1)(x1, ξ2) dξ2 +

x2∫

0

1∫

0

I2,1(ξ1, ξ2)) dξ1dξ2+

+

x2∫

0

(g1 − g3)(ξ2) dξ2 + g2(x1).

(2.24)
In the ase of the homogeneous Neumann boundary ondition the expressions (2.24) on
ΓN takes a simpler form

t1 =

x1∫

0

I2,1(ξ1, x2) dξ1 − x1

1∫

0

I2,1(ξ1, x2) dξ1,

t2 = −
x2∫

0

(f + I2,1)(x1, ξ2) dξ2 +

x2∫

0

1∫

0

I2,1(ξ1, ξ2)) dξ1dξ2.

(2.25)The desribed approah is easily realized in a muh more general situation. Suppose,
Ω is the domain oupied by the arbitrary triangulation Sh with the triangles τr, r =
1, 2, . . . , R , V (Ω) is the spae of the ontinuous piee wise linear funtions and V̊ (Ω) =
{v ∈ V (Ω) : v

∣∣
∂Ω=0

} . We will turn to the algorithm of the type b) for the problem withthe Dirihlet boundary ondition. Namely, we onsider the problem
a(u, v) = (f, v)Ω u, ∀ v ∈ V(Ω) = H̊1(Ω), (2.26)and its FE solution ufem satisfying
a(ufem, v) = (f, v)Ω ufem, ∀ v ∈ V̊ (Ω). (2.27)Let us assume for simpliity that eah line xk ≡ const rosses Ω not more than in twopoints, Γk,− is the part of the boundary ontaining the points of suh pairs, havinglesser oordinate xk , xk = ak(x3−k) is the equation of Γk,− , x3−k = â3−k, b̂3−k are



EXACTLY EQUILIBRATED FIELDS. . . 105the oordinates of the ends of Γk,− . We also use notation Bi = {r : τr ∈ Ω, x(i) ∈ τ r}for the set of the numbers of �nite elements, having x(i) for a vertex, and notation
V (Γk,−) for the spae of the traes of funtions from V (Ω) on Γk,− . Among simplestis the algorithm, whih is not invariant with respet to xk, k = 1, 2, and is based onthe averaging and the proedure re�eted in Remark 2.1.Algorithm 2.2.Step 1. For eah node alulate the average

u
(i)
fem,1 =

∑

r∈Bi

∂u
(r)
fem

∂x1
(x(i)),where u(r)

fem = ufem

∣∣∣
τr

is the restrition of the FE solution to τr .Step 2. De�ne the interpolation I(ufem,1) ∈ V (Ω) satisfying
I(ufem,1)(x

(i)) = u
(i)
fem,1 ∀ x(i) ∈ Ω.Step 3. For eah node x(i) ∈ Γ2,− alulate the average

u
(i)
fem,2 =

∑

r∈Bi

∂u
(r)
fem

∂x2
(x(i)),and for x ∈ Γ2,− de�ne the piee wise linear ontinuous interpolation IΓk,−

(ufem,2)satisfying
I(ufem,2)(x

(i)) = u
(i)
fem,2 ∀ x(i) ∈ Γ2,−.Step 4. For omponents of an equilibrated vetor t = (t1, t2)

⊤ set
t1 = I(ufem,1), t2

∣∣
Γ2,−

= t2(x1, φ2(x1)) := IΓk,−
(ufem,2)

∣∣
Γ2,−

,and evaluate
t2(x) = t2(x1, φ2(x1)) −

x2∫

a2

(
f +

∂t1
∂x1

)
(x1, ξ2) dξ2.Step 5. Evaluate the bound ‖∇ufem − t‖2 .The algorithm, based on averaging, an be made invariant with respet to xk, k =

= 1, 2 .Algorithm 2.3.Step 1. For eah node and k = 1, 2 alulate the averages
u

(i)
fem,k =

∑

r∈Bi

∂u
(r)
fem

∂xk
(x(i)).Step 2. De�ne the interpolations I(ufem,k) ∈ V (Ω) satisfying

I(ufem,k)(x(i)) = u
(i)
fem,k ∀ x(i) ∈ Ω.Clearly, the vetor t̃ = (t̃1, t̃2)

⊤, t̃k = I(ufem,k) , approximates the equilibratedvetor.



106 I.E. ANUFRIEV ET AL.Step 3. For k = 1, 2 alulate
qfem,k = −∂I(ufem,k)/∂xk, δf = f − qfem,1 − qfem,2.Step 4. For α1(x) + α2(x) ≡ 1 and θk(x3−k) = I(ufem,k)(ak(x3−k), x3−k) k =

1, 2, alulate
tk(x) = θk(x3−k) −

xk∫

ak

(qfem,k + αkδf)(ξk, x3−k) dξk =

= (1 − αk)I(ufem,k) −
xk∫

ak

αk(f + qfem,3−k)(ξk, x3−k) dξk.Step 5. Evaluate the bound ‖∇ufem − t‖2 .Funtions θk(x3−k) speify boundary onditions for t . They an be de�ned di�er-ently from Step 4, and for their evaluation by means of the FE solution speial moreaurate proedures an be used. The simplest hoie for α is α ≡ 1/2 , however anumber of more sophistiated proedures for the evaluation of this funtion an beonsidered. For instane, in some regions α an be hosen on the basis of the loal anal-ysis. Obviously, the proedures of Algorithm 2.2 are a part of Algorithm 2.3. The wholeproess of the a posteriori estimation an be arranged in the following way. One usesAlgorithm 2.2. If the a posteriori estimate is unsatisfatory then additional alulationsare performed aording Algorithm 2.3 with some hoie of αk . Further perfetion ofthe a posteriori estimator is possible in a variety of ways. For instane, it is not neessaryto use the same FE mesh for the evaluation of t . In order to simplify the omputationsand make the estimate more aurate, a subsidiary mesh an be used for �nding t ,whih, e.g., is orthogonal inside the domain and provide some hp FE interpolation for�uxes, determined by the FE solution ufem .Remark 2.2. Evaluation of a posteriori error bounds aording Algorithm 2.1�Algorithm 2.3 involves only three operations� numerial di�erentiation with the use of �nite di�erenes,� interpolation, and� evaluating of 1-d integrals.For this reason, these algorithms are obviously optimal in the arithmeti operationsount, if the mesh is orthogonal. In the ase of an arbitrary quasiuniform triangulation,the evaluation of integrals may be often arranged by layers of elements. From layer tolayer the number of points, at whih we need to evaluate an equilibrated �ux may ingeneral double. Therefore, the omputational ost of the third among listed operationsis estimated as O (nkn
2
3−k) , where nk is the maximal number of nodes in one layer and

n3−k is the number of layers. In this paper, we onentrate on basi fats of a posterioriestimation, but several reipes an be immediately suggested for the redution of theomputational work, even in the ase of nonuniform unstrutured meshes. For instane,we an over the omputational domain by the nonuniform orthogonal mesh with thehanging nodes, mathing in density the FE grid. Then we alulate one or both �uxesat the nodes of this mesh by means of averaging and interpolation. After that with theuse of the introdued orthogonal mesh, we obtain orretions, whih are neessary inorder to make �uxes equilibrate.



EXACTLY EQUILIBRATED FIELDS. . . 107Remark 2.3. There are known a posteriori estimates
‖∇ufem −∇u‖2

0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2
0,Ω +

(
1 +

1

ǫ

)
‖∇ · y − f‖2

−1,Ω,

‖∇ufem −∇u‖2
0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2

0,Ω+

+ cΩ

(
1 +

1

ǫ

)
‖∇ · y − f‖2

0,Ω ∀ ǫ > 0,

(2.28)where y is an arbitrary vetor and cΩ is the onstant from the Friedrih's inequality, seeRepin/Frolov [41℄ and Neittaanm�akki/Repin [35℄. One of our estimates an be writtenin the form
‖∇ufem −∇u‖2

0,Ω ≤ ‖∇ufem − t‖2
0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2

0,Ω+

+

(
1 +

1

ǫ

)
∥∥∥∥∥∥∥

∑

k=1,2

xk∫

ak(x3−k)

αk(f −∇ · y)(ηk, x3−k) dηk

∥∥∥∥∥∥∥

2

0,Ω

. (2.29)In partiular, in Algorithm 2.3 we used y = (I(ufem,1), I(ufem,2))
⊤ . The right part fenters the last a posteriori estimate in a more adequate way, than in the seond estimate(2.28). At the same time, it is easily omputable, whereas the negative norm, enteringthe right part of the �rst bound (2.28), makes the bound di�ult for the use in pratie.2.3. Heat ondution problemwith disontinuous oe�ient. The extensionof the advoated approah and in partiular of the algorithms of the previous setionto the ellipti equations with the disontinuous oe�ients is straightforward. Let usonsider as an example the boundary value problem

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω = (0, 1) × (0, 1),

u
∣∣
ΓD

= g,
∂u

∂ν

∣∣
ΓN

= 0,
(2.30)with ΓD, ΓN de�ned as in (2.2), ρ(x) > 0 and

ρ(x) =

{
ρ1 = const for x ∈ Ω1 := {x ∈ Ω : 0 < x1 < 0.5},
ρ2 = const for x ∈ Ω2 := Ω \ Ω1}.For simpliity it is assumed that the boundary onditions are onsistent and there exitssuh u0 ∈ H2(Ω) that u0

∣∣
ΓD

= g . We de�ne the approximate solution ufem of thisproblem as the funtion belonging to the set L(Ω) = V 0(Ω) + u0 and satisfying theidentity
aρ(ufem, ṽ) = (f, ṽ)Ω ∀ ṽ ∈ V 0(Ω), (2.31)where
aρ(v, w) =

∫

Ω

ρ∇v · ∇w dx1dx2and V 0(Ω) is the FE spae de�ned in Subsetion 2.1. If to introdue the norms
‖v‖ρ = (aρ(v, v))

1/2, ‖t‖ρ−1 =




∫

Ω

ρ−1t · t dx




1/2 (2.32)



108 I.E. ANUFRIEV ET AL.and imply by Qf the set of the equilibrated vetors satisfying (2.5), (2.6), then the aposteriori error estimate (2.8) takes the form
‖∇(u− ufem)‖ρ ≤ ‖ρ∇ufem − t‖ρ−1 . (2.33)Algorithms 2.1�2.3 are easily adapted to the problem under onsideration. For instane,the �rst one is written as follows.Algorithm 2.4.Step 1. For eah node x(i) ∈ ∂Ω alulate the value of the mesh funtion vh =

(v2,1(i))
n
i1,i2=0 , whih is the �nite-di�erene approximation of ∂(ρ∂u/∂x1)∂x1(x

(i)) . Forinternal nodes of horizontal mesh lines x2 ≡ hi2, i2 = 0, 1, . . . , n, use
v1,1(i) = ρ((i1 − 0.5)h, i2)[ufem(hi) − ufem(h(i1 − 1), hi2)],

v2,1(i) =
1

h2
[v1,1(i1 + 1, i2) − v1,1(i)] , i1 = 1, . . . , n− 1.For the nodes (0, i2) on the axis x1 ≡ 0 set

v2,1(i) = ρ1∂
2ũ0/∂x1

2(0, hi2),where ũ0 is the 3-d order interpolation polynomial of x1 over the values ufem(x(i))for i1 = 0, 1, 2, and ∂ufem/∂x1(0, hi2). For the nodes (n, i2) alulate
v2,1(i) = ρ2∂

2ũ1/∂x1
2(1, hi2),where ũ1 is the 3-d order Lagrange interpolation polynomial of x1 over the values

ufem(x(i)) for i1 = n− 3, n− 2, n− 1, n .Step 2. De�ne I2,1(x) ⊂ V (Ω) as the piee wise bilinear interpolation of vh .Step 3. De�ne t by evaluating the integrals
t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(f(x1, ξ2) + I2,1(x1, ξ2)) dξ2.

(2.34)Step 4. Evaluate ‖ρ∇ufem − t‖2
ρ−1 .3. Linear elastiity problems3.1. A posteriori estimation for plane problems. Let E be the Young's mod-ulus, ν � the Poisson's ratio, I � the unit tensor and tr(κ) = κ : I � the trae of atensor κ . The linearly elasti plain strain problem in some domain Ω is formulatedin terms of the displaement vetor u(x) = (u1(x), u2(x))

⊤ and symmetri strain andstress tensors
σ =

(
σ11 σ12

σ21 σ22

)
, ε =

(
ε11 ε12
ε21 ε22

)
,related by the system of equations

div σ + f = 0 , (3.1)
ε(u) = (εkl(u))k,l=1,2 , εkl =

1

2
(∂uk/∂xl + ∂ul/∂xk), (3.2)
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σ (ε) =

E

1 + ν

[
ν

1 − 2ν
tr(ε) I + ε

]
, (3.3)supplied by boundary onditions. The mixed homogeneous boundary onditions mayhave the form

u|ΓD
= 0, σ n = τ n|ΓN

= 0, (3.4)where σn(x) and τ n(x) are stresses normal and tangential to the boundary at a point
x ∈ ΓN .We turn to the ase of the �rst boundary value problem when ΓN = ∅ and for theboundary onditions we have

u|∂Ω = 0. (3.5)We assume that for positive onstants cE , . . . , cν
cE ≤ E(x) ≤ cE , cν ≤ ν(x) ≤ cν < 0.5,and introdue the spae V = [H̊1(Ω)]2 . The generalized solution u of the problem(3.1)�(3.3), (3.5) formulated in respet to displaements satis�es

∫

Ω

σ (u) : ε(v) dx =

∫

Ω

f · v dx, , ∀v ∈ V. (3.6)For simpliity it is assumed that the domain of the FE assemblage oinides with Ω .For approximate solution of (3.6), the subspae V̊ = [ V̊ (Ω)]2 = [V (Ω)]2 ∩ V , where
V (Ω) is the spae of FE salar funtions. The FE solution is found from the identity

∫

Ω

σ (ufem) : ε(v) dx =

∫

Ω

f · v dx, ∀v ∈ V̊ (Ω). (3.7)The Hook's law (3.3) an be written in the inversed form
ε(σ ) =

1 + ν

E
[σ + ν tr(σ ) I], (3.8)and the both relations de�ne the norms for arbitrary tensors σ and ε

||ε ||ε =




∫

Ω

σ (ε) : ε dx




1/2

, ||σ ||σ =




∫

Ω

σ : ε(σ ) dx




1/2

. (3.9)If σ and ε satisfy (3.8), then learly ||ε ||ε = ||σ ||σ , and, if additionally σ = σ (u) and
ε = ε(u) are related by equations (3.2), (3.3), then the energy norm for displaementsis de�ned aording to the expression

||u||U =




∫

Ω

σ (u) : ε(u) dx




1/2

. (3.10)The set Qf of equilibrated stress tensors is spei�ed as Qf = τ + Q0 , where τ isany tensor satisfying the equilibrium equations
div τ + f = 0 (3.11)



110 I.E. ANUFRIEV ET AL.and Q0 is the linear spae of self-equilibrated funtions, i.e., satisfying equilibriumequations with f ≡ 0 . The latter spae an be onsidered as a Hilbert spae with thesalar produt
[σ , σ ′]σ =

∫

Ω

σ : ε(σ ′) dxand the norm || · ||σ . For the exat and the FE solutions u = (u1, u2)
⊤, ufem =

= (ufem,1, ufem,2)
⊤ , respetively, of the plain strain problem (3.6), we have the aposteriori estimate

||u − ufem||U ≤ ||σ (ufem) − τ ||σ ∀ τ ∈ Qf . (3.12)For obtaining a good tensor τ , we use the same approah as before. The system ofthe equilibrium equations are sub-de�ned and speify the set Qf of equilibrated vetorsup to the linear spae Q0 of the self-equilibrated funtions, i.e., satisfying equilibriumequations with f ≡ 0 . This fat allows a simple way of a onstrutive de�nition of thewhole set Qf , the essene of whih is the following: we speify one of the omponents
τkl by a su�iently smooth arbitrary funtion and �nd other omponents from theequilibrium equations. Where no speial assumptions on f ∈ L2(Ω) are made, we alwaysassume that f ∈ L2(Ω) . In algorithms of a posteriori estimators, it is su�ient to pointout the way of de�nition of su�iently smooth tensors τ ∈ Qf .Algorithm A.1. We speify an arbitrary funtion ψ12 ∈ L1

∞(Ω) , arbitrary funtions
ψkk,Γk,−

(x3−k) ∈ L1
∞ [â3−k, b̂3−k] , and set τ12 = ψ12 .2. Find q1 = ∂ψ12/∂x2 and
τ11 = ψ11,Γ1,−

(x2) −
x1∫

a1(x2)

(f1 + q1)(ξ1, x2) dξ1. (3.13)3. Find q2 = ∂ψ12/∂x1 and
τ22 = ψ22,Γ2,−

(x1) −
x2∫

a2(x1)

(f2 + q2)(x1, ξ2) dξ2. (3.14)As well one an also start from speifyingtwo funtions ψkk,Γk,−
(x3−k) ∈ L∞ [â3−k, b̂3−k] ,funtion ψ12,Γk,−

(x3−k) ∈ L∞ [â3−k, b̂3−k] , andfuntion q(x) .Then the tangential stress is de�ned by the integral
τ12 = ψ12,Γk,−

(x3−k) −
xk∫

ak(xx3−k
)

q(ξk, x3−k) dξkfor one of k = 1, 2, and other stresses are de�ned aording to the above algorithm.If steps 1�3 are used for obtaining an a posteriori estimate, funtions ψ12 and
ψkk,Γk,−

are alulated by means of the obtained FE solution. This should be done inthe most aurate way (e.g., with the use of superonvergene properties of the FEsolution), sine the loseness of these funtions to the true stresses σ12(u) on Ω and to
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σkk(u) on the part of the boundary Γk,− is ruial for the auray of the a posterioriestimate. In partiular, ψ12 an be spei�ed as an element of the FE spae V (Ω) withthe nodal values obtained by the proedure of averaging similar to the used in Steps2, 3 of Algorithm 2.2. In the ase of a retangular domain and orthogonal mesh, thisproedure is espeially simple

ψ12(x
(i)) = σfem,12(i1h− 0, i2h− 0) + σfem,12(i1h+ 0, i2h− 0)+

+ σfem,12(i1h− 0, i2h+ 0) + σfem,12(i1h+ 0, i2h+ 0).
(3.15)Here σfem,12 = σ12(ufem) is the stress de�ned by the FE solution and it is assumed that

σfem,12(i1h± 0, i2h± 0) = 0 , if the orresponding element τj , j = (j1 ± 1, j2 ± 1) doesnot belong to Ω .In the ase of a more general domain, Γk,− ⊂ ΓN and the homogeneous bound-ary ondition (3.4) on ΓN it is adopted ψkk,Γk,−
(x3−k) ≡ 0 . If the seond boundaryondition is nonhomegeneous, i.e.,

σ n|ΓN
= t, (3.16)then we set ψkk,Γk,−

(x3−k) ≡ tkk or ψkk,Γk,−
(x3−k) ≡ t̃kk , where t̃kk is a more on-venient for the use in (3.13), (3.14) but su�iently aurate approximation of t . Theestimate of the error tkk − t̃kk of approximation in some norm will enter the right partof the a posteriori estimate.The approah under onsideration may be realized in a number of ways. For the �rststep one an speify τkk = ψkk and then �nd τ12, τ3−k,3−k from the equilibrium equa-tions. However, suh a path is not invariant with respet to xk, k = 1, 2 . Besides, in theproess of obtaining suh equilibrated symmetri stress tensor, this funtion is di�erenti-ated twie in xk and integrated twie along x3−k . The latter requires more smoothnessfrom ψkk at least in xk . In general an additional di�erentiation will ertainly resultin ruder a posteriori error estimates, if it is not ompensated by the integration alongthe same diretion, and this was observed in our numerial experiments. However, moreompliated algorithms, but having the same asymptotial omputational omplexity,may be designed, whih are invariant with respet to xk, k = 1, 2 , and at the sametime provide ontinuous equilibrated stress tensors. An example of suh algorithms forthe ase of Ω = (0, 1) × (0, 1) is Algorithm B.Algorithm B.1. Using the �nite element solution, de�ne a ontinuous piee wise bilinear funtion

I(κ h
12) ∈ V̊ , whih �approximates� the seond mixed derivative

I(κ h
12) ∼

∂σ12

∂x1∂x2
=

E

2(1 + ν)

(
∂3u1

∂x1∂x2
2

+
∂3u2

∂x2
1∂x2

)of the stress σ12 = σ12(u) . Here, κ h
12 = {κ12(i)} is the mesh funtion and,e.g., I(κ h

12)(x
(i)) = κ12(i) . Inverted ommas stand for the reason that indeed

∂σ12(ufem)/∂x1∂x2 may not be de�ned even on �nite elements, and, therefore, somespeial ways of evaluation of κ h
12 should be implemented. They should allow us toexpet approximation in some sense of σ12(u) by τ12(ufem) , evaluated in a posteri-ori estimator by means of κ h

12 . For instane, below τ12 is de�ned by the bakwarddouble integration of I (
κ h

12

) in suh a way that under some onditions one an ex-pet the same auray from τ12 as from σ12(ufem) . If the square bilinear or higherorder elements are used, one an evaluate ∂σ12(ufem)(x(i))/∂x1∂x2 for eah elementat its nodes, than for eah node of FE assemblage alulate κ12(i) as the average of
∂σ12(ufem)(x(i))/∂x1∂x2 for eah element.
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τ12 =

x2∫

0

x1∫

0

I
(
κ

h
12

)
dx1dx2 + c0 +

x1∫

0

c1(x1) dx1 +

x2∫

0

c2(x2) dx2,

τ11 =

x1∫

0


f1 −

x1∫

0

I
(
κ

h
12

)
dx1


 dx1 + c3(x2) − c2(x2)x1,

τ22 =

x2∫

0



f2 −
x2∫

0

I
(
κ

h
12

)
dx2



 dx2 + c4(x1) − c1(x1)x2,

(3.17)
where

c0 ≃ σ12

∣∣
x1=0, x2=0

, c1(x1) ≃ ∂σ12/∂x1

∣∣
x2=0

, c2(x2) ≃ ∂σ12/∂x2

∣∣
x1=0

,

c3(x2) ≃ σ11

∣∣
x1=0

, c4(x1) ≃ σ22

∣∣
x2=0

,
(3.18)and σkl may be understood as exat or FE values of the stresses.There are many other ways of �nding the appropriate stresses τ̃kl by means of theFE solution, whih an be used as starting ones for evaluation of the equilibrated stresstensor τ . In partiular, smoother interpolations may be more e�ient.In order to illustrate the essential di�erene from the approahes used by otherauthors, we formulate below basi a posteriori estimates in a form, in whih the errorin the smoothed FE stresses and the residual are separated.Lemma 3.1. Let v be arbitrary vetor in V = [H̊1(Ω)]2 , σ (v) be the stress tensorsatisfying (3.2), (3.3) for u = v and y = {ykl}2

k,l=1 be an arbitrary symmetri tensorwith the omponents in H1(Ω) . Then for u − v either of the estimates
||u − ufem||U ≤ ||σ(ufem) − τ‖σ,

||u − ufem||U ≤ ||σ(ufem) − y||σ + ||δτ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ+

+
∑

k=1,2

∥∥∥∥∥∥∥

(
1 − ν2

E

)1/2 xk∫

ak(x3−k)

(
fk − ∂yk,k

∂xk
− ∂y1,2

∂x3−k

)
(ηk, x3−k) dηk

∥∥∥∥∥∥∥
0

,

(3.19)holds, where τ is the stress tensor with the omponents
τ12 = y12, τkk = ykk(ak(x3−k)) +

xk∫

ak(x3−k)

(
fk − ∂y1,2

∂x3−k

)
(ηk, x3−k) dηkand

δτ =

(
δτ11 0
0 δτ22

)
, δτkk =

xk∫

ak(x3−k)

(
fk − ∂yk,k

∂xk
− ∂y1,2

∂x3−k

)
(ηk, x3−k) dηk.For the stress tensor τ one an also take one of the two tensors with the omponents,de�ned for k = 1 or k = 2 by formulas

τkk = ykk, τ12 = y12(ak(x3−k)) +

xk∫

ak(x3−k)

(
fk − ∂yk,k

∂x3−k

)
(ηk, x3−k) dηk,
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τ3−k,3−k = y3−k,3−k(a3−k(xk)) +

x3−k∫

a3−k(xk)

(
f3−k,3−k − ∂yk,3−k

∂xk

)
(xk, η3−k) dη3−k.Proof. Sine all tensors τ , appearing in Lemma, satisfy the equilibrium equations,the �rst estimate (3.19) learly holds. Tensor τ = y+ δτ also satis�es the equilibriumequations. For this reason, the proof of the rest estimates requires only the inversion ofthe stress-strain relations and appliation of the Couhy and triangular inequalities.The assumptions of Lemma on the smoothness of tensor y an be easily sharpenedand made mathing the equilibrium equations in a weak sense (remind that in generaltensor y itself does not satisfy them).3.2. Linear elastiity and more general problems of solid mehanis in3-d. In the ase of 3-d elastiity problem, the stress tensor

σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ,satisfying the equilibrium equations

∂σk1

∂x1
+
∂σk2

∂x2
+
∂σk3

∂x3
= fk, k = 1, 2, 3. (3.20)an be obtained in a similar to the desribed above ways. For, instane we speify theshear stresses σ12, σ13, σ23 by some su�iently smooth funtions, approximating thestresses, spei�ed by the FE solution. Then the rest stresses are found from the equilib-rium equations and their boundary values, spei�ed either by the boundary onditionsin stresses or by the approximate values, found by means of the FE solution. We willnot desribe these obvious algorithms and restrit ourselves to the formulation of astatement similar to Lemma 3.1.For de�niteness of the norms || · || U , || · ||σ, || · ||ǫ one an assume Hooke's law for thehomogeneous linearly elasti body

σkk =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εkk + ν(εk+1,k+1 + εk+2,k+2)], σkl =

E

1 + ν
εkl, k 6= l.However, aording to the above disussion, the �rst two estimates (3.21), given below,hold in a muh more general situation under assumption of the proper de�nition of thenorms || · ||U , || · ||σ .Lemma 3.2. Let v be arbitrary vetor in V = [H̊1(Ω)]3 , σ (v) be the stress tensorsatisfying (3.20), (3.2) for u = v and y = {ykl}3

k,l=1 be an arbitrary tensor with theomponents in H1(Ω) . Then for u − v either of the estimates
||u − ufem||U ≤ ||σ(ufem) − τ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ + ||δτ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ+

+

3∑

k=1

∥∥∥∥∥∥
1√
E

xk∫

ak

(
fk − ∂yk,k

∂xk
− ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηk

∥∥∥∥∥∥
0

,

(3.21)



114 I.E. ANUFRIEV ET AL.holds, where ak = ak(xk+1, xk+2) , τ is the stress tensor with the omponents
τkl = ykl, k 6= l,

τkk = ykk(ak, xk+1, xk+2) +

xk∫

ak

(
fk − ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηkand

δτ =



δτ11 0 0
0 δτ22 0
0 0 δτ33


 ,

δτkk =

xk∫

ak

(
fk − ∂yk,k

∂xk
− ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηk.Proof. The proof is similar to the proof of Lemma 3.1.There are several other sequenes of onstruting symmetri equilibrated stress ten-sors. We an start from setting τkl = ykl with arbitrary funtions ykl ∈ H1(Ω) forthree omponents τkl . Besides (1,2), (1,3), (2,3), there are other admissible ombina-tions of k, l : (11), (22), (12); (22), (33), (23); (11),(33),(31); (12), (13), (22); (31), (32),(22). The rest stresses τmp are found from the equilibrium equations by 1-d integration.Boundary values, entering these integrals, are spei�ed by arbitrary su�iently smoothfuntions

τmp

∣∣
Γp,−

= τmp(ap(xp+1, xp+2), xp+1, xp+2) ∈ H1/2(Γp,−).Let us underline that the equilibrium onditions do not depend on the type of theHooke's law, e.g., for orthotropi, transversally isotropi or other types of elasti bodies.As well they are not hanged for a wide range of physially and geometrially nonlin-ear solid bodies. Therefore, the ways of obtaining of equilibrated and self-equilibratedstress tensors, introdued in this paper, are appliable to a wide range of problems insolid mehanis. All mentioned fators in�uene only tehniques of evaluation of the(smoothed, if neessary) stress tensor, orresponding to the approximate solution, be-ing subjeted to a posteriori error estimation, and the spei� energy norms, in whiherror estimation is produed.Let us turn to a general ase of nonlinear problems of solid mehanis, for whih theapproximate solutions obtained by means of the Lagrange priniple of virtual work andCastigliano priniple of omplementary work provide an upper and a lower bounds forthe true potential energy of the body. As it is well known, in this ase the a posterioriestimate an be written in the form
L(v) − L(u) ≤ L(v) − C (τ ), (3.22)and under some onditions

β‖u− v‖V ≤ L(v) − C (τ ), 0 < β = const, (3.23)where
L(v) is the funtional of the omplete potential energy of the body on displaements

v , satisfying all geometri onditions;
u is the exat solution of the problem minimizing the funtional L ;
C (τ ) is the funtional of the omplementary work on the stress tensor τ , satisfyingthe equilibrium onditions, and
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‖ · ‖V is a norm satisfying the inequality

β‖u − v‖V ≤ L(v) − L(u). (3.24)The estimate (3.22) expresses basi properties of the Lagrange and Castigliano prin-iples see, e.g., de Vebeke [15℄, Arthurs [4℄ Mosolov/Myasnikov [34℄, Washizu [54℄,Berdihevskii [8℄, where referenes on the earlier publiations an be found. The es-timate (3.23) follows from (3.22) under the ondition that (3.24) is ful�lled. In a math-ematial setting the basi fats for validity of the bounds (3.22), (3.23) may be found,e.g., in Ekeland/Temam [14℄ and Duvaut/Lions [13℄, Glowinski [16℄. They are foundin the duality theory of the variational alulus and the theory of monotone/oeriveoperators. The latter allows to formulate onditions on the smoothness of data and thetype of nonlinearity under whih (3.24) holds.The primal problem to be solved may be formulated in the following way: �nd u ∈ Usuh that
L(u) = inf

v∈U

L(v), U ∈ V, (3.25)where L is a proper onvex, lower simiontinuous funtional, V is a re�exive Banahspae with the norm ‖ · ‖V and U is a losed onvex subset of V . The variable τ andthe funtional C (τ ) of the omplementary work are the dual variable and the dualfuntional with respet to the primal variational problem (3.25). At that τ belongs tothe set Qf = Q0 + τ f of tensors satisfying equilibrium equations, e.g., (3.20), with Q0being the spae of the self-equilibrated tensors. The problem of �nding the stresses bymeans of the Castigliano priniple is the dual problem: �nd σ ∈ Q = Q0 + τ u , suhthat
C (σ ) = sup

τ ∈Q

C (τ ), U ∈ V. (3.26)Assume that (−C (τ 0)) is also a proper onvex, lower simiontinuous funtional, whihis oerive on re�exive Banah spae Q0 , then
C (τ ) ≤ C (σ ) = L(u) ≤ L(v) ∀v ∈ V, ∀ τ ∈ Q0,see,e.g., Ekeland/Temam [14℄.Many authors onsider the use of the a posteriori estimates (3.22), (3.23) ompu-tationally very ostly for the two reasons. One is that it is allegedly impossible to �ndthe equilibrated tensor τ lose to the exat stress tensor σ in a diret and su�ientlyheap way. Another reason is based on the onvition that numerial solution of thedual problem for �nding τ is muh more di�ult that the numerial solution of theprimal problem. Suh reasons are soundly pronouned in some ontemporary publia-tions. However, in the preeding setions we have demonstrated that the �rst reasonin a delusion. In what follows we onsider some additional ways (inluding pratialalgorithms optimal in the arithmeti operations ount) for �nding equilibrated stresstensors lose to the solution. Apart from that we will show that it is with no doubt fea-sible to develop numerial tehniques for solving dual problems, whih are omparablewith the most e�ient numerial tehniques for solving primal problems in respet ofthe omputational ost.3.3. Examples of algorithms for numerial testing. Below we illustratethe desribed approah by the two algorithms for obtaining a posteriori estimates inthe ase of the linear plain strain elastiity problem in the square Ω = (0, 1) × (0, 1) .We use notations e1 = (1, 0), e2 = (0, 1) , whereas σ fem stands for the stress tensor,determined by the FE solution.



116 I.E. ANUFRIEV ET AL.Algorithm 3.1.Step 1. For eah point y(i) = (hi1+h/2, hi2+h/2), ik = 0, 1, . . . , n−1, alulate
σfem,12(y

(i)) =
E

2(1 + ν)

(
∂ufem,1

∂x2
(y(i)) +

∂ufem,2

∂x1
(y(i))

)
,using the �nite element solution ufem .Step 2. Calulate approximate values φ̂(i) of ∂σfem,12/∂x2 at the middle points

ŷ(i) = (hi1 + h/2, hi2), of the horizontal mesh intervals:
φ̂(i) =

σfem,12(y
(i)) − σfem,12(y

(i−e2))

h
, i1 = 0, 1, . . . , n− 1, i2 = 1, 2, . . . , n− 1.Step 3. Evaluate approximate values φ(i) of ∂σfem,12/∂x2 at the internal nodes

x(i) :
φ(i) =

1

2

(
φ̂(i−e1) + φ̂(i)

)
, ik = 1, 2, . . . , n− 1.Step 4. Calulate values φ(0,i2) , φ(n,i2) for i2 = 1, 2, . . . , n − 1 by means oflinear extrapolation from the interior of Ω over the two nearest values φ(i) on themesh line x ≡ i2h . In the same way alulate the values φ(i1,0) and φ(i1,n) for

i1 = 1, 2, . . . , n− 1 .Step 5. Determine values of φ(i) for i1, i2 = 0, n orresponding the verties, forinstane, as the mean value of the two linear extrapolations along the two edges.Step 6. Determine the piee wise bilinear ontinuous interpolation I(φh) ∈
∈ V (Ω) of the mesh funtion φh = (φ(i))n

i1,i2=0 .Step 7. Evaluate omponents of the stress tensor τ satisfying the equilibriumequation (3.11).Step 7.1. For xk ∈ (0, 1) , de�ne as piee linear ontinuous funtions c12(x1) ≃
≃ σfem,12(x1, 0), c11(x2) ≃ σfem,11(0, x2) , and c22(x1) ≃ σfem,22(x1, 0) . Forinstane, c12 is uniquely determined by its nodal values

c12(i1h) = σfem,12(i1h, 0), for i1 = 0, n,

c12(i1h) = σfem,12(i1 − 0, 0) + σfem,12(i1 + 0, 0), for i1 = 1, 2, . . . , n− 1,and similar proedures are used for ckk .Step 7.2. Determine omponents
τ12 = c12(x1) +

x2∫

0

I(φh) dx2, τ21 = τ12, (3.27)
τ11 = c11(x2) −

x1∫

0

(f1 + I(φh)) dx1, (3.28)
τ22 = c22(x1) −

x2∫

0

(
f2 +

∂τ21
∂x1

)
dx2 (3.29)of the equilibrated stress tensor t .Step 8. Calulate ||σ (ufem) − τ ||σ for the a posteriori estimate.Let us denote the stress tensor obtained by Algorithm 3.1 by t(1) . If to hangevariables x1, x2 for x2, x1 , with the use of the same algorithm we ome to another



EXACTLY EQUILIBRATED FIELDS. . . 117equilibrated stress tensor t(2) . Clearly, the tensor t = α1t
(1) + α2t

(2) also belongs to
Qf and

||u − ufem||U ≤ ||σ (ufem) − (α1t
(1) + α2t

(2))||σ, ∀α1 + α2 ≡ 1. (3.30)Another invariant to variables x1, x2 proedure for �nding a tensor τ , satisfying theequilibrium equations (3.11), follows Algorithm B and is presented in the algorithm 3.2.Algorithm 3.2.Step 1. Calulate the derivatives of the �nite element solution ufem =
= (ufem,1, ufem,2) at the enters of the mesh ells y(i) = (h(i1 + 0.5), h(i2 + 0.5)),
ik = 0, 1, . . . , n− 1,

u
(i1+1/2,i2+1/2)
fem,1,2 =

∂ufem,1

∂x2
(xi1,i2), u

(i1+1/2,i2+1/2)
fem,2,1 =

∂ufem,2

∂x1
(xi1,i2) (3.31)for i1, i2 = 0, 1, . . . , n− 1.Step 2. De�ne values

ũ
(i1+1/2,i2)
1,22 =

u
(i1+1/2,i2+1/2)
fem,1,2 − u

(i1+1/2,i2−1/2)
fem,1,2

h
,

ũ
(i1,i2+1/2)
2,11 =

u
(i1+1/2,i2+1/2)
fem,2,1 − u

(i1−1/2,i2+1/2)
fem,2,1

h

(3.32)for i1, i2 = 0, 1, . . . , n− 1.Step 3. De�ne values
ũ

(i1,i2)
1,221 =

u
(i1+1/2,i2)
1,22 − u

(i1−1/2,i2)
1,22

h
, ũ

(i1,i2)
2,112 =

u
(i1,i2+1/2)
2,11 − u

(i1,i2−1/2)
2,11

h
(3.33)for i1, i2 = 1, 2, . . . , n− 1.Step 4. At the mesh nodes (hi1, 0) of the boundary for i1 = 1, 2, . . . , n − 1 ,alulate ũ(i1,0)

1,221 with the use of the linear extrapolation by the two nearest values
ũ

(i1,1)
1,221 and ũ

(i1,2)
1,221 . Calulate

ũ
(i1,n)
1,221 , ũ

(0,i2)
1,221 , ũ

(n,i2)
1,221 , ũ

(i1,0)
2,112 , ũ

(i1,n)
2,112 , ũ

(0,i2)
2,112 , ũ

(n,i2)
2,112similarly. For the orner point (0, 0) , determine ũ(0,0)

1,221 , e.g., as the arithmeti meanof the two values obtained by linear extrapolations along two axes x1, x2 with theuse of the two nearest values. Determine
ũ

(0,n)
1,221, ũ

(n,0)
1,221, ũ

(n,n)
1,221, ũ

(0,0)
2,112, ũ

(0,n)
2,112, ũ

(n,0)
2,112, ũ

(n,n)
2,112similarly.Step 5. Calulate

σ̃
(i)
12,21 =

E

2(1 + ν)

(
u

(i)
1,221 + u

(i)
2,112

)
.Step 6. Evaluate omponents of the stress tensor τ satisfying the equilibriumequation (3.11).
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τ12 =

x2∫

0

x1∫

0

I(σ̃12,21) dx1dx2 + c0 +

x1∫

0

c1(x1) dx1 +

x2∫

0

c2(x2) dx2,

τ21 = τ12, where I(σ̃12,21) is the bilinear interpolation for σ̃(i)
12,21 on the �niteelement mesh and

c0 ≃ σfem,12(0, 0), c1(x1) ≃
∂σfem,12

∂x1
(x1, 0), c2(x2) ≃

∂σfem,12

∂x2
(0, x2).Step 6.2. For c3(x2) ≃ σfem,11(0, x2) , determine

τ11 =

x1∫

0



f1 −
x1∫

0

I(σ̃12,21) dx1



 dx1 + c3(x2) − x1c2(x2). (3.34)Step 6.3. De�ne
τ22 =

x2∫

0


f2 −

x2∫

0

I(σ̃12,21) dx2


 dx2 + c4(x1) − x2c1(x1),where c4(x1) ≃ σfem,22(x1, 0).Step 7. Calulate the a posteriori estimator ||σ (ufem) − τ || σ.We do not give formulas for evaluation of funtions ck , implying, however, averagingand interpolation proedures similar to those used in algorithms for Poisson equation.They provide the auray O (h2) for stresses, if understood as diret approximationsof stresses orresponding to smooth displaements. Let us emphasize that less aurateapproximation of the boundary stresses, than inside of the domain, an damage theauray of the a posteriori estimator. The hoie of ck an be optimized on purposeto minimize the posteriori estimator. The system of algebrai equations for �nding suh

ck has by the order of h smaller dimension. This allows to arrange omputations insuh a way that the optimization will not ompromise the optimality of the a posterioriestimator in the omputational ost.34. Equilibrated �uxes/stresses obtained by means of Castigliano prinipleTo some authors, dual formulations of the boundary value problems, expressing inmehanis of solid bodies the Castigliano priniple, seem di�ult for numerial solution.By this reason dual formulations are often disarded from onsideration as a tool in theproess of the a posteriori estimation. However, we will illustrate that numerial solutionof dual problems may be as simple as of primal problems.4.1. Poisson equation. Solution of the problem (2.15) minimizes the funtional
J(v) =

1

2
a(v, v) − (f, v)Ω ∀ v ∈ V = H̊1(Ω).

3See, V.S. Kostylev. A posteriori estimates optimal in the omputational ost . Master thesis. Chairof Applied Mathematis. St. Petersburg State Polytehnial University, St. Petersburg, Russia, 2006(in Russian).



EXACTLY EQUILIBRATED FIELDS. . . 119If to de�ne Qf as the set of funtions satisfying the equilibrium equations in the gen-eralized sense
Qf =



t ∈ L2(Ω) :

∫

Ω

(t · ∇v − fv) = 0 ∀ v ∈ V



 , (4.1)then the dual formulation of the problem is: �nd suh z ∈ Qf that

J∗(z) = min
t∈Qf

J∗(t), J∗(t) =
1

2

∫

Ω

t · t dx. (4.2)The solution of the dual problem an be represented in the form z = z0 + tf , where tfany vetor from Qf and the vetor z0 ∈ Q0 satis�es the equation
∫

Ω

(z0 − tf )t0 dx = 0 ∀ t0 ∈ Q0. (4.3)For deriving a disrete approximation of the dual problem, we use the same as beforesquare mesh of size h = 1/n, n > 1, and de�ne a subset Qh
f ⊂ Qf , whih is representedas

Qh
f = tf +Qh

0 ,where Qh
0 is a �nite dimensional subspae of Q0 and tf is any �xed vetor from Qf .The approximate solution zh ∈ Qh

f satis�es the equation
∫

Ω

(zh
0 − tf )th

0 dx = 0 ∀ th
0 ∈ Qh

0 . (4.4)In previous setions, we onsidered a number of ways of evaluation of the vetor tf .For the purpose of disretization of the dual problem the simplest one an be used, e.g.,as in (2.7) at q ≡ 0 . At the same time it is worth emphasizing that a good hoie of
tf an onsiderably improve the a posteriori estimate, see also Remark 4.1. Suppose,
Qh

0 = span [φ (i)(x) = (φ
(i)
1 (x), φ

(i)
2 (x))⊤]i∈Ih , where Ih is the appropriate set of indies

i , then (4.4) is redued to solving the system
Cw = f , (4.5)with the matrix C and the vetor f de�ned as

C = {ci,j}i,j∈Ih , w = {w(i)}i∈Ih , f = {f (i)}i∈Ih ,

ci,j =

∫

Ω

φ(i) · φ(j) dx, f (i) =

∫

Ω

φ(i) · tf dx.
(4.6)Remark 4.1. Instead of the vetor tf , one an use its approximation th

f . Then thebound for the error of approximation ‖tf − th
f‖ = O (hγ)N(f) with some γ and somenorm N(f) of the funtion f will appear in the right part of the a posteriori estimate.The approximation th

f may be hosen on purpose, e.g., to simplify integration (sine
th
f an be obtained by approximation of f ).The self-equilibrated vetors φ (i), ik = 1, 2, . . . , n, should be hosen in a way whihlead to the system (4.5) with good omputational properties. This an be antiipated,



120 I.E. ANUFRIEV ET AL.if they have loalized supports. Eah φ
(i) introdued below has for the support the set

κi = ωi∩Ω, where ωi = {x : h(ik−1) < xk < h(ik +1), k = 1, 2} . Before doing this, weremind the notation τi = {x : h(ik − 1) < xk < hik} for the square nests of the mesh.First we de�ne subsidiary loal funtions q(i) whih at the de�nition of self-equilibratedvetors play the same role as q in (2.7). Namely, we set
q(i)(x) =





1, x ∈ τi ∪ τi1+1,i2+1,

−1, x ∈ τi1+1,i2 ∪ τi1,i2+1,

0, Ω \ ωi.

(4.7)For the master linearly independent vetors, denoted as µ (i) = (µ
(i)
1 , µ

(i)
2 )⊤ , and thevetor tf , we take

µ
(i)
1 (x) =

x1∫

0

q(i)(η, x2) dη, µ
(i)
2 (x) = −

x2∫

0

q(i)(x1, η) dη,

tf (x) = (0, tf,2)
⊤, tf,2(x) =

x2∫

0

f(x1, η) dη.

(4.8)Clearly, the supports of these vetors are the sets ωi , and instead of (4.8) one an use
µ

(i)
1 (x) =

x1∫

(i1−1)h

q(i)(η, x2) dη, µ
(i)
2 (x) = −

x2∫

(i2−1)h

q(i)(x1, η) dη. (4.9)The vetors φ (i) are de�ned as restritions to κ(i) = ω(i) ∩ Ω of the vetors µ (i) ,determined in (4.9), whereas Ih = {i : 0 ≤ ik ≤ n} .Now we ompare the system (4.5), generated with the use of the oordinate vetors
φ (i) , and the FE systems for the Poisson equation. Namely we onsider two FE systems

KDuD,fem = fD,fem, KNuN,fem = fN,fem, (4.10)generated by the spaes V̊ (Ω) and V (Ω) for the Poisson equation in the unite squarewith the homogeneous Dirihlet and Neumann boundary onditions on its boundary,respetively. Remind that V (Ω) is the spae of the ontinuous piee wise bilinear fun-tions and V̊ (Ω) is its subspae of funtions vanishing on ∂Ω . Let p̂(i)(x) be the standardpiee wise bilinear ontinuous funtion, satisfying onditions p̂(i)(x(j)) = δi,j with δi,jbeing the Kroneker's delta, and p(i)(x) be its restrition to Ω . It is easy to onludethat
q(i) =

∂2p(i)

∂x1∂x2
, φ (i) =

(
∂p(i)

∂x2
,−∂p

(i)

∂x1

)⊤

, (4.11)whene it immediately follows that C = KN .The system (4.10) with the matrix KD de�nes the FE solution of the primal prob-lem. In order to obtain the equilibrated vetor valid for the a posteriori estimation ofthe FE solution, one has to solve the seond system (4.10) with the matrix C = KN .Clearly, the both an be solved very e�iently by many fast solvers, developed for FEmethods.Remark 4.2. It is easy to note that the introdued loalized �uxes satisfy theequality ∑

i∈Ih

φ (i) = 0 ∀x ∈ Ω, (4.12)



EXACTLY EQUILIBRATED FIELDS. . . 121whih is in agreement with to the fat that the matrix C = KN has the eigenvetor
y0 = 1 = {y(i)

0 = 1}i∈Ih with the unity for all entries. This eigenvetor orrespondsto zero eigenvalue. Aording to (4.12), the right part in (4.5) satis�es the solvabilityondition, and if w is the solution, then w+c1 is also solution, where c is an arbitrarynumber.Suppose K is the FE matrix indued by (2.4), i.e., it is the FE matrix for theproblem (2.1), (2.2) with the mixed boundary ondition. In this ase, the matrix Coinides with the FE matrix for the problem
−∆u =f(x), x ∈ Ω, ∂Ω = ΓD ∪ ΓN ,

u|ΓN
= 0, ∂u/∂n|ΓD

= 0,
(4.13)with ΓD,ΓN de�ned as in (2.2).Remark 4.3. The analogy between matries C for the disretized dual problemand FE matries K for the primal problem is retained for disretizations on retangulargrids by higher order retangular �nite elements. The situation is more ompliated fortriangulations by triangular elements ompatible in C , beause the seond mixed deriva-tive do not exist. However, if any elements of the lass C1 are used, then the analogy isretained. If the di�erential operator has the form Lu =

2∑
k,l=1

∂(∂akl/∂xk)/∂xl . Coe�-ients in the dual formulation will be entries of the matrix A−1 , where A = {akl}2
k,l=1will enter the dual formulation. In this ase, the matrix C again will be the FE matrix,indued by the same oordinate funtions as in the FE method for the primal formula-tion. However, C is generated for the ellipti problem with the oe�ients de�ned bythe matrix A−1 .Below we obtain another haraterization of the of the spae Qh

0 and the set ofvetors {φ (i)}i∈Ih , used for generating system (4.5) with the matrix C = KN . Thisharaterization will illuminate what kind of approximation is used for the dual problem.Yet another haraterization by means of the integral equation with respet to theunknown funtion q will be onsidered in the next subsetion.We return again to the Dirihlet boundary value problem (2.26) in the unite square.Let
g(i) =

{
1 forx ∈ τi ∩ Ω,

0 forx ∈ Ω \ τi,
(4.14)and

µ̃
i3−k

k0 (x3−k) =

{
1 forx3−k ∈ h(i3−k − 1, i3−k), i3−k = 1, 2, . . . , n,

0 forx3−k /∈ h(i3−k − 1, i3−k).
(4.15)The set {g(i)}n

i1,i2=1 is the basis in the spae Lh
2 (Ω) , whih is a disrete approximationfor L2(Ω) and ontains piee wise onstant funtions on the uniform square mesh ofsize h . At the de�nition of self-equilibrated vetors, the funtions

g =

n∑

i1,i2=1

a(i)g(i)(x)play the same role as q in (2.7). In turn, funtions {µ̃i3−k

k0 (x3−k)}n
i3−k=1 will serveas the basis for the approximation of the value of the boundary �ux at xk ≡ 0 . In



122 I.E. ANUFRIEV ET AL.aordane with suh understanding, we de�ne the �nite dimensional spae of the self-equilibrated �uxes as Qh
0 = span [t(i)]i∈Ih

⋆
where Ih

⋆ = {i = (ik, i3−k), ik = 0, 1, . . . , n,
i3−k = 1, 2, . . . , n} and

t
(i)
1 (x) =

x1∫

0

g(i)(ξ1, x2) dξ1, t
(i)
2 (x) = −

x2∫

0

g(i)(x1, ξ2)) dξ2 (4.16)
t
(0,i3−k)
k (x) = µ̃

i3−k

k0 (x3−k), t
(0,i3−k)
3−k (x) ≡ 0. (4.17)It is easy to see that funtions q(i), 1 ≤ ik ≤ n, are linear ombinations of g(i) forthe same i . Therefore, for these i �uxes φ

(i) are linear ombinations of �uxes t(i) .Fluxes φ (0,i3−k) are obtained by means of q(i), ik = 0, 1 ≤ i3−k ≤ n and boundary�uxes µ̃i3−k

k0 (xk) . Therefore, we have proved the following Lemma.Lemma 4.1. The spae Qh
0(Ω) = span [t(i)]i∈Ih

⋆
, spanned over �uxes (4.16), (4.17),and the spae Qh

0(Ω) = span [{φ (i)(x)]i∈Ih , spanned over loalized �uxes (4.9), oinide.Remark 4.4. Solution of the system generated with the use of the oordinatefuntions {t(i)}i∈Ih
⋆

may be unstable. The reason is not that this system has a badondition number, whih indeed is O (h−2) . The system is equivalent to the disretizedintegral equation of the �rst kind � see next subsetion � and at h → 0 it smallesteigenvalue tends to zero.Remark 4.5. Suppose that we have to solve the Poisson equation with the Neu-mann boundary ondition
zn|∂Ω = tn, (4.18)whih for the dual formulation is an essential one. In this ase, the approximate solutionof the dual problem is represented as

zh = zh
0 + tf,N = zh

0 + tN + tf , z0 =

n−1∑

i1,i2=1

w(i) φ i,where the vetor tN found from the Neumann boundary ondition and the vetor tD,fis de�ned as in the preeding ase of the Dirihlet boundary ondition, see (4.8). Thevetor tn may be spei�ed by the vetor, de�ned on Ω and, therefore, one simply anset tN = tn . Coe�ients, w(i) for i ∈ I0 := {i : 1 ≤ ik ≤ n− 1, k = 1, 2, } are foundfrom the system
Cw = f , (4.19)with the matrix C and the vetor f de�ned as

C = {ci,j}n−1
ik,jl=0, f = {f (i)}n−1

i1,i2=0, ci,j =

∫

Ω

φ(i) · φ(i) dx,

f (i) =

∫

Ω

φ
(i) · tf dx, tf (x) = (0, tf,2)

⊤, tf,2(x) =

x2∫

0

f(x1, η) dη.

(4.20)In the partiular ase of the homogeneous boundary ondition ∂u/∂ν
∣∣
Ω

= 0 , one has
tN = 0 , and (4.20) uniquely de�ne (4.19), whih in turn has the unique solution.There is no di�ulties in de�ning appropriate vetor tN satisfying the nonhomoge-neous boundary ondition (4.18). Partiularly, tN an be de�ned in suh a way that



EXACTLY EQUILIBRATED FIELDS. . . 123it is nonzero only in the h-viinity of the boundary. Another option is to use someapproximation for tN by some vetor th
N . We an set

th
N =

∑

i∈I∂Ω

ci φ , i ∈ I∂Ω = {i : x(i) ∈ ∂Ω},with the oe�ients ci hosen in suh a way that the trae th
N,∂Ω = th

N

∣∣
N,∂Ω

is thedisrete approximation of tn , obtained, e.g., by the interpolation or the least squaremethod. If the solution zh is used in the a posteriori estimate, the bound for the norm
‖tn − th

N,∂Ω‖2,∂Ω will appear in its right part.Clearly, the ase of an arbitrary su�iently smooth domain does an be treatedsimilarly.4.2. Some remarks and generalizations. Several obvious, but having impor-tant onsequenes, remarks an be made.
α ) Sine the Dirihlet boundary ondition is natural for the dual formulation,we an use orthogonal grid for obtaining equilibrated �uxes in the ase of arbitrarysu�iently smooth domain Ω .
β ) For solving the dual problem it is not neessary to use the same mesh, whihwas used for FE disretization. More over, sine equilibrated �uxes from Q0 , see (4.1),are not supposed to satisfy ompatibility onditions, we an easily add any equilibratedoordinate vetors to the basis {φ (i)}n

i1,i2=0 and enrih the spae Qh
0 . For instane,additional oordinate vetors an be de�ned with the use of loal �ner mesh, arbitrarilyoriented with respet to the mesh used for the de�nition of the basis {φ (i)}n

i1,i2=0 . Wean add also oordinate vetors with spei� properties admitting a better approxima-tion of onentration of �uxes or their singularities.Arbitrary domain. Sine the Dirihlet boundary ondition is natural for the dualformulation, we an use orthogonal grid for obtaining equilibrated �uxes in the ase ofarbitrary su�iently smooth domain Ω .Suppose, we would like to obtain the equilibrated �uxes for the Dirihlet boundaryvalue problem (2.26). Formally, the formulation of the dual problem is not hanged,and again we have to solve integral identity (4.3) with the use of Q0 de�ned for agiven Ω as in (4.1). Namely, for �nding the equilibrated �uxes whih approximatethe exat ones, we an over the domain by the uniform square mesh of size h . Let
IΩ = {i : mes [ω(i) ∩ Ω 6= 0]} and Qh

0 = spani∈IΩ [φ (i)] , where eah φ (i) is de�nedas the restrition of µ (i) to Ω . It is neessary to underline that sine mes κ(i) anbe small for some i ∈ IΩ , the ondition of matrix C of the system (4.5) for theproblem under onsideration an be bad. However, due to the disussed at the endof the preeding subsetion analogy with the FE systems, several simple remedies forimproving the ondition an be used. We refer in this relation to Korneev [26℄ andOganesian/Ruhovets [38℄.Densening of the mesh. For solving the dual problem it is onvenient to use thesame mesh, whih was used for FE disretization (e.g., for evaluation of the normsentering a posteriori error estimate), but not neessary. For instane, sine equilibrated�uxes from Q0 , see (4.1), are not supposed to satisfy ompatibility onditions, we aneasily add any equilibrated oordinate vetors to the set of suh vetors, spanning thespae Qh
0 , see, e.g., (4.16), (4.17), and enrih this spae up to some spae Qh

0,⋆ ⊃ Qh
0 . Forinstane, additional oordinate vetors an be de�ned with the use of loal �ner mesh,generating Qh

0 . We an add also oordinate vetors with spei� properties admittinga better approximation of singularities in �uxes. A good soure of funtions, whih anserve for generating the loalized equilibrated funtions are oordinate funtions used



124 I.E. ANUFRIEV ET AL.in meshless methods, see Oden/Duarte/Zienkiewz [40℄ and Strobolis/Babuska/Copps[47℄.We onsider only a simple example of densening the mesh. Suppose that in a stritlyinternal subdomain D ⊂ Ω it is neessary to use more aurate approximation. Sinethe ase of an arbitrary su�iently smooth domain was disussed above, we restritonsiderations to the ase when Ω is the unit square. We an proeed in the followingway. Let Dh is the least �mesh domain� overing D , i.e.,
Dh

= ∪i∈Ih
D
τh

i , Ih
D = {i : τh

i ∩ D 6= ∅},

τh
i is the nest of the mesh of size h . Eah square nest τh

i , i ∈ ID , is subdivided in foursquares, de�ning the mesh of size ~ = h/2 on Dh . Retaining old indies i = (i1, i2) forold nodes, we add indies i = (i1±1/2, i2±1/2) for new nodes. We use the notation τ~

ifor all smaller and bigger nests, assuming that i is the index of the right upper vertexof τ~

i , and introdue sets
I~

D = {i : τ~

i ∩ Dh 6= ∅}, Ih
Ω = {i : τh

i ∩ Ω 6= ∅},
Ih

Ω\Dh = {i : τh
i ∩ Ω 6= ∅}, Ih,~ = Ih

Ω\Dh ∪ I~

D.It is onvenient to use the ommon notation τi for τh
i , i ∈ Ih

Ω\D h and for τ~

i ,

i ∈ I~

D . Now we an diretly use (4.14), (4.15) and (4.16), (4.17) for de�ning theoordinate vetors of equilibrated �uxes, spanning the spae of equilibrated �uxes, whihwe denote Qh,~
0 . The dimension of Qh,~

0 is card[Ih,~] + 2n .The above onsideration shows that in essene the densening is quite simple. How-ever, the basis vetors (4.16), (4.17) are not loalized and, therefore, the matrix of theorresponding system will have onsiderable �ll in. Apart from that, solving this sys-tem may be unstable for the reason pointed out in Remark 4.4. The instability an beremoved by the transformation of the introdued oordinate self-equilibrated �uxes tothe loalized ones. Instead of one type, two types of the loalized self-equilibrated �uxesare used. If to use the notation φ
(i)
h = φ (i) for the �uxes, introdued in (4.7)�(4.9) onthe mesh of size h , the seond type �uxes φ

(j)
h/2 are similarly de�ned on the mesh ofsize h/2 .Interpretation as solution of integral equation. We turn to the Dirihletproblem (2.26) in an arbitrary su�iently smooth domain and onsider the equivalentsystem of two equations

∂2u(1)

∂x2
1

= α1f − q, u(1)
∣∣
∂Ω

= 0,

∂2u(2)

∂x2
2

= α2f + q, u(2)
∣∣
∂Ω

= 0,

u(1) = u(2) ∀x ∈ Ω.

(4.21)In the mehanial sense, this system desribes the two systems of strings strethedalong axes xk with eah string of one diretion fastened to the strings of other diretionat the ross points. Funtion q is the internal fore, ating between the two systemsof strings. For simpliity we assume again that eah line xk ≡ const rosses Ω notmore than in two points, Γk,− and Γk,+ are the parts of the boundary ontaining thepoints of suh pairs, having lesser and larger oordinates xk , respetively. We write theequations de�ning the urves Γk,− and Γk,+ as xk = ak(x3−k), and xk = bk(x3−k)



EXACTLY EQUILIBRATED FIELDS. . . 125for â3−k < x3−k < b̂3−k. Let G k(xk, x3−k, yk) be the Grin's funtions for the ordinarydi�erential operators in (4.21), so that
u(k)(x) =

bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)(αkf − q)(yk, x3−k) dyk.Satisfying the equality u(1) = u(2) , one omes to the integral equation
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk =

=
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk. (4.22)In Rozin [45℄, Korneev/vRozin [29, 30℄, the lass of integral equation of a more generalbut similar to (4.22) type was termed integral equation of the method of splitting.For disretization of the integral equation (4.22), one an use the spae Gh(Ω) of thepiee wise onstant funtions with the basis {g(i)}i∈Ih
Ω

, Ih
Ω = {i : τh

i ∩ Ω 6= ∅} . As wewill show below, in this way we ome to the system equivalent to (4.5) up to the hoieof the basis funtions and αk . However, from (4.22) it beomes lear that this systemis not good for the numerial solution. Sine (4.22) is an integral equation of the 1-stkind, this basis will lead to the unstable system of algebrai equations, the matrix ofwhih has onsiderable �ll in. The use of another set of oordinate �uxes {q(i)} , whihprodue loal self-equilibrated �uxes, results (as in Subsetion 4.1) in the system, whihomputational properties are the same as of the FE system for the Poisson equationwith the Neumann boundary ondition. In order to make more lear the interrelationbetween solving proedures of the integral equation and the dual problem (4.2), wenote that the generalized formulation of (4.22) is: �nd q ∈ L2(Ω) suh that for any
q̃ ∈ L2(Ω) we have

∫

Ω

q̃(x){
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk} dx =

=

∫

Ω

q̃(x){
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk} dx. (4.23)Taking into aount the equalities
bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)q(yk, x3−k) dyk = 0 for xk = ak(x3−k), bk(x3−k),



126 I.E. ANUFRIEV ET AL.and integrating by parts, we obtain
bk(x3−k)∫

ak(x3−k)

q̃(x)





bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk




dxk =

= −
bk(x3−k)∫

ak(x3−k)




ψ(x3−k) +

xk∫

ak(x3−k)

q̃(ηk, x3−k) dηk





×

×





∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk





dxk,where ψ(x3−k) is an arbitrary su�iently smooth funtion. By the de�nition of theGreen's funtion G k , we have the equality

∂

∂xk

bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)p(yk, x3−k) dyk = −t̃0,k(x3−k) −
xk∫

ak(x3−k)

p(ηk, x3−k) dηk,in whih −t̃0,k(x3−k) = t̃0,k(p(x), ak(x3−k), x3−k) is the boundary value for the deriva-tive in the left part and, therefore, is uniquely de�ned by the funtion p . Suppose thatfor disretizing the problem we use the basis {g(i)}i∈Ih
Ω

and
t
(i)
◦ (x) =

(
t
(i)
◦,1, t

(i)
◦,2

)⊤

, t
(i)
◦,k =

∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(i)(yk, x3−k) dyk,

tf (x) =
(
t
(i)
f,1, t

(i)
f,2

)⊤

, tf,k =
∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk,

(4.24)
Qh

◦ = span [t
(i)
◦ ]i∈Ih

Ω

. Then (4.23) an be reformulated: �nd z = z◦ + tf , where tf wasde�ned above and the vetor z◦ ∈ Q◦ satis�es the equation
∫

Ω

(z◦ − tf )t
(i)
◦ dx = 0 ∀ i ∈ Ih

Ω. (4.25)Let us underline that the oordinate funtions gi of the internal fores are not self-equilibrated, but the �uxes t
(i)
◦ are due to their de�nition by means of the green'sfuntions.Remark 4.6. Note that it is not neessary to use Green's funtions G k for evalu-ating vetors t

(i)
◦ , tf . If the points x◦,i

k = x◦,i
k (x3−k), xf

k = xf,k
k (x3−k) are suh that

bk(x3−k)∫

ak(x3−k)

(xk − x◦,i
k )q(i)(x) dxk = 0,

bk(x3−k)∫

ak(x3−k)

(xk − xf
k)αkf(x) dxk = 0,
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t
(i)
◦,k(x) = t

(i)
◦,k,−(x3−k) + (−1)(3−k)

xk∫

ak(x3−k)

q(i)(yk, x3−k) dyk,

tf,k(x) = tf,k,−(x3−k) +

xk∫

ak(x3−k)

αkf(yk, x3−k) dyk,

(4.26)where
t
(i)
◦,k,−(x3−k) =

bk − x◦,i
k

bk − ak

bk(x3−k)∫

ak(x3−k)

q(i)(x) dxk,

tf,k,−(x3−k) =
bk − x◦,i

k

bk − ak

bk(x3−k)∫

ak(x3−k)

αkf(xk) dxk.The formulation (4.25) di�ers from (4.3) not only by the hoie of the basis, but alsoin the spaes of oordinate funtions. Indeed, we have Q◦ ⊂ Q0 and instead of (4.8)the relationships (4.26) are used. That means that vetors t(i)◦,k , tf,k satisfy additionalonditions in omparison with t
(i)
0,k , tf,k entering (4.3). If one de�nes

v
(i)
k (x) :=

xk∫

ak(x3−k)

t
(i)
◦,k(yk, x3−k) dyk, wk(x) :=

xk∫

ak(x3−k)

tf,k(yk, x3−k) dyk,then
v
(i)
k , wk

∣∣
∂Ω

= 0.aording to (4.24), (4.26) and de�nitions of Green's funtions.Remark 4.7. In this paper, we do not disuss onvergene of the desribed Riesz �Galerkin methods for the minimization of the funtionals of the omplementary workor orresponding integral equations of the splitting method. The analysis of the onver-gene does not meet di�ulties. For the tehniques whih an be applied and results werefer to Korneev/Rozin [29, 30℄ and Korneev [19�21, 25, 27℄. In these works, simpler forthe realization, but more ompliated for the analysis disretizations were studied. Forinstane, in Korneev [20, 21℄ 1-d integrals in (4.22) were approximated by the trapez-ium quadratures on a retangular grid and then the olloation method was applied forobtaining the system of algebrai equations. Namely, it was required that (4.22) holdsfor the quadrature nodes. Let us also note, that integral equations obtained by themethod of splitting for the bending problem of thin plates and ylindrial shells werestudied by Korneev/Rozin [29, 30℄ and Korneev [22℄� [25℄. Constrution of loalizedequilibrated funtions of internal fores for thin shells and shells of moderate thiknesswas ompleted in Korneev [27℄ under rather general assumptions on the on�gurationof the middle surfae. Also in [27℄ the analysis of the onvergene may be found fornumerial methods, based on the use of these equilibrated funtions for the minimiza-tion of the funtional of the omplementary work for shells with arbitrary su�ientlysmooth middle surfaes.



128 I.E. ANUFRIEV ET AL.Remark 4.8. For the boundary value problems of mehanis of solid bodies twolevel of splitting are distinguished: i) splitting of the equilibrium equations and ii) split-ting of partial di�erential equations of a boundary value problem in respet to displae-ments. The latter means that we are able to split the equilibrium, stress-strain, strain-displaements relations and boundary onditions. When this is possible, one an obtainintegral equations of the method of splitting, whih were introdued in mehanis ofsolid bodies by Rozin [45, 46℄. From his and other works, mentioned in Remark 4.7,it follows that in rather general ase ii) an be aomplished, if the Poisson ratio νis zero. However, for an e�ient use of the a posteriori error estimation algorithmsof the spei� lass under onsideration one needs only to split equilibrium equations,whih is always possible. The latter is true for the possibility of obtaining disrete dualformulations based on the Castigliano priniple, whih are omparable in the ompu-tational ost of their solution with FE methods for primal formulations in respet todisplaements.Remark 4.9. Let ũfem be the funtion from the FE spae interpolating the exatsolution u . We rewrite (2.8) in the form
‖∇u−∇ufem‖ ≤ ‖∇(ũfem − ufem)‖ + ‖∇ũfem − z‖ ∀ z ∈ Qf , (4.27)and assume that the FE spae is the spae of the ontinuous piee wise bilinear funtions.We assume also that z is obtained by the approximate solution of the dual problem.Note that all funtions in the right part are from the �nite dimensional spaes. Foronveniene, let us all by the gauge order the order of onvergene of the norm in theleft, given by the a priori estimate. Due to the superonvergene property, the �rst termin the right an be estimated with an additional with respet to the gauge order, see,e.g., Oganesian/Ruhovets [38℄, Korneev [28℄ and Whalbin [53℄, Babuska/Strobolis [7℄.At the approximation of q by the piee wise onstant funtions it is easy to prove theestimate of the seond norm with the gauge order. Therefore, the auray of the aposteriori error estimate is at list the same in the order as of the a priori estimate.Comparison of disrete primal and dual formulations. The equality CI =

= K takes plae in a muh more general ase. To illustrate this we turn to the Dirihletproblem (2.26) in an arbitrary su�iently smooth domain and its FE disretization(2.27). We an assume that the �nite elements of the FE assemblage are arbitrary whihan provide that V̊ (Ω) ∈ C(Ω)∩ H̊1(Ω) . In other words, the �nite elements are allowedto be be urvilinear and assoiated with the triangular or retangular referene elementwith any ompatible in C(Ω) ∩ H̊1(Ω) shape funtions. The Hermite �nite elementsare not exluded, but we number the FE Galerkin basis funtions of the spae V (Ω)onseutively with the use of the number l = 1, 2, . . . , L without making di�erenebetween basis funtions, orresponding to the values of FE funtions or their derivativesat the nodes. Therefore, L is the total number of the FE Galerkin basis funtions, forwhih we use now the notation p[l](x) . The number of the internal basis funtions isdenoted by LI so that and V̊ (Ω) = span[p[l]]L I

l=1 . The �nite element solution satis�esthe identity (2.27). The basis self-equilibrated vetors φ
[l]
0 = (φ

[l]
0,1, φ

[l]
0,2)

⊤ in the spae
Q0 = span[φ

[l]
0 ]Ll=1 an be de�ned by means of the FE basis funtions aording to

φ
[l]
0,k = (−1)1−k ∂φ[l]

∂x3−k
, k = 1, 2, l = 1, 2, . . . , LI . (4.28)It is lear that vetors φ[l]

0,k satisfy the equilibrium equation
∂φ[l]

∂x1
+
∂φ[l]

∂x2
=

∂2φ[l]

∂x1∂x2
− ∂2φ[l]

∂x2∂x1
= 0 (4.29)



EXACTLY EQUILIBRATED FIELDS. . . 129in lassial sense only when the �nite elements are ompatible in C1 . In general, forelements ompatible in C , seond derivatives in (4.29) are Dirak's deltas on the bor-ders of �nite elements, and therefore (4.29) involves equalities for the Dirak's deltasorresponding to ∂2φ[l]/∂xk∂x3−k for k = 1, 2. However, in the weak sense, see (4.1),the equilibrium equations are satis�ed. Now we see that KI = CI , where
K = {kl,m}l,m∈LI

, C = {cl,m}l,m∈LI
,

kl,m =

∫

Ω

∇p[l] · ∇p[m] dx, cl,m =

∫

Ω

φ(l) · φ(m) dx. (4.30)Clearly, in the ase of more general equations of seond order, e.g., when the oe�ientsare di�erent and variable, the matries KI and CI are not equal. For instane, if weturn to the equation ∇· ρ∇u = f where ρ is a diagonal 2×2 matrix ρ = diag[ρ1, ρ2] ,then KI is the same as CI for the similar equation with ρ = diag[ρ−1
2 , ρ−1

1 ] . Indeed,the basis in Qf is the same, and the oe�ients of the sti�ness and de�etion matriesare the integrals
kl,m =

∫

Ω

∇p[l] · ρ∇p[m] dx, cl,m =

∫

Ω

φ (l) · ρ−1φ (m) dx.From the above onsiderations, one an onlude that at least for regular elliptiproblems omputational properties of the disretizations of primal and dual problemsare in essential the same and solutions of these dieretizations an be obtained by fastsolvers of the same types.Remark 4.10. For 3-d Dirihlet problem (2.15) we have for the �ux t = (t1, t2, t3)
⊤the balane equation

∂t1
∂x1

+
∂t2
∂x2

+
∂t3
∂x3

+ f = 0. (4.31)Therefore, in order to obtain an equilibrated �ux, two of the omponents an be spei�edby arbitrary funtions and only third found from (4.31). Again, su�iently smooth loalfuntions an be used for generating self-balaned �uxes. Suppose that φ(x) has loalsupport δ and ∂3φ/∂x1∂x2∂x3 is bounded in the viinity of δ . Then for su�ientlysmooth funtions αk, k = 1, 2, 3, omponents of a self-balaned �ux are de�ned by
tk = αk

∂2tk
∂xk+1∂xk+2

, k = 1, 2, 3. (4.32)Suppose, V (Ω), Ω = (0, 1)3, is the spae of the ontinuous piee wise linear funtion onthe FE ubi mesh of size h and φ(i)(x) satis�es φ(i)(x(j)) = δi,j , where i = (i1, i2, i3),
j = (j1, j2, j3), x

(i) = hi, x(j) = hj and h = 1/n . Then substituting φ(x) = φ(i)(x) in(4.32), one obtains loal self-balaned �uxes t(i) = (t
(i)
1 , t

(i)
2 , t

(i)
3 )⊤ .4.3. Linear elastiity problems. State of plain stress. In this setion wewill use the matrix-vetor form of the stress strain relations for the state of plain stress

σ = Dε , D =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2



 ,where
σ = (σ11, σ22, σ12)

⊤, ε = (ε11, ε22, γ12)
⊤, γ12 = 2ε12,



130 I.E. ANUFRIEV ET AL.and we turn to the problem (3.6). The solution of the dual problem is the stress vetor
z = z0+tf , where tf any vetor from Qf and the vetor z0 ∈ Q0 satis�es the equation

∫

Ω

(z0 − tf )D−1t0 dx = 0 ∀ t0 ∈ Q0. (4.33)In order to disretize this integral identity, one an proeed along the lines of AlgorithmsA or B. Suppose for simpliity that the domain is overed by the square mesh of size
h , Ωh is some mesh domain ontaining Ω and de�ned below, and

V (Ωh) = {v : v ∈ C(Ω
h
), v

∣∣
τi

∈ Qp, p ≥ 1},where Qp is the spae of polynomials of the the order p in eah variable. For de�ninga disrete subspae Qh
0 (Ω) ⊂ Q0(Ω) , at �rst we de�ne the spae of stresses σ12 as therestrition V (Ω) of the spae V (Ωh) to Ω . The stresses σkk are evaluated aording(3.13), (3.14) with fk ≡ 0 and funtions ψkk,Γk,−

from appropriate �nite dimensionalspaes of traes. The oe�ients before the basis funtions of these spaes are learlyadditional unknowns in the disrete dual formulation. It is possible to avoid speialdesription of funtions ψkk,Γk,−
by hoosing a proper basis in V (Ωh) . At the sametime, it is possible to de�ne the basis funtions in suh a way that their supports will beloalized on the squares, ontaining 9 mesh sells. Sine the generalization to any p ≥ 1is obvious, we will desribe one of the bases for the ase p = 1 .Let p(i)(x), p(i)(x(j)) = δi,j be the usual nodal oordinate funtion in the spae ofontinuous piee wise bilinear funtions, and

φ(i)(x) = p(i)(x) − p(i1−1,i2)(x) − p(i1,i2−1)(x) + p(i1−1,i2−1)(x), (4.34)so that supp [φ(i)(x)] = ω(i), and ω(i) = {x : (ik − 2)h < xk < (ik + 1)h} . First, wede�ne the master basis vetor µ (i) by the equalities
µ

(i)
12 = φ(i)(x), µ

(i)
kk = −

xk∫

(ik−2)h

∂φ(i)

∂x3−k
(ηk, x3−k) dηk.Elements of the basis {φ

h,i
0 }I h , I h = {i : κ(i) := ω(i) ∩ Ω 6= ∅} in Qh

0 (Ω) are therestritions of µ (i) to Ω . Note that for Ωh one an take the domain with the losure
Ω

h
= ∪I hω(i) . Disrete formulation of (4.33) is the following one: �nd suh vetor

z = z0,h + tf with zh
0 ∈ Qh

0(Ω) that
∫

Ω

(zh
0 − tf )D−1 φ

h,i
0 dx = 0, ∀ φ

h,i
0 ∈ Qh

0 . (4.35)3-d elastiity. As it is seen from Setion 3, the onstrution of the spae ofthe self-equilibrated stresses for 3-d is similar to 2-d ase. The same is true about theonstrution of the basis funtions in the spae Qh
0 , whih have loal supports. In thematrix-vetor form the stress strain relations are

σ = Dε,

D =
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
1 − ν ν 0 0 0

1 − ν 0 0 0
(1 − 2ν)/2 0 0

SY M (1 − 2ν)/2 0
(1 − 2ν)/2


,

(4.36)
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σ = (σ11, σ22, σ33, σ12, σ23, σ13)

⊤, ε = (ε11, ε22, ε33, γ12, γ23, γ12)
⊤, γkl = 2εkl, k 6= l.As for the 2-d problem, we over the domain by the square mesh of size h , onsidersome domain Ωh ⊇ Ω ontaining Ω , and the spae V (Ωh) = {v : v ∈ C(Ω

h
), v

∣∣
τi

∈
∈ Qp, p ≥ 1}, where Qp is the spae of polynomials of the the order p in eah variable.For Ωh we take the mesh domain ontaining all nests τi, i = (i1, i2, i3) involved in thede�nition of the basis in the spae Qh

0 .Let p(i)(x), p(i)(x(j)) = δi,j be the usual nodal oordinate funtion in the spae ofontinuous piee wise bilinear funtions, and
φ(i)(x) = p(i)(x) − p(i1−1,i2,i3)(x) − p(i1,i2−1,i3)(x) + p(i1−1,i2−1,i3)(x)−
− p(i1,i2,i3−1)(x) + p(i1−1,i2,i3−1)(x) + p(i1,i2−1,i3−1)(x) − p(i1−1,i2−1,i3−1)(x), (4.37)so that supp [φ(i)(x)] = ω(i), and ω(i) = {x : (ik − 2)h < xk < (ik + 1)h, k = 1, 2, 3} .We de�ne the master basis vetor µ (i) by the equalities
µ

(i)
kl = φ(i)(x), µ

(i)
kk = −

xk∫

(ik−2)h

(
∂φ(i)

∂xk+1
+

∂φ(i)

∂xk+2

)
(ηk, xk+1, xk+2) dηk, k 6= l,and the elements of the basis {φ

h,i
0 }I h , I h = {i : κ(i) := ω(i) ∩Ω 6= ∅} , in Qh

0 (Ω) asthe restritions of µ (i) to Ω .The disrete formulation of the dual problem has the same form (4.35) and requiressolution of the system of linear algebrai equations with the banded matrix.5. Numerial resultsIn this setion, we disuss the results of numerial experiments with the equilibriumbased a posteriori error estimates desribed in previous setions. The purpose of ourexperiments is to demonstrate that our algorithms are able to produe suh estimateswith the very good e�etiveness index and for the optimal in the order number ofarithmeti operations. For model problems, linear and nonlinear seond order elliptiequations in the unite square were used, inluding the equation with jumping oe�ientsand the plain strain linear elastiity problem. Main onlusions made from numerialresults are that our a posteriori estimatesare asymptotially exat, and, more over, in many ases onvergene of the e�etive-ness index to the unity was observed at h→ 0 ,are asymptotially optimal in the omputational ost, the number of arithmeti op-erations was always proportional to the number of unknowns,an be easily made robust in respet to oe�ients jumps after neessary modi�a-tions of the algorithms.We tested also the a posteriori estimators in whih the equilibrated �elds wereobtained by solving the dual problem, expressing the Castigliano priniple.
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Fig. 1. Energy norm of FE error and a posteriori estimator against number of unknowns forthe problem (5.1)5.1. The Poisson equation.5.1.1. Diret evaluation algorithms. Consider the model problem
− ∆u =

5π2

2
cos

3π

2
x1 cos

π

2
x2 , (x1, x2) ∈ Ω = (0, 1)× (0, 1),

u|ΓD
= 0, u|ΓN

= 0,

ΓD = {(x1, x2)| x1 ∈ [0, 1] , x2 = 1} ∪ {(x1, x2)| x1 = 1 , x2 ∈ [0, 1]} ,
ΓN = {(x1, x2)| x1 ∈ [0, 1] , x2 = 0} ∪ {(x1, x2)| x1 = 0 , x2 ∈ [0, 1]} .

(5.1)with the exat solution
u(x1, x2) = cos

3π

2
x1 cos

π

2
x2 . (5.2)The FE spae of the piee wise bilinear funtions for this problem V 0(Ω) was de�nedin Setion 2. For the FE solution ufem on the mesh of size h , we used Algorithm 2.1 inorder to alulate the vetor-valued funtion t(x) = (t1(x), t2(x))

⊤ , whih satis�es thebalane equation (2.5) and the boundary onditions (2.6). Then we alulated the energynorm of the error e = ‖∇(u− ufem)‖ and the a posteriori estimator η = ‖∇ufem − t‖ ,i.e., the left and right sides orrespondingly in (2.8).Fig. 1 shows the dependene of the energy norm of the FE error and of the a pos-teriori estimator on the number of unknowns N . It demonstrates the same asymptotibehavior of the both values. The number of unknowns in this experiment exeeded
4 · 106 , but these lines pratially oinide for N greater than 104 . The a posteriori es-timator η stays greater than the energy norm of the error e (see Table 1). This validatesthat the equilibrium based a posteriori estimate guarantees the upper asymptotiallyexat estimate.Fig. 2 shows the dependene of (Ieff − 1 on N ), where

Ieff =
η

e
(5.3)is the e�etiveness index of the a posteriori estimate. We see that Ieff onverges to 1rather fast and always stays grater then 1, see also Table 1.
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N e η Ieff

16 8.40422 · 10−1 2.87729 · 10−1 3.42362
64 4.08785 · 10−1 8.38575 · 10−1 2.05138
256 2.02318 · 10−1 2.67228 · 10−1 1.32083
1024 1.00877 · 10−1 1.09368 · 10−1 1.08417
4096 5.04023 · 10−2 5.14654 · 10−2 1.02109
16384 2.51966 · 10−2 2.53287 · 10−2 1.00525
65536 1.25977 · 10−2 1.26141 · 10−2 1.00131
262144 6.29880 · 10−3 6.30085 · 10−3 1.00033
1048576 3.14939 · 10−3 3.14965 · 10−3 1.00008
4194304 1.57469 · 10−3 1.57473 · 10−3 1.00002

Fig. 2. Dependene Ieff − 1 on the number of unknowns N for the problem (5.1)We also ompared the omputational osts of the a posteriori estimator and optimalmultigrid solver for the problem (5.1). These results are shown on the Fig. 3 and demon-strate that the equilibrium based a posteriori estimator is optimal with respet to thenumber of arithmeti operations. Moreover, omputation of the a posteriori estimator isabout twie heaper than solving the �nite element system (this results were obtainedon AMD Athlon 64 3200+ 2.01 GHz with 2 Gb of RAM).5.1.2. Algorithms based on the Castigliano priniple. In the unite square,we onsidered the Dirihlet problem having for the exat solution
u = sin(2πx1) sin(πx2) + (x1 + 1)(2x2 + 1).The orresponding right part is f = 5π2 sin(2πx1) sin(πx2) and nonhomogeneous Di-rihlet boundary ondition is u∣∣

∂Ω
= (x1 + 1)(2x2 + 1) .The FE solution ufem was obtained by means of the spae of the ontinuous pieewise bilinear funtions. For obtaining the approximate solution zh of the disretizeddual problem (4.4), we used the subspae Qh

0 with the loal �ux basis vetors φ (i) ,desribed in Subsetion 4.1. Two hoies for the vetor tf and respetively for the set
Qh

f were implemented: one aording to seond line of (4.8) and another aording to
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Fig. 3. Computational osts (in ms) of multigrid solver and η against the number of unknownsfor the problem (5.1) Table 2
N e Ieff I1

eff I2
eff

16 1.59912 2.93605 2.05747 1.20610
64 7.60498 · 10−1 1.95927 2.16500 1.23228
256 3.70781 · 10−1 1.26742 2.21586 1.24493
1024 1.84023 · 10−1 1.07113 2.23084 1.24869
4096 9.18344 · 10−2 1.01826 2.23475 1.24967
16384 4.58949 · 10−2 1.00460 2.23574 1.24992
65536 2.29446 · 10−2 1.00115 2.23599 1.24998
262144 1.14720 · 10−2 1.00029 2.23605 1.24999
1048576 5.73594 · 10−3 1.00007 2.23606 1.25000the formulas
tf (x) = (tf,1, tf,2)

⊤, tf,k(x) =
1

2

xk∫

0

f(ηk, x3−k) dηk.For these two hoies of �uxes, satisfying the balane equation, we introdue notations
tf = t

(1)
f , t

(2)
f . These �uxes result in the two a posteriori estimators

ηc,j = ‖∇ufem − zh,j‖, zh,j = z
h,j
0 + t

(j)
f , j = 1, 2,with the e�etiveness indies denoted I j

eff . The diret evaluation algorithm was alsoapplied to the problem. In essene it is Algorithm 2.1, but adapted to the ase, whenone has the Dirihlet boundary ondition at ΓN as it is de�ned in (2.2). The adapta-tion was performed with the use of speial algorithm, whih optimizes the a posterioriestimator among di�erent boundary �uxes in the appropriate �nite dimensional spae.The e�etiveness index for the the estimator produed by the adapted Algorithm 2.1 isdenoted Ieff .The dependene of the energy norm for the error and of the desribed e�etivenessindies on N is presented in Table 2.



EXACTLY EQUILIBRATED FIELDS. . . 135Other problems were also solved by FE method on purpose of testing the Casiglianopriniple based a posteriori estimators. The numerial results showed similar behaviorof the estimators of this lass and allow us to ome to the following onlusions.
α) The equilibrated �uxes obtained by means of the Castigliano priniple providegood error estimators with good e�etiveness indies, one of whih stays below 1.3.
β ) However, both indies I j

eff do not onverge at h→ 0 , whereas Ieff does.
γ ) The omputational time for solving the system of algebrai equations (4.5), re-sulting from the Castigliano priniple, and for evaluating the a posteriori estimatorsis proportional to the number of unknowns N . Therefore, the algorithms are asymp-totially optimal in the omputational ost. However, the omputer time is greaterapproximately in 1.5 times, than the omputational time for the diret evaluation algo-rithm with the e�etiveness index Ieff .Item β ) an be explained by the fat that the FE method for solving the primaland dual problems have the same rate of onvergene in the energy norms. Namely,

‖∇(u− ufem)‖ ≍ ‖∇u− z‖ = O (h).Apparently, the onvergene of the e�etiveness index to the unity for our algorithms ofthe diret evaluation of the balaned �uxes is related to the fat of the superonvergeneof the FE solution ufem to the ontinuous piee wise bilinear interpolation of the exatsolution u .Item γ ) ompletely approves onlusions made in Subsetion 4.2 in the part titledComparison of disrete primal and dual formulations.The set Qf does not depend on the hoie of the vetor tf , whih enter the de�nitionof this set. However, the sets Qh,j
f := Qh

0 +t
(j)
f depend, and, aording to the numerialresults, some allow to approximate true �uxes better. Besides, the error estimator ηc,2is more symmetri with respet to the axes xk , than ηc,1 . Probably, these fators ausedthe di�erene of the e�etiveness indexes, re�eted in α) .5.2. Seond order ellipti equation with disontinuous oe�ient. Wetested also our a posteriori estimator as applied to the problem:

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω = (0, 1) × (0, 1), (5.4)with the same boundary onditions as in (5.1) and the piee-wise onstant oe�ient,whih has a jump aross the ommon boundary γ for the two parts of Ω :
Ω1 = {x| x1 ∈ (0, 0.5), x2 ∈ (0, 1)} , (5.5)
Ω2 = {x| x1 ∈ (0.5, 1), x2 ∈ (0, 1)} . (5.6)For the funtion ρ , we used
ρ(x) =

{
ρ1 = 10−2, x ∈ Ω1,

ρ2 = 102, x ∈ Ω2.
(5.7)The right-hand side f as well as the mixed boundary onditions orresponded to theexat solution

u = (cos(2πx) − 1) cos

(
3π

2
y

){
x2 + 1, x < 0.5,

−(x− 1)2 ρ1

ρ2
+ 0.25 ρ1

ρ2
+ 1.25, x > 0.5.For obtaining FE solution, we used the spae V 0(Ω) of the ontinuous piee-wisebilinear funtions, satisfying the Dirihlet boundary ondition on ΓD .
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Fig. 4. Energy norm of the �nite element error and the a posteriori estimator against thenumber of unknowns for the problem (5.4)

Fig. 5. Dependene of Ieff − 1 on the number of unknowns N for the problem (5.4)The vetor t(x) = (t(x)1, t(x)2)
⊤ , satisfying the balane equation (2.5) and theNeumann boundary onditions (5.1) on ΓN , was alulated aording to Algorithm 2.4in Subsetion 2.3. In turn, this vetor allowed to evaluate the a posteriori estimator

ηρ = ‖ρ∇ufem−t‖ρ−1 , whih enters the estimate (2.33). Fig. 4 shows the dependene ofthe energy norm, of the error e = ‖∇(u−ufem)‖ρ and of ηρ on the number of unknowns
N ( in this numerial experiment N also exeeded 1 · 106 , but for N > 104 the lineson the graph oinide). The e�etiveness index tends to 1 rather fast, as it is illustratedby Fig. 5, in whih the value of Ieff − 1 is plotted against N . At the same time thee�etiveness index is always grater then 1 (see also Table 2) that validates that the aposteriori estimate (2.33) is a guaranteed upper asymptotially exat bound.The omparison of the omputational osts of the a posteriori estimator and theoptimal multigrid solver for the FE system of linear algebrai equations is presentedin Fig. 6. These results demonstrate the optimality of the a posteriori estimator. Note,that the a posteriori estimator is more than twie heaper, than solving the FE systemby the multigrid method.
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Fig. 6. Computational osts of the a posteriori estimator and the multigrid solver against thenumber of unknowns for the problem (5.4)

Fig. 7. Energy norm of FE error and a posteriori estimator η(1) against the number of unknownsfor the problem (5.8)5.3. Linear elastiity problem. Algorithms 3.1 and 3.2 were applied to severallinear elastiity problems with nonhomogeneous Dirihlet boundary onditions. Sinethe results re�et similarly the di�erene of these algorithms and the level of theire�ieny, we present them only for one problem (3.1)�(3.3) in the unite square Ω =
[0, 1] × [0, 1] . The vetor f and the Dirihlet boundary onditions orrespond to theexat solution u = (u1, u2)

⊤ ,
u1(x) = sin(πx1) sin(2πx2) + x1 + x2,

u2(x) = sin(2πx1) sin(πx2) +
1

4
(x1 + 1)(x2 + 1).

(5.8)Algorithms 3.1 and 3.2 produe the a posteriori estimators η(1) and η(2) , respetively,aording to their desription in Subsetion 3.3.Fig. 7 and 8 demonstrate the behavior of η(1) . The results obtained for η(2) arepresented in Fig. 9�11, see also Table 3 for numbers. The numerial results show, that
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Fig. 8. Computational ost of multigrid solver and of the a posteriori estimator η(1) againstthe number of unknowns for the problem (5.8)

Fig. 9. Energy norm of FE error and the a posteriori estimator η(2) against the number ofunknowns for the problem (5.8) Table 3
N e η Ieff

64 9.14308 1.02954 · 101 1.12604
256 4.44483 4.77467 1.07421
1024 2.20395 2.25318 1.02234
4096 1.09958 1.10628 1.00609
16384 5.49486 · 10−1 5.50364 · 10−1 1.00160
65536 2.74705 · 10−1 2.74818 · 10−1 1.00041
262144 1.37348 · 10−1 1.37362 · 10−1 1.00010
1048576 6.86734 · 10−2 6.86751 · 10−2 1.00003the a posteriori estimator η(2) outperforms η(1) . The e�etiveness index I

(2)
eff of η(2)tends to 1 staying grater then 1, whereas the e�etiveness index I

(1)
eff of η(1) does notonverge and stays slightly greater than 2. Both a posteriori estimators are optimal inthe omputational ost. Fig. 8 and 11 present the omparison of their omputational ost
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Fig. 10. Dependene of Ieff − 1 for the aposteriori estimator η(2) on the number of unknowns
N for the problem (5.8)

Fig. 11. Computational osts of the multigrid solver and the a posteriori estimator η(2) againstthe number of unknowns for the problem (5.8) Table 4
N e η(1) I

(1)
eff η(2) I

(2)
eff

16 3.29126 · 10−1 2.11430 6.42399 2.45022 7.44462
64 1.63481 · 10−1 5.54014 · 10−1 3.38885 3.54162 · 10−1 2.16638
256 8.17444 · 10−2 1.94481 · 10−1 2.37914 1.46349 · 10−1 1.79033
1024 4.08766 · 10−2 8.62833 · 10−2 2.11083 5.45946 · 10−2 1.33560
4096 2.04389 · 10−2 4.18226 · 10−2 2.04622 2.56000 · 10−2 1.10387
16384 1.02196 · 10−2 2.07433 · 10−2 2.02976 1.05054 · 10−2 1.02797
65536 5.10979 · 10−3 1.03501 · 10−2 2.02554 5.14644 · 10−3 1.00717
262144 2.55490 · 10−3 5.17229 · 10−3 2.02446 2.55953 · 10−3 1, 00181
1048576 1.27745 · 10−3 2.58580 · 10−3 2.02419 1.27804 · 10−3 1.00046and the omputational ost of the multigrid solver for solving the problem (3.1)�(3.3)with the Dirihlet boundary onditions.



140 I.E. ANUFRIEV ET AL.The di�erene in the behavior of the a posteriori estimators η(1) and η(2) (see Ta-ble 4) shows that the quality of the error estimators strongly depend on how auratelythe properties of the superonvergene of FE solutions are taken into aount at theirevaluation. Clearly, the onvergene of the e�etiveness index an take plae only if ana posteriori error estimator is superonvergent. Algorithm 3.1 is simpler, but it is notinvariant in respet to axes xk and the auray of approximation of the boundaryvalues for stresses provides only an approximation of the order of h .Researh is supported by the grant from the Russian Fund of Basi Researh No 05-01-00779-a. The seond author has partially been supported by the Austrian SieneFund (FWF) through the speial researh programme (SFB) F013, projet 16.�åçþìåÈ.Å. Àíó�ðèåâ, Â.�. Êîðíååâ, Â.Ñ. Êîñòûëåâ. Òî÷íî óðàâíîâåøåííûå ïîëÿ: ìîãóò ëèîíè áûòü ý��åêòèâíî èñïîëüçîâàíû äëÿ ïîëó÷åíèÿ àïîñòåðèîðíûõ îöåíîê ïîãðåøíîñòè.Ïîêàçûâàåòñÿ, ÷òî êîíñòðóêòèâíîå îïðåäåëåíèå ëèíåàëîâ òåíçîðîâ íàïðÿæåíèé, óäî-âëåòâîðÿþùèõ óðàâíåíèÿì ðàâíîâåñèÿ, ÿâëÿåòñÿ ïðîñòîé äëÿ ÷èñëåííîé ðåàëèçàöèèîïåðàöèåé. Ýòî ïîçâîëÿåò ý��åêòèâíî ïðèìåíÿòü êëàññè÷åñêèå àïîñòåðèîðíûå îöåíêèïîãðåøíîñòè ïðèáëèæåííûõ ðåøåíèé êðàåâûõ çàäà÷, ïðîèñòåêàþùèå èç äâóõ âçàèì-íî äîïîëíèòåëüíûõ ïðèíöèïîâ � ïðèíöèïà Ëàãðàíæà ìèíèìóìà ýíåðãèè äå�îðìàöèèè ïðèíöèïà Êàñòèëüÿíî ìèíèìóìà äîïîëíèòåëüíîé ðàáîòû, ÿâëÿþùåãîñÿ äâîéñòâåííûìïî îòíîøåíèþ ê ïåðâîìó. Ïðèìåíèòåëüíî ê çàäà÷àì ëèíåéíîé òåîðèè óïðóãîñòè â òàêèõîöåíêàõ ýíåðãèÿ ïîãðåøíîñòè ïðèáëèæåííîãî ðåøåíèÿ, óäîâëåòâîðÿþùåãî âñåì ãåîìåòðè-÷åñêèì óñëîâèÿì, îöåíèâàåòñÿ ýíåðãèåé, îòâå÷àþùåé ðàçíîñòè òåíçîðà íàïðÿæåíèé ïðè-áëèæåííîãî ðåøåíèÿ è ëþáîãî òåíçîðà íàïðÿæåíèé, óäîâëåòâîðÿþùåãî óðàâíåíèÿì ðàâ-íîâåñèÿ. Âîïðåêè ðàñïðîñòðàíåííîìó ìíåíèþ î áîëüøîé âû÷èñëèòåëüíîé òðóäîåìêîñòèïîñòðîåíèÿ óðàâíîâåøåííûõ òåíçîðîâ, áëèçêèõ ïîëó÷àåìûì ïîñðåäñòâîì ÌÊÝ (ìåòîäàêîíå÷íûõ ýëåìåíòîâ), ìû ïîêàçûâàåì, ÷òî âî ìíîãèõ ñëó÷àÿõ ýòî ìîæåò áûòü ñäåëàíîçà îïòèìàëüíîå ÷èñëî àðè�ìåòè÷åñêèõ äåéñòâèé. Äîêàçûâàþòñÿ òàêæå íîâûå àïîñòå-ðèîðíûå îöåíêè ïîñðåäñòâîì íåóðàâíîâåøåííûõ òåíçîðîâ íàïðÿæåíèé. Ïî ñðàâíåíèþñ èçâåñòíûìè îöåíêàìè, ñîäåðæàùèìè, íàïðèìåð, â ñëó÷àå óðàâíåíèÿ Ïóàññîíà íîðìóíåâÿçêè (â óðàâíåíèè áàëàíñà äëÿ èñïîëüçóåìîãî âåêòîðà ïîòîêà) â ïðîñòðàíñòâå H−1 ,îíè âû÷èñëÿåìû è áîëåå òî÷íû. Ïðèâîäÿòñÿ ðÿä àëãîðèòìîâ âû÷èñëåíèÿ àïîñòåðèîðíûõîöåíîê äëÿ óðàâíåíèÿ Ïóàññîíà è ñèñòåìû óðàâíåíèé òåîðèè óïðóãîñòè è ðåçóëüòàòû ÷èñ-ëåííûõ ýêñïåðèìåíòîâ, ïîäòâåðæäàþùèõ âåñüìà âûñîêóþ ý��åêòèâíîñòü àëãîðèòìîâ èèõ ðîáàñòíîñòü.
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7. Babu ška I., Strobolis T. Finite element method and its reliability. – N. Y.: Oxford

University Press, 2001. – xi+802 p.

8. Berdichevskii V.L. Variatsionnye principy mahaniki sploshnoi sredy // Variational prin-

ciples of mechanics of conytinuous media. – M.: Nauka, 1983 (in Russian).

9. Bernardi Ch., Girault V. A local regularization operator for triangular and quadrilateral

finite elements // SIAM J. Num. Anal. – 1998. – V. 35, No 5. – P. 1893–1916.
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