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EXACTLY EQUILIBRATED FIELDS,
CAN THEY BE EFFICIENTLY USED
FOR A POSTERIORI ERROR ESTIMATION?

LE. Anufriev, V.G. Korneev, V.S. Kostylev

Abstract

The answer given in the paper to the question in the title: yes, they can. We advocate the
approach to the a posteriori error estimation, which can be called “classical”, and for the theory
elasticity problems stems from the Lagrange and Castigliano variational principles. In it, the
energy of the error of an approximate solution, satisfying geometrical restrictions, is estimated
by the energy of the difference of the stress tensor corresponding to the approximate solution
and any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular point
of view that the construction of equilibrated stress fields requires considerable computational
effort, we show that it can be practically always done for the number of arithmetic operations,
which is asymptotically optimal. We derive also new general a posteriori estimates, in which
equilibrated fields are replaced by arbitrary fields of fluxes/stresses. Numerical experiments
show that our a posteriori error estimators provide very good coefficients of effectiveness, which
in many cases can be convergent to the unity. At the same time they have linear complexity
and are robust.

1. Introduction

Publications on a posteriori error estimates for approximate, e.g., numerical so-
lutions of partial differential equations are numerous. The earliest a posteriori error
estimates were apparently known in mechanics from the time when the Lagrange and
Castigliano principles, which, from the mathematical point of view, provide the primal
and dual formulations in theory elasticity, obtained a mature form. Such estimates are
deduced from the fact that approximate solutions obtained on the basis of these princi-
ples approach the exact solution in the energy sense from the opposite directions, and,
namely, from above and from below, respectively. Let u be the vector of exact displace-
ments of a linearly elastic body, & = o (u) is the corresponding stress tensor, |- |¢
and ||, are the potential energy norms expressed in displacements and stresses. If u
is an arbitrary displacement vector of finite energy, satisfying geometric boundary con-
ditions, and 7 is an arbitrary stress tensor of finite energy, satisfying the equilibrium
equations (including the boundary conditions in stresses), then the classical a posteriori
estimate is

fu— o < |o (@) — - (1.1)

and may be found, e.g., in the Mikhlin’s book [33]. In spite of its simple form and
enormous amount of publications on a posteriori estimates, the authors were unable to
find references where it had been directly used in practical FE applications.

During several last decades, a few groups of a posteriori error estimation techniques
have been developed and, first of all, so called residual-based techniques found in
Babuska I and Reinbolt [5, 6], Verfiirth [51] Stewart and Hudges [48] and more re-
cent, publications. Among them there are distinguished the explicit residual method,
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see Bernardi and Girault [9], Carstensen [11] and the related paper by Clement [12]
on special interpolation, and the implicit and equilibrated residual methods, for which
we refer to Babuska I and Reinbolt [5], Kelly [18], Ladevese and Leguillon [31], and
Ainsworth, Demkowicz and Kim [1]. Many papers are dedicated to obtaining of indica-
tors of the error, which do not necessarily bound it, but are approximately proportional
to the error, and, therefore, can be used for the mesh refinement in adaptive computa-
tions. A pioneering paper Zienkiewicz and Zhu [55], see also Ainsworth and Oden [2],
commenced the group of such techniques widely used in applications and employing
superconvergence properties of finite element solutions. Many contributions have been
related to a posteriori error estimation for specific problems of mathematical physics.
The development of a posteriori estimation techniques in recent decades, as well as
the bibliography, are reflected in the books of Aubin [3], Verfirth [52], Ainsworth and
Oden [2] Babuska and Strobolis [7] and Neittaanmaki and Repin [35].

The main idea of some of the mentioned approaches to the error estimation is to
use fields of stresses, which can be obtained from the FE solution and at the same time
are most close to the exact equilibrated fields (i.e., representing the exact solution of
the problem). An example is the equilibrated residual method, which now gains more
attention as a method which allow to obtain reliable bounds, often without solving some
global systems of algebraic equations, see, e.g., Ainsworth, Demkowicz and Kim [1], Luce
and Wohlmuth [32], Vejchodsky [50] and Braess and Schéberl [10]. However, it is also
true that the purpose of most authors is to outflank construction of exactly equilibrated
fields at all'. One way of obtaining equilibrated fields?, which approximate equilibrated
fields of the exact solution of the primal problem, is approximate solution of the dual
problem, which in the theory of elasticity is expressed by the Castigliano principle of
virtual equilibrated states. As a rule a motivation for avoiding the use of equilibrated
fields is that the solution of the dual problem or other ways of finding such fields are
computationally too expensive.

The purpose of this paper is to illustrate that in many cases the estimate (1.1) can
be directly used as an efficient and cheap error estimator. This is for the reason that
indeed equilibrated fields are not difficult to find in a variety of ways. As one of the
options, as we will see not the most efficient in many cases, the numerical solution of
the dual problem can be considered. For advocating this option, the following fact is
important: numerical solutions of the discretizations of the primal and dual problems,
having the same (in the order) accuracy in the energy norm, can be found for the same
(in the order) computational cost. More over, under some conditions, the discretization
of the dual problem may be obtained in such a way that its matrix will coincide with the
FE matrix for the primal problem up to the boundary conditions. Therefore, practically
the same solver can be used for solution of the both discrete problems.

From the above discussion, one concludes that the option of solving the dual problem
for evaluating the equilibrated fields deserves examination. Suppose that discretizations
of the same order of accuracy are used for the primal and dual problems. In general,
one can expect that the efficiency coefficient will converge to the unity at h — 0, if the
error estimator is super-convergent. In the practice, such convergence was observed for a
number of alternative a posteriori error estimators, considered in this paper and papers
of other authors, see, e.g., Luce and Wohlmuth [32]. In our numerical experiments with
the use of classical error estimate of the type (1.1) and of the equilibrated fields, obtained
by solution of the dual problem with the same accuracy, the observed effectiveness
coefficient remained close to 1.25. Further improvement of the efficiency coefficient is

!n general discussions we use the theory elasticity problem for a model without special remarks.
2In the paper the both terms equilibrated and ezactly equilibrated field imply that a field satisfies
equilibrium equations exactly in classical or generalized sense.
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possible, e.g., if we solve the dual problem on a denser, then for the primal problem,
mesh, which results in a greater cost of an error estimator, than the cost of the solution
to be validated.

At least not less promising approach can be referred as direct evaluation of the
equilibrated fields. It is based on the fact that the equilibrium equations (in stresses) are
under-determined. For instance, in the theory of elasticity, the symmetric stress tensor
o = {omu}} =y with six stresses for the entries satisfies three equilibrium equations.
Therefore, in order to satisfy the equilibrium equations it is sufficient to perform two
steps:

1) to specify three stresses, say shear stresses

Okl k#la (12)

by arbitrary sufficiently smooth functions and

2) to find the rest stresses from the equilibrium equations by evaluating 1-d integrals.
The presence of the boundary conditions for stresses does not make this procedure
significantly more difficult. When this procedure is used in the a posteriori estimator,
e.g., for the FE solution, the stresses (1.2) are found from the FE solution with the
accurate use of its superconvergence properties.

The approach of direct evaluation of the equilibrated fields allows us not only to
design cheap algorithms for evaluating a posteriori error estimators, often producing
convergent the efficiency coefficients, but to come to a new type of general a posteriori
estimates. For simplicity, let us consider the Dirichlet problem for the Poisson equation
in the rectangle Q = (a1,b1) x (az,b2)

—Au= f(z), == (x1,22) € Q, 0. (1.3)

Ul =
and any function v from H(Q) = {w € H*(Q) : ul,, = 0}, which is considered as
an “approximation” for u. Then for any ¢ > 0 the error estimate can be written in the
form

IV = w)llfo <A +e)lVe-yllg o+
2

+(1+1) b)) / ou(f V) ws)dn| - (L)

ar(z3—1) 0,0

y = (y1,92) " is any sufficiently smooth vector-function, functions oy = a(x) satisfy
a1 + az = 1, and by convention V -y = divy. If f € Ly(Q) and oy € C() it is
natural to consider y € H(Q,div) ={z: V-z € Ly(Q)}. If v = e is the FE solution,
then y may be obtained by the averaging of the derivatives OQufem/0x) at the nodes
and interpolation. In our numerical experiments, algorithms of that type almost always
produced good and convergent effectiveness coefficients. In the algorithms presented
in the paper we implement a variety of techniques of direct evaluation of the exactly
equilibrated fields for their use in the a posteriori estimators.

Clearly, the estimate (1.4) fetches additional opportunities in comparison with the
known estimates of a close appearance, in which the second term in the right part is,
e.g., ||f —V -yll-1,0. Numerical evaluation of this negative norm is not at all easy,
whereas its replacement in (1.4) can be often computed for a number of arithmetic
operations proportional to the number of unknowns. In particular, this is true for the FE
discretizations by means of the orthogonal grids. Another example is Galerkin methods
with the coordinate functions specified by analytical expressions in the whole domain. In
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the paper we discuss also the procedures, which can provide the optimal computational
cost in more general situations.

The equilibrium equations in the theories of thin shells and shells of moderate thick-
ness, see, e.g., Gol’denweizer [17] Novozhilov [36, 37] and Reissner [44], are written in
terms of internal forces, i.g., shear forces and bending and twisting moments. These
equations are more complicated, than the equilibrium equations in the theory of elas-
ticity. However, a quite similar approach can be implemented for obtaining the exactly
equilibrated functions of internal forces. This approach originates from the papers de-
voted to numerical methods for solving the bending thin plate and shell problems on
the basis of the Castigliano principle and the method of splitting of the thin plate and
shell partial differential equations, studied by Rozin [45, 46], Korneev/Rozin [29, 30],
Korneev [19-21, 25, 27].

Considerable part of the algorithms contained in the paper were tested numerically.
We present the graphs and tables of numbers illustrating the dependence of effectiveness
indices and arithmetical work on numbers of unknowns. Obviously, all tested algorithms
are optimal in the computational work. Additionally to this, the practical computational
costs of the a posteriori error estimators and of the optimal multigrid solvers for the
primal problem were compared. As a rule the latter exceeded the former in two times
at the least.

The paper is arranged as follows. In Section 2, we consider a posteriori estimators
for the Poisson equation in the unite square and arbitrary Lipshits continuous domain
with different boundary conditions. The special case of the differential operator with the
discontinuous coefficient in the main term is treated in Subsection 2.3. It is shown that
the algorithms of a posteriori estimators are easily adjusted to this case. The results of
numerical tests for this case, presented in Subsection 5.2, show that discontinuity prac-
tically does not affect the efficiency of the a posteriori error estimator. Section 3 deals
with the a posteriori error estimators for the plane elasticity problem. All a posteriori
error estimators of Sections 2 and 3 are based on the direct evaluation of the balanced
fluxes and equilibrated stress tensors, i.e., without solving any systems of algebraic
equations. In Subsection 4.1, we consider an alternative approach based on solution
of the dual problem equivalent to the Castigliano principle of virtual complementary
work. We show that it is possible to chose a basis in the space of the self-equilibrated
tensors of stresses in such a way that the system of algebraic equations will possess
practically the same properties as the FE system for the primal problem. Throughout
the paper alongside with the general algorithms, we present the algorithms, which we
tested numerically. Results of numerical experiments are discussed in Section 5.

Throughout the paper, we use the notations listed below.

P, and Q, are the spaces of polynomials of the total order p and of the order p
in each variable, e; = (1,0), e2 = (0,1), d is the dimension.

Ly () is the space [L2(Q)]¢ with the norm |- || = || ||2.o and the same notation is
used for the norm in Lo(€2),
|“lka || - lk.o stand for the semi-norm and the norm in the Sobolev space H*(Q),
i.e.,
k
lolia= D /(ng)de, lollz @ = lI0llF.0+ Y lolfq.
lal=Fk ¢ =1
where

ng = 8|Q|U/axglaxg27---7axgd7 q= (CI1;(J27---an)7 qk Z 0) |q| = Q1+Q2+"'+Qd7

H'(Q) == {ve H'(Q) : v|on = 0} is the subspace of functions from H'(Q2) vanishing
on the boundary 0.
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We use also the abbreviations: a.o. — arithmetic operations, FE — finite element. In
the vectors of the space variables © = (x1,x2) or x = (21,22, 23), sometimes we inter-
change the positions of variables and write « = (x,x3-k) and = = (g, Tgt1, Thi2),
assuming in the latter case that indices k + [ are taking values modulo 3.

2. Poisson equation

2.1. An outline of the approach. In this section, we illustrate basics of the
approach of the direct evaluation of equilibrated fields on a simple model problem. Let
us consider a boundary value problem for the Poisson equation in the unite square
Q= (0,1) x (0,1) with the mixed boundary conditions

~Au=f(z), x=(r1,22) €0, 0N=TpuUTly,
(2.1)
ulr, =0, Ju/ov|, =0.

where
I'p = {Il xr1 € (0,1] , Lo = 1}U {($1,$2)| r1=1,20 € (0,1]},
(2.2)
Iy ={z|z1€[0,1) ,22 =0} U{(z1,22)| 11 =0,29 € [0,1)},

and v is the distance from the boundary along the outward normal. The generalized
formulation of this boundary value problem reads

a(u,v) = (f,v)e, YveV(Q), (2.3)

where V(Q) = {v e HY(Q) : v|p, = 0}

a(v,w) :/VU-deac, (v,w)q z/vwdx.

Q Q

Let V() be the finite element space of the piece wise bilinear functions on the
uniform square grid of size h = 1/n, n > 1, with the nodes (9 = h(iy,is), ip =
=0,1,...,n, and Vo(Q) is the subspace of functions from V(f2), vanishing on T'p.
By ufem is denoted the finite element solution belonging to Vo(€2) and satisfying the
identity

a(ufem,'ﬁ) = (f, g)g, Vo e Vo(Q) (2.4)

In order to be able to efficiently implement the a posteriori estimate (1.1), it is necessary
with the use of the obtained FE solution wu¢, to construct the vector valued function
t = (t1,t2) ", which obeys the two conditions:

«) it satisfies the balance differential equation

—V-t=/ (2.5)

and the boundary conditions
v-tlr, =0, (2.6)

where v is a unite vector normal to 052, and

() is as much close as possible to the gradient Vu of the exact solution.
We shall use notations Qy, Qo for the sets of functions satisfying (2.5), (2.6) with the
given f and f = 0, respectively, from which @ is clearly a liner space. The balance law
(2.5) models equilibrium equations in the case of the theory elasticity boundary value
problems. Elements of Q)¢ will be termed balanced or equilibrated, whereas elements of
Qo — self-balanced or self-equilibrated. The sets @}y, Qo can be defined constructively
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by means of the splitting technique, which was introduced by Korneev and Rozin [27,
29, 45] at developing numerical methods for solving problems of the theory of elastic
thin plates and shells in solid mechanics on the basis of the Castigliano principle. For the
problem under consideration constructive definition of the set Q¢ of the “equilibrated”
vectors is quite simple. If ¢ is an arbitrary sufficiently smooth function, then the vector
t = (t1,t2) " with the components

1 Z2

ti(x) = /Q(§17$2)d§1a ta(z) = —/(f(x1,§2) +q(71,§2)) dS2 (2.7)

0 0

satisfies equation (2.5) and boundary conditions (2.6). Clearly, Q; = Qo + t;, where
t; any element of @, and @ is defined by (2.7) with f = 0. For all ¢ € L2(2) one
comes to the space @y with the norm [t|, = |[t||, where || - || stands for the [Lo(f2)]?
norm.

The estimate (1.1) takes the form

IV(u = uem) || < [[Vttgem — ¢, V't € Q. (2.8)

Obviously, a better approximation of du/dxz1 by t1 (e.g., with the use of values of the
gradient of the finite element solution at superconvergence points) will result in a better
a posteriori estimate. In turn, from (2.7) it is seen that the function ¢ has the sense of
the second derivative 0%u/0x?.

Taking for «y, sufficiently smooth functions satisfying a3 + as = 1, one can use
more “symmetric” formulas instead of (2.7):

T

ti(x) = — [ (a1 f —q) (&1, 22) déu,
95/2 (2.9)

to(z) = */(a2f+Q) (&1, w2) ds.

0

They can provide more accurate a posteriori estimates, especially with a good choice of
functions «j, but require more a.o.

If the approach, presented above, is used for a posteriori estimation, then different
boundary conditions should be given attention. Suppose, w is an approximate twice
differentiable solution of (2.1), (2.2), e.g., obtained by the Galerkin method or any
other function from V(Q). For instance, we can set ¢ = 0%u/0x? and come to the
expressions

tl = /8%/830%(51,@) dgl,
0 (2.10)

2

—/(f + 0%/ 023) (21, &) dés.

0

to
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Similarly, we can proceed from setting ¢ = 0?u/0x3, coming to the a posteriori esti-
mates

Tk
~ ou 0%u
IVa-DI < [$ | - [ Ganda| +
Q 0 k
on 1. o i
u u
+ + + ) @, E3p)d &5 dr, k=1,2. (2.11
Ba O/(f 893%)( ky&3—k)d &3k (2.11)

Taking into account boundary conditions at I'yy and triangular inequality, one comes
from (2.11) to

V-l < )

k=1,2

/(erAﬂ)(fEl,&)dfz (2.12)
oy ||

Another vector t, which belongs to @y simultaneously with t from (2.10), is

T

b= / (10%0/023 — aa(f + 0%/ 023)) (&1, 2) dé,

0

T2 (2.13)
= [ (@a0%3/053 — (5 +0%/003) (41,6)
0
The corresponding a posteriori error estimates are
IV(u—u) <
9 1/2

IN

8% 0%u
Q/ axk 0/< —a3_(f+ B % k)) (&kyx3—p) dé | dax <

k=1,2

Tk

+ /Oé3fk(f+Aa)(fk,£L'3,k)d€k (214)

<y

k=1,2

T 1ek=0ll0,1)

which for aj = 0.5 is invariant with respect to xy, k = 1,2. It easy to see, that adding
and subtracting as_,0%u/0z7 inside round brackets, taking into account boundary
conditions at I'y and triangular inequality, we obtain the same estimate (2.12).

In the case of the Dirichlet boundary value problem

a(u,v) = (f,v)a u,VveV(Q)=H(Q), (2.15)

the estimates (2.12),(2.14) take especially simple forms. Instead of the latter we have

Tk

V=D < 3 | [ asnls + AT € an) . (216)

k=12 ||}
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Let us consider for simplicity the case as = 0. Since in this case no boundary conditions
are imposed on the equilibrated fluxes, we can set

tl = 8ﬂ/a$1,

x2

bty = 97/0uy(1,0) — / (f + 0702 (1, E2)dés,

0

(2.17)

and, therefore,

ou

a—l'l_tl =0,

o ou  ou y 8%% i _

3—5E2 —ty = 3—5E2 — 8—932(35170)4‘/ (f‘i‘a—x%) (x1,&2) déo —/(f_Au)(wla&)dea
0 0

completing the proof. In the case of an arbitrary sufficiently smooth domain, the proof
is similar.

Lemma 2.1. Let Q be Lipshits continuous domain, f € Lo(Q2), u — solution of
(2.15), and U be any function in H*(Q) satisfying boundary condition u‘aQ =0. Then
the error uw — u satisfies a posteriori estimate (2.16).

2.2. Examples of algorithms for finite element solutions of Poisson equa-
tion. Solutions obtained by FE methods compatible in C', which are primarily used
in practice for second order elliptic equations, do not have second derivatives. Basically,
three ways to outflank this obstacle can be distinguished. All of them start from the
procedure of constructing some smooth approximation of the second, or first deriva-
tives of FE solution, or the FE solution itself. In what follows, this procedure is termed
smoothing procedure. After smoothing procedure has been applied, we proceed in one of
the ways described in Subsection 2.1. The distinctions between three types of a posteri-
ori error estimation algorithms for our model problem can be illustrated on example of
“nonsymmetric” algorithms, in which 1-d integration of f is involved in the definition
of only one of the fluxes. Since this flux is uniquely defined by the balance equation and
the boundary condition on I', it is sufficient to point out the way of evaluation of one
flux, which is calculated first. Briefly, three types of such a posteriori error estimation
algorithms are the following;:

a) Calculate second derivative of the FE solution along one of the axes approxi-
mately with the use of finite differences at some set of discrete points (e.g., FE nodes).
Define ¢ (e.g., as a function of the FE space V(2)) by interpolation of the calculated
approximate values of the second derivative. Define the corresponding flux by 1-d inte-
gration of ¢ (like in the first expression (2.7)) and by adding the boundary value of the
flux, given by the boundary conditions on I'y .

b) Calculate the first derivative of the FE solution in one of the directions xj at the
nodal points, e.g. by averaging. Define the tentative flux in the chosen direction as the
FE function, which belongs to V() and takes at the nodes calculated values. Define
the flux by adjustment of the tentative flux to the boundary condition on I'y .

c¢) Construct twice differentiable approximation of the FE solution. Define the ten-
tative flux in one of the axes as the first derivative of the smoothed FE solution. Define
the flux by adjustment of the tentative flux to the boundary condition on I'y .

Indeed each of a), b) and c) allows to define two equilibrated fluxes t®), k = 1,2,
corresponding to the direction xy, the flux along which is defined first. The flux for the
a posteriori estimator can be defined as t = a1t + ast@),
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Apart from “symmetric” versions, other variations of the outlined algorithms are
numerous. For instance, in the smoothing procedures of a) and b) some other finite
dimensional functional spaces W (£2) can be used instead of the basic FE space V(Q).
Since it is not necessary for ¢ to be continuous, we can cover 2 by some nonoverlapping
subdomains 2; and in each define ¢ by the list squares method with the use of poly-
nomials of some specific order p;. In the vicinity of singularities in the exact solution
of the problem, special representations for ¢, equilibrated fluxes or the smoothed FE
solution can be implemented. In the latter case it is more appropriate to use the term
preprocessed FE solution. It is also worth adding that in different subdomains one can
use algorithms of different types, i.e., a), b) or ¢), for obtaining equilibrated fluxes.

In this subsection, we present a few simple examples of the outlined algorithms
for the Poisson equation in the unit square and arbitrary sufficiently smooth domain
with different boundary conditions. For the problems in the unit square, the FE space
V() is the space of continuous piece wise bilinear functions on the square mesh of size
h = 1/n. For the nodes of this mesh we use notation 2(* = hi, i = (i1,is). We start
from the algorithm of the type c) for the problem (2.1)—(2.2).

Algorithm 2.1.

Step 1. For each node z() € 9Q calculate the value of the mesh function
vp = = (Uéf)l)z,h:O, which is the finite-difference approximation of the second
derivative 9%u/dx,%(x(?). For internal nodes of horizontal mesh lines zo = hi,

10 =0,1,...,n, use

Ufem(h(il + 1); ]”2) - 2Ufem(hi1; ]”2) + Ufem(h(il - 1); ]”2)
h2

'Ugf)lz 721:1,...,77,—1.

For the nodes (0,72) on the axis 1 =0 set
’Uél,)l = 82%/(‘%12(0, h’LQ) s

where 1 is the 3-d order interpolation polynomial of x; over the values e (%))
for i1 =0,1,2, and Ougem/0x1(0, hiz). For the nodes (n,is) calculate

’Uéf)l = 82171/83012(1, hiQ),

where w7 is the 3-d order Lagrange interpolation polynomial of x; over the values
e (D) for iy =n—3,n—2,n—1,n
Step 2. Define Iy 1(xz) C V() as the piece wise bilinear interpolation of vy, .
Step 3. Define t by evaluating the integrals

1

h(z) = /12,1<§1,x2>d£1,

0 (2.18)

2

ta(x) = — /(f(3017§2) + Iz, (21,&2)) déo.

0
Step 4. Evaluate the estimator 1 := || Vtem — t]|2.

Remark 2.1. Formulas (2.18) correspond to (2.7), (2.10). Since Ipo ~ 0*u/dx;>
can be calculated in a similar way, a more “symmetric” formulas, corresponding to (2.9),
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(2.13), can be used:

t = /[04112,1 —ao(f+ I2,2)](&1,22) dé = /[12,1 —ao(f+ Io1 + I22)](&1, z2) déa,
0 0

to = /[a212,2 —ai(f + 1)) (21, &) ds = /[12,2 —a(f+ o1+ I22)](21,&2) dSo.
0 0

(2.19)

In Step 1, we used finite-difference approximations of the second derivative
0%u/0x?%, which provide the same order h? of approximation for a sufficiently smooth
u. In Step 3, the way of the evaluation of integrals of I, and f may be different.
In particular, in many cases the analytical integration can be performed. In general,
procedures, used in Steps 3, depend on the way of evaluating the norm ||Vuge, — t|?
in Step 4. For instance, for each finite element 7; := h(i; — 1,41) X h(iz — 1,42), we can
use quadratures exact for polynomials of some order p; > 1. Then it is necessary to
evaluate t; only at the quadrature nodes, and for doing this other quadratures can be
used. The type of the quadratures, used element wise for evaluating ¢ and the norm
| Vifern — t||*> may depend on the local smoothness of f, if the integral of f is not
evaluated exactly. Bounds for quadrature errors will enter the resulting error bound for
the FE solution with the right part depending only on wug,, and f. However, we will
not elaborate on these subjects in the present paper aimed to illustrate main features
of the approach.

In the case I'y = ), 4.e. when only the Dirichlet boundary conditions are imposed
in (2.1), then the estimate (2.8) is true for any vector valued function t satisfying the
balance equation (2.5) and not subjected any boundary conditions. But when boundary
conditions are different from the ones considered above in (2.1) and T'y # () then some
remedy should be done in order t to fulfill the boundary conditions (2.6). For instance,
let

I'p = {($1,$2)| r € [0, 1], To = 1}, I'y = FN,l UFN72 UFN73,

where
Iy ={(z1,22)| 22 € [0,1], 1 =0},

Ino ={(z1,22)| 21 € [0,1], 22 =0},
Ins={(x1,22)| 22 € [0,1], 1 = 1},

and the boundary conditions are
U’er = 0) u|FN = g) (220)

where g € C(T'y) and
g1(x2), on I'nj,
g=19 92(z1), onI'np, (2.21)
g3(z2), on I'ns.
The estimate (2.8) is true, if the vector valued function t satisfies the equation (2.5)

and the boundary condition (2.6). The steps 1 and 2 may be the same as in the algorithm
adduced above, but they produce only a tentative flux, which should be adjusted to the
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boundary condition (2.6). Let

x1

ti(x) = /(12,1 +7)(&,22) d&1 + g1(x2),

0 (2.22)

2

ta(z) = —/(f + a1 + 1) (21, 82) dé2 + ga(w1),

0

where r(z) is chosen with the purpose to fulfill the boundary condition (2.6) on I'y 3.
It is sufficient to take r depending only on x5

1
r(o1,22) = galaz) ~ g1(o2) — [ Taa(€r.0) der (2.23)
0
Hence
xq 1
ti(z) = /12,1(517302)%1 -7 /12,1(517302) d&1 + (1 — x1)g1(w2) + z193(72),
0 0
xo xro 1
ta(z) = — [ (f + I21)(21,&2) déa + I31(61,62)) dérdéa+ (2.24)
/ /]

2

+ /(91 — 93)(&2) déa + ga(z1).

0

In the case of the homogeneous Neumann boundary condition the expressions (2.24) on
I'y takes a simpler form

x1 1
t1= [ Ipq1(&,22)dér — a1 | Inq (&1, 22) dén,
/ /
v o 1 (2.25)
to = — [ (f + I21)(21,82) dSa + I1(&1,&2)) déydés.
/ /]

The described approach is easily realized in a much more general situation. Suppose,
(1 is the domain occupied by the arbitrary triangulation S, with the triangles 7., r =
1,2,..., R, V(Q) is the space of the continuous piece wise linear functions and V (Q) =
{veV(): U‘ano}' We will turn to the algorithm of the type b) for the problem with
the Dirichlet boundary condition. Namely, we consider the problem

a(u,v) = (f,v)g  w,Vo e V(Q) = H (), (2.26)
and its FE solution u, satisfying
a(ufemav) = (fa U)Q Ufem,V’U S fj(Q) (227)

Let us assume for simplicity that each line x; = const crosses {2 not more than in two
points, I'y _ is the part of the boundary containing the points of such pairs, having
lesser coordinate xj, xp = ag(ws_p) is the equation of T'y _, xs_p = d3_k,bs_i are
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the coordinates of the ends of I'y _. We also use notation B; = {r: 7, € Q, z® e Tr}
for the set of the numbers of finite elements, having (" for a vertex, and notation
V (T'x,—) for the space of the traces of functions from V(€2) on I'j _. Among simplest
is the algorithm, which is not invariant with respect to xx, & = 1,2, and is based on
the averaging and the procedure reflected in Remark 2.1.

Algorithm 2.2,
Step 1. For each node calculate the average

w0, = 5 e 00
, et Ox1 ’
where ugr)n = Ugem| 1S the restriction of the FE solution to 7,.
Step 2. Define tTﬂe interpolation I(Tgem 1) € V() satistying
I(Tom1) (@) =7, Va2 eq.
Step 3. For each node 2 e fg,_ calculate the average

() 8u§’“) (4)
ufem,QZZ a;;n(x )7

and for x € ng, define the piece wise linear continuous interpolation It, _ (Ttem,2)
satisfying
I(Ttom,2) (V) =)y, ¥ 2 €T .

Step 4. For components of an equilibrated vector t = (¢1,2)" set
t1 = I(Usem,1)s t2|r2 = ta(w1, ¢2(21)) = Ir, _ (ﬂfem,Q)‘Fz o

and evaluate

t2(2) = ta(a1, (1) 72<f+ %) (01, 62) dEs.

az

Step 5. Evaluate the bound ||Vugem — t||%.
The algorithm, based on averaging, can be made invariant with respect to zx, k =
=1,2.

Algorithm 2.3.
Step 1. For each node and k = 1,2 calculate the averages

—(i au(;)n i
ugzn,k = Z . (1'( ))
Step 2. Define the interpolations I(Tsem ) € V() satisfying

I(ﬂfem,k)(x(i)) - ﬂg)m,k v ﬂ'l(l) S ﬁ

Clearly, the vector t = (t~1,t~2)T, t = I(TUsem k) , approximates the equilibrated
vector.
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Step 3. For k£ = 1,2 calculate
Qfem,k = _8I(ﬂfem,k)/axk; 5f = f — Qfem,1 — {fem,2-

Step 4. For oy (1’) + O[Q(Z') =1 and 91@(1'3719) = I(ﬂfem,k)(ak(l'gfk),l'gfk) k=
1,2, calculate

bo(2) = On(51) — / (Grom s + k8 (€ w31 dEy =
— (1 — 4 (Tromp) — / o (f + Grems—x) (6 T3—i) déi.

Step 5. Evaluate the bound ||Vugem — t||*.

Functions 6y (x3_j) specify boundary conditions for t. They can be defined differ-
ently from Step 4, and for their evaluation by means of the FE solution special more
accurate procedures can be used. The simplest choice for a is a = 1/2, however a
number of more sophisticated procedures for the evaluation of this function can be
considered. For instance, in some regions « can be chosen on the basis of the local anal-
ysis. Obviously, the procedures of Algorithm 2.2 are a part of Algorithm 2.3. The whole
process of the a posteriori estimation can be arranged in the following way. One uses
Algorithm 2.2. If the a posteriori estimate is unsatisfactory then additional calculations
are performed according Algorithm 2.3 with some choice of ay,. Further perfection of
the a posteriori estimator is possible in a variety of ways. For instance, it is not necessary
to use the same FE mesh for the evaluation of t. In order to simplify the computations
and make the estimate more accurate, a subsidiary mesh can be used for finding t,
which, e.g., is orthogonal inside the domain and provide some hp FE interpolation for
fluxes, determined by the FE solution wen .

Remark 2.2. Evaluation of a posteriori error bounds according Algorithm 2.1-
Algorithm 2.3 involves only three operations

— numerical differentiation with the use of finite differences,

— interpolation, and

— evaluating of 1-d integrals.
For this reason, these algorithms are obviously optimal in the arithmetic operations
count, if the mesh is orthogonal. In the case of an arbitrary quasiuniform triangulation,
the evaluation of integrals may be often arranged by layers of elements. From layer to
layer the number of points, at which we need to evaluate an equilibrated flux may in
general double. Therefore, the computational cost of the third among listed operations
is estimated as O (ngn2_, ), where ny, is the maximal number of nodes in one layer and
nz_x is the number of layers. In this paper, we concentrate on basic facts of a posteriori
estimation, but several recipes can be immediately suggested for the reduction of the
computational work, even in the case of nonuniform unstructured meshes. For instance,
we can cover the computational domain by the nonuniform orthogonal mesh with the
hanging nodes, matching in density the FE grid. Then we calculate one or both fluxes
at the nodes of this mesh by means of averaging and interpolation. After that with the
use of the introduced orthogonal mesh, we obtain corrections, which are necessary in
order to make fluxes equilibrate.
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Remark 2.3. There are known a posteriori estimates

1
Vi =Vl < (1+ )Vt~ ¥150 + (14 1) 193 = 1P 0
[Vt — Va0 < (1 + 0Vt — 30+ 229

1
+CQ<1+E) IV-y—fl3a Ve>0,

where y is an arbitrary vector and cq is the constant from the Friedrich’s inequality, see
Repin/Frolov [41] and Neittaanmékki/Repin [35]. One of our estimates can be written
in the form

[ Vttem — vu”o o < | Vugem — t”o o < (14 6)[|Vutem — YIlfer
2

( ) Z / K=V ), zsk) dne| - (2:29)

L2025 1) 0,0

In particular, in Algorithm 2.3 we used y = (I(Wtem 1), I (Wtem,2)) " . The right part f
enters the last a posteriori estimate in a more adequate way, than in the second estimate
(2.28). At the same time, it is easily computable, whereas the negative norm, entering
the right part of the first bound (2.28), makes the bound difficult for the use in practice.

2.3. Heat conduction problem with discontinuous coefficient. The extension
of the advocated approach and in particular of the algorithms of the previous section
to the elliptic equations with the discontinuous coefficients is straightforward. Let us
consider as an example the boundary value problem

-V (p(:c)Vu) = f(m)a re= (Oa 1) x (Oa 1)7
ou (2.30)
U‘FD =9 3V|FN =Y

with I'p, T'y defined as in (2.2), p(x) > 0 and

(z) = pr=const for ze€Q:={xeQ:0<xz <05},
e = p2 = const for x € Qy:=0\Q}.

For simplicity it is assumed that the boundary conditions are consistent and there exits
such wug € HQ(Q) that UO‘FD = ¢g. We define the approximate solution gy, of this

problem as the function belonging to the set L£(2) = V() + uo and satisfying the
identity
ap(Utem, V) = (f, V) YU € Vo(Q), (2.31)
where
a,(v,w) = /va -Vwdzdxs
Q
and V() is the FE space defined in Subsection 2.1. If to introduce the norms

1/2

loll, = (ap(v, o) "2, it = /p_lt'tdm (2.32)
Q
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and imply by Q the set of the equilibrated vectors satisfying (2.5), (2.6), then the a
posteriori error estimate (2.8) takes the form

IV (u = ugem)llp < |0V thgerm = tl| -1 (2.33)

Algorithms 2.1-2.3 are easily adapted to the problem under consideration. For instance,
the first one is written as follows.

Algorithm 2.4.
Step 1. For each node (Y € 90 calculate the value of the mesh function v, =
(v2,1(7))7 ;,—0, which is the finite-difference approximation of d(pdu/dx1)0x; (). For
internal nodes of horizontal mesh lines x5 = his, i = 0,1,...,n, use

v1,1(2) = p((ir — 0.5)h, i2) [Ugem (hi) — uem(h(ix — 1), hiz)],
: 1 : . : :
v2,1(7) = ﬁ[vm(h +1d2) —v11(9)], @a1=1,...,n—1
For the nodes (0,72) on the axis 1 =0 set

V21 (’L) = p162ﬂ0/8I12(0, hig),

where ug is the 3-d order interpolation polynomial of x1 over the values ugem (:c(i))
for i1 = 0,1,2, and Oufem/0x1(0, hiz). For the nodes (n,is) calculate

V2,1 (Z) = p282ﬂ1/81'12(1, h’iQ),

where w7 is the 3-d order Lagrange interpolation polynomial of x; over the values
e (D) for i1 =n —3,n—2,n—1,n.
Step 2. Define I 1(z) C V() as the piece wise bilinear interpolation of vy, .
Step 3. Define t by evaluating the integrals

ti(x) = [ I21(&1,22) dé1,
/
v (2.34)
ta(z) = —/(f($1,€2) + L1 (x1,8&2)) dés.
0

Step 4. Evaluate ||pVusem — t||§,1.

3. Linear elasticity problems

3.1. A posteriori estimation for plane problems. Let F be the Young’s mod-
ulus, v — the Poisson’s ratio, I — the unit tensor and tr(x) = k : I — the trace of a
tensor k. The linearly elastic plain strain problem in some domain €2 is formulated
in terms of the displacement vector u(z) = (u1(z),u2(z))" and symmetric strain and

stress tensors
_ (011 012 _ (€11 €12
o = , €= ,
021 022 €21 €22
related by the system of equations

dive +f=0, (3.1)

s(u) = (Ekl(u))k,l:1,27 €kl = %(é)uk/axl + 8ul/8xk), (32)
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_E
14 v|1-2v

o(e)

supplied by boundary conditions. The mixed homogeneous boundary conditions may
have the form

tr(e)I+ e, (3.3)

ulr, =0, o,="Tulry =0, (3.4)

where o, (z) and 7, (x) are stresses normal and tangential to the boundary at a point
rzeln.
We turn to the case of the first boundary value problem when I'y = @ and for the
boundary conditions we have
u|aQ =0. (35)

We assume that for positive constants cp,...,c,
QESE(QC)SEEH Ql/gy(m)gzll<0'57

and introduce the space V = [H'(Q)]2. The generalized solution u of the problem
(3.1)—(3.3), (3.5) formulated in respect to displacements satisfies

/a(u):e(v)dm:/f-vdx,, Yvev. (3.6)

Q Q

For simplicity it is assumed that the domain of the FE assemblage coincides with .
For approximate solution of (3.6), the subspace V = [V(Q)]*> = [V(Q)]? NV, where
V() is the space of FE scalar functions. The FE solution is found from the identity

/O'(Ufem) ce(v) d:c:/f~vd:c, Vv e vQ). (3.7)
9) 9)
The Hook’s law (3.3) can be written in the inversed form

14w
)

e(o) [ +vir(o)I], (3.8)

and the both relations define the norms for arbitrary tensors o and e
1/2 1/2
le|. = /a(e):edax ol = /aze(a)dm . (3.9)
Q Q

If o and e satisfy (3.8), then clearly |e|. = |o]|,, and, if additionally o = o (u) and
e = e(u) are related by equations (3.2), (3.3), then the energy norm for displacements
is defined according to the expression

1/2

|uly = /0‘(u) ce(u)de . (3.10)

Q

The set Qy of equilibrated stress tensors is specified as Q; = T + Qo , where 7T is
any tensor satisfying the equilibrium equations

divr +f=0 (3.11)
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and Qg is the linear space of self-equilibrated functions, i.e., satisfying equilibrium
equations with f = 0. The latter space can be considered as a Hilbert space with the
scalar product

0.0 = [aie(ods

Q

and the norm |- |,. For the exact and the FE solutions u = (uj,u2)", Ugem =
= (ufem71,ufem72)T, respectively, of the plain strain problem (3.6), we have the a
posteriori estimate

[u— Ugem|v <|o (Utem) — Tle VT €Qy. (3.12)

For obtaining a good tensor 7, we use the same approach as before. The system of
the equilibrium equations are sub-defined and specify the set Qy of equilibrated vectors
up to the linear space Qg of the self-equilibrated functions, i.e., satisfying equilibrium
equations with f = 0. This fact allows a simple way of a constructive definition of the
whole set Qy, the essence of which is the following: we specify one of the components
Tk by a sufficiently smooth arbitrary function and find other components from the
equilibrium equations. Where no special assumptions on f € Ly ({2) are made, we always
assume that f € Ly (). In algorithms of a posteriori estimators, it is sufficient to point
out the way of definition of sufficiently smooth tensors 7 € Q.

Algorithm A.
1. We specify an arbitrary function 15 € L. (Q), arbitrary functions

Vik,ry,_ (T3—) € LY, [as—r, bs_1], and set T1a = 919,
2. Find ¢; = 0v12/022 and

711 = Y1, (22) — / (f1 +q1)(&1,22) dér. (3.13)
a1 (z2)
3. Find q2 = 8¢12/8I1 and
Tog = Yoor, _ (21) — / (f2 + q2)(21,&2) déa. (3.14)
as(z1)

As well one can also start from specifying
two functions ’Qbkk,rkﬁ (wg_k) € Lo [dg_k, 33_k],
function Y121, (23-%) € Loo [A3—k, I;g_k], and
function ¢(z).
Then the tangential stress is defined by the integral

Ti2 = Y1a,r, _ (T3-1) — / q(&r, w3—1) déic

ak(xmg,,k)

for one of k = 1,2, and other stresses are defined according to the above algorithm.

If steps 1-3 are used for obtaining an a posteriori estimate, functions 15 and
Ykk,T, _ are calculated by means of the obtained FE solution. This should be done in
the most accurate way (e.g., with the use of superconvergence properties of the FE
solution), since the closeness of these functions to the true stresses o12(u) on  and to
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okk(u) on the part of the boundary I'y _ is crucial for the accuracy of the a posteriori
estimate. In particular, i1 can be specified as an element of the FE space V() with
the nodal values obtained by the procedure of averaging similar to the used in Steps
2, 3 of Algorithm 2.2. In the case of a rectangular domain and orthogonal mesh, this
procedure is especially simple

VY12(zD) = Gpem12(ith — 0,i2h — 0) + Oem12(i1h + 0,492k — 0)+

. . . . 3.15
+ O-fem712(llh - Oa lQh + O) + Ufem,lQ('Llh + 0, 'Lgh + 0) ( )

Here fem,12 = 012(Ufem) is the stress defined by the FE solution and it is assumed that
Otem,12(01h £ 0,92k £ 0) = 0, if the corresponding element 7;, j = (j1 £ 1,72+ 1) does
not belong to €.

In the case of a more general domain, Iy, C I'y and the homogeneous bound-
ary condition (3.4) on I'y it is adopted Y, _(23-1) = 0. If the second boundary
condition is nonhomegeneous, i.e.,

Un|FN :t, (316)

then we set Yrrr, _(23-%) = tee OF Y, _ (T3-1) = twi . where ty), is a more con-
venient for the use in (3.13), (3.14) but sufficiently accurate approximation of t. The
estimate of the error t, — tNkk of approximation in some norm will enter the right part
of the a posteriori estimate.

The approach under consideration may be realized in a number of ways. For the first
step one can specify 7, = i and then find 712, 73_j 3_ from the equilibrium equa-
tions. However, such a path is not invariant with respect to xx, k = 1,2. Besides, in the
process of obtaining such equilibrated symmetric stress tensor, this function is differenti-
ated twice in zj; and integrated twice along zs_j . The latter requires more smoothness
from 1y at least in xp. In general an additional differentiation will certainly result
in cruder a posteriori error estimates, if it is not compensated by the integration along
the same direction, and this was observed in our numerical experiments. However, more
complicated algorithms, but having the same asymptotical computational complexity,
may be designed, which are invariant with respect to xx, k£ = 1,2, and at the same
time provide continuous equilibrated stress tensors. An example of such algorithms for
the case of Q= (0,1) x (0,1) is Algorithm B.

Algorithm B.
1. Using the finite element solution, define a continuous piece wise bilinear function
I(5"%,) € V, which “approximates” the second mixed derivative

h 80'12 FE 83u1 63uQ
I(% 12) ~ = D) )
0r10z2  2(14v) \Or1023  Oxi0x
of the stress o132 = o12(u). Here, %, = {s05(i)} is the mesh function and,
e.q., I(3")(z) = s5(i). Inverted commas stand for the reason that indeed

0012(Ugem ) /01022 may not be defined even on finite elements, and, therefore, some
special ways of evaluation of s, should be implemented. They should allow us to
expect approximation in some sense of oi2(u) by Ti2(ugem), evaluated in a posteri-
ori estimator by means of s/,. For instance, below 7y is defined by the backward
double integration of I (%}112) in such a way that under some conditions one can ex-
pect the same accuracy from 73 as from oi2(Uge ). If the square bilinear or higher
order elements are used, one can evaluate 80’12(11fem)($(i)) /0x10xo for each element
at its nodes, than for each node of FE assemblage calculate sr15(i) as the average of
8012(ufem)(:c(i))/8x18x2 for each element.
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2. Evaluate
T2 T T T2
Tig = //I (%TQ) dridrs + co + /01($1)d$1 + /02(952) dz,
0 0 0 0
1 r Ty T
T = / fi— /I (%}112) dry | dzy + c3(w2) — ca(z2) 21, (3.17)
0 L 0 i
T2 r T2 T
Tog = / fo— /I (%?2) dro | dxs + 64(1‘1) — Cl(l‘l)zg,
0 L 0 i
where
co 0’12‘96120,3:2:07 cl(xl) ~ 80‘12/8I1‘m2207 02($2) =~ 80‘12/8I2‘x1207

(3.18)

c3(2) ~ 011‘1.1:07 caar) =~ 022|x2=0’

and oj; may be understood as exact or FE values of the stresses.

There are many other ways of finding the appropriate stresses T, by means of the
FE solution, which can be used as starting ones for evaluation of the equilibrated stress
tensor 7 . In particular, smoother interpolations may be more efficient.

In order to illustrate the essential difference from the approaches used by other
authors, we formulate below basic a posteriori estimates in a form, in which the error
in the smoothed FE stresses and the residual are separated.

Lemma 3.1. Let v be arbitrary vector in V= [HY(Q)]2, o (v) be the stress tensor
satisfying (3.2), (3.3) foru=v and y = {ykl}%,lzl be an arbitrary symmetric tensor
with the components in H'(Q). Then for u— v either of the estimates

"ll - ufemlU < |O'(llfem) - THU’
"ll - ufemlU < |O'(llfem) - y|0 + "(STlU’

"u - ufemlU S |U(ufem) - yla'+

12\ oYk Oy12
+ Z < 7 ) / <fk Dy 8x3_k)(77k,9€3k)d77k ;

k=1,2 ar(@31) 0

(3.19)

holds, where T 1is the stress tensor with the components

Tk

Ti2 = Y12, Tkk = Yrk(ar(x3—k)) + / <fk -

ap(r3—1)

3y1,2

3_r)d
8x3_k) (771@,% k) Nk

and

Tl
om0 / i Oyr2
ST — 5T = e 3-&) dng.
T < 0 57’22)’ Thk F Oxrr  Oxs_p (e, 23-k) e

ap(r3—1)

For the stress tensor T one can also take one of the two tensors with the components,
defined for k=1 or k=2 by formulas

Tk

0
Thk = Ykk, Ti2 = Y12(an(z3-1)) + / (fk - aj—ji) (M T3—) A,

a(z3—k)
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T3—k

0 _
T3—k,3—k = Y3—k,3—k(az—r(xk)) + / (fs—k,B—k - %kT?’kk) (@k, M3—k) dn3—p-

az_x(xg)

Proof. Since all tensors 7, appearing in Lemma, satisfy the equilibrium equations,
the first estimate (3.19) clearly holds. Tensor 7 =y + d7 also satisfies the equilibrium
equations. For this reason, the proof of the rest estimates requires only the inversion of
the stress-strain relations and application of the Couchy and triangular inequalities. [

The assumptions of Lemma on the smoothness of tensor y can be easily sharpened
and made matching the equilibrium equations in a weak sense (remind that in general
tensor y itself does not satisfy them).

3.2. Linear elasticity and more general problems of solid mechanics in
3-d. In the case of 3-d elasticity problem, the stress tensor

011 012 013
o = | 021 02 023],
031 032 033

satisfying the equilibrium equations

adm 8ak2 aO’kS
= k=1,23. 2
8$1 + aIQ + aIg fk; ; 73 (3 0)

can be obtained in a similar to the described above ways. For, instance we specify the
shear stresses o192, 013, 023 by some sufficiently smooth functions, approximating the
stresses, specified by the FE solution. Then the rest stresses are found from the equilib-
rium equations and their boundary values, specified either by the boundary conditions
in stresses or by the approximate values, found by means of the FE solution. We will
not describe these obvious algorithms and restrict ourselves to the formulation of a
statement similar to Lemma 3.1.

For definiteness of the norms ||y, | |», |- |e one can assume Hooke’s law for the
homogeneous linearly elastic body

(1 —v)err + v(Ekt1 k1 + Ehr2.k42)], Ok = en, k#IL

B E
Ukk—( 110

1+v)(1—2v)

However, according to the above discussion, the first two estimates (3.21), given below,
hold in a much more general situation under assumption of the proper definition of the
norms |- [o |- Jo-

Lemma 3.2. Let v be arbitrary vector in V = [H'(Q)]?, o (v) be the stress tensor
satisfying (3.20), (3.2) for u=v and y = {ykl}2,1=1 be an arbitrary tensor with the
components in H'(Q)). Then for u — v either of the estimates

"u - ufemlU S |U(ufem) - T"aa
||u - ufemlU < |0'(ufem) - Y|a + ||(ST|0,
"u - ufemlU < |0'(ufern) - y|0'+

s 1 p) p) )
Yk k Yk, k+1 Yk, k+2
+ —/<k_ — - o ) ko Tkt 1s Thoy2) diie ||
; VE J Oxy, O0Tpy1 OTpy2 (ks Tt Thr2) iy
ap 0

(3.21)
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holds, where ap, = ar(xp11,xK42), T 1is the stress tensor with the components

T = Yn, k#IL

Tk
0 0
Thk = Ykk(Qk, Tht1, Tht2) +/ (fk — Shki1 _ yk’k+2> (k> Tha 1, Thoy2) AN
OTg41 OTp 12
ag
and
(STH 0 0
0T = 0 (57‘22 0 y
0 0 57’33
) ) )
Y,k Yk k-1 Yk, k-2
57 = _ Bkk _ Okkir  OUk, dn..
Thi / (fk Dy Drnes Dir ) (M, Tt 1, Thoy2) Ak
ag
Proof. The proof is similar to the proof of Lemma 3.1. |

There are several other sequences of constructing symmetric equilibrated stress ten-
sors. We can start from setting 7, = y; with arbitrary functions yy, € H(Q) for
three components 7. Besides (1,2), (1,3), (2,3), there are other admissible combina-
tions of k,1: (11), (22), (12); (22), (33), (23); (11),(33),(31); (12), (13), (22); (31). (32),
(22). The rest stresses 7,,, are found from the equilibrium equations by 1-d integration.
Boundary values, entering these integrals, are specified by arbitrary sufficiently smooth
functions

Tml"rp,, = Top(Ap(Tps 1, Tpya), Tpi1, Tpiz) € HY2(D, ).

Let us underline that the equilibrium conditions do not depend on the type of the
Hooke’s law, e.g., for orthotropic, transversally isotropic or other types of elastic bodies.
As well they are not changed for a wide range of physically and geometrically nonlin-
ear solid bodies. Therefore, the ways of obtaining of equilibrated and self-equilibrated
stress tensors, introduced in this paper, are applicable to a wide range of problems in
solid mechanics. All mentioned factors influence only techniques of evaluation of the
(smoothed, if necessary) stress tensor, corresponding to the approximate solution, be-
ing subjected to a posteriori error estimation, and the specific energy norms, in which
error estimation is produced.

Let us turn to a general case of nonlinear problems of solid mechanics, for which the
approximate solutions obtained by means of the Lagrange principle of virtual work and
Castigliano principle of complementary work provide an upper and a lower bounds for
the true potential energy of the body. As it is well known, in this case the a posteriori
estimate can be written in the form

LV)—L(u) < L(v)=C(T), (3.22)
and under some conditions
Bllu—v|v < L(v)—C(7), 0< = const, (3.23)

where

L (v) is the functional of the complete potential energy of the body on displacements
v, satisfying all geometric conditions;

u is the exact solution of the problem minimizing the functional L ;

C(7) is the functional of the complementary work on the stress tensor 7T, satisfying
the equilibrium conditions, and
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| - |lv is a norm satisfying the inequality
Bllu—v|v < L(v) — L(u). (3.24)

The estimate (3.22) expresses basic properties of the Lagrange and Castigliano prin-
ciples see, e.g., de Vebeke [15], Arthurs [4] Mosolov/Myasnikov [34], Washizu [54],
Berdichevskii [8], where references on the earlier publications can be found. The es-
timate (3.23) follows from (3.22) under the condition that (3.24) is fulfilled. In a math-
ematical setting the basic facts for validity of the bounds (3.22), (3.23) may be found,
e.g., in Ekeland/Temam [14] and Duvaut/Lions [13], Glowinski [16]. They are found
in the duality theory of the variational calculus and the theory of monotone/coercive
operators. The latter allows to formulate conditions on the smoothness of data and the
type of nonlinearity under which (3.24) holds.

The primal problem to be solved may be formulated in the following way: find u € U
such that

L(u) = ilelufjﬁ(v)’ UeV, (3.25)

where L is a proper convex, lower simicontinuous functional, V is a reflexive Banah
space with the norm | - [y and U is a closed convex subset of V. The variable T and
the functional C(7) of the complementary work are the dual variable and the dual
functional with respect to the primal variational problem (3.25). At that 7 belongs to
the set Qy = Qo+ 7 s of tensors satisfying equilibrium equations, e.g., (3.20), with Qo
being the space of the self-equilibrated tensors. The problem of finding the stresses by
means of the Castigliano principle is the dual problem: find o € Q = Q¢ + 74, such
that

C(o)=sup C(7), UeV. (3.26)

TEQ

Assume that (—C (7)) is also a proper convex, lower simicontinuous functional, which
is coercive on reflexive Banah space Qq, then

C(r)<C(a)=L(u)< L(v) VveV, VT eQ,

see,e.g., Ekeland/Temam [14].

Many authors consider the use of the a posteriori estimates (3.22), (3.23) compu-
tationally very costly for the two reasons. One is that it is allegedly impossible to find
the equilibrated tensor 7 close to the exact stress tensor o in a direct and sufficiently
cheap way. Another reason is based on the conviction that numerical solution of the
dual problem for finding 7 is much more difficult that the numerical solution of the
primal problem. Such reasons are soundly pronounced in some contemporary publica-
tions. However, in the preceding sections we have demonstrated that the first reason
in a delusion. In what follows we consider some additional ways (including practical
algorithms optimal in the arithmetic operations count) for finding equilibrated stress
tensors close to the solution. Apart from that we will show that it is with no doubt fea-
sible to develop numerical techniques for solving dual problems, which are comparable
with the most efficient numerical techniques for solving primal problems in respect of
the computational cost.

3.3. Examples of algorithms for numerical testing. Below we illustrate
the described approach by the two algorithms for obtaining a posteriori estimates in
the case of the linear plain strain elasticity problem in the square 2 = (0,1) x (0,1).
We use notations e; = (1,0), ex = (0,1), whereas o, stands for the stress tensor,
determined by the FE solution.
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Algorithm 3.1.
Step 1. For each point ") = (hi;+h/2, his+h/2), ix =0,1,...,n—1, calculate

Otem.12(y 21+ 1) \ 0xs 11

i D) dus, m, i Ous, m, i
M) = ( om0 +#(y<>))7
using the finite element solution ufe, . R
Step 2. Calculate approximate values & of O0fem,12/0x2 at the middle points
4 = (hiy + h/2, hiy), of the horizontal mesh intervals:

qg(i) _ O—fem,12(y(i)) — O—fem,12(y(i_e2))
h ,

i1=0,1,....n—1, i5=1,2,...,n— 1.

Step 3. Evaluate approximate values ¢ of O0fem,12/0x2 at the internal nodes
(2) .
AN

. 1 /4, L
o = (qw—el) +¢<1>), in=1,2,...,n—1

Step 4. Calculate values ¢(%2) ¢(™i2) for iy = 1,2,...,n — 1 by means of
linear extrapolation from the interior of Q over the two nearest values ¢(Y on the
mesh line z = ish. In the same way calculate the values ¢(:%) and ¢("*) for
i1=1,2,...,n—1.

Step 5. Determine values of ¢ for i1,is = 0,n corresponding the vertices, for
instance, as the mean value of the two linear extrapolations along the two edges.

Step 6. Determine the piece wise bilinear continuous interpolation I(¢p) €
€ V() of the mesh function ¢ = (gf)(i))ﬂhzo.

Step 7. Evaluate components of the stress tensor 7 satisfying the equilibrium
equation (3.11).

Step 7.1. For xj, € (0,1), define as piece linear continuous functions cia(x;) ~
~ Ofem,12(71,0), c11(22) ~ Ofem,11(0,22), and c22(21) =~ Ofem,22(21,0). For
instance, cqo is uniquely determined by its nodal values

Clg(ilh) = Ufem’lg(l'lh, O), fOI‘il = 0, n,
c12(i1h) = Ofem,12(11 — 0,0) + Ofem,12(41 + 0,0), fori; =1,2,...,n—1,

and similar procedures are used for cgy .
Step 7.2. Determine components

x2

T2 = c12(x1) + /I(¢h) dro, To1 = Ti2, (3.27)

0
T

T11 = c11(x2) — / (fr +1(én)) da, (3.28)

0
T2
87‘21

Tog = coa(x1) — 0/ (fz + 6—931) dxo (3.29)

of the equilibrated stress tensor t.
Step 8. Calculate |o (usem) — 7|, for the a posteriori estimate.

Let us denote the stress tensor obtained by Algorithm 3.1 by t(M). If to change
variables x1,x9 for xs,z1, with the use of the same algorithm we come to another
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equilibrated stress tensor t(2). Clearly, the tensor t = agt™) + ast(®) also belongs to
Qy and

[u — Yem|r < |0 (Uom) — (alt(l) + agt@))k,, Va, +ay = 1. (3.30)

Another invariant to variables x1,z2 procedure for finding a tensor 7, satisfying the
equilibrium equations (3.11), follows Algorithm B and is presented in the algorithm 3.2.

Algorithm 3.2.

Step 1. Calculate the derivatives of the finite element solution ugey,
= (Ufem,1, Ufem,2) at the centers of the mesh cells y@ = (h(iy +0.5), h(iz + 0.5)),
i, =0,1,...,n—1,

(i141/2,i+1/2) _ OUfem,1 (i141/2,i241/2) _ OUfem 2
fem, 12 = o (Tiryia)y  Utomon = Txl( iiz)  (3.31)
for i1,i0 = 0,1,...,m — 1.

Step 2. Define values

(i1+1/2,i2+1/2) _ u(i1+1/2,i271/2)

~(i1+1/2,i2) ufem,1,2 fem,1,2
Uy 22 = h '
(3.32)
(i1+1/2,i2+1/2) (i171/2,i2+1/2)
(i1yiz4+1/2)  Ufem,21 — Ufom 2,1
Uz 11 = A
for i1,i2 =0,1,...,n — 1.
Step 3. Define values
(i14+1/2yi2) _ (i1—1/2i2) (i1,i24+1/2) _ (i1,i2—1/2)
_(iy,i2) _ 1,22 Uq 22 _(i1,i2) _ "2,11 Ug 11
Uy 921" = y  Ug 112" = (3.33)
h h
for i1,i0 =1,2,...,n— 1.

Step 4. At the mesh nodes (hi1,0) of the boundary for iy = 1,2,...,n — 1,
calculate d§f12’201) with the use of the linear extrapolation by the two nearest values
ﬂg“mll) and ﬂ§“2221) Calculate

~(i,n)  ~(0d2)  ~(nyiz)  ~(i1,0)  ~(i1m)  ~(0d2)  ~(mi2)
“1“22711 ) “1,2;217 U1T,12;21 ) U21,11127 U2“11nQ ) U2,1Z122a U2T,L1Z122

similarly. For the corner point (0,0), determine aﬁ?é())l, e.g., as the arithmetic mean

of the two values obtained by linear extrapolations along two axes x1,xo with the
use of the two nearest values. Determine

~(0,n) ~(n,0) ~(n,n)  ~(0,0) ~(0,n) ~(n,0) ~(n,n)
Uy 2015  Up221s  Up221y  Ua 112, U112 U2 1125 U2 112

similarly.
Step 5. Calculate

5821 = m (u§1)221 + Ug)112) .

Step 6. Evaluate components of the stress tensor 7 satisfying the equilibrium
equation (3.11).
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Step 6.1. Determine

To X1 Ty T2
Tig = //1(5'12721) dridrs + co + /61(1'1) dri + /62(1'2) d:CQ,
0 0 0 0

To1 = T12, where I(G12.21) is the bilinear interpolation for &@,21 on the finite
element mesh and

Co =~ Ofem,12(0,0), c1(xy) =~ 80587;1’12(931,0) co(x9) ~ 60587;;’12(0,:02).
Step 6.2. For c3(2) = 0fem,11(0, 22), determine
1 7
T = / f1— /1(612721) dzy | dzq + es(xa) — x1c2(x2). (3.34)
0 0
Step 6.3. Define
zo x5
Tyg = / fa — /1(612721) dzs | dzo + ca(z1) — 2201 (21),
0 0

where ¢4(21) ~ Ofem,22(21,0).
Step 7. Calculate the a posteriori estimator |6 (Uem) — 7| o-

We do not give formulas for evaluation of functions ¢, implying, however, averaging
and interpolation procedures similar to those used in algorithms for Poisson equation.
They provide the accuracy O (h?) for stresses, if understood as direct approximations
of stresses corresponding to smooth displacements. Let us emphasize that less accurate
approximation of the boundary stresses, than inside of the domain, can damage the
accuracy of the a posteriori estimator. The choice of ¢; can be optimized on purpose
to minimize the posteriori estimator. The system of algebraic equations for finding such
cr has by the order of h smaller dimension. This allows to arrange computations in
such a way that the optimization will not compromise the optimality of the a posteriori
estimator in the computational cost.3

4. Equilibrated fluxes/stresses obtained by means of Castigliano principle

To some authors, dual formulations of the boundary value problems, expressing in
mechanics of solid bodies the Castigliano principle, seem difficult for numerical solution.
By this reason dual formulations are often discarded from consideration as a tool in the
process of the a posteriori estimation. However, we will illustrate that numerical solution
of dual problems may be as simple as of primal problems.

4.1. Poisson equation. Solution of the problem (2.15) minimizes the functional

J(v) = %a(v,v) —(f,v)q YveV=H(Q).

3See, V.S. Kostylev. A posteriori estimates optimal in the computational cost . Master thesis. Chair
of Applied Mathematics. St. Petersburg State Polytechnical University, St. Petersburg, Russia, 2006
(in Russian).
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If to define Q¢ as the set of functions satisfying the equilibrium equations in the gen-
eralized sense

Qr = teLQ(Q):/(t'V’U—fU):O YoeV,, (4.1)
Q

then the dual formulation of the problem is: find such z € Q) that

Q/t tdx. (4.2)

The solution of the dual problem can be represented in the form z = zy +ty, where ty
any vector from )¢ and the vector zy € Q) satisfies the equation

S (2) = iuin JU(t),  JH(t) =

|~

/(ZO — tf)to dr=0 Vtge Qo. (43)
Q

For deriving a discrete approximation of the dual problem, we use the same as before
square mesh of size h = 1/n, n > 1, and define a subset Q? C @y, which is represented
as

Qf = tr + Qg

where Qf is a finite dimensional subspace of @y and t; is any fixed vector from Q.
The approximate solution z" € Q? satisfies the equation

/(zg —tp)thde =0 Vi € Qp. (4.4)
Q

In previous sections, we considered a number of ways of evaluation of the vector t;.
For the purpose of discretization of the dual problem the simplest one can be used, e.g.,
as in (2.7) at ¢ = 0. At the same time it is worth emphasizing that a good choice of
ts can considerably improve the a posteriori estimate, see also Remark 4.1. Suppose,
Qh = span [¢ D (2) = (61" (2), 65 (2)) T]sezn , Where I" is the appropriate set of indices
i, then (4.4) is reduced to solving the system

Cw =Tf, (4.5)
with the matrix C and the vector f defined as
C={cijtijern, W= {w(i)}iel’lv f= {f(i)}ielha
Cij = /¢(i) . ¢(j) dz, f(i) _ /¢(i) ty dar. (4-6)
Q Q

Remark 4.1. Instead of the vector t;, one can use its approximation t?. Then the

bound for the error of approximation |ty — t?|| = O(RY)N(f) with some v and some
norm N(f) of the function f will appear in the right part of the a posteriori estimate.
The approximation t}} may be chosen on purpose, e.g., to simplify integration (since

t/ can be obtained by approximation of f).

The self-equilibrated vectors ¢(i), ix = 1,2,...,n, should be chosen in a way which
lead to the system (4.5) with good computational properties. This can be anticipated,



120 LLE. ANUFRIEV ET AL.

if they have localized supports. Each qb(“ introduced below has for the support the set
7 = w;NQ, where w; = {x: h(ix—1) <z < h(ipx+1), k = 1,2}. Before doing this, we
remind the notation 7, = {z : h(ix — 1) < xp < hiy} for the square nests of the mesh.
First we define subsidiary local functions ¢(* which at the definition of self-equilibrated
vectors play the same role as ¢ in (2.7). Namely, we set

1, T €T UTii4+1,ia+1,
q(l)(x) = 71; T € Tiy+1,in UTil,inrla (47)
0, Q\@.

For the master linearly independent vectors, denoted as pu (" = (ugi),ug))T, and the

vector ty, we take

T x2

i (@) :/q‘“(n,wz)dn, us (z) = */q“’(ﬂflm) dn,
; (4.8)

0
tr(r) = (0,2)T, tra(z) = / f(a1,m) dn.
0

Clearly, the supports of these vectors are the sets w;, and instead of (4.8) one can use

1 2

) (z) = / ¢ (n,x2)dn,  p§(z) = — / ¢ (x1,n) dn. (4.9)
(in—1)h (i2=1)h

The vectors ¢ are defined as restrictions to »() = w® N Q of the vectors p @,
determined in (4.9), whereas I" = {i : 0 < i, <n}.

Now we compare the system (4.5), generated with the use of the coordinate vectors
qb(i) , and the FE systems for the Poisson equation. Namely we consider two FE systems

KDuD,fem - fD,fem; KNuN,fem - fN,fem; (410)

generated by the spaces V() and V(Q) for the Poisson equation in the unite square
with the homogeneous Dirichlet and Neumann boundary conditions on its boundary,
respectively. Remind that V() is the space of the continuous piece wise bilinear func-
tions and V() is its subspace of functions vanishing on Q. Let () (z) be the standard
piece wise bilinear continuous function, satisfying conditions p( (7)) = ¢; ; with d; ;
being the Kronecker’s delta, and p(?)(z) be its restriction to Q. It is easy to conclude

that -
2. (i i i
O — 9?%p(® 0 _ ap(d) _ap()
81‘18%27 6)392 ’ aml ’
whence it immediately follows that C = Ky .

The system (4.10) with the matrix Kp defines the FE solution of the primal prob-
lem. In order to obtain the equilibrated vector valid for the a posteriori estimation of
the FE solution, one has to solve the second system (4.10) with the matrix C = K.
Clearly, the both can be solved very efficiently by many fast solvers, developed for FE
methods.

(4.11)

Remark 4.2. It is easy to note that the introduced localized fluxes satisfy the
equality
d oW =0 vreq, (4.12)

iclh
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which is in agreement with to the fact that the matrix C = Ky has the eigenvector
yo =1= {y(()l) = 1};ern with the unity for all entries. This eigenvector corresponds
to zero eigenvalue. According to (4.12), the right part in (4.5) satisfies the solvability
condition, and if w is the solution, then w4+ c¢1 is also solution, where ¢ is an arbitrary
number.

Suppose K is the FE matrix induced by (2.4), i.e., it is the FE matrix for the
problem (2.1), (2.2) with the mixed boundary condition. In this case, the matrix C
coincides with the FE matrix for the problem

—Au=f(z), 2€Q, N=TpUTly,

4.13
ulpy =0, Ou/dn|p =0, (4.13)

with T'p,T'n defined as in (2.2).

Remark 4.3. The analogy between matrices C for the discretized dual problem
and FE matrices K for the primal problem is retained for discretizations on rectangular
grids by higher order rectangular finite elements. The situation is more complicated for
triangulations by triangular elements compatible in C', because the second mixed deriva-

tive do not exist. However, if any elements of the class C' are used, then the analogy is
2

retained. If the differential operator has the form Lu = > 0(dag/0xk)/0x;. Coethi-
k=1

cients in the dual formulation will be entries of the matrix A~!, where A = {an}7,_,

will enter the dual formulation. In this case, the matrix C again will be the FE mat}ix,

induced by the same coordinate functions as in the FE method for the primal formula-

tion. However, C is generated for the elliptic problem with the coefficients defined by

the matrix A=,

Below we obtain another characterization of the of the space Q! and the set of
vectors {qb(i)}ie[h, used for generating system (4.5) with the matrix C = Ky. This
characterization will illuminate what kind of approximation is used for the dual problem.
Yet another characterization by means of the integral equation with respect to the
unknown function ¢ will be considered in the next subsection.

We return again to the Dirichlet boundary value problem (2.26) in the unite square.
Let

g0 = 1 forzen,NQ, (4.14)
0 forzeQ\m,
and
~ig_ 1 foraxs_p €h ig—p — 1,03-k), t3—r=1,2,...,n,
i (s a) = ok = Lo (4.15)
0 fOI‘l‘3,k ¢ h(ngk - 1,23,]@).

The set {g(")}?w-2=1 is the basis in the space L2 (), which is a discrete approximation
for Ly(£2) and contains piece wise constant functions on the uniform square mesh of

size h. At the definition of self-equilibrated vectors, the functions
n
0= Y )
i1,ip=1

play the same role as ¢ in (2.7). In turn, functions {ﬁ?ofk(%—k)}g,kﬂ will serve
as the basis for the approximation of the value of the boundary flux at xx = 0. In
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accordance with such understanding, we define the finite dimensional space of the self-
equilibrated fluxes as QP = span [t(i)]iew where I" = {i = (i}, i3_%), i = 0,1,...,n,
is—x = 1,2,...,n} and

T 2

#(z) = / g€, 22) der, 15 (x) = — / 9V (@1, &) déz (4.16)
0 0
t]io,igfk)(z) _ ﬁ’]i:sofk (1,37]6)’ t:(go_’?ik)(x) = 0 (417)

It is easy to see that functions ¢(¥, 1 <4, < n, are linear combinations of ¢(¥) for
the same 7. Therefore, for these i fluxes qb(i) are linear combinations of fluxes t(® .
Fluxes ¢(0’i3*’“) are obtained by means of ¢(?, i, =0, 1 < i5_; < n and boundary
fluxes f1;% " (z1). Therefore, we have proved the following Lemma.

Lemma 4.1. The space QR (Q) = span [t(i)]ie,-f, spanned over fluzes (4.16), (4.17),
and the space QI'(Q) = span [{ @V (z)];csn , spanned over localized fluzes (4.9), coincide.

Remark 4.4. Solution of the system generated with the use of the coordinate
functions {t(i)}ielf may be unstable. The reason is not that this system has a bad
condition number, which indeed is O (h~2). The system is equivalent to the discretized
integral equation of the first kind — see next subsection — and at A — 0 it smallest
eigenvalue tends to zero.

Remark 4.5. Suppose that we have to solve the Poisson equation with the Neu-
mann boundary condition
Zn|39 =t,, (4.18)

which for the dual formulation is an essential one. In this case, the approximate solution
of the dual problem is represented as
n—1
2" =g+t =2f+tn by, zo= Y wWe,

i1,40=1

where the vector ty found from the Neumann boundary condition and the vector tp ¢
is defined as in the preceding case of the Dirichlet boundary condition, see (4.8). The
vector t,, may be specified by the vector, defined on Q and, therefore, one simply can
set ty = t,. Coefficients, w® for i € I := {i:1<ip<n-1, k=1,2,} are found
from the system

Cw =f, (4.19)

with the matrix C and the vector f defined as

C={c, ZC—J%:O’ f= {f(z‘) Zji;o’ Cij = /¢(i) . (]5(1‘) dz,
Q
(4.20)

FO = [ oW tpde, tr(x)=(0,t52)7, trolx)= [ flz1,n)dn.
/ /

In the particular case of the homogeneous boundary condition 8u/81/‘9 = 0, one has
ty = 0, and (4.20) uniquely define (4.19), which in turn has the unique solution.
There is no difficulties in defining appropriate vector ty satisfying the nonhomoge-
neous boundary condition (4.18). Particularly, ty can be defined in such a way that
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it is nonzero only in the h-vicinity of the boundary. Another option is to use some
approximation for ty by some vector t%,. We can set

th= Y c¢, iclp={i:a"eon},

i€lpq

with the coefficients ¢; chosen in such a way that the trace t;{,,ag = tMN o s the
discrete approximation of t, , obtained, e.g., by the interpolation or the least square
method. If the solution z” is used in the a posteriori estimate, the bound for the norm
It — t}](,769||2739 will appear in its right part.

Clearly, the case of an arbitrary sufficiently smooth domain does can be treated
similarly.

4.2. Some remarks and generalizations. Several obvious, but having impor-
tant consequences, remarks can be made.

) Since the Dirichlet boundary condition is natural for the dual formulation,
we can use orthogonal grid for obtaining equilibrated fluxes in the case of arbitrary
sufficiently smooth domain 2.

B) For solving the dual problem it is not necessary to use the same mesh, which
was used for FE discretization. More over, since equilibrated fluxes from Qg , see (4.1),
are not supposed to satisfy compatibility conditions, we can easily add any equilibrated
coordinate vectors to the basis {qb(i)}ﬁ,h:o and enrich the space Q&. For instance,
additional coordinate vectors can be defined with the use of local finer mesh, arbitrarily
oriented with respect to the mesh used for the definition of the basis {(Zb(i)}ﬁ,iFo- We
can add also coordinate vectors with specific properties admitting a better approxima-
tion of concentration of fluxes or their singularities.

Arbitrary domain. Since the Dirichlet boundary condition is natural for the dual
formulation, we can use orthogonal grid for obtaining equilibrated fluxes in the case of
arbitrary sufficiently smooth domain €.

Suppose, we would like to obtain the equilibrated fluxes for the Dirichlet boundary
value problem (2.26). Formally, the formulation of the dual problem is not changed,
and again we have to solve integral identity (4.3) with the use of @ defined for a
given € as in (4.1). Namely, for finding the equilibrated fluxes which approximate
the exact ones, we can cover the domain by the uniform square mesh of size h. Let
Io = {i : mes[w® NQ # 0]} and Q) = spanielﬂ[qb(i)], where each ¢V is defined
as the restriction of p® to Q. It is necessary to underline that since mes (") can
be small for some i € I, the condition of matrix C of the system (4.5) for the
problem under consideration can be bad. However, due to the discussed at the end
of the preceding subsection analogy with the FE systems, several simple remedies for
improving the condition can be used. We refer in this relation to Korneev [26] and
Oganesian/Ruhovets [38].

Densening of the mesh. For solving the dual problem it is convenient to use the
same mesh, which was used for FE discretization (e.g., for evaluation of the norms
entering a posteriori error estimate), but not necessary. For instance, since equilibrated
fluxes from Qg, see (4.1), are not supposed to satisfy compatibility conditions, we can
easily add any equilibrated coordinate vectors to the set of such vectors, spanning the
space Qf, see, e.g., (4.16), (4.17), and enrich this space up to some space Q¢ , D Q. For
instance, additional coordinate vectors can be defined with the use of local finer mesh,
generating Q. We can add also coordinate vectors with specific properties admitting
a better approximation of singularities in fluxes. A good source of functions, which can
serve for generating the localized equilibrated functions are coordinate functions used
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in meshless methods, see Oden/Duarte/Zienkiewcz [40] and Strobolis/Babuska/Copps
[47].

We consider only a simple example of densening the mesh. Suppose that in a strictly
internal subdomain D C € it is necessary to use more accurate approximation. Since
the case of an arbitrary sufficiently smooth domain was discussed above, we restrict
considerations to the case when (2 is the unit square. We can proceed in the following
way. Let D" is the least “mesh domain” covering D, i.e.,

—h .
D = Uielgﬂl, IN={i:thnD +# 2},

h

7l is the nest of the mesh of size h. Each square nest 7/, i € Ip, is subdivided in four

squares, defining the mesh of size i = h/2 on D". Retaining old indices i = (i1, i3) for
old nodes, we add indices i = (i; +1/2,i41/2) for new nodes. We use the notation 7"
for all smaller and bigger nests, assuming that i is the index of the right upper vertex

of 7/*, and introduce sets

I = {i: 7' nDy, # 2}, Ih={i:thnQ +# o},
Ig\Dh ={i: 7' NQ+# 2}, mh = Ig\ph Uik,

It is convenient to use the common notation 7; for 7/, i € IS and for 7,

\Dh
i € IL. Now we can directly use (4.14), (4.15) and (4.16), (4.17) for defining the
coordinate vectors of equilibrated fluxes, spanning the space of equilibrated fluxes, which
we denote Qg’ﬁ. The dimension of Qg’ﬁ is card[I""] + 2n.

The above consideration shows that in essence the densening is quite simple. How-
ever, the basis vectors (4.16), (4.17) are not localized and, therefore, the matrix of the
corresponding system will have considerable fill in. Apart from that, solving this sys-
tem may be unstable for the reason pointed out in Remark 4.4. The instability can be
removed by the transformation of the introduced coordinate self-equilibrated fluxes to
the localized ones. Instead of one type, two types of the localized self-equilibrated fluxes
are used. If to use the notation qb;f) = ¢ for the fluxes, introduced in (4.7)—(4.9) on
®)

hj2 are similarly defined on the mesh of

the mesh of size h, the second type fluxes ¢
size h/2.

Interpretation as solution of integral equation. We turn to the Dirichlet
problem (2.26) in an arbitrary sufficiently smooth domain and consider the equivalent
system of two equations

92y
2 —af-a u®]yq =0,
1
0*u? 4.21
%:O‘Qf"'q’ u®] 0 =0, 2
2

M =u® vzeq.

In the mechanical sense, this system describes the two systems of strings stretched
along axes zj with each string of one direction fastened to the strings of other direction
at the cross points. Function ¢ is the internal force, acting between the two systems
of strings. For simplicity we assume again that each line xz; = const crosses 2 not
more than in two points, I'y, — and I'y 4 are the parts of the boundary containing the
points of such pairs, having lesser and larger coordinates xj , respectively. We write the
equations defining the curves I'y _ and T'y 4 as zx = ap(xs—g), and z; = bp(xs_x)



EXACTLY EQUILIBRATED FIELDS... 125

for ag_p < x3_1) < I;g_k. Let Gi(xk,x3—k,yr) be the Grin’s functions for the ordinary
differential operators in (4.21), so that

b (r3_1)
u® (z) = / Grl(xr, 23—k, yr) (o f — @) (Yr, T3 1) dyi.-

ap(r3_p)

Satisfying the equality u") = u(?), one comes to the integral equation

b (z3_1)
Z / Gr(@r, 23—k, Y& )4 Yk T3—1) dyr, =
k=1,
ap(x3_1)
b (r3_1)
= Z / Gr(@r, 23—k, Yr)on f (Yr, 23-1) dyr.  (4.22)
k=12
ap(x3—1)

In Rorzin [45], Korneev/vRozin [29, 30], the class of integral equation of a more general
but similar to (4.22) type was termed integral equation of the method of splitting.

For discretization of the integral equation (4.22), one can use the space G"(2) of the
piece wise constant functions with the basis {g(i)}ig&, IE={i: 7' NQ+#2}. As we
will show below, in this way we come to the system equivalent to (4.5) up to the choice
of the basis functions and «y. However, from (4.22) it becomes clear that this system
is not good for the numerical solution. Since (4.22) is an integral equation of the 1-st
kind, this basis will lead to the unstable system of algebraic equations, the matrix of
which has considerable fill in. The use of another set of coordinate fluxes {¢(”}, which
produce local self-equilibrated fluxes, results (as in Subsection 4.1) in the system, which
computational properties are the same as of the FE system for the Poisson equation
with the Neumann boundary condition. In order to make more clear the interrelation
between solving procedures of the integral equation and the dual problem (4.2), we
note that the generalized formulation of (4.22) is: find g € Ly(€2) such that for any
g € L2(9Q) we have

br(w3—)
/67@){2 / Gr(Tk, 23—k, Yr)q(Yrs T3—1) dyr } dz =
Q k=172ak(933,k)
b (w3-1)
— @Y [ Grlonra o e duddo. (423
5 =12, 0

Taking into account the equalities

by (z3-1)

Gr(xr, 23—k, Yu)q(Yr, x3—1) dyr = 0 for xp = ar(T3—k), br(T3—k),

ay(r3—r)
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and integrating by parts, we obtain

bi(z3-k) br(z3-k)
q(z) / Gk, 23—k, Yk )4 (Y T3 1) dyr p dxg =
ar(z3—k) ar(z3—1)
br(z3-1) x),
=- / Y(r3_p) + / G, x3-1) dipe p X
ar(z3—k) ar(z3—k)
br(z3-1)
9ar Gr(Trs 23— 1ks Yk )q(Yks T3—k) dyr p dg,
ak(x3—k)

where t(x3_)) is an arbitrary sufficiently smooth function. By the definition of the
Green’s function Gy, we have the equality

by (z3-1) Tk
5ar Gk, T3k, Yr) (ks T3—) dyr, = —to s (T3_1) — / P(Mk, T3—k) A,
ap(z3_p) ap(r3_1)

in which 7?07k(x37k) = foyk(p(z), ar(x3—k),x3—k) is the boundary value for the deriva-
tive in the left part and, therefore, is uniquely defined by the function p. Suppose that
for discretizing the problem we use the basis {g(l)}iefsz; and

. 5 by (z3-%)
tgl)(ﬂf) = (tgla,tgl)z) ; tgl)k = o / G (@hs 23—, Yk (Y, 23—k) Ay,
ap(r3—k) (4.24)
by (z3-%)
OO _ 0
tr(z) = (tytrs) o tre= T G (T, 3k, Y )i f Yk, T3 k) Ay,
SEATS r
ap(z3—1)

Q" = span [tfj’]igg. Then (4.23) can be reformulated: find z = z, + t;, where t; was
defined above and the vector z, € (), satisfies the equation

/(zo —t)tde =0 Viell. (4.25)
Q

Let us underline that the coordinate functions g; of the internal forces are not self-

equilibrated, but the fluxes tgi) are due to their definition by means of the green’s
functions.

Remark 4.6. Note that it is not necessary to use Green’s functions Gy for evalu-

ating vectors tgi),tf. If the points le = xZ’i(ch_k), x£ = xi’k(xg_k) are such that

br(w3—k) br(zz—r)
(zx — 2p")q" () day = 0, / (xx — &) f (x) day, = 0,

ap(z3—x) ap(z3-%)
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then
Tp
tgz,)k(z) = tf)z,)k,_(l%fk) + (71)(3716) q(z) (yk; 1’3,]6) dyIm
Lo e (4.26)
trn(x) =ter—(v3-1) + / ar f(Yr, v3—1) dyr,
ap(z3—x)
where
b o br(x3_1)
i kK — L. .
tz(n)k _(@3-k) = bik ¢ (z) dxy,
Y k — Ok
ap(z3—x)
b o by (z3-%)
—
trk,—(T3-k) = :4 ag f(zk) dog.
k — Ak
ag(x3_k)

The formulation (4.25) differs from (4.3) not only by the choice of the basis, but also

in the spaces of coordinate functions. Indeed, we have Q, C Qo and instead of (4.8)

the relationships (4.26) are used. That means that vectors tg)k, tsx satisfy additional

conditions in comparison with tffla tsr entering (4.3). If one defines

Tl Tl
U;(:)(IE) = / tg;)k(ykafﬂ?,—k)dykv wi(z) = / ti kY, T3—k) dyr,

ap(r3_p) ap(z3_k)

then .
v,(;), wk‘ag =0.

according to (4.24), (4.26) and definitions of Green’s functions.

Remark 4.7. In this paper, we do not discuss convergence of the described Riesz—
Galerkin methods for the minimization of the functionals of the complementary work
or corresponding integral equations of the splitting method. The analysis of the conver-
gence does not meet difficulties. For the techniques which can be applied and results we
refer to Korneev/Rozin [29, 30] and Korneev [19-21, 25, 27]. In these works, simpler for
the realization, but more complicated for the analysis discretizations were studied. For
instance, in Korneev [20, 21] 1-d integrals in (4.22) were approximated by the trapez-
ium quadratures on a rectangular grid and then the collocation method was applied for
obtaining the system of algebraic equations. Namely, it was required that (4.22) holds
for the quadrature nodes. Let us also note, that integral equations obtained by the
method of splitting for the bending problem of thin plates and cylindrical shells were
studied by Korneev/Rozin [29, 30] and Korneev [22]- [25]. Construction of localized
equilibrated functions of internal forces for thin shells and shells of moderate thickness
was completed in Korneev [27] under rather general assumptions on the configuration
of the middle surface. Also in [27] the analysis of the convergence may be found for
numerical methods, based on the use of these equilibrated functions for the minimiza-
tion of the functional of the complementary work for shells with arbitrary sufficiently
smooth middle surfaces.
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Remark 4.8. For the boundary value problems of mechanics of solid bodies two
level of splitting are distinguished: i) splitting of the equilibrium equations and ii) split-
ting of partial differential equations of a boundary value problem in respect to displace-
ments. The latter means that we are able to split the equilibrium, stress-strain, strain-
displacements relations and boundary conditions. When this is possible, one can obtain
integral equations of the method of splitting, which were introduced in mechanics of
solid bodies by Rozin [45, 46]. From his and other works, mentioned in Remark 4.7,
it follows that in rather general case ii) can be accomplished, if the Poisson ratio v
is zero. However, for an efficient use of the a posteriori error estimation algorithms
of the specific class under consideration one needs only to split equilibrium equations,
which is always possible. The latter is true for the possibility of obtaining discrete dual
formulations based on the Castigliano principle, which are comparable in the compu-
tational cost of their solution with FE methods for primal formulations in respect to
displacements.

Remark 4.9. Let Ugy be the function from the FE space interpolating the exact
solution u. We rewrite (2.8) in the form

||vu - vUfem” < ||v(afem - Ufem)” + ||vafem - ZH Vzc Qf7 (427)

and assume that the FE space is the space of the continuous piece wise bilinear functions.
We assume also that z is obtained by the approximate solution of the dual problem.
Note that all functions in the right part are from the finite dimensional spaces. For
convenience, let us call by the gauge order the order of convergence of the norm in the
left, given by the a priori estimate. Due to the superconvergence property, the first term
in the right can be estimated with an additional with respect to the gauge order, see,
e.g., Oganesian/Ruhovets [38], Korneev [28] and Whalbin [53], Babuska/Strobolis [7].
At the approximation of ¢ by the piece wise constant functions it is easy to prove the
estimate of the second norm with the gauge order. Therefore, the accuracy of the a
posteriori error estimate is at list the same in the order as of the a priori estimate.

Comparison of discrete primal and dual formulations. The equality C; =
= K takes place in a much more general case. To illustrate this we turn to the Dirichlet
problem (2.26) in an arbitrary sufficiently smooth domain and its FE discretization
(2.27). We can assume that the finite elements of the FE assemblage are arbitrary which
can provide that V() € C(Q)NH(Q). In other words, the finite elements are allowed
to be be curvilinear and associated with the triangular or rectangular reference element
with any compatible in C(Q) N H(Q2) shape functions. The Hermite finite elements
are not excluded, but we number the FE Galerkin basis functions of the space V()
consecutively with the use of the number [ = 1,2,..., £ without making difference
between basis functions, corresponding to the values of FE functions or their derivatives
at the nodes. Therefore, £ is the total number of the FE Galerkin basis functions, for
which we use now the notation plJ(z). The number of the internal basis functions is

denoted by £ so that and V() = span[pm]é{. The finite element solution satisfies
the identity (2.27). The basis self-equilibrated vectors ¢{)” =( 3}1, ¢[Ol,]2)T in the space
Qo = span[gbg]]lgl can be defined by means of the FE basis functions according to

1-k 8¢[l]

k=1,2, 1=1,2,...,L;. 4.28
81’37]{:) y = < ) I ( )

1
G0 = (=1)
It is clear that vectors d)[ol]k satisfy the equilibrium equation

[ (1] 2 ] 2 1]
000 (90 _ 00 00 _, (4.29)
8$1 8I2 8I18$2 8I28$1
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in classical sense only when the finite elements are compatible in C'. In general, for
elements compatible in C', second derivatives in (4.29) are Dirack’s deltas on the bor-
ders of finite elements, and therefore (4.29) involves equalities for the Dirack’s deltas
corresponding to 02¢!" /0xdx3_y for k = 1,2. However, in the weak sense, see (4.1),
the equilibrium equations are satisfied. Now we see that K; = C;, where

K= {kl,M}l,mEEN C= {Cl,m}l’meﬁﬂ

kim = /me V™ dx, e = /¢(l) "™ d. (4.30)
2 Q

Clearly, in the case of more general equations of second order, e.g., when the coefficients
are different and variable, the matrices K; and C; are not equal. For instance, if we
turn to the equation V- pVu = f where p is a diagonal 2 x 2 matrix p = diag[p1, p2],
then K; is the same as C; for the similar equation with p = diag[py ', p7'!]. Indeed,
the basis in @) is the same, and the coefficients of the stiffness and deflection matrices
are the integrals

b= Vol pVp s, = [ @0 o710
Q Q

From the above considerations, one can conclude that at least for regular elliptic
problems computational properties of the discretizations of primal and dual problems
are in essential the same and solutions of these diecretizations can be obtained by fast
solvers of the same types.

Remark 4.10. For 3-d Dirichlet problem (2.15) we have for the flux t = (t1,t,3) "
the balance equation

c’%l 8152 8t3
— 4+ — =0. 4.31
8I1+8$2+8I3+f ( )
Therefore, in order to obtain an equilibrated flux, two of the components can be specified
by arbitrary functions and only third found from (4.31). Again, sufficiently smooth local
functions can be used for generating self-balanced fluxes. Suppose that ¢(z) has local
support ¢ and 83¢/0x18x28x3 is bounded in the vicinity of §. Then for sufficiently
smooth functions ay, k= 1,2,3, components of a self-balanced flux are defined by
0%y,
ty =apy———, k=1,2,3. 4.32
k (&7 8Ik+18$k+2 ) ) ( )

Suppose, V(9), Q= (0,1)3, is the space of the continuous piece wise linear function on
the FE cubic mesh of size h and ¢ (z) satisfies () (x()) = &, ;, where i = (iy, 42, 13),
j = (j1,72,73), ¥ = hi, 29 = hj and h = 1/n. Then substituting ¢(z) = ¢?)(x) in
(4.32), one obtains local self-balanced fluxes t() = (t(li),tg),tg))T.

4.3. Linear elasticity problems. State of plain stress. In this section we
will use the matrix-vector form of the stress strain relations for the state of plain stress

E 1—v v 0
oc=De, D=———— v 1—v 0 ,
(I+v)(1-2v) 0 0 (1-20)/2

where
T T
o = (o11,022,012) ', € = (c11,€22,712) , 712 = 2€12,
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and we turn to the problem (3.6). The solution of the dual problem is the stress vector
z = zo+ty, where ty any vector from Q; and the vector zg € Qo satisfies the equation

/(ZO — tf)D_th dr=0 Vtge€e Qo. (433)
Q

In order to discretize this integral identity, one can proceed along the lines of Algorithms
A or B. Suppose for simplicity that the domain is covered by the square mesh of size
h, Q" is some mesh domain containing € and defined below, and

V") ={v:ve @) € Qpp>1},

where Q,, is the space of polynomials of the the order p in each variable. For defining
a discrete subspace Q! (Q) C Qo(Q), at first we define the space of stresses 012 as the
restriction V(2) of the space V(Q") to Q. The stresses oy, are evaluated according
(3.13), (3.14) with fr =0 and functions s, _ from appropriate finite dimensional
spaces of traces. The coefficients before the basis functions of these spaces are clearly
additional unknowns in the discrete dual formulation. It is possible to avoid special
description of functions i, _ by choosing a proper basis in V(Q"). At the same
time, it is possible to define the basis functions in such a way that their supports will be
localized on the squares, containing 9 mesh sells. Since the generalization to any p > 1
is obvious, we will describe one of the bases for the case p = 1.

Let p(z), p® (2())) = &; ; be the usual nodal coordinate function in the space of
continuous piece wise bilinear functions, and

¢(i) (z) = p® (z) — p(i1—1,m)($) _ p(il,h—n(x) + p(i1—1,1‘2—1)(x), (4.34)

so that supp [¢()(z)] = w®, and w® = {2 : (ix — 2)h < xp < (i + 1)h}. First, we
define the master basis vector (9 by the equalities
T o
piy = ¢V (2), pp) = 8—(77k7$3—k)d77k-
T3—k
(in—2)h

Elements of the basis {(bg’i}l-h, I ={i: D =0 NQ# 2} in QI(Q) are the
restrictions of p® to Q. Note that for Q" one can take the domain with the closure
Q' = Uzhw(i). Discrete formulation of (4.33) is the following one: find such vector

z =70 +t; with z}! € Q}(Q) that

/(ZS —t)D 1l tdr =0, Veéu'eqQp (4.35)
Q

3-d elasticity. As it is seen from Section 3, the construction of the space of
the self-equilibrated stresses for 3-d is similar to 2-d case. The same is true about the
construction of the basis functions in the space Qf, which have local supports. In the
matrix-vector form the stress strain relations are

o = De,

K 1—v
(14+v)(1—2v) (1-
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where

T T
o = (01170227033,01270237013) , €= (511752275337’7127’723,712) v Ykl = 2em, k#£L

As for the 2-d problem, we cover the domain by the square mesh of size h, consider
some domain Q" D Q containing 2, and the space V(Q") = {v:v € C(ﬁh), v‘T_ €
€ Q,, p> 1}, where Q, is the space of polynomials of the the order p in each variable.
For Q" we take the mesh domain containing all nests 7;, i = (i1,42,43) involved in the
definition of the basis in the space QP .

Let p(z), p (21))) = &;; be the usual nodal coordinate function in the space of
continuous piece wise bilinear functions, and

B0 () = pl? () = p1 1) () — plin 2 i) () 4 (B2 )
—p(il’”’irl)(x) _’_p(ilfl,iz,igfl)(x) +p(i1,i2*1,i3*1)($) _p(i1*17i2*17i3*1)($), (4.37)

so that supp [0 (z)] = w@, and w® = {x: (i, — 2)h < x1, < (ip + 1)h, k=1,2,3}.
We define the master basis vector p(?) by the equalities

T
i . i A 0@
Hél) = ¢! (), M;(sz =- / (8;;1 + agiﬂ) (Mhes Tho 1, Thy2) A, Kk #1,
(ir—2)h

and the elements of the basis {(bg’i}zh, Th={i: %D =0 NQ#£a}, in QHQ) as
the restrictions of p® to Q.

The discrete formulation of the dual problem has the same form (4.35) and requires
solution of the system of linear algebraic equations with the banded matrix.

5. Numerical results

In this section, we discuss the results of numerical experiments with the equilibrium
based a posteriori error estimates described in previous sections. The purpose of our
experiments is to demonstrate that our algorithms are able to produce such estimates
with the very good effectiveness index and for the optimal in the order number of
arithmetic operations. For model problems, linear and nonlinear second order elliptic
equations in the unite square were used, including the equation with jumping coefficients
and the plain strain linear elasticity problem. Main conclusions made from numerical
results are that our a posteriori estimates

are asymptotically exact, and, more over, in many cases convergence of the effective-
ness index to the unity was observed at h — 0,

are asymptotically optimal in the computational cost, the number of arithmetic op-
erations was always proportional to the number of unknowns,

can be easily made robust in respect to coefficients jumps after necessary modifica-
tions of the algorithms.

We tested also the a posteriori estimators in which the equilibrated fields were
obtained by solving the dual problem, expressing the Castigliano principle.
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e
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Fig. 1. Energy norm of FE error and a posteriori estimator against number of unknowns for
the problem (5.1)

5.1. The Poisson equation.

5.1.1. Direct evaluation algorithms. Consider the model problem

52 3
—Au= %COS ?ﬂxl cos g$2 , (z1,22) €Q2=1(0,1) x (0,1),
ulFD =0, u|FN =0, (51)
I'p = {($1,$2)| xr1 € [0,1] , Lo = 1}U {(Il,IQ)l r1=1,29 € [0,1]},

I'n = {(1’1’1’2” T € [07 1] y L2 = 0} U {(931,1‘2)| 1 =0,z € [07 1]}

with the exact solution

3
u(xy,x2) = cos Tﬂ-xl cosgxg . (5.2)

The FE space of the piece wise bilinear functions for this problem V(2) was defined
in Section 2. For the FE solution ufey,, on the mesh of size h, we used Algorithm 2.1 in
order to calculate the vector-valued function t(z) = (t1(z),t2(z)) ", which satisfies the
balance equation (2.5) and the boundary conditions (2.6). Then we calculated the energy
norm of the error e = |[|V(u — ugem)|| and the a posteriori estimator 7 = || Ve — t|,
i.e., the left and right sides correspondingly in (2.8).

Fig. 1 shows the dependence of the energy norm of the FE error and of the a pos-
teriori estimator on the number of unknowns V. It demonstrates the same asymptotic
behavior of the both values. The number of unknowns in this experiment exceeded
4-10%, but these lines practically coincide for N greater than 10*. The a posteriori es-
timator n stays greater than the energy norm of the error e (see Table 1). This validates
that the equilibrium based a posteriori estimate guarantees the upper asymptotically
exact estimate.

Fig. 2 shows the dependence of (I.g — 1 on N), where

Ig=- (5.3)

is the effectiveness index of the a posteriori estimate. We see that I.g converges to 1
rather fast and always stays grater then 1, see also Table 1.
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Table 1

N e n Test
16 8.40422 - 101 | 2.87729 - 107! | 3.42362
64 4.08785-107* | 8.38575-107* | 2.05138
256 2.02318 - 107* | 2.67228 - 107 | 1.32083
1024 1.00877-107! | 1.09368 - 107! | 1.08417
4096 5.04023 - 1072 | 5.14654 - 1072 | 1.02109
16384 | 2.51966 - 1072 | 2.53287-1072 | 1.00525
65536 | 1.25977-1072 | 1.26141 -10~2 | 1.00131
262144 | 6.29880 - 1072 | 6.30085 - 102 | 1.00033
1048576 | 3.14939 - 1073 | 3.14965 - 102 | 1.00008
4194304 | 1.57469 - 1073 | 1.57473 102 | 1.00002

Fig. 2. Dependence o — 1 on the number of unknowns N for the problem (5.1)

We also compared the computational costs of the a posteriori estimator and optimal
multigrid solver for the problem (5.1). These results are shown on the Fig. 3 and demon-
strate that the equilibrium based a posteriori estimator is optimal with respect to the
number of arithmetic operations. Moreover, computation of the a posteriori estimator is
about twice cheaper than solving the finite element system (this results were obtained
on AMD Athlon 64 3200+ 2.01 GHz with 2 Gb of RAM).

5.1.2. Algorithms based on the Castigliano principle. In the unite square,
we considered the Dirichlet problem having for the exact solution

u = sin(27xy) sin(mae) + (21 + 1)(222 + 1).

The corresponding right part is f = 572 sin(27z;) sin(mz2) and nonhomogeneous Di-
richlet boundary condition is u‘m = (1 +1)(222 + 1).

The FE solution wug,, was obtained by means of the space of the continuous piece
wise bilinear functions. For obtaining the approximate solution z" of the discretized
dual problem (4.4), we used the subspace Q! with the local flux basis vectors (b(i),
described in Subsection 4.1. Two choices for the vector t; and respectively for the set
Q’} were implemented: one according to second line of (4.8) and another according to
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10°F

multigrid solver
=——©— a posteriori estimator

Fig. 3. Computational costs (in ms) of multigrid solver and 7 against the number of unknowns
for the problem (5.1)

Table 2
N e Ieg L s
16 1.59912 2.93605 | 2.05747 | 1.20610

64 7.60498 - 107! | 1.95927 | 2.16500 | 1.23228
256 3.70781-107" | 1.26742 | 2.21586 | 1.24493
1024 1.84023 - 107" | 1.07113 | 2.23084 | 1.24869
4096 9.18344 - 1072 | 1.01826 | 2.23475 | 1.24967
16384 4.58949 - 1072 | 1.00460 | 2.23574 | 1.24992

65536 2.29446 - 1072 | 1.00115 | 2.23599 | 1.24998
262144 | 1.14720-102 | 1.00029 | 2.23605 | 1.24999
1048576 | 5.73594 - 1072 | 1.00007 | 2.23606 | 1.25000

the formulas

T

/ (M, x3—,) dppe.
0

N =

tr(x) = (tra,tre) ', tre(z) =

For these two choices of fluxes, satisfying the balance equation, we introduce notations
ty = tgcl), tf) . These fluxes result in the two a posteriori estimators

Nej = |Vttt — 2", 2" =257+t j=1.2,

with the effectiveness indices denoted Igﬁ. The direct evaluation algorithm was also
applied to the problem. In essence it is Algorithm 2.1, but adapted to the case, when
one has the Dirichlet boundary condition at T'y as it is defined in (2.2). The adapta-
tion was performed with the use of special algorithm, which optimizes the a posteriori
estimator among different boundary fluxes in the appropriate finite dimensional space.
The effectiveness index for the the estimator produced by the adapted Algorithm 2.1 is
denoted I.g .

The dependence of the energy norm for the error and of the described effectiveness
indices on N is presented in Table 2.
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Other problems were also solved by FE method on purpose of testing the Casigliano
principle based a posteriori estimators. The numerical results showed similar behavior
of the estimators of this class and allow us to come to the following conclusions.

a) The equilibrated fluxes obtained by means of the Castigliano principle provide
good error estimators with good effectiveness indices, one of which stays below 1.3.

B) However, both indices I'; do not converge at h — 0, whereas I.g does.

~) The computational time for solving the system of algebraic equations (4.5), re-
sulting from the Castigliano principle, and for evaluating the a posteriori estimators
is proportional to the number of unknowns N. Therefore, the algorithms are asymp-
totically optimal in the computational cost. However, the computer time is greater
approximately in 1.5 times, than the computational time for the direct evaluation algo-
rithm with the effectiveness index I.g.

Item @) can be explained by the fact that the FE method for solving the primal
and dual problems have the same rate of convergence in the energy norms. Namely,

IV(u = thhem)|| = [V = 2| = O(h).

Apparently, the convergence of the effectiveness index to the unity for our algorithms of
the direct evaluation of the balanced fluxes is related to the fact of the superconvergence
of the FE solution ufe, to the continuous piece wise bilinear interpolation of the exact
solution w.

Item ~) completely approves conclusions made in Subsection 4.2 in the part titled
Comparison of discrete primal and dual formulations.

The set Q)¢ does not depend on the choice of the vector t¢, which enter the definition
of this set. However, the sets Q;L’j = Qp +t§cj) depend, and, according to the numerical
results, some allow to approximate true fluxes better. Besides, the error estimator 7. »
is more symmetric with respect to the axes z, , than 7 ;. Probably, these factors caused
the difference of the effectiveness indexes, reflected in «).

5.2. Second order elliptic equation with discontinuous coefficient. We
tested also our a posteriori estimator as applied to the problem:

-V (p(:c)Vu) = f(m)a re= (Oa 1) x (Oa 1)7 (54)

with the same boundary conditions as in (5.1) and the piece-wise constant coefficient,
which has a jump across the common boundary ~ for the two parts of Q:

O = {xz] #1 €(0,0.5), x2€(0,1)}, (5.5)
Qo ={z| z1 € (0.5, 1), x2€(0,1)}. (5.6)
For the function p, we used

=102 Q
p(lL’) _ {pl 0 ) T € i,

5.7
p2 = 102, r € Q. ( )

The right-hand side f as well as the mixed boundary conditions corresponded to the
exact solution

(cos(2mz) — 1) (37T ) 2 +1, x < 0.5,
u = (cos\z2mx) — COS | —
27) (e~ 1?2 10252 +1.25, > 05

For obtaining FE solution, we used the space V() of the continuous piece-wise
bilinear functions, satisfying the Dirichlet boundary condition on I'p.
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| . |
1 2 3 4

10 10 10 10

Fig. 4. Energy norm of the finite element error and the a posteriori estimator against the
number of unknowns for the problem (5.4)

Fig. 5. Dependence of I.g — 1 on the number of unknowns N for the problem (5.4)

The vector t(z) = (t(z)1,t(x)2) ", satisfying the balance equation (2.5) and the
Neumann boundary conditions (5.1) on I'y, was calculated according to Algorithm 2.4
in Subsection 2.3. In turn, this vector allowed to evaluate the a posteriori estimator
Np = ||pVttem — t|| -1, which enters the estimate (2.33). Fig. 4 shows the dependence of
the energy norm, of the error e = ||V(u—ugem)||, and of 1, on the number of unknowns
N (in this numerical experiment N also exceeded 1-10°, but for N > 10* the lines
on the graph coincide). The effectiveness index tends to 1 rather fast, as it is illustrated
by Fig. 5, in which the value of I.g — 1 is plotted against N. At the same time the
effectiveness index is always grater then 1 (see also Table 2) that validates that the a
posteriori estimate (2.33) is a guaranteed upper asymptotically exact bound.

The comparison of the computational costs of the a posteriori estimator and the
optimal multigrid solver for the FE system of linear algebraic equations is presented
in Fig. 6. These results demonstrate the optimality of the a posteriori estimator. Note,
that the a posteriori estimator is more than twice cheaper, than solving the FE system
by the multigrid method.
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multigrid solver
—©— a posteriori estimator

10° 10

Fig. 6. Computational costs of the a posteriori estimator and the multigrid solver against the
number of unknowns for the problem (5.4)

—_—c

—6—n|]

o
i

Fig. 7. Energy norm of FE error and a posteriori estimator n(l) against the number of unknowns
for the problem (5.8)

5.3. Linear elasticity problem. Algorithms 3.1 and 3.2 were applied to several
linear elasticity problems with nonhomogeneous Dirichlet boundary conditions. Since
the results reflect similarly the difference of these algorithms and the level of their
efficiency, we present them only for one problem (3.1)—(3.3) in the unite square 2 =
[0,1] x [0,1]. The vector f and the Dirichlet boundary conditions correspond to the
exact solution u = (uy,uz)’,

uy(x) = sin(mxy) sin(2rxe) + 1 + 22,
. , 1 (5.8)
ug(x) = sin(27ay) sin(mae) + Z(xl + 1) (z2+1).
Algorithms 3.1 and 3.2 produce the a posteriori estimators 7!} and n(®) | respectively,
according to their description in Subsection 3.3.
Fig. 7 and 8 demonstrate the behavior of 7(!). The results obtained for 7(? are
presented in Fig. 9-11, see also Table 3 for numbers. The numerical results show, that
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multigrid solver
—6— a posteriori estimator

Fig. 8. Computational cost of multigrid solver and of the a posteriori estimator n(l) against
the number of unknowns for the problem (5.8)

Fig. 9. Energy norm of FE error and the a posteriori estimator n® against the number of
unknowns for the problem (5.8)

Table 3
N e n Tegr
64 9.14308 1.02954 - 10! 1.12604
256 4.44483 4.77467 1.07421
1024 2.20395 2.25318 1.02234
4096 1.09958 1.10628 1.00609

16384 5.49486 - 107! | 5.50364 - 10~' | 1.00160
65536 2.74705 - 107" | 2.74818 - 107" | 1.00041
262144 | 1.37348-10" | 1.37362 107" | 1.00010
1048576 | 6.86734-1072 | 6.86751 - 1072 | 1.00003

the a posteriori estimator 7(? outperforms 7n(!). The effectiveness index Ié? of n®
tends to 1 staying grater then 1, whereas the effectiveness index Igf) of (M does not
converge and stays slightly greater than 2. Both a posteriori estimators are optimal in

the computational cost. Fig. 8 and 11 present the comparison of their computational cost
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Fig. 10. Dependence of I.g — 1 for the aposteriori estimator 77(2) on the number of unknowns
N for the problem (5.8)

= multigrid solver

‘ —e— a posteriori estimator

Fig. 11. Computational costs of the multigrid solver and the a posteriori estimator 1® against
the number of unknowns for the problem (5.8)

Table 4
16 3.29126 - 1071 2.11430 6.42399 2.45022 7.44462
64 1.63481-1071 | 5.54014 - 107! | 3.38885 | 3.54162- 107! | 2.16638

256 8.17444 - 1072 | 1.94481 -107! | 2.37914 | 1.46349 -10~! | 1.79033
1024 4.08766 - 1072 | 8.62833-1072 | 2.11083 | 5.45946 - 10~2 | 1.33560
4096 2.04389 - 1072 | 4.18226- 1072 | 2.04622 | 2.56000 - 1072 | 1.10387
16384 | 1.02196 - 1072 | 2.07433-1072 | 2.02976 | 1.05054 -10~2 | 1.02797
65536 | 5.10979-1072 | 1.03501-10~2 | 2.02554 | 5.14644 - 1072 | 1.00717
262144 | 2.55490 - 1073 | 5.17229 - 1073 | 2.02446 | 2.55953 -10~2 | 1,00181
1048576 | 1.27745-1072 | 2.58580 - 1072 | 2.02419 | 1.27804 - 102 | 1.00046

and the computational cost of the multigrid solver for solving the problem (3.1)—(3.3)
with the Dirichlet boundary conditions.
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The difference in the behavior of the a posteriori estimators 7" and 7 (see Ta-
ble 4) shows that the quality of the error estimators strongly depend on how accurately
the properties of the superconvergence of FE solutions are taken into account at their
evaluation. Clearly, the convergence of the effectiveness index can take place only if an
a posteriori error estimator is superconvergent. Algorithm 3.1 is simpler, but it is not
invariant in respect to axes x, and the accuracy of approximation of the boundary
values for stresses provides only an approximation of the order of h.

Research is supported by the grant from the Russian Fund of Basic Research No 05-
01-00779-a. The second author has partially been supported by the Austrian Science
Fund (FWF) through the special research programme (SFB) F013, project 16.

Pesome

H.E. Anygpues, B.I. Kopnees, B.C. Kocmoiies. Touno ypaBHOBENIEHHBIE [TOJIs: MOTYT JIA
onn ObITH 3P PEKTUBHO UCTIOIH30BAHBI s TIOJIYYEHUs aTlOCTEPUOPHBIX OIIEHOK TIOTPEITHOCTH.

IToka3biBaeTcs, YTO KOHCTPYKTUBHOE OTpEJIeJIeHNEe JIMHEAI0B TeH30POB HATIPSIKEeHUH, y/10-
BJIETBOPAIONINX YPABHEHWSAM pPABHOBECHs, SABJAETCS MPOCTOM I YNCJAEHHON peasm3arinm
onepanuei. 1o 1mo3osasgeT 3HPEKTUBHO TPUMEHATH KIACCUYECKUE AllOCTEPUOPHBIE OIEHKH
TMOTPEINTHOCTH TPUOJIUKEHHBIX PENMeHN KPAeBbIX 33/ad4, MPOUCTEKAMIINe W3 JIBYX B3aMM-
HO JIOTIOJTHUTE/IFHBIX TPUHITUIIOB — MPWHITAIA JlarpaH:ka MUHUMyMa SHepTuu aedopMarium
u npuHImna KacTuabsaao MUHIMYMa JOTIOTHATETFHON paboThl, sIBASIONErocs ABOUCTBEHHBIM
0 OTHOMIEHUIO K TiepBoMy. [IpuMmennTensHo K 3a7a9aM JTUHEHHON TeOPUN yIIPYTOCTH B TAKUX
OTIEHKAX SHEPTHUsI TOTPENTHOCTH MPUOIMKEHHOTO PEIIEeHNS, YI0BIeTBOPSIONIEr0 BCEM T€OMEeTpPI-
YeCKHUM YCJIOBHAM, OIEHUBaeTCd SHePrueil, oTBedaiomeil pa3HOCTH TeH30Pa HAIIPAXKEeHWH IIpu-
OJIMKEHHOTO pEeIIeHus U JIF00T0 TeH30pa HATIPSIKEHUiA, YI0BIETBOPSIONIEr0 YPABHEHUIM PaB-
HOBecusi. Bompekn pacrmpoCTpaHeHHOMY MHEHHUIO O GOJIBINONH BBIYUCIUTETBHON TPYI0EeMKOCTH
OCTPOEHNUsI yPABHOBEIIEHHBIX TE€H30POB, 6m3kmx mosygaembiM nocpeactsom MKD (meroma
KOHEYHBIX 3JIEMEHTOB), MBI MOKA3BIBAEM, UTO BO MHOTHUX C/Iy9adX 3TO MOXKET ObITh CIETaHO
3a ONTUMAJIHHOE YHCI0 apU(PMETUUECKUX IeHCcTBUii. /{0Ka3bIBAIOTCS TaK¥Ke HOBBIE AIOCTEe-
pUOpPHBIE OIEHKHU MOCPEICTBOM HEYPABHOBEIIEHHBIX TEH30pPOB Hampsikenuil. [lo cpaBreHmio
C M3BECTHBIMH OIIEHKAMU, COJIEPYKAIMMU, HApuMep, B ciaydae ypaBHenms [lyaccoma mopmy
HeBA3KM (B ypaBHEHHMHU 0ajianca s HCTOIb3yeMOT0 BEKTOpA MOTOKA) B TPOCTPAHCTBE 1,
OHU BBIYUCAEMBI u 60s1ee TOYHBI. [IpUBOAATCS P AITOPUTMOB BBIYUCIEHUS ATIOCTEPUOPHBIX
OTIEHOK /I ypaBHenusd [lyaccona m cucTeMbl ypaBHEHUI TEOPUH YIIPYTOCTHA U PE3YIbTATHI UMC-
JIEHHBIX SKCIIEPUMEHTOB, TIO/ITBEPIKIAIONINX BECHMa, BBICOKYIO 3(P(hEKTUBHOCTEH aJrOPUTMOB U
uX poDACTHOCTD.
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