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UDK 519.63 EXACTLY EQUILIBRATED FIELDS,CAN THEY BE EFFICIENTLY USEDFOR A POSTERIORI ERROR ESTIMATION?I.E. Anufriev, V.G. Korneev, V.S. KostylevAbstra
tThe answer given in the paper to the question in the title: yes, they 
an. We advo
ate theapproa
h to the a posteriori error estimation, whi
h 
an be 
alled �
lassi
al�, and for the theoryelasti
ity problems stems from the Lagrange and Castigliano variational prin
iples. In it, theenergy of the error of an approximate solution, satisfying geometri
al restri
tions, is estimatedby the energy of the di�eren
e of the stress tensor 
orresponding to the approximate solutionand any stress tensor, satisfying the equations of equilibrium. Notwithstanding a popular pointof view that the 
onstru
tion of equilibrated stress �elds requires 
onsiderable 
omputationale�ort, we show that it 
an be pra
ti
ally always done for the number of arithmeti
 operations,whi
h is asymptoti
ally optimal. We derive also new general a posteriori estimates, in whi
hequilibrated �elds are repla
ed by arbitrary �elds of �uxes/stresses. Numeri
al experimentsshow that our a posteriori error estimators provide very good 
oe�
ients of e�e
tiveness, whi
hin many 
ases 
an be 
onvergent to the unity. At the same time they have linear 
omplexityand are robust. 1. Introdu
tionPubli
ations on a posteriori error estimates for approximate, e.g., numeri
al so-lutions of partial di�erential equations are numerous. The earliest a posteriori errorestimates were apparently known in me
hani
s from the time when the Lagrange andCastigliano prin
iples, whi
h, from the mathemati
al point of view, provide the primaland dual formulations in theory elasti
ity, obtained a mature form. Su
h estimates arededu
ed from the fa
t that approximate solutions obtained on the basis of these prin
i-ples approa
h the exa
t solution in the energy sense from the opposite dire
tions, and,namely, from above and from below, respe
tively. Let u be the ve
tor of exa
t displa
e-ments of a linearly elasti
 body, σ = σ (u) is the 
orresponding stress tensor, || · ||Uand || · ||σ are the potential energy norms expressed in displa
ements and stresses. If ũis an arbitrary displa
ement ve
tor of �nite energy, satisfying geometri
 boundary 
on-ditions, and τ is an arbitrary stress tensor of �nite energy, satisfying the equilibriumequations (in
luding the boundary 
onditions in stresses), then the 
lassi
al a posterioriestimate is

||u − ũ||U ≤ ||σ (ũ) − τ ||σ. (1.1)and may be found, e.g., in the Mikhlin's book [33℄. In spite of its simple form andenormous amount of publi
ations on a posteriori estimates, the authors were unable to�nd referen
es where it had been dire
tly used in pra
ti
al FE appli
ations.During several last de
ades, a few groups of a posteriori error estimation te
hniqueshave been developed and, �rst of all, so 
alled residual-based te
hniques found inBabu ška I and Reinbolt [5, 6℄, Verf ürth [51℄ Stewart and Hudges [48℄ and more re-
ent publi
ations. Among them there are distinguished the expli
it residual method,



EXACTLY EQUILIBRATED FIELDS. . . 95see Bernardi and Girault [9℄, Carstensen [11℄ and the related paper by Clement [12℄on spe
ial interpolation, and the impli
it and equilibrated residual methods, for whi
hwe refer to Babu ška I and Reinbolt [5℄, Kelly [18℄, Ladevese and Leguillon [31℄, andAinsworth, Demkowi
z and Kim [1℄. Many papers are dedi
ated to obtaining of indi
a-tors of the error, whi
h do not ne
essarily bound it, but are approximately proportionalto the error, and, therefore, 
an be used for the mesh re�nement in adaptive 
omputa-tions. A pioneering paper Zienkiewi
z and Zhu [55℄, see also Ainsworth and Oden [2℄,
ommen
ed the group of su
h te
hniques widely used in appli
ations and employingsuper
onvergen
e properties of �nite element solutions. Many 
ontributions have beenrelated to a posteriori error estimation for spe
i�
 problems of mathemati
al physi
s.The development of a posteriori estimation te
hniques in re
ent de
ades, as well asthe bibliography, are re�e
ted in the books of Aubin [3℄, Verf ürth [52℄, Ainsworth andOden [2℄ Babuska and Strobolis [7℄ and Neittaanm äki and Repin [35℄.The main idea of some of the mentioned approa
hes to the error estimation is touse �elds of stresses, whi
h 
an be obtained from the FE solution and at the same timeare most 
lose to the exa
t equilibrated �elds (i.e., representing the exa
t solution ofthe problem). An example is the equilibrated residual method, whi
h now gains moreattention as a method whi
h allow to obtain reliable bounds, often without solving someglobal systems of algebrai
 equations, see, e.g., Ainsworth, Demkowi
z and Kim [1℄, Lu
eand Wohlmuth [32℄, Vej
hodsk�y [50℄ and Braess and S
h�oberl [10℄. However, it is alsotrue that the purpose of most authors is to out�ank 
onstru
tion of exa
tly equilibrated�elds at all1. One way of obtaining equilibrated �elds2, whi
h approximate equilibrated�elds of the exa
t solution of the primal problem, is approximate solution of the dualproblem, whi
h in the theory of elasti
ity is expressed by the Castigliano prin
iple ofvirtual equilibrated states. As a rule a motivation for avoiding the use of equilibrated�elds is that the solution of the dual problem or other ways of �nding su
h �elds are
omputationally too expensive.The purpose of this paper is to illustrate that in many 
ases the estimate (1.1) 
anbe dire
tly used as an e�
ient and 
heap error estimator. This is for the reason thatindeed equilibrated �elds are not di�
ult to �nd in a variety of ways. As one of theoptions, as we will see not the most e�
ient in many 
ases, the numeri
al solution ofthe dual problem 
an be 
onsidered. For advo
ating this option, the following fa
t isimportant: numeri
al solutions of the dis
retizations of the primal and dual problems,having the same (in the order) a

ura
y in the energy norm, 
an be found for the same(in the order) 
omputational 
ost. More over, under some 
onditions, the dis
retizationof the dual problem may be obtained in su
h a way that its matrix will 
oin
ide with theFE matrix for the primal problem up to the boundary 
onditions. Therefore, pra
ti
allythe same solver 
an be used for solution of the both dis
rete problems.From the above dis
ussion, one 
on
ludes that the option of solving the dual problemfor evaluating the equilibrated �elds deserves examination. Suppose that dis
retizationsof the same order of a

ura
y are used for the primal and dual problems. In general,one 
an expe
t that the e�
ien
y 
oe�
ient will 
onverge to the unity at h→ 0 , if theerror estimator is super-
onvergent. In the pra
ti
e, su
h 
onvergen
e was observed for anumber of alternative a posteriori error estimators, 
onsidered in this paper and papersof other authors, see, e.g., Lu
e and Wohlmuth [32℄. In our numeri
al experiments withthe use of 
lassi
al error estimate of the type (1.1) and of the equilibrated �elds, obtainedby solution of the dual problem with the same a

ura
y, the observed e�e
tiveness
oe�
ient remained 
lose to 1.25. Further improvement of the e�
ien
y 
oe�
ient is
1In general dis
ussions we use the theory elasti
ity problem for a model without spe
ial remarks.
2In the paper the both terms equilibrated and exa
tly equilibrated �eld imply that a �eld satis�esequilibrium equations exa
tly in 
lassi
al or generalized sense.



96 I.E. ANUFRIEV ET AL.possible, e.g., if we solve the dual problem on a denser, then for the primal problem,mesh, whi
h results in a greater 
ost of an error estimator, than the 
ost of the solutionto be validated.At least not less promising approa
h 
an be referred as dire
t evaluation of theequilibrated �elds. It is based on the fa
t that the equilibrium equations (in stresses) areunder-determined. For instan
e, in the theory of elasti
ity, the symmetri
 stress tensor
σ = {σkl}3

k,l=1 with six stresses for the entries satis�es three equilibrium equations.Therefore, in order to satisfy the equilibrium equations it is su�
ient to perform twosteps:1) to spe
ify three stresses, say shear stresses
σkl, k 6= l, (1.2)by arbitrary su�
iently smooth fun
tions and2) to �nd the rest stresses from the equilibrium equations by evaluating 1-d integrals.The presen
e of the boundary 
onditions for stresses does not make this pro
eduresigni�
antly more di�
ult. When this pro
edure is used in the a posteriori estimator,e.g., for the FE solution, the stresses (1.2) are found from the FE solution with thea

urate use of its super
onvergen
e properties.The approa
h of dire
t evaluation of the equilibrated �elds allows us not only todesign 
heap algorithms for evaluating a posteriori error estimators, often produ
ing
onvergent the e�
ien
y 
oe�
ients, but to 
ome to a new type of general a posterioriestimates. For simpli
ity, let us 
onsider the Diri
hlet problem for the Poisson equationin the re
tangle Ω = (a1, b1) × (a2, b2)

−∆u = f(x), x = (x1, x2) ∈ Ω, u
∣∣
∂Ω

= 0. (1.3)and any fun
tion v from H̊1(Ω) = {w ∈ H1(Ω) : u
∣∣
∂Ω

= 0} , whi
h is 
onsidered asan �approximation� for u . Then for any ǫ > 0 the error estimate 
an be written in theform
‖∇(v − u)‖2

0,Ω ≤ (1 + ǫ)‖∇v − y‖2
0,Ω+

+

(
1 +

1

ǫ

)
∥∥∥∥∥∥∥

∑

k=1,2

xk∫

ak(x3−k)

αk(f −∇ · y)(ηk, x3−k) dηk

∥∥∥∥∥∥∥

2

0,Ω

. (1.4)
y = (y1, y2)

⊤ is any su�
iently smooth ve
tor-fun
tion, fun
tions αk = αk(x) satisfy
α1 + α2 ≡ 1 , and by 
onvention ∇ · y = div y . If f ∈ L2(Ω) and αk ∈ C(Ω) it isnatural to 
onsider y ∈ H(Ω, div) = {z : ∇·z ∈ L2(Ω)} . If v = ufem is the FE solution,then y may be obtained by the averaging of the derivatives ∂ufem/∂xk at the nodesand interpolation. In our numeri
al experiments, algorithms of that type almost alwaysprodu
ed good and 
onvergent e�e
tiveness 
oe�
ients. In the algorithms presentedin the paper we implement a variety of te
hniques of dire
t evaluation of the exa
tlyequilibrated �elds for their use in the a posteriori estimators.Clearly, the estimate (1.4) fet
hes additional opportunities in 
omparison with theknown estimates of a 
lose appearan
e, in whi
h the se
ond term in the right part is,e.g., ‖f − ∇ · y‖−1,Ω . Numeri
al evaluation of this negative norm is not at all easy,whereas its repla
ement in (1.4) 
an be often 
omputed for a number of arithmeti
operations proportional to the number of unknowns. In parti
ular, this is true for the FEdis
retizations by means of the orthogonal grids. Another example is Galerkin methodswith the 
oordinate fun
tions spe
i�ed by analyti
al expressions in the whole domain. In



EXACTLY EQUILIBRATED FIELDS. . . 97the paper we dis
uss also the pro
edures, whi
h 
an provide the optimal 
omputational
ost in more general situations.The equilibrium equations in the theories of thin shells and shells of moderate thi
k-ness, see, e.g., Gol'denweizer [17℄ Novozhilov [36, 37℄ and Reissner [44℄, are written interms of internal for
es, i.g., shear for
es and bending and twisting moments. Theseequations are more 
ompli
ated, than the equilibrium equations in the theory of elas-ti
ity. However, a quite similar approa
h 
an be implemented for obtaining the exa
tlyequilibrated fun
tions of internal for
es. This approa
h originates from the papers de-voted to numeri
al methods for solving the bending thin plate and shell problems onthe basis of the Castigliano prin
iple and the method of splitting of the thin plate andshell partial di�erential equations, studied by Rozin [45, 46℄, Korneev/Rozin [29, 30℄,Korneev [19�21, 25, 27℄.Considerable part of the algorithms 
ontained in the paper were tested numeri
ally.We present the graphs and tables of numbers illustrating the dependen
e of e�e
tivenessindi
es and arithmeti
al work on numbers of unknowns. Obviously, all tested algorithmsare optimal in the 
omputational work. Additionally to this, the pra
ti
al 
omputational
osts of the a posteriori error estimators and of the optimal multigrid solvers for theprimal problem were 
ompared. As a rule the latter ex
eeded the former in two timesat the least.The paper is arranged as follows. In Se
tion 2, we 
onsider a posteriori estimatorsfor the Poisson equation in the unite square and arbitrary Lipshits 
ontinuous domainwith di�erent boundary 
onditions. The spe
ial 
ase of the di�erential operator with thedis
ontinuous 
oe�
ient in the main term is treated in Subse
tion 2.3. It is shown thatthe algorithms of a posteriori estimators are easily adjusted to this 
ase. The results ofnumeri
al tests for this 
ase, presented in Subse
tion 5.2, show that dis
ontinuity pra
-ti
ally does not a�e
t the e�
ien
y of the a posteriori error estimator. Se
tion 3 dealswith the a posteriori error estimators for the plane elasti
ity problem. All a posteriorierror estimators of Se
tions 2 and 3 are based on the dire
t evaluation of the balan
ed�uxes and equilibrated stress tensors, i.e., without solving any systems of algebrai
equations. In Subse
tion 4.1, we 
onsider an alternative approa
h based on solutionof the dual problem equivalent to the Castigliano prin
iple of virtual 
omplementarywork. We show that it is possible to 
hose a basis in the spa
e of the self-equilibratedtensors of stresses in su
h a way that the system of algebrai
 equations will possesspra
ti
ally the same properties as the FE system for the primal problem. Throughoutthe paper alongside with the general algorithms, we present the algorithms, whi
h wetested numeri
ally. Results of numeri
al experiments are dis
ussed in Se
tion 5.Throughout the paper, we use the notations listed below.
P p and Qp are the spa
es of polynomials of the total order p and of the order pin ea
h variable, e1 = (1, 0), e2 = (0, 1) , d is the dimension.
L2(Ω) is the spa
e [L2(Ω)]d with the norm ‖ · ‖ = ‖ · ‖2,Ω and the same notation isused for the norm in L2(Ω) ,
| · |k,Ω , ‖ · ‖k,Ω stand for the semi-norm and the norm in the Sobolev spa
e Hk(Ω) ,i.e.,

| v |2k,Ω =
∑

|q|=k

∫

Ω

(Dq
xv)

2dx, ‖v‖2
k,Ω = ‖v‖2

0,Ω +

k∑

l=1

|v|2l,Ω,where
Dq

xv := ∂|q|v/∂xq1

1 ∂x
q2

2 , . . . , ∂x
qd

d , q = (q1, q2, . . . , qd), qk ≥ 0, |q| = q1+q2+· · ·+qd,

H̊1(Ω) :=
{
v ∈ H1(Ω) : v|∂Ω = 0

} is the subspa
e of fun
tions from H1(Ω) vanishingon the boundary ∂Ω .



98 I.E. ANUFRIEV ET AL.We use also the abbreviations: a.o. � arithmeti
 operations, FE � �nite element. Inthe ve
tors of the spa
e variables x = (x1, x2) or x = (x1, x2, x3) , sometimes we inter-
hange the positions of variables and write x = (xk, x3−k) and x = (xk, xk+1, xk+2) ,assuming in the latter 
ase that indi
es k + l are taking values modulo 3.2. Poisson equation2.1. An outline of the approa
h. In this se
tion, we illustrate basi
s of theapproa
h of the dire
t evaluation of equilibrated �elds on a simple model problem. Letus 
onsider a boundary value problem for the Poisson equation in the unite square
Ω = (0, 1) × (0, 1) with the mixed boundary 
onditions

−∆u = f(x), x = (x1, x2) ∈ Ω, ∂Ω = ΓD ∪ ΓN ,

u|ΓD
= 0, ∂u/∂ν|ΓN

= 0.
(2.1)where

ΓD = {x| x1 ∈ (0, 1] , x2 = 1} ∪ {(x1, x2)| x1 = 1 , x2 ∈ (0, 1]} ,

ΓN = {x| x1 ∈ [0, 1) , x2 = 0} ∪ {(x1, x2)| x1 = 0 , x2 ∈ [0, 1)} ,
(2.2)and ν is the distan
e from the boundary along the outward normal. The generalizedformulation of this boundary value problem reads

a(u, v) = (f, v)Ω , ∀ v ∈ V(Ω), (2.3)where V(Ω) = {v ∈ H1(Ω) : v|ΓD
= 0}

a(v, w) =

∫

Ω

∇v · ∇w dx, (v, w)Ω =

∫

Ω

v w dx.Let V (Ω) be the �nite element spa
e of the pie
e wise bilinear fun
tions on theuniform square grid of size h = 1/n, n > 1, with the nodes x(i) = h(i1, i2), ik =
= 0, 1, . . . , n, and V 0(Ω) is the subspa
e of fun
tions from V (Ω) , vanishing on ΓD .By ufem is denoted the �nite element solution belonging to V 0(Ω) and satisfying theidentity

a(ufem, ṽ) = (f, ṽ)Ω , ∀ ṽ ∈ V 0(Ω). (2.4)In order to be able to e�
iently implement the a posteriori estimate (1.1), it is ne
essarywith the use of the obtained FE solution ufem to 
onstru
t the ve
tor valued fun
tion
t = (t1, t2)

⊤ , whi
h obeys the two 
onditions:
α) it satis�es the balan
e di�erential equation

−∇ · t = f, (2.5)and the boundary 
onditions
ν · t|ΓN

= 0, (2.6)where ν is a unite ve
tor normal to ∂Ω , and
β) is as mu
h 
lose as possible to the gradient ∇u of the exa
t solution.We shall use notations Qf , Q0 for the sets of fun
tions satisfying (2.5), (2.6) with thegiven f and f = 0 , respe
tively, from whi
h Q0 is 
learly a liner spa
e. The balan
e law(2.5) models equilibrium equations in the 
ase of the theory elasti
ity boundary valueproblems. Elements of Qf will be termed balan
ed or equilibrated, whereas elements of

Q0 � self-balan
ed or self-equilibrated. The sets Qf , Q0 
an be de�ned 
onstru
tively



EXACTLY EQUILIBRATED FIELDS. . . 99by means of the splitting te
hnique, whi
h was introdu
ed by Korneev and Rozin [27,29, 45℄ at developing numeri
al methods for solving problems of the theory of elasti
thin plates and shells in solid me
hani
s on the basis of the Castigliano prin
iple. For theproblem under 
onsideration 
onstru
tive de�nition of the set Qf of the �equilibrated�ve
tors is quite simple. If q is an arbitrary su�
iently smooth fun
tion, then the ve
tor
t = (t1, t2)

⊤ with the 
omponents
t1(x) =

x1∫

0

q(ξ1, x2) dξ1, t2(x) = −
x2∫

0

(f(x1, ξ2) + q(x1, ξ2)) dξ2 (2.7)satis�es equation (2.5) and boundary 
onditions (2.6). Clearly, Qf = Q0 + tf , where
tf any element of Qf , and Q0 is de�ned by (2.7) with f ≡ 0 . For all q ∈ L2(Ω) one
omes to the spa
e Q0 with the norm ||t||σ = ||t|| , where ‖ · ‖ stands for the [L2(Ω)]2norm.The estimate (1.1) takes the form

‖∇(u− ufem)‖ ≤ ‖∇ufem − t‖, ∀ t ∈ Qf . (2.8)Obviously, a better approximation of ∂u/∂x1 by t1 (e.g., with the use of values of thegradient of the �nite element solution at super
onvergen
e points) will result in a bettera posteriori estimate. In turn, from (2.7) it is seen that the fun
tion q has the sense ofthe se
ond derivative ∂2u/∂x2
1 .Taking for αk, su�
iently smooth fun
tions satisfying α1 + α2 = 1 , one 
an usemore �symmetri
� formulas instead of (2.7):





t1(x) = −
x1∫

0

(α1f − q) (ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(α2f + q) (ξ1, x2) dξ2.

(2.9)They 
an provide more a

urate a posteriori estimates, espe
ially with a good 
hoi
e offun
tions αk, but require more a.o.If the approa
h, presented above, is used for a posteriori estimation, then di�erentboundary 
onditions should be given attention. Suppose, ũ is an approximate twi
edi�erentiable solution of (2.1), (2.2), e.g., obtained by the Galerkin method or anyother fun
tion from V(Ω) . For instan
e, we 
an set q = ∂2ũ/∂x2
1 and 
ome to theexpressions

t1 =

x1∫

0

∂2ũ/∂x2
1(ξ1, x2) dξ1,

t2 = −
x2∫

0

(f + ∂2ũ/∂x2
1)(x1, ξ2) dξ2.

(2.10)



100 I.E. ANUFRIEV ET AL.Similarly, we 
an pro
eed from setting q = ∂2ũ/∂x2
2 , 
oming to the a posteriori esti-mates

‖∇(u− ũ)‖2 ≤
∫

Ω







 ∂ũ

∂xk
−

xk∫

0

∂2ũ

∂x2
k

(ξk, x3−k)d ξk




2

+

+


 ∂ũ

∂x3−k
+

x3−k∫

0

(f +
∂2ũ

∂x2
k

)(xk, ξ3−k)d ξ3−k




2



dx, k = 1, 2. (2.11)Taking into a

ount boundary 
onditions at ΓN and triangular inequality, one 
omesfrom (2.11) to

‖∇(u− ũ)‖ ≤
∑

k=1,2

∥∥∥∥
∂ũ

xk

∣∣
xk=0

∥∥∥∥
(0,1)

+

∥∥∥∥∥∥

x2∫

0

(f + ∆ũ)(x1, ξ2) dξ2

∥∥∥∥∥∥
(2.12)Another ve
tor t , whi
h belongs to Qf simultaneously with t from (2.10), is

t1 =

x1∫

0

(
α1∂

2ũ/∂x2
1 − α2(f + ∂2ũ/∂x2

2)
)
(ξ1, x2) dξ1,

t2 =

x2∫

0

(
α2∂

2ũ/∂x2
2 − α1(f + ∂2ũ/∂x2

1)
)
(x1, ξ2) dξ2.

(2.13)The 
orresponding a posteriori error estimates are
‖∇(u− ũ)‖ ≤

≤






∑

k=1,2

∫

Ω


 ∂ũ

∂xk
−

xk∫

0

(
αk
∂2ũ

∂x2
k

− α3−k(f +
∂2ũ

∂x2
3−k

)

)
(ξk, x3−k) dξk




2

d x






1/2

≤

≤
∑

k=1,2




∥∥∥∥
∂ũ

xk

∣∣∣
xk=0

∥∥∥∥
(0,1)

+

∥∥∥∥∥∥

xk∫

0

α3−k(f + ∆ũ)(ξk, x3−k) dξk

∥∥∥∥∥∥



 (2.14)whi
h for αk ≡ 0.5 is invariant with respe
t to xk, k = 1, 2. It easy to see, that addingand subtra
ting α3−k∂
2ũ/∂x2

k inside round bra
kets, taking into a

ount boundary
onditions at ΓN and triangular inequality, we obtain the same estimate (2.12).In the 
ase of the Diri
hlet boundary value problem
a(u, v) = (f, v)Ω u, ∀ v ∈ V(Ω) = H̊1(Ω) , (2.15)the estimates (2.12),(2.14) take espe
ially simple forms. Instead of the latter we have

‖∇(u− ũ)‖ ≤
∑

k=1,2

∥∥∥∥∥∥

xk∫

0

α3−k(f + ∆ũ)(ξk, x3−k) dξk

∥∥∥∥∥∥
. (2.16)



EXACTLY EQUILIBRATED FIELDS. . . 101Let us 
onsider for simpli
ity the 
ase α2 ≡ 0 . Sin
e in this 
ase no boundary 
onditionsare imposed on the equilibrated �uxes, we 
an set
t1 = ∂ũ/∂x1,

t2 = ∂ũ/∂x2(x1, 0) −
x2∫

0

(f + ∂2ũ/∂x2
1)(x1, ξ2)dξ2,

(2.17)and, therefore,
∂ũ

∂x1
− t1 = 0,

∂ũ

∂x2
− t2 =

∂ũ

∂x2
− ∂ũ

∂x2
(x1, 0) +

x2∫

0

(
f +

∂2ũ

∂x2
1

)
(x1, ξ2) dξ2 =

x2∫

0

(f − ∆ũ)(x1, ξ2) dξ2,
ompleting the proof. In the 
ase of an arbitrary su�
iently smooth domain, the proofis similar.Lemma 2.1. Let Ω be Lipshits 
ontinuous domain, f ∈ L2(Ω) , u � solution of(2.15), and ũ be any fun
tion in H2(Ω) satisfying boundary 
ondition u
∣∣
∂Ω

= 0 . Thenthe error u− ũ satis�es a posteriori estimate (2.16).2.2. Examples of algorithms for �nite element solutions of Poisson equa-tion. Solutions obtained by FE methods 
ompatible in C , whi
h are primarily usedin pra
ti
e for se
ond order ellipti
 equations, do not have se
ond derivatives. Basi
ally,three ways to out�ank this obsta
le 
an be distinguished. All of them start from thepro
edure of 
onstru
ting some smooth approximation of the se
ond, or �rst deriva-tives of FE solution, or the FE solution itself. In what follows, this pro
edure is termedsmoothing pro
edure. After smoothing pro
edure has been applied, we pro
eed in one ofthe ways des
ribed in Subse
tion 2.1. The distin
tions between three types of a posteri-ori error estimation algorithms for our model problem 
an be illustrated on example of�nonsymmetri
� algorithms, in whi
h 1-d integration of f is involved in the de�nitionof only one of the �uxes. Sin
e this �ux is uniquely de�ned by the balan
e equation andthe boundary 
ondition on ΓN , it is su�
ient to point out the way of evaluation of one�ux, whi
h is 
al
ulated �rst. Brie�y, three types of su
h a posteriori error estimationalgorithms are the following:a) Cal
ulate se
ond derivative of the FE solution along one of the axes approxi-mately with the use of �nite di�eren
es at some set of dis
rete points (e.g., FE nodes).De�ne q (e.g., as a fun
tion of the FE spa
e V (Ω)) by interpolation of the 
al
ulatedapproximate values of the se
ond derivative. De�ne the 
orresponding �ux by 1-d inte-gration of q (like in the �rst expression (2.7)) and by adding the boundary value of the�ux, given by the boundary 
onditions on ΓN .b) Cal
ulate the �rst derivative of the FE solution in one of the dire
tions xk at thenodal points, e.g. by averaging. De�ne the tentative �ux in the 
hosen dire
tion as theFE fun
tion, whi
h belongs to V (Ω) and takes at the nodes 
al
ulated values. De�nethe �ux by adjustment of the tentative �ux to the boundary 
ondition on ΓN .
) Constru
t twi
e di�erentiable approximation of the FE solution. De�ne the ten-tative �ux in one of the axes as the �rst derivative of the smoothed FE solution. De�nethe �ux by adjustment of the tentative �ux to the boundary 
ondition on ΓN .Indeed ea
h of a), b) and 
) allows to de�ne two equilibrated �uxes t(k), k = 1, 2,
orresponding to the dire
tion xk , the �ux along whi
h is de�ned �rst. The �ux for thea posteriori estimator 
an be de�ned as t = α1t
(1) + α2t

(2) .
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� versions, other variations of the outlined algorithms arenumerous. For instan
e, in the smoothing pro
edures of a) and b) some other �nitedimensional fun
tional spa
es W (Ω) 
an be used instead of the basi
 FE spa
e V (Ω) .Sin
e it is not ne
essary for q to be 
ontinuous, we 
an 
over Ω by some nonoverlappingsubdomains Ωj and in ea
h de�ne q by the list squares method with the use of poly-nomials of some spe
i�
 order pj . In the vi
inity of singularities in the exa
t solutionof the problem, spe
ial representations for q , equilibrated �uxes or the smoothed FEsolution 
an be implemented. In the latter 
ase it is more appropriate to use the termprepro
essed FE solution. It is also worth adding that in di�erent subdomains one 
anuse algorithms of di�erent types, i.e., a), b) or 
), for obtaining equilibrated �uxes.In this subse
tion, we present a few simple examples of the outlined algorithmsfor the Poisson equation in the unit square and arbitrary su�
iently smooth domainwith di�erent boundary 
onditions. For the problems in the unit square, the FE spa
e
V (Ω) is the spa
e of 
ontinuous pie
e wise bilinear fun
tions on the square mesh of size
h = 1/n . For the nodes of this mesh we use notation x(i) = hi, i = (i1, i2). We startfrom the algorithm of the type 
) for the problem (2.1)�(2.2).Algorithm 2.1.Step 1. For ea
h node x(i) ∈ ∂Ω 
al
ulate the value of the mesh fun
tion

vh = = (v
(i)
2,1)

n
i1,i2=0 , whi
h is the �nite-di�eren
e approximation of the se
ondderivative ∂2u/∂x1

2(x(i)) . For internal nodes of horizontal mesh lines x2 ≡ hi2,
i2 = 0, 1, . . . , n, use
v
(i)
2,1 =

ufem(h(i1 + 1), hi2) − 2ufem(hi1, hi2) + ufem(h(i1 − 1), hi2)

h2
, i1 = 1, . . . , n−1.For the nodes (0, i2) on the axis x1 ≡ 0 set

v
(i)
2,1 = ∂2ũ0/∂x1

2(0, hi2) ,where ũ0 is the 3-d order interpolation polynomial of x1 over the values ufem(x(i))for i1 = 0, 1, 2, and ∂ufem/∂x1(0, hi2) . For the nodes (n, i2) 
al
ulate
v
(i)
2,1 = ∂2ũ1/∂x1

2(1, hi2),where ũ1 is the 3-d order Lagrange interpolation polynomial of x1 over the values
ufem(x(i)) for i1 = n− 3, n− 2, n− 1, nStep 2. De�ne I2,1(x) ⊂ V (Ω) as the pie
e wise bilinear interpolation of vh .Step 3. De�ne t by evaluating the integrals

t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(f(x1, ξ2) + I2,1(x1, ξ2)) dξ2.

(2.18)Step 4. Evaluate the estimator η := ‖∇ufem − t‖2 .Remark 2.1. Formulas (2.18) 
orrespond to (2.7), (2.10). Sin
e I2,2 ∼ ∂2u/∂x1
2
an be 
al
ulated in a similar way, a more �symmetri
� formulas, 
orresponding to (2.9),
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an be used:
t1 =

x1∫

0

[α1I2,1 − α2(f + I2,2)](ξ1, x2) dξ1 =

x1∫

0

[I2,1 − α2(f + I2,1 + I2,2)](ξ1, x2) dξ1,

t2 =

x2∫

0

[α2I2,2 − α1(f + I2,1)](x1, ξ2) dξ2 =

x2∫

0

[I2,2 − α1(f + I2,1 + I2,2)](x1, ξ2) dξ2.(2.19)In Step 1, we used �nite-di�eren
e approximations of the se
ond derivative
∂2u/∂x2

1 , whi
h provide the same order h2 of approximation for a su�
iently smooth
u . In Step 3, the way of the evaluation of integrals of Iv and f may be di�erent.In parti
ular, in many 
ases the analyti
al integration 
an be performed. In general,pro
edures, used in Steps 3, depend on the way of evaluating the norm ‖∇ufem − t‖2in Step 4. For instan
e, for ea
h �nite element τi := h(i1 − 1, i1)×h(i2 − 1, i2) , we 
anuse quadratures exa
t for polynomials of some order pi ≥ 1 . Then it is ne
essary toevaluate tk only at the quadrature nodes, and for doing this other quadratures 
an beused. The type of the quadratures, used element wise for evaluating t2 and the norm
‖∇ufem − t‖2 may depend on the lo
al smoothness of f , if the integral of f is notevaluated exa
tly. Bounds for quadrature errors will enter the resulting error bound forthe FE solution with the right part depending only on ufem and f . However, we willnot elaborate on these subje
ts in the present paper aimed to illustrate main featuresof the approa
h.In the 
ase ΓN = ∅ , i.e. when only the Diri
hlet boundary 
onditions are imposedin (2.1), then the estimate (2.8) is true for any ve
tor valued fun
tion t satisfying thebalan
e equation (2.5) and not subje
ted any boundary 
onditions. But when boundary
onditions are di�erent from the ones 
onsidered above in (2.1) and ΓN 6= ∅ then someremedy should be done in order t to ful�ll the boundary 
onditions (2.6). For instan
e,let

ΓD = {(x1, x2)| x1 ∈ [0, 1], x2 = 1} , ΓN = ΓN,1 ∪ ΓN,2 ∪ ΓN,3,where
ΓN,1 = {(x1, x2)| x2 ∈ [0, 1], x1 = 0} ,
ΓN,2 = {(x1, x2)| x1 ∈ [0, 1], x2 = 0} ,
ΓN,3 = {(x1, x2)| x2 ∈ [0, 1], x1 = 1} ,and the boundary 
onditions are

u|ΓD
= 0, u|ΓN

= g, (2.20)where g ∈ C(ΓN ) and
g =





g1(x2), on ΓN,1,

g2(x1), on ΓN,2,

g3(x2), on ΓN,3.

(2.21)The estimate (2.8) is true, if the ve
tor valued fun
tion t satis�es the equation (2.5)and the boundary 
ondition (2.6). The steps 1 and 2 may be the same as in the algorithmaddu
ed above, but they produ
e only a tentative �ux, whi
h should be adjusted to the
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ondition (2.6). Let
t1(x) =

x1∫

0

(I2,1 + r)(ξ1, x2) dξ1 + g1(x2),

t2(x) = −
x2∫

0

(f + I2,1 + r)(x1, ξ2) dξ2 + g2(x1),

(2.22)where r(x) is 
hosen with the purpose to ful�ll the boundary 
ondition (2.6) on ΓN,3 .It is su�
ient to take r depending only on x2

r(x1, x2) = g3(x2) − g1(x2) −
1∫

0

I2,1(ξ1, x2) dξ1 . (2.23)Hen
e
t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1 − x1

1∫

0

I2,1(ξ1, x2) dξ1 + (1 − x1)g1(x2) + x1g3(x2),

t2(x) = −
x2∫

0

(f + I2,1)(x1, ξ2) dξ2 +

x2∫

0

1∫

0

I2,1(ξ1, ξ2)) dξ1dξ2+

+

x2∫

0

(g1 − g3)(ξ2) dξ2 + g2(x1).

(2.24)
In the 
ase of the homogeneous Neumann boundary 
ondition the expressions (2.24) on
ΓN takes a simpler form

t1 =

x1∫

0

I2,1(ξ1, x2) dξ1 − x1

1∫

0

I2,1(ξ1, x2) dξ1,

t2 = −
x2∫

0

(f + I2,1)(x1, ξ2) dξ2 +

x2∫

0

1∫

0

I2,1(ξ1, ξ2)) dξ1dξ2.

(2.25)The des
ribed approa
h is easily realized in a mu
h more general situation. Suppose,
Ω is the domain o

upied by the arbitrary triangulation Sh with the triangles τr, r =
1, 2, . . . , R , V (Ω) is the spa
e of the 
ontinuous pie
e wise linear fun
tions and V̊ (Ω) =
{v ∈ V (Ω) : v

∣∣
∂Ω=0

} . We will turn to the algorithm of the type b) for the problem withthe Diri
hlet boundary 
ondition. Namely, we 
onsider the problem
a(u, v) = (f, v)Ω u, ∀ v ∈ V(Ω) = H̊1(Ω), (2.26)and its FE solution ufem satisfying
a(ufem, v) = (f, v)Ω ufem, ∀ v ∈ V̊ (Ω). (2.27)Let us assume for simpli
ity that ea
h line xk ≡ const 
rosses Ω not more than in twopoints, Γk,− is the part of the boundary 
ontaining the points of su
h pairs, havinglesser 
oordinate xk , xk = ak(x3−k) is the equation of Γk,− , x3−k = â3−k, b̂3−k are
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oordinates of the ends of Γk,− . We also use notation Bi = {r : τr ∈ Ω, x(i) ∈ τ r}for the set of the numbers of �nite elements, having x(i) for a vertex, and notation
V (Γk,−) for the spa
e of the tra
es of fun
tions from V (Ω) on Γk,− . Among simplestis the algorithm, whi
h is not invariant with respe
t to xk, k = 1, 2, and is based onthe averaging and the pro
edure re�e
ted in Remark 2.1.Algorithm 2.2.Step 1. For ea
h node 
al
ulate the average

u
(i)
fem,1 =

∑

r∈Bi

∂u
(r)
fem

∂x1
(x(i)),where u(r)

fem = ufem

∣∣∣
τr

is the restri
tion of the FE solution to τr .Step 2. De�ne the interpolation I(ufem,1) ∈ V (Ω) satisfying
I(ufem,1)(x

(i)) = u
(i)
fem,1 ∀ x(i) ∈ Ω.Step 3. For ea
h node x(i) ∈ Γ2,− 
al
ulate the average

u
(i)
fem,2 =

∑

r∈Bi

∂u
(r)
fem

∂x2
(x(i)),and for x ∈ Γ2,− de�ne the pie
e wise linear 
ontinuous interpolation IΓk,−

(ufem,2)satisfying
I(ufem,2)(x

(i)) = u
(i)
fem,2 ∀ x(i) ∈ Γ2,−.Step 4. For 
omponents of an equilibrated ve
tor t = (t1, t2)

⊤ set
t1 = I(ufem,1), t2

∣∣
Γ2,−

= t2(x1, φ2(x1)) := IΓk,−
(ufem,2)

∣∣
Γ2,−

,and evaluate
t2(x) = t2(x1, φ2(x1)) −

x2∫

a2

(
f +

∂t1
∂x1

)
(x1, ξ2) dξ2.Step 5. Evaluate the bound ‖∇ufem − t‖2 .The algorithm, based on averaging, 
an be made invariant with respe
t to xk, k =

= 1, 2 .Algorithm 2.3.Step 1. For ea
h node and k = 1, 2 
al
ulate the averages
u

(i)
fem,k =

∑

r∈Bi

∂u
(r)
fem

∂xk
(x(i)).Step 2. De�ne the interpolations I(ufem,k) ∈ V (Ω) satisfying

I(ufem,k)(x(i)) = u
(i)
fem,k ∀ x(i) ∈ Ω.Clearly, the ve
tor t̃ = (t̃1, t̃2)

⊤, t̃k = I(ufem,k) , approximates the equilibratedve
tor.
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al
ulate
qfem,k = −∂I(ufem,k)/∂xk, δf = f − qfem,1 − qfem,2.Step 4. For α1(x) + α2(x) ≡ 1 and θk(x3−k) = I(ufem,k)(ak(x3−k), x3−k) k =

1, 2, 
al
ulate
tk(x) = θk(x3−k) −

xk∫

ak

(qfem,k + αkδf)(ξk, x3−k) dξk =

= (1 − αk)I(ufem,k) −
xk∫

ak

αk(f + qfem,3−k)(ξk, x3−k) dξk.Step 5. Evaluate the bound ‖∇ufem − t‖2 .Fun
tions θk(x3−k) spe
ify boundary 
onditions for t . They 
an be de�ned di�er-ently from Step 4, and for their evaluation by means of the FE solution spe
ial morea

urate pro
edures 
an be used. The simplest 
hoi
e for α is α ≡ 1/2 , however anumber of more sophisti
ated pro
edures for the evaluation of this fun
tion 
an be
onsidered. For instan
e, in some regions α 
an be 
hosen on the basis of the lo
al anal-ysis. Obviously, the pro
edures of Algorithm 2.2 are a part of Algorithm 2.3. The wholepro
ess of the a posteriori estimation 
an be arranged in the following way. One usesAlgorithm 2.2. If the a posteriori estimate is unsatisfa
tory then additional 
al
ulationsare performed a

ording Algorithm 2.3 with some 
hoi
e of αk . Further perfe
tion ofthe a posteriori estimator is possible in a variety of ways. For instan
e, it is not ne
essaryto use the same FE mesh for the evaluation of t . In order to simplify the 
omputationsand make the estimate more a

urate, a subsidiary mesh 
an be used for �nding t ,whi
h, e.g., is orthogonal inside the domain and provide some hp FE interpolation for�uxes, determined by the FE solution ufem .Remark 2.2. Evaluation of a posteriori error bounds a

ording Algorithm 2.1�Algorithm 2.3 involves only three operations� numeri
al di�erentiation with the use of �nite di�eren
es,� interpolation, and� evaluating of 1-d integrals.For this reason, these algorithms are obviously optimal in the arithmeti
 operations
ount, if the mesh is orthogonal. In the 
ase of an arbitrary quasiuniform triangulation,the evaluation of integrals may be often arranged by layers of elements. From layer tolayer the number of points, at whi
h we need to evaluate an equilibrated �ux may ingeneral double. Therefore, the 
omputational 
ost of the third among listed operationsis estimated as O (nkn
2
3−k) , where nk is the maximal number of nodes in one layer and

n3−k is the number of layers. In this paper, we 
on
entrate on basi
 fa
ts of a posterioriestimation, but several re
ipes 
an be immediately suggested for the redu
tion of the
omputational work, even in the 
ase of nonuniform unstru
tured meshes. For instan
e,we 
an 
over the 
omputational domain by the nonuniform orthogonal mesh with thehanging nodes, mat
hing in density the FE grid. Then we 
al
ulate one or both �uxesat the nodes of this mesh by means of averaging and interpolation. After that with theuse of the introdu
ed orthogonal mesh, we obtain 
orre
tions, whi
h are ne
essary inorder to make �uxes equilibrate.
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‖∇ufem −∇u‖2

0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2
0,Ω +

(
1 +

1

ǫ

)
‖∇ · y − f‖2

−1,Ω,

‖∇ufem −∇u‖2
0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2

0,Ω+

+ cΩ

(
1 +

1

ǫ

)
‖∇ · y − f‖2

0,Ω ∀ ǫ > 0,

(2.28)where y is an arbitrary ve
tor and cΩ is the 
onstant from the Friedri
h's inequality, seeRepin/Frolov [41℄ and Neittaanm�akki/Repin [35℄. One of our estimates 
an be writtenin the form
‖∇ufem −∇u‖2

0,Ω ≤ ‖∇ufem − t‖2
0,Ω ≤ (1 + ǫ)‖∇ufem − y‖2

0,Ω+

+

(
1 +

1

ǫ

)
∥∥∥∥∥∥∥

∑

k=1,2

xk∫

ak(x3−k)

αk(f −∇ · y)(ηk, x3−k) dηk

∥∥∥∥∥∥∥

2

0,Ω

. (2.29)In parti
ular, in Algorithm 2.3 we used y = (I(ufem,1), I(ufem,2))
⊤ . The right part fenters the last a posteriori estimate in a more adequate way, than in the se
ond estimate(2.28). At the same time, it is easily 
omputable, whereas the negative norm, enteringthe right part of the �rst bound (2.28), makes the bound di�
ult for the use in pra
ti
e.2.3. Heat 
ondu
tion problemwith dis
ontinuous 
oe�
ient. The extensionof the advo
ated approa
h and in parti
ular of the algorithms of the previous se
tionto the ellipti
 equations with the dis
ontinuous 
oe�
ients is straightforward. Let us
onsider as an example the boundary value problem

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω = (0, 1) × (0, 1),

u
∣∣
ΓD

= g,
∂u

∂ν

∣∣
ΓN

= 0,
(2.30)with ΓD, ΓN de�ned as in (2.2), ρ(x) > 0 and

ρ(x) =

{
ρ1 = const for x ∈ Ω1 := {x ∈ Ω : 0 < x1 < 0.5},
ρ2 = const for x ∈ Ω2 := Ω \ Ω1}.For simpli
ity it is assumed that the boundary 
onditions are 
onsistent and there exitssu
h u0 ∈ H2(Ω) that u0

∣∣
ΓD

= g . We de�ne the approximate solution ufem of thisproblem as the fun
tion belonging to the set L(Ω) = V 0(Ω) + u0 and satisfying theidentity
aρ(ufem, ṽ) = (f, ṽ)Ω ∀ ṽ ∈ V 0(Ω), (2.31)where
aρ(v, w) =

∫

Ω

ρ∇v · ∇w dx1dx2and V 0(Ω) is the FE spa
e de�ned in Subse
tion 2.1. If to introdu
e the norms
‖v‖ρ = (aρ(v, v))

1/2, ‖t‖ρ−1 =




∫

Ω

ρ−1t · t dx




1/2 (2.32)
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tors satisfying (2.5), (2.6), then the aposteriori error estimate (2.8) takes the form
‖∇(u− ufem)‖ρ ≤ ‖ρ∇ufem − t‖ρ−1 . (2.33)Algorithms 2.1�2.3 are easily adapted to the problem under 
onsideration. For instan
e,the �rst one is written as follows.Algorithm 2.4.Step 1. For ea
h node x(i) ∈ ∂Ω 
al
ulate the value of the mesh fun
tion vh =

(v2,1(i))
n
i1,i2=0 , whi
h is the �nite-di�eren
e approximation of ∂(ρ∂u/∂x1)∂x1(x

(i)) . Forinternal nodes of horizontal mesh lines x2 ≡ hi2, i2 = 0, 1, . . . , n, use
v1,1(i) = ρ((i1 − 0.5)h, i2)[ufem(hi) − ufem(h(i1 − 1), hi2)],

v2,1(i) =
1

h2
[v1,1(i1 + 1, i2) − v1,1(i)] , i1 = 1, . . . , n− 1.For the nodes (0, i2) on the axis x1 ≡ 0 set

v2,1(i) = ρ1∂
2ũ0/∂x1

2(0, hi2),where ũ0 is the 3-d order interpolation polynomial of x1 over the values ufem(x(i))for i1 = 0, 1, 2, and ∂ufem/∂x1(0, hi2). For the nodes (n, i2) 
al
ulate
v2,1(i) = ρ2∂

2ũ1/∂x1
2(1, hi2),where ũ1 is the 3-d order Lagrange interpolation polynomial of x1 over the values

ufem(x(i)) for i1 = n− 3, n− 2, n− 1, n .Step 2. De�ne I2,1(x) ⊂ V (Ω) as the pie
e wise bilinear interpolation of vh .Step 3. De�ne t by evaluating the integrals
t1(x) =

x1∫

0

I2,1(ξ1, x2) dξ1,

t2(x) = −
x2∫

0

(f(x1, ξ2) + I2,1(x1, ξ2)) dξ2.

(2.34)Step 4. Evaluate ‖ρ∇ufem − t‖2
ρ−1 .3. Linear elasti
ity problems3.1. A posteriori estimation for plane problems. Let E be the Young's mod-ulus, ν � the Poisson's ratio, I � the unit tensor and tr(κ) = κ : I � the tra
e of atensor κ . The linearly elasti
 plain strain problem in some domain Ω is formulatedin terms of the displa
ement ve
tor u(x) = (u1(x), u2(x))

⊤ and symmetri
 strain andstress tensors
σ =

(
σ11 σ12

σ21 σ22

)
, ε =

(
ε11 ε12
ε21 ε22

)
,related by the system of equations

div σ + f = 0 , (3.1)
ε(u) = (εkl(u))k,l=1,2 , εkl =

1

2
(∂uk/∂xl + ∂ul/∂xk), (3.2)
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σ (ε) =

E

1 + ν

[
ν

1 − 2ν
tr(ε) I + ε

]
, (3.3)supplied by boundary 
onditions. The mixed homogeneous boundary 
onditions mayhave the form

u|ΓD
= 0, σ n = τ n|ΓN

= 0, (3.4)where σn(x) and τ n(x) are stresses normal and tangential to the boundary at a point
x ∈ ΓN .We turn to the 
ase of the �rst boundary value problem when ΓN = ∅ and for theboundary 
onditions we have

u|∂Ω = 0. (3.5)We assume that for positive 
onstants cE , . . . , cν
cE ≤ E(x) ≤ cE , cν ≤ ν(x) ≤ cν < 0.5,and introdu
e the spa
e V = [H̊1(Ω)]2 . The generalized solution u of the problem(3.1)�(3.3), (3.5) formulated in respe
t to displa
ements satis�es

∫

Ω

σ (u) : ε(v) dx =

∫

Ω

f · v dx, , ∀v ∈ V. (3.6)For simpli
ity it is assumed that the domain of the FE assemblage 
oin
ides with Ω .For approximate solution of (3.6), the subspa
e V̊ = [ V̊ (Ω)]2 = [V (Ω)]2 ∩ V , where
V (Ω) is the spa
e of FE s
alar fun
tions. The FE solution is found from the identity

∫

Ω

σ (ufem) : ε(v) dx =

∫

Ω

f · v dx, ∀v ∈ V̊ (Ω). (3.7)The Hook's law (3.3) 
an be written in the inversed form
ε(σ ) =

1 + ν

E
[σ + ν tr(σ ) I], (3.8)and the both relations de�ne the norms for arbitrary tensors σ and ε

||ε ||ε =




∫

Ω

σ (ε) : ε dx




1/2

, ||σ ||σ =




∫

Ω

σ : ε(σ ) dx




1/2

. (3.9)If σ and ε satisfy (3.8), then 
learly ||ε ||ε = ||σ ||σ , and, if additionally σ = σ (u) and
ε = ε(u) are related by equations (3.2), (3.3), then the energy norm for displa
ementsis de�ned a

ording to the expression

||u||U =




∫

Ω

σ (u) : ε(u) dx




1/2

. (3.10)The set Qf of equilibrated stress tensors is spe
i�ed as Qf = τ + Q0 , where τ isany tensor satisfying the equilibrium equations
div τ + f = 0 (3.11)
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e of self-equilibrated fun
tions, i.e., satisfying equilibriumequations with f ≡ 0 . The latter spa
e 
an be 
onsidered as a Hilbert spa
e with thes
alar produ
t
[σ , σ ′]σ =

∫

Ω

σ : ε(σ ′) dxand the norm || · ||σ . For the exa
t and the FE solutions u = (u1, u2)
⊤, ufem =

= (ufem,1, ufem,2)
⊤ , respe
tively, of the plain strain problem (3.6), we have the aposteriori estimate

||u − ufem||U ≤ ||σ (ufem) − τ ||σ ∀ τ ∈ Qf . (3.12)For obtaining a good tensor τ , we use the same approa
h as before. The system ofthe equilibrium equations are sub-de�ned and spe
ify the set Qf of equilibrated ve
torsup to the linear spa
e Q0 of the self-equilibrated fun
tions, i.e., satisfying equilibriumequations with f ≡ 0 . This fa
t allows a simple way of a 
onstru
tive de�nition of thewhole set Qf , the essen
e of whi
h is the following: we spe
ify one of the 
omponents
τkl by a su�
iently smooth arbitrary fun
tion and �nd other 
omponents from theequilibrium equations. Where no spe
ial assumptions on f ∈ L2(Ω) are made, we alwaysassume that f ∈ L2(Ω) . In algorithms of a posteriori estimators, it is su�
ient to pointout the way of de�nition of su�
iently smooth tensors τ ∈ Qf .Algorithm A.1. We spe
ify an arbitrary fun
tion ψ12 ∈ L1

∞(Ω) , arbitrary fun
tions
ψkk,Γk,−

(x3−k) ∈ L1
∞ [â3−k, b̂3−k] , and set τ12 = ψ12 .2. Find q1 = ∂ψ12/∂x2 and
τ11 = ψ11,Γ1,−

(x2) −
x1∫

a1(x2)

(f1 + q1)(ξ1, x2) dξ1. (3.13)3. Find q2 = ∂ψ12/∂x1 and
τ22 = ψ22,Γ2,−

(x1) −
x2∫

a2(x1)

(f2 + q2)(x1, ξ2) dξ2. (3.14)As well one 
an also start from spe
ifyingtwo fun
tions ψkk,Γk,−
(x3−k) ∈ L∞ [â3−k, b̂3−k] ,fun
tion ψ12,Γk,−

(x3−k) ∈ L∞ [â3−k, b̂3−k] , andfun
tion q(x) .Then the tangential stress is de�ned by the integral
τ12 = ψ12,Γk,−

(x3−k) −
xk∫

ak(xx3−k
)

q(ξk, x3−k) dξkfor one of k = 1, 2, and other stresses are de�ned a

ording to the above algorithm.If steps 1�3 are used for obtaining an a posteriori estimate, fun
tions ψ12 and
ψkk,Γk,−

are 
al
ulated by means of the obtained FE solution. This should be done inthe most a

urate way (e.g., with the use of super
onvergen
e properties of the FEsolution), sin
e the 
loseness of these fun
tions to the true stresses σ12(u) on Ω and to
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σkk(u) on the part of the boundary Γk,− is 
ru
ial for the a

ura
y of the a posterioriestimate. In parti
ular, ψ12 
an be spe
i�ed as an element of the FE spa
e V (Ω) withthe nodal values obtained by the pro
edure of averaging similar to the used in Steps2, 3 of Algorithm 2.2. In the 
ase of a re
tangular domain and orthogonal mesh, thispro
edure is espe
ially simple

ψ12(x
(i)) = σfem,12(i1h− 0, i2h− 0) + σfem,12(i1h+ 0, i2h− 0)+

+ σfem,12(i1h− 0, i2h+ 0) + σfem,12(i1h+ 0, i2h+ 0).
(3.15)Here σfem,12 = σ12(ufem) is the stress de�ned by the FE solution and it is assumed that

σfem,12(i1h± 0, i2h± 0) = 0 , if the 
orresponding element τj , j = (j1 ± 1, j2 ± 1) doesnot belong to Ω .In the 
ase of a more general domain, Γk,− ⊂ ΓN and the homogeneous bound-ary 
ondition (3.4) on ΓN it is adopted ψkk,Γk,−
(x3−k) ≡ 0 . If the se
ond boundary
ondition is nonhomegeneous, i.e.,

σ n|ΓN
= t, (3.16)then we set ψkk,Γk,−

(x3−k) ≡ tkk or ψkk,Γk,−
(x3−k) ≡ t̃kk , where t̃kk is a more 
on-venient for the use in (3.13), (3.14) but su�
iently a

urate approximation of t . Theestimate of the error tkk − t̃kk of approximation in some norm will enter the right partof the a posteriori estimate.The approa
h under 
onsideration may be realized in a number of ways. For the �rststep one 
an spe
ify τkk = ψkk and then �nd τ12, τ3−k,3−k from the equilibrium equa-tions. However, su
h a path is not invariant with respe
t to xk, k = 1, 2 . Besides, in thepro
ess of obtaining su
h equilibrated symmetri
 stress tensor, this fun
tion is di�erenti-ated twi
e in xk and integrated twi
e along x3−k . The latter requires more smoothnessfrom ψkk at least in xk . In general an additional di�erentiation will 
ertainly resultin 
ruder a posteriori error estimates, if it is not 
ompensated by the integration alongthe same dire
tion, and this was observed in our numeri
al experiments. However, more
ompli
ated algorithms, but having the same asymptoti
al 
omputational 
omplexity,may be designed, whi
h are invariant with respe
t to xk, k = 1, 2 , and at the sametime provide 
ontinuous equilibrated stress tensors. An example of su
h algorithms forthe 
ase of Ω = (0, 1) × (0, 1) is Algorithm B.Algorithm B.1. Using the �nite element solution, de�ne a 
ontinuous pie
e wise bilinear fun
tion

I(κ h
12) ∈ V̊ , whi
h �approximates� the se
ond mixed derivative

I(κ h
12) ∼

∂σ12

∂x1∂x2
=

E

2(1 + ν)

(
∂3u1

∂x1∂x2
2

+
∂3u2

∂x2
1∂x2

)of the stress σ12 = σ12(u) . Here, κ h
12 = {κ12(i)} is the mesh fun
tion and,e.g., I(κ h

12)(x
(i)) = κ12(i) . Inverted 
ommas stand for the reason that indeed

∂σ12(ufem)/∂x1∂x2 may not be de�ned even on �nite elements, and, therefore, somespe
ial ways of evaluation of κ h
12 should be implemented. They should allow us toexpe
t approximation in some sense of σ12(u) by τ12(ufem) , evaluated in a posteri-ori estimator by means of κ h

12 . For instan
e, below τ12 is de�ned by the ba
kwarddouble integration of I (
κ h

12

) in su
h a way that under some 
onditions one 
an ex-pe
t the same a

ura
y from τ12 as from σ12(ufem) . If the square bilinear or higherorder elements are used, one 
an evaluate ∂σ12(ufem)(x(i))/∂x1∂x2 for ea
h elementat its nodes, than for ea
h node of FE assemblage 
al
ulate κ12(i) as the average of
∂σ12(ufem)(x(i))/∂x1∂x2 for ea
h element.
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τ12 =

x2∫

0

x1∫

0

I
(
κ

h
12

)
dx1dx2 + c0 +

x1∫

0

c1(x1) dx1 +

x2∫

0

c2(x2) dx2,

τ11 =

x1∫

0


f1 −

x1∫

0

I
(
κ

h
12

)
dx1


 dx1 + c3(x2) − c2(x2)x1,

τ22 =

x2∫

0



f2 −
x2∫

0

I
(
κ

h
12

)
dx2



 dx2 + c4(x1) − c1(x1)x2,

(3.17)
where

c0 ≃ σ12

∣∣
x1=0, x2=0

, c1(x1) ≃ ∂σ12/∂x1

∣∣
x2=0

, c2(x2) ≃ ∂σ12/∂x2

∣∣
x1=0

,

c3(x2) ≃ σ11

∣∣
x1=0

, c4(x1) ≃ σ22

∣∣
x2=0

,
(3.18)and σkl may be understood as exa
t or FE values of the stresses.There are many other ways of �nding the appropriate stresses τ̃kl by means of theFE solution, whi
h 
an be used as starting ones for evaluation of the equilibrated stresstensor τ . In parti
ular, smoother interpolations may be more e�
ient.In order to illustrate the essential di�eren
e from the approa
hes used by otherauthors, we formulate below basi
 a posteriori estimates in a form, in whi
h the errorin the smoothed FE stresses and the residual are separated.Lemma 3.1. Let v be arbitrary ve
tor in V = [H̊1(Ω)]2 , σ (v) be the stress tensorsatisfying (3.2), (3.3) for u = v and y = {ykl}2

k,l=1 be an arbitrary symmetri
 tensorwith the 
omponents in H1(Ω) . Then for u − v either of the estimates
||u − ufem||U ≤ ||σ(ufem) − τ‖σ,

||u − ufem||U ≤ ||σ(ufem) − y||σ + ||δτ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ+

+
∑

k=1,2

∥∥∥∥∥∥∥

(
1 − ν2

E

)1/2 xk∫

ak(x3−k)

(
fk − ∂yk,k

∂xk
− ∂y1,2

∂x3−k

)
(ηk, x3−k) dηk

∥∥∥∥∥∥∥
0

,

(3.19)holds, where τ is the stress tensor with the 
omponents
τ12 = y12, τkk = ykk(ak(x3−k)) +

xk∫

ak(x3−k)

(
fk − ∂y1,2

∂x3−k

)
(ηk, x3−k) dηkand

δτ =

(
δτ11 0
0 δτ22

)
, δτkk =

xk∫

ak(x3−k)

(
fk − ∂yk,k

∂xk
− ∂y1,2

∂x3−k

)
(ηk, x3−k) dηk.For the stress tensor τ one 
an also take one of the two tensors with the 
omponents,de�ned for k = 1 or k = 2 by formulas

τkk = ykk, τ12 = y12(ak(x3−k)) +

xk∫

ak(x3−k)

(
fk − ∂yk,k

∂x3−k

)
(ηk, x3−k) dηk,
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τ3−k,3−k = y3−k,3−k(a3−k(xk)) +

x3−k∫

a3−k(xk)

(
f3−k,3−k − ∂yk,3−k

∂xk

)
(xk, η3−k) dη3−k.Proof. Sin
e all tensors τ , appearing in Lemma, satisfy the equilibrium equations,the �rst estimate (3.19) 
learly holds. Tensor τ = y+ δτ also satis�es the equilibriumequations. For this reason, the proof of the rest estimates requires only the inversion ofthe stress-strain relations and appli
ation of the Cou
hy and triangular inequalities.The assumptions of Lemma on the smoothness of tensor y 
an be easily sharpenedand made mat
hing the equilibrium equations in a weak sense (remind that in generaltensor y itself does not satisfy them).3.2. Linear elasti
ity and more general problems of solid me
hani
s in3-d. In the 
ase of 3-d elasti
ity problem, the stress tensor

σ =



σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33


 ,satisfying the equilibrium equations

∂σk1

∂x1
+
∂σk2

∂x2
+
∂σk3

∂x3
= fk, k = 1, 2, 3. (3.20)
an be obtained in a similar to the des
ribed above ways. For, instan
e we spe
ify theshear stresses σ12, σ13, σ23 by some su�
iently smooth fun
tions, approximating thestresses, spe
i�ed by the FE solution. Then the rest stresses are found from the equilib-rium equations and their boundary values, spe
i�ed either by the boundary 
onditionsin stresses or by the approximate values, found by means of the FE solution. We willnot des
ribe these obvious algorithms and restri
t ourselves to the formulation of astatement similar to Lemma 3.1.For de�niteness of the norms || · || U , || · ||σ, || · ||ǫ one 
an assume Hooke's law for thehomogeneous linearly elasti
 body

σkk =
E

(1 + ν)(1 − 2ν)
[(1 − ν)εkk + ν(εk+1,k+1 + εk+2,k+2)], σkl =

E

1 + ν
εkl, k 6= l.However, a

ording to the above dis
ussion, the �rst two estimates (3.21), given below,hold in a mu
h more general situation under assumption of the proper de�nition of thenorms || · ||U , || · ||σ .Lemma 3.2. Let v be arbitrary ve
tor in V = [H̊1(Ω)]3 , σ (v) be the stress tensorsatisfying (3.20), (3.2) for u = v and y = {ykl}3

k,l=1 be an arbitrary tensor with the
omponents in H1(Ω) . Then for u − v either of the estimates
||u − ufem||U ≤ ||σ(ufem) − τ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ + ||δτ ||σ,
||u − ufem||U ≤ ||σ(ufem) − y||σ+

+

3∑

k=1

∥∥∥∥∥∥
1√
E

xk∫

ak

(
fk − ∂yk,k

∂xk
− ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηk

∥∥∥∥∥∥
0

,

(3.21)



114 I.E. ANUFRIEV ET AL.holds, where ak = ak(xk+1, xk+2) , τ is the stress tensor with the 
omponents
τkl = ykl, k 6= l,

τkk = ykk(ak, xk+1, xk+2) +

xk∫

ak

(
fk − ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηkand

δτ =



δτ11 0 0
0 δτ22 0
0 0 δτ33


 ,

δτkk =

xk∫

ak

(
fk − ∂yk,k

∂xk
− ∂yk,k+1

∂xk+1
− ∂yk,k+2

∂xk+2

)
(ηk, xk+1, xk+2) dηk.Proof. The proof is similar to the proof of Lemma 3.1.There are several other sequen
es of 
onstru
ting symmetri
 equilibrated stress ten-sors. We 
an start from setting τkl = ykl with arbitrary fun
tions ykl ∈ H1(Ω) forthree 
omponents τkl . Besides (1,2), (1,3), (2,3), there are other admissible 
ombina-tions of k, l : (11), (22), (12); (22), (33), (23); (11),(33),(31); (12), (13), (22); (31), (32),(22). The rest stresses τmp are found from the equilibrium equations by 1-d integration.Boundary values, entering these integrals, are spe
i�ed by arbitrary su�
iently smoothfun
tions

τmp

∣∣
Γp,−

= τmp(ap(xp+1, xp+2), xp+1, xp+2) ∈ H1/2(Γp,−).Let us underline that the equilibrium 
onditions do not depend on the type of theHooke's law, e.g., for orthotropi
, transversally isotropi
 or other types of elasti
 bodies.As well they are not 
hanged for a wide range of physi
ally and geometri
ally nonlin-ear solid bodies. Therefore, the ways of obtaining of equilibrated and self-equilibratedstress tensors, introdu
ed in this paper, are appli
able to a wide range of problems insolid me
hani
s. All mentioned fa
tors in�uen
e only te
hniques of evaluation of the(smoothed, if ne
essary) stress tensor, 
orresponding to the approximate solution, be-ing subje
ted to a posteriori error estimation, and the spe
i�
 energy norms, in whi
herror estimation is produ
ed.Let us turn to a general 
ase of nonlinear problems of solid me
hani
s, for whi
h theapproximate solutions obtained by means of the Lagrange prin
iple of virtual work andCastigliano prin
iple of 
omplementary work provide an upper and a lower bounds forthe true potential energy of the body. As it is well known, in this 
ase the a posterioriestimate 
an be written in the form
L(v) − L(u) ≤ L(v) − C (τ ), (3.22)and under some 
onditions

β‖u− v‖V ≤ L(v) − C (τ ), 0 < β = const, (3.23)where
L(v) is the fun
tional of the 
omplete potential energy of the body on displa
ements

v , satisfying all geometri
 
onditions;
u is the exa
t solution of the problem minimizing the fun
tional L ;
C (τ ) is the fun
tional of the 
omplementary work on the stress tensor τ , satisfyingthe equilibrium 
onditions, and
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‖ · ‖V is a norm satisfying the inequality

β‖u − v‖V ≤ L(v) − L(u). (3.24)The estimate (3.22) expresses basi
 properties of the Lagrange and Castigliano prin-
iples see, e.g., de Vebeke [15℄, Arthurs [4℄ Mosolov/Myasnikov [34℄, Washizu [54℄,Berdi
hevskii [8℄, where referen
es on the earlier publi
ations 
an be found. The es-timate (3.23) follows from (3.22) under the 
ondition that (3.24) is ful�lled. In a math-emati
al setting the basi
 fa
ts for validity of the bounds (3.22), (3.23) may be found,e.g., in Ekeland/Temam [14℄ and Duvaut/Lions [13℄, Glowinski [16℄. They are foundin the duality theory of the variational 
al
ulus and the theory of monotone/
oer
iveoperators. The latter allows to formulate 
onditions on the smoothness of data and thetype of nonlinearity under whi
h (3.24) holds.The primal problem to be solved may be formulated in the following way: �nd u ∈ Usu
h that
L(u) = inf

v∈U

L(v), U ∈ V, (3.25)where L is a proper 
onvex, lower simi
ontinuous fun
tional, V is a re�exive Banahspa
e with the norm ‖ · ‖V and U is a 
losed 
onvex subset of V . The variable τ andthe fun
tional C (τ ) of the 
omplementary work are the dual variable and the dualfun
tional with respe
t to the primal variational problem (3.25). At that τ belongs tothe set Qf = Q0 + τ f of tensors satisfying equilibrium equations, e.g., (3.20), with Q0being the spa
e of the self-equilibrated tensors. The problem of �nding the stresses bymeans of the Castigliano prin
iple is the dual problem: �nd σ ∈ Q = Q0 + τ u , su
hthat
C (σ ) = sup

τ ∈Q

C (τ ), U ∈ V. (3.26)Assume that (−C (τ 0)) is also a proper 
onvex, lower simi
ontinuous fun
tional, whi
his 
oer
ive on re�exive Banah spa
e Q0 , then
C (τ ) ≤ C (σ ) = L(u) ≤ L(v) ∀v ∈ V, ∀ τ ∈ Q0,see,e.g., Ekeland/Temam [14℄.Many authors 
onsider the use of the a posteriori estimates (3.22), (3.23) 
ompu-tationally very 
ostly for the two reasons. One is that it is allegedly impossible to �ndthe equilibrated tensor τ 
lose to the exa
t stress tensor σ in a dire
t and su�
iently
heap way. Another reason is based on the 
onvi
tion that numeri
al solution of thedual problem for �nding τ is mu
h more di�
ult that the numeri
al solution of theprimal problem. Su
h reasons are soundly pronoun
ed in some 
ontemporary publi
a-tions. However, in the pre
eding se
tions we have demonstrated that the �rst reasonin a delusion. In what follows we 
onsider some additional ways (in
luding pra
ti
alalgorithms optimal in the arithmeti
 operations 
ount) for �nding equilibrated stresstensors 
lose to the solution. Apart from that we will show that it is with no doubt fea-sible to develop numeri
al te
hniques for solving dual problems, whi
h are 
omparablewith the most e�
ient numeri
al te
hniques for solving primal problems in respe
t ofthe 
omputational 
ost.3.3. Examples of algorithms for numeri
al testing. Below we illustratethe des
ribed approa
h by the two algorithms for obtaining a posteriori estimates inthe 
ase of the linear plain strain elasti
ity problem in the square Ω = (0, 1) × (0, 1) .We use notations e1 = (1, 0), e2 = (0, 1) , whereas σ fem stands for the stress tensor,determined by the FE solution.
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h point y(i) = (hi1+h/2, hi2+h/2), ik = 0, 1, . . . , n−1, 
al
ulate
σfem,12(y

(i)) =
E

2(1 + ν)

(
∂ufem,1

∂x2
(y(i)) +

∂ufem,2

∂x1
(y(i))

)
,using the �nite element solution ufem .Step 2. Cal
ulate approximate values φ̂(i) of ∂σfem,12/∂x2 at the middle points

ŷ(i) = (hi1 + h/2, hi2), of the horizontal mesh intervals:
φ̂(i) =

σfem,12(y
(i)) − σfem,12(y

(i−e2))

h
, i1 = 0, 1, . . . , n− 1, i2 = 1, 2, . . . , n− 1.Step 3. Evaluate approximate values φ(i) of ∂σfem,12/∂x2 at the internal nodes

x(i) :
φ(i) =

1

2

(
φ̂(i−e1) + φ̂(i)

)
, ik = 1, 2, . . . , n− 1.Step 4. Cal
ulate values φ(0,i2) , φ(n,i2) for i2 = 1, 2, . . . , n − 1 by means oflinear extrapolation from the interior of Ω over the two nearest values φ(i) on themesh line x ≡ i2h . In the same way 
al
ulate the values φ(i1,0) and φ(i1,n) for

i1 = 1, 2, . . . , n− 1 .Step 5. Determine values of φ(i) for i1, i2 = 0, n 
orresponding the verti
es, forinstan
e, as the mean value of the two linear extrapolations along the two edges.Step 6. Determine the pie
e wise bilinear 
ontinuous interpolation I(φh) ∈
∈ V (Ω) of the mesh fun
tion φh = (φ(i))n

i1,i2=0 .Step 7. Evaluate 
omponents of the stress tensor τ satisfying the equilibriumequation (3.11).Step 7.1. For xk ∈ (0, 1) , de�ne as pie
e linear 
ontinuous fun
tions c12(x1) ≃
≃ σfem,12(x1, 0), c11(x2) ≃ σfem,11(0, x2) , and c22(x1) ≃ σfem,22(x1, 0) . Forinstan
e, c12 is uniquely determined by its nodal values

c12(i1h) = σfem,12(i1h, 0), for i1 = 0, n,

c12(i1h) = σfem,12(i1 − 0, 0) + σfem,12(i1 + 0, 0), for i1 = 1, 2, . . . , n− 1,and similar pro
edures are used for ckk .Step 7.2. Determine 
omponents
τ12 = c12(x1) +

x2∫

0

I(φh) dx2, τ21 = τ12, (3.27)
τ11 = c11(x2) −

x1∫

0

(f1 + I(φh)) dx1, (3.28)
τ22 = c22(x1) −

x2∫

0

(
f2 +

∂τ21
∂x1

)
dx2 (3.29)of the equilibrated stress tensor t .Step 8. Cal
ulate ||σ (ufem) − τ ||σ for the a posteriori estimate.Let us denote the stress tensor obtained by Algorithm 3.1 by t(1) . If to 
hangevariables x1, x2 for x2, x1 , with the use of the same algorithm we 
ome to another



EXACTLY EQUILIBRATED FIELDS. . . 117equilibrated stress tensor t(2) . Clearly, the tensor t = α1t
(1) + α2t

(2) also belongs to
Qf and

||u − ufem||U ≤ ||σ (ufem) − (α1t
(1) + α2t

(2))||σ, ∀α1 + α2 ≡ 1. (3.30)Another invariant to variables x1, x2 pro
edure for �nding a tensor τ , satisfying theequilibrium equations (3.11), follows Algorithm B and is presented in the algorithm 3.2.Algorithm 3.2.Step 1. Cal
ulate the derivatives of the �nite element solution ufem =
= (ufem,1, ufem,2) at the 
enters of the mesh 
ells y(i) = (h(i1 + 0.5), h(i2 + 0.5)),
ik = 0, 1, . . . , n− 1,

u
(i1+1/2,i2+1/2)
fem,1,2 =

∂ufem,1

∂x2
(xi1,i2), u

(i1+1/2,i2+1/2)
fem,2,1 =

∂ufem,2

∂x1
(xi1,i2) (3.31)for i1, i2 = 0, 1, . . . , n− 1.Step 2. De�ne values

ũ
(i1+1/2,i2)
1,22 =

u
(i1+1/2,i2+1/2)
fem,1,2 − u

(i1+1/2,i2−1/2)
fem,1,2

h
,

ũ
(i1,i2+1/2)
2,11 =

u
(i1+1/2,i2+1/2)
fem,2,1 − u

(i1−1/2,i2+1/2)
fem,2,1

h

(3.32)for i1, i2 = 0, 1, . . . , n− 1.Step 3. De�ne values
ũ

(i1,i2)
1,221 =

u
(i1+1/2,i2)
1,22 − u

(i1−1/2,i2)
1,22

h
, ũ

(i1,i2)
2,112 =

u
(i1,i2+1/2)
2,11 − u

(i1,i2−1/2)
2,11

h
(3.33)for i1, i2 = 1, 2, . . . , n− 1.Step 4. At the mesh nodes (hi1, 0) of the boundary for i1 = 1, 2, . . . , n − 1 ,
al
ulate ũ(i1,0)

1,221 with the use of the linear extrapolation by the two nearest values
ũ

(i1,1)
1,221 and ũ

(i1,2)
1,221 . Cal
ulate

ũ
(i1,n)
1,221 , ũ

(0,i2)
1,221 , ũ

(n,i2)
1,221 , ũ

(i1,0)
2,112 , ũ

(i1,n)
2,112 , ũ

(0,i2)
2,112 , ũ

(n,i2)
2,112similarly. For the 
orner point (0, 0) , determine ũ(0,0)

1,221 , e.g., as the arithmeti
 meanof the two values obtained by linear extrapolations along two axes x1, x2 with theuse of the two nearest values. Determine
ũ

(0,n)
1,221, ũ

(n,0)
1,221, ũ

(n,n)
1,221, ũ

(0,0)
2,112, ũ

(0,n)
2,112, ũ

(n,0)
2,112, ũ

(n,n)
2,112similarly.Step 5. Cal
ulate

σ̃
(i)
12,21 =

E

2(1 + ν)

(
u

(i)
1,221 + u

(i)
2,112

)
.Step 6. Evaluate 
omponents of the stress tensor τ satisfying the equilibriumequation (3.11).
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τ12 =

x2∫

0

x1∫

0

I(σ̃12,21) dx1dx2 + c0 +

x1∫

0

c1(x1) dx1 +

x2∫

0

c2(x2) dx2,

τ21 = τ12, where I(σ̃12,21) is the bilinear interpolation for σ̃(i)
12,21 on the �niteelement mesh and

c0 ≃ σfem,12(0, 0), c1(x1) ≃
∂σfem,12

∂x1
(x1, 0), c2(x2) ≃

∂σfem,12

∂x2
(0, x2).Step 6.2. For c3(x2) ≃ σfem,11(0, x2) , determine

τ11 =

x1∫

0



f1 −
x1∫

0

I(σ̃12,21) dx1



 dx1 + c3(x2) − x1c2(x2). (3.34)Step 6.3. De�ne
τ22 =

x2∫

0


f2 −

x2∫

0

I(σ̃12,21) dx2


 dx2 + c4(x1) − x2c1(x1),where c4(x1) ≃ σfem,22(x1, 0).Step 7. Cal
ulate the a posteriori estimator ||σ (ufem) − τ || σ.We do not give formulas for evaluation of fun
tions ck , implying, however, averagingand interpolation pro
edures similar to those used in algorithms for Poisson equation.They provide the a

ura
y O (h2) for stresses, if understood as dire
t approximationsof stresses 
orresponding to smooth displa
ements. Let us emphasize that less a

urateapproximation of the boundary stresses, than inside of the domain, 
an damage thea

ura
y of the a posteriori estimator. The 
hoi
e of ck 
an be optimized on purposeto minimize the posteriori estimator. The system of algebrai
 equations for �nding su
h

ck has by the order of h smaller dimension. This allows to arrange 
omputations insu
h a way that the optimization will not 
ompromise the optimality of the a posterioriestimator in the 
omputational 
ost.34. Equilibrated �uxes/stresses obtained by means of Castigliano prin
ipleTo some authors, dual formulations of the boundary value problems, expressing inme
hani
s of solid bodies the Castigliano prin
iple, seem di�
ult for numeri
al solution.By this reason dual formulations are often dis
arded from 
onsideration as a tool in thepro
ess of the a posteriori estimation. However, we will illustrate that numeri
al solutionof dual problems may be as simple as of primal problems.4.1. Poisson equation. Solution of the problem (2.15) minimizes the fun
tional
J(v) =

1

2
a(v, v) − (f, v)Ω ∀ v ∈ V = H̊1(Ω).

3See, V.S. Kostylev. A posteriori estimates optimal in the 
omputational 
ost . Master thesis. Chairof Applied Mathemati
s. St. Petersburg State Polyte
hni
al University, St. Petersburg, Russia, 2006(in Russian).
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tions satisfying the equilibrium equations in the gen-eralized sense
Qf =



t ∈ L2(Ω) :

∫

Ω

(t · ∇v − fv) = 0 ∀ v ∈ V



 , (4.1)then the dual formulation of the problem is: �nd su
h z ∈ Qf that

J∗(z) = min
t∈Qf

J∗(t), J∗(t) =
1

2

∫

Ω

t · t dx. (4.2)The solution of the dual problem 
an be represented in the form z = z0 + tf , where tfany ve
tor from Qf and the ve
tor z0 ∈ Q0 satis�es the equation
∫

Ω

(z0 − tf )t0 dx = 0 ∀ t0 ∈ Q0. (4.3)For deriving a dis
rete approximation of the dual problem, we use the same as beforesquare mesh of size h = 1/n, n > 1, and de�ne a subset Qh
f ⊂ Qf , whi
h is representedas

Qh
f = tf +Qh

0 ,where Qh
0 is a �nite dimensional subspa
e of Q0 and tf is any �xed ve
tor from Qf .The approximate solution zh ∈ Qh

f satis�es the equation
∫

Ω

(zh
0 − tf )th

0 dx = 0 ∀ th
0 ∈ Qh

0 . (4.4)In previous se
tions, we 
onsidered a number of ways of evaluation of the ve
tor tf .For the purpose of dis
retization of the dual problem the simplest one 
an be used, e.g.,as in (2.7) at q ≡ 0 . At the same time it is worth emphasizing that a good 
hoi
e of
tf 
an 
onsiderably improve the a posteriori estimate, see also Remark 4.1. Suppose,
Qh

0 = span [φ (i)(x) = (φ
(i)
1 (x), φ

(i)
2 (x))⊤]i∈Ih , where Ih is the appropriate set of indi
es

i , then (4.4) is redu
ed to solving the system
Cw = f , (4.5)with the matrix C and the ve
tor f de�ned as

C = {ci,j}i,j∈Ih , w = {w(i)}i∈Ih , f = {f (i)}i∈Ih ,

ci,j =

∫

Ω

φ(i) · φ(j) dx, f (i) =

∫

Ω

φ(i) · tf dx.
(4.6)Remark 4.1. Instead of the ve
tor tf , one 
an use its approximation th

f . Then thebound for the error of approximation ‖tf − th
f‖ = O (hγ)N(f) with some γ and somenorm N(f) of the fun
tion f will appear in the right part of the a posteriori estimate.The approximation th

f may be 
hosen on purpose, e.g., to simplify integration (sin
e
th
f 
an be obtained by approximation of f ).The self-equilibrated ve
tors φ (i), ik = 1, 2, . . . , n, should be 
hosen in a way whi
hlead to the system (4.5) with good 
omputational properties. This 
an be anti
ipated,
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alized supports. Ea
h φ
(i) introdu
ed below has for the support the set

κi = ωi∩Ω, where ωi = {x : h(ik−1) < xk < h(ik +1), k = 1, 2} . Before doing this, weremind the notation τi = {x : h(ik − 1) < xk < hik} for the square nests of the mesh.First we de�ne subsidiary lo
al fun
tions q(i) whi
h at the de�nition of self-equilibratedve
tors play the same role as q in (2.7). Namely, we set
q(i)(x) =





1, x ∈ τi ∪ τi1+1,i2+1,

−1, x ∈ τi1+1,i2 ∪ τi1,i2+1,

0, Ω \ ωi.

(4.7)For the master linearly independent ve
tors, denoted as µ (i) = (µ
(i)
1 , µ

(i)
2 )⊤ , and theve
tor tf , we take

µ
(i)
1 (x) =

x1∫

0

q(i)(η, x2) dη, µ
(i)
2 (x) = −

x2∫

0

q(i)(x1, η) dη,

tf (x) = (0, tf,2)
⊤, tf,2(x) =

x2∫

0

f(x1, η) dη.

(4.8)Clearly, the supports of these ve
tors are the sets ωi , and instead of (4.8) one 
an use
µ

(i)
1 (x) =

x1∫

(i1−1)h

q(i)(η, x2) dη, µ
(i)
2 (x) = −

x2∫

(i2−1)h

q(i)(x1, η) dη. (4.9)The ve
tors φ (i) are de�ned as restri
tions to κ(i) = ω(i) ∩ Ω of the ve
tors µ (i) ,determined in (4.9), whereas Ih = {i : 0 ≤ ik ≤ n} .Now we 
ompare the system (4.5), generated with the use of the 
oordinate ve
tors
φ (i) , and the FE systems for the Poisson equation. Namely we 
onsider two FE systems

KDuD,fem = fD,fem, KNuN,fem = fN,fem, (4.10)generated by the spa
es V̊ (Ω) and V (Ω) for the Poisson equation in the unite squarewith the homogeneous Diri
hlet and Neumann boundary 
onditions on its boundary,respe
tively. Remind that V (Ω) is the spa
e of the 
ontinuous pie
e wise bilinear fun
-tions and V̊ (Ω) is its subspa
e of fun
tions vanishing on ∂Ω . Let p̂(i)(x) be the standardpie
e wise bilinear 
ontinuous fun
tion, satisfying 
onditions p̂(i)(x(j)) = δi,j with δi,jbeing the Krone
ker's delta, and p(i)(x) be its restri
tion to Ω . It is easy to 
on
ludethat
q(i) =

∂2p(i)

∂x1∂x2
, φ (i) =

(
∂p(i)

∂x2
,−∂p

(i)

∂x1

)⊤

, (4.11)when
e it immediately follows that C = KN .The system (4.10) with the matrix KD de�nes the FE solution of the primal prob-lem. In order to obtain the equilibrated ve
tor valid for the a posteriori estimation ofthe FE solution, one has to solve the se
ond system (4.10) with the matrix C = KN .Clearly, the both 
an be solved very e�
iently by many fast solvers, developed for FEmethods.Remark 4.2. It is easy to note that the introdu
ed lo
alized �uxes satisfy theequality ∑

i∈Ih

φ (i) = 0 ∀x ∈ Ω, (4.12)
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h is in agreement with to the fa
t that the matrix C = KN has the eigenve
tor
y0 = 1 = {y(i)

0 = 1}i∈Ih with the unity for all entries. This eigenve
tor 
orrespondsto zero eigenvalue. A

ording to (4.12), the right part in (4.5) satis�es the solvability
ondition, and if w is the solution, then w+c1 is also solution, where c is an arbitrarynumber.Suppose K is the FE matrix indu
ed by (2.4), i.e., it is the FE matrix for theproblem (2.1), (2.2) with the mixed boundary 
ondition. In this 
ase, the matrix C
oin
ides with the FE matrix for the problem
−∆u =f(x), x ∈ Ω, ∂Ω = ΓD ∪ ΓN ,

u|ΓN
= 0, ∂u/∂n|ΓD

= 0,
(4.13)with ΓD,ΓN de�ned as in (2.2).Remark 4.3. The analogy between matri
es C for the dis
retized dual problemand FE matri
es K for the primal problem is retained for dis
retizations on re
tangulargrids by higher order re
tangular �nite elements. The situation is more 
ompli
ated fortriangulations by triangular elements 
ompatible in C , be
ause the se
ond mixed deriva-tive do not exist. However, if any elements of the 
lass C1 are used, then the analogy isretained. If the di�erential operator has the form Lu =

2∑
k,l=1

∂(∂akl/∂xk)/∂xl . Coe�-
ients in the dual formulation will be entries of the matrix A−1 , where A = {akl}2
k,l=1will enter the dual formulation. In this 
ase, the matrix C again will be the FE matrix,indu
ed by the same 
oordinate fun
tions as in the FE method for the primal formula-tion. However, C is generated for the ellipti
 problem with the 
oe�
ients de�ned bythe matrix A−1 .Below we obtain another 
hara
terization of the of the spa
e Qh

0 and the set ofve
tors {φ (i)}i∈Ih , used for generating system (4.5) with the matrix C = KN . This
hara
terization will illuminate what kind of approximation is used for the dual problem.Yet another 
hara
terization by means of the integral equation with respe
t to theunknown fun
tion q will be 
onsidered in the next subse
tion.We return again to the Diri
hlet boundary value problem (2.26) in the unite square.Let
g(i) =

{
1 forx ∈ τi ∩ Ω,

0 forx ∈ Ω \ τi,
(4.14)and

µ̃
i3−k

k0 (x3−k) =

{
1 forx3−k ∈ h(i3−k − 1, i3−k), i3−k = 1, 2, . . . , n,

0 forx3−k /∈ h(i3−k − 1, i3−k).
(4.15)The set {g(i)}n

i1,i2=1 is the basis in the spa
e Lh
2 (Ω) , whi
h is a dis
rete approximationfor L2(Ω) and 
ontains pie
e wise 
onstant fun
tions on the uniform square mesh ofsize h . At the de�nition of self-equilibrated ve
tors, the fun
tions

g =

n∑

i1,i2=1

a(i)g(i)(x)play the same role as q in (2.7). In turn, fun
tions {µ̃i3−k

k0 (x3−k)}n
i3−k=1 will serveas the basis for the approximation of the value of the boundary �ux at xk ≡ 0 . In
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ordan
e with su
h understanding, we de�ne the �nite dimensional spa
e of the self-equilibrated �uxes as Qh
0 = span [t(i)]i∈Ih

⋆
where Ih

⋆ = {i = (ik, i3−k), ik = 0, 1, . . . , n,
i3−k = 1, 2, . . . , n} and

t
(i)
1 (x) =

x1∫

0

g(i)(ξ1, x2) dξ1, t
(i)
2 (x) = −

x2∫

0

g(i)(x1, ξ2)) dξ2 (4.16)
t
(0,i3−k)
k (x) = µ̃

i3−k

k0 (x3−k), t
(0,i3−k)
3−k (x) ≡ 0. (4.17)It is easy to see that fun
tions q(i), 1 ≤ ik ≤ n, are linear 
ombinations of g(i) forthe same i . Therefore, for these i �uxes φ

(i) are linear 
ombinations of �uxes t(i) .Fluxes φ (0,i3−k) are obtained by means of q(i), ik = 0, 1 ≤ i3−k ≤ n and boundary�uxes µ̃i3−k

k0 (xk) . Therefore, we have proved the following Lemma.Lemma 4.1. The spa
e Qh
0(Ω) = span [t(i)]i∈Ih

⋆
, spanned over �uxes (4.16), (4.17),and the spa
e Qh

0(Ω) = span [{φ (i)(x)]i∈Ih , spanned over lo
alized �uxes (4.9), 
oin
ide.Remark 4.4. Solution of the system generated with the use of the 
oordinatefun
tions {t(i)}i∈Ih
⋆

may be unstable. The reason is not that this system has a bad
ondition number, whi
h indeed is O (h−2) . The system is equivalent to the dis
retizedintegral equation of the �rst kind � see next subse
tion � and at h → 0 it smallesteigenvalue tends to zero.Remark 4.5. Suppose that we have to solve the Poisson equation with the Neu-mann boundary 
ondition
zn|∂Ω = tn, (4.18)whi
h for the dual formulation is an essential one. In this 
ase, the approximate solutionof the dual problem is represented as

zh = zh
0 + tf,N = zh

0 + tN + tf , z0 =

n−1∑

i1,i2=1

w(i) φ i,where the ve
tor tN found from the Neumann boundary 
ondition and the ve
tor tD,fis de�ned as in the pre
eding 
ase of the Diri
hlet boundary 
ondition, see (4.8). Theve
tor tn may be spe
i�ed by the ve
tor, de�ned on Ω and, therefore, one simply 
anset tN = tn . Coe�
ients, w(i) for i ∈ I0 := {i : 1 ≤ ik ≤ n− 1, k = 1, 2, } are foundfrom the system
Cw = f , (4.19)with the matrix C and the ve
tor f de�ned as

C = {ci,j}n−1
ik,jl=0, f = {f (i)}n−1

i1,i2=0, ci,j =

∫

Ω

φ(i) · φ(i) dx,

f (i) =

∫

Ω

φ
(i) · tf dx, tf (x) = (0, tf,2)

⊤, tf,2(x) =

x2∫

0

f(x1, η) dη.

(4.20)In the parti
ular 
ase of the homogeneous boundary 
ondition ∂u/∂ν
∣∣
Ω

= 0 , one has
tN = 0 , and (4.20) uniquely de�ne (4.19), whi
h in turn has the unique solution.There is no di�
ulties in de�ning appropriate ve
tor tN satisfying the nonhomoge-neous boundary 
ondition (4.18). Parti
ularly, tN 
an be de�ned in su
h a way that
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inity of the boundary. Another option is to use someapproximation for tN by some ve
tor th
N . We 
an set

th
N =

∑

i∈I∂Ω

ci φ , i ∈ I∂Ω = {i : x(i) ∈ ∂Ω},with the 
oe�
ients ci 
hosen in su
h a way that the tra
e th
N,∂Ω = th

N

∣∣
N,∂Ω

is thedis
rete approximation of tn , obtained, e.g., by the interpolation or the least squaremethod. If the solution zh is used in the a posteriori estimate, the bound for the norm
‖tn − th

N,∂Ω‖2,∂Ω will appear in its right part.Clearly, the 
ase of an arbitrary su�
iently smooth domain does 
an be treatedsimilarly.4.2. Some remarks and generalizations. Several obvious, but having impor-tant 
onsequen
es, remarks 
an be made.
α ) Sin
e the Diri
hlet boundary 
ondition is natural for the dual formulation,we 
an use orthogonal grid for obtaining equilibrated �uxes in the 
ase of arbitrarysu�
iently smooth domain Ω .
β ) For solving the dual problem it is not ne
essary to use the same mesh, whi
hwas used for FE dis
retization. More over, sin
e equilibrated �uxes from Q0 , see (4.1),are not supposed to satisfy 
ompatibility 
onditions, we 
an easily add any equilibrated
oordinate ve
tors to the basis {φ (i)}n

i1,i2=0 and enri
h the spa
e Qh
0 . For instan
e,additional 
oordinate ve
tors 
an be de�ned with the use of lo
al �ner mesh, arbitrarilyoriented with respe
t to the mesh used for the de�nition of the basis {φ (i)}n

i1,i2=0 . We
an add also 
oordinate ve
tors with spe
i�
 properties admitting a better approxima-tion of 
on
entration of �uxes or their singularities.Arbitrary domain. Sin
e the Diri
hlet boundary 
ondition is natural for the dualformulation, we 
an use orthogonal grid for obtaining equilibrated �uxes in the 
ase ofarbitrary su�
iently smooth domain Ω .Suppose, we would like to obtain the equilibrated �uxes for the Diri
hlet boundaryvalue problem (2.26). Formally, the formulation of the dual problem is not 
hanged,and again we have to solve integral identity (4.3) with the use of Q0 de�ned for agiven Ω as in (4.1). Namely, for �nding the equilibrated �uxes whi
h approximatethe exa
t ones, we 
an 
over the domain by the uniform square mesh of size h . Let
IΩ = {i : mes [ω(i) ∩ Ω 6= 0]} and Qh

0 = spani∈IΩ [φ (i)] , where ea
h φ (i) is de�nedas the restri
tion of µ (i) to Ω . It is ne
essary to underline that sin
e mes κ(i) 
anbe small for some i ∈ IΩ , the 
ondition of matrix C of the system (4.5) for theproblem under 
onsideration 
an be bad. However, due to the dis
ussed at the endof the pre
eding subse
tion analogy with the FE systems, several simple remedies forimproving the 
ondition 
an be used. We refer in this relation to Korneev [26℄ andOganesian/Ruhovets [38℄.Densening of the mesh. For solving the dual problem it is 
onvenient to use thesame mesh, whi
h was used for FE dis
retization (e.g., for evaluation of the normsentering a posteriori error estimate), but not ne
essary. For instan
e, sin
e equilibrated�uxes from Q0 , see (4.1), are not supposed to satisfy 
ompatibility 
onditions, we 
aneasily add any equilibrated 
oordinate ve
tors to the set of su
h ve
tors, spanning thespa
e Qh
0 , see, e.g., (4.16), (4.17), and enri
h this spa
e up to some spa
e Qh

0,⋆ ⊃ Qh
0 . Forinstan
e, additional 
oordinate ve
tors 
an be de�ned with the use of lo
al �ner mesh,generating Qh

0 . We 
an add also 
oordinate ve
tors with spe
i�
 properties admittinga better approximation of singularities in �uxes. A good sour
e of fun
tions, whi
h 
anserve for generating the lo
alized equilibrated fun
tions are 
oordinate fun
tions used
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z [40℄ and Strobolis/Babuska/Copps[47℄.We 
onsider only a simple example of densening the mesh. Suppose that in a stri
tlyinternal subdomain D ⊂ Ω it is ne
essary to use more a

urate approximation. Sin
ethe 
ase of an arbitrary su�
iently smooth domain was dis
ussed above, we restri
t
onsiderations to the 
ase when Ω is the unit square. We 
an pro
eed in the followingway. Let Dh is the least �mesh domain� 
overing D , i.e.,
Dh

= ∪i∈Ih
D
τh

i , Ih
D = {i : τh

i ∩ D 6= ∅},

τh
i is the nest of the mesh of size h . Ea
h square nest τh

i , i ∈ ID , is subdivided in foursquares, de�ning the mesh of size ~ = h/2 on Dh . Retaining old indi
es i = (i1, i2) forold nodes, we add indi
es i = (i1±1/2, i2±1/2) for new nodes. We use the notation τ~

ifor all smaller and bigger nests, assuming that i is the index of the right upper vertexof τ~

i , and introdu
e sets
I~

D = {i : τ~

i ∩ Dh 6= ∅}, Ih
Ω = {i : τh

i ∩ Ω 6= ∅},
Ih

Ω\Dh = {i : τh
i ∩ Ω 6= ∅}, Ih,~ = Ih

Ω\Dh ∪ I~

D.It is 
onvenient to use the 
ommon notation τi for τh
i , i ∈ Ih

Ω\D h and for τ~

i ,

i ∈ I~

D . Now we 
an dire
tly use (4.14), (4.15) and (4.16), (4.17) for de�ning the
oordinate ve
tors of equilibrated �uxes, spanning the spa
e of equilibrated �uxes, whi
hwe denote Qh,~
0 . The dimension of Qh,~

0 is card[Ih,~] + 2n .The above 
onsideration shows that in essen
e the densening is quite simple. How-ever, the basis ve
tors (4.16), (4.17) are not lo
alized and, therefore, the matrix of the
orresponding system will have 
onsiderable �ll in. Apart from that, solving this sys-tem may be unstable for the reason pointed out in Remark 4.4. The instability 
an beremoved by the transformation of the introdu
ed 
oordinate self-equilibrated �uxes tothe lo
alized ones. Instead of one type, two types of the lo
alized self-equilibrated �uxesare used. If to use the notation φ
(i)
h = φ (i) for the �uxes, introdu
ed in (4.7)�(4.9) onthe mesh of size h , the se
ond type �uxes φ

(j)
h/2 are similarly de�ned on the mesh ofsize h/2 .Interpretation as solution of integral equation. We turn to the Diri
hletproblem (2.26) in an arbitrary su�
iently smooth domain and 
onsider the equivalentsystem of two equations

∂2u(1)

∂x2
1

= α1f − q, u(1)
∣∣
∂Ω

= 0,

∂2u(2)

∂x2
2

= α2f + q, u(2)
∣∣
∂Ω

= 0,

u(1) = u(2) ∀x ∈ Ω.

(4.21)In the me
hani
al sense, this system des
ribes the two systems of strings stret
hedalong axes xk with ea
h string of one dire
tion fastened to the strings of other dire
tionat the 
ross points. Fun
tion q is the internal for
e, a
ting between the two systemsof strings. For simpli
ity we assume again that ea
h line xk ≡ const 
rosses Ω notmore than in two points, Γk,− and Γk,+ are the parts of the boundary 
ontaining thepoints of su
h pairs, having lesser and larger 
oordinates xk , respe
tively. We write theequations de�ning the 
urves Γk,− and Γk,+ as xk = ak(x3−k), and xk = bk(x3−k)



EXACTLY EQUILIBRATED FIELDS. . . 125for â3−k < x3−k < b̂3−k. Let G k(xk, x3−k, yk) be the Grin's fun
tions for the ordinarydi�erential operators in (4.21), so that
u(k)(x) =

bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)(αkf − q)(yk, x3−k) dyk.Satisfying the equality u(1) = u(2) , one 
omes to the integral equation
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk =

=
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk. (4.22)In Rozin [45℄, Korneev/vRozin [29, 30℄, the 
lass of integral equation of a more generalbut similar to (4.22) type was termed integral equation of the method of splitting.For dis
retization of the integral equation (4.22), one 
an use the spa
e Gh(Ω) of thepie
e wise 
onstant fun
tions with the basis {g(i)}i∈Ih
Ω

, Ih
Ω = {i : τh

i ∩ Ω 6= ∅} . As wewill show below, in this way we 
ome to the system equivalent to (4.5) up to the 
hoi
eof the basis fun
tions and αk . However, from (4.22) it be
omes 
lear that this systemis not good for the numeri
al solution. Sin
e (4.22) is an integral equation of the 1-stkind, this basis will lead to the unstable system of algebrai
 equations, the matrix ofwhi
h has 
onsiderable �ll in. The use of another set of 
oordinate �uxes {q(i)} , whi
hprodu
e lo
al self-equilibrated �uxes, results (as in Subse
tion 4.1) in the system, whi
h
omputational properties are the same as of the FE system for the Poisson equationwith the Neumann boundary 
ondition. In order to make more 
lear the interrelationbetween solving pro
edures of the integral equation and the dual problem (4.2), wenote that the generalized formulation of (4.22) is: �nd q ∈ L2(Ω) su
h that for any
q̃ ∈ L2(Ω) we have

∫

Ω

q̃(x){
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk} dx =

=

∫

Ω

q̃(x){
∑

k=1,2

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk} dx. (4.23)Taking into a

ount the equalities
bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)q(yk, x3−k) dyk = 0 for xk = ak(x3−k), bk(x3−k),
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bk(x3−k)∫

ak(x3−k)

q̃(x)





bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk




dxk =

= −
bk(x3−k)∫

ak(x3−k)




ψ(x3−k) +

xk∫

ak(x3−k)

q̃(ηk, x3−k) dηk





×

×





∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(yk, x3−k) dyk





dxk,where ψ(x3−k) is an arbitrary su�
iently smooth fun
tion. By the de�nition of theGreen's fun
tion G k , we have the equality

∂

∂xk

bk(x3−k)∫

ak(x3−k)

G k(xk, x3−k, yk)p(yk, x3−k) dyk = −t̃0,k(x3−k) −
xk∫

ak(x3−k)

p(ηk, x3−k) dηk,in whi
h −t̃0,k(x3−k) = t̃0,k(p(x), ak(x3−k), x3−k) is the boundary value for the deriva-tive in the left part and, therefore, is uniquely de�ned by the fun
tion p . Suppose thatfor dis
retizing the problem we use the basis {g(i)}i∈Ih
Ω

and
t
(i)
◦ (x) =

(
t
(i)
◦,1, t

(i)
◦,2

)⊤

, t
(i)
◦,k =

∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)q(i)(yk, x3−k) dyk,

tf (x) =
(
t
(i)
f,1, t

(i)
f,2

)⊤

, tf,k =
∂

∂xk

bk(x3−k)∫

ak(x3−k)

Gk(xk, x3−k, yk)αkf(yk, x3−k) dyk,

(4.24)
Qh

◦ = span [t
(i)
◦ ]i∈Ih

Ω

. Then (4.23) 
an be reformulated: �nd z = z◦ + tf , where tf wasde�ned above and the ve
tor z◦ ∈ Q◦ satis�es the equation
∫

Ω

(z◦ − tf )t
(i)
◦ dx = 0 ∀ i ∈ Ih

Ω. (4.25)Let us underline that the 
oordinate fun
tions gi of the internal for
es are not self-equilibrated, but the �uxes t
(i)
◦ are due to their de�nition by means of the green'sfun
tions.Remark 4.6. Note that it is not ne
essary to use Green's fun
tions G k for evalu-ating ve
tors t

(i)
◦ , tf . If the points x◦,i

k = x◦,i
k (x3−k), xf

k = xf,k
k (x3−k) are su
h that

bk(x3−k)∫

ak(x3−k)

(xk − x◦,i
k )q(i)(x) dxk = 0,

bk(x3−k)∫

ak(x3−k)

(xk − xf
k)αkf(x) dxk = 0,
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t
(i)
◦,k(x) = t

(i)
◦,k,−(x3−k) + (−1)(3−k)

xk∫

ak(x3−k)

q(i)(yk, x3−k) dyk,

tf,k(x) = tf,k,−(x3−k) +

xk∫

ak(x3−k)

αkf(yk, x3−k) dyk,

(4.26)where
t
(i)
◦,k,−(x3−k) =

bk − x◦,i
k

bk − ak

bk(x3−k)∫

ak(x3−k)

q(i)(x) dxk,

tf,k,−(x3−k) =
bk − x◦,i

k

bk − ak

bk(x3−k)∫

ak(x3−k)

αkf(xk) dxk.The formulation (4.25) di�ers from (4.3) not only by the 
hoi
e of the basis, but alsoin the spa
es of 
oordinate fun
tions. Indeed, we have Q◦ ⊂ Q0 and instead of (4.8)the relationships (4.26) are used. That means that ve
tors t(i)◦,k , tf,k satisfy additional
onditions in 
omparison with t
(i)
0,k , tf,k entering (4.3). If one de�nes

v
(i)
k (x) :=

xk∫

ak(x3−k)

t
(i)
◦,k(yk, x3−k) dyk, wk(x) :=

xk∫

ak(x3−k)

tf,k(yk, x3−k) dyk,then
v
(i)
k , wk

∣∣
∂Ω

= 0.a

ording to (4.24), (4.26) and de�nitions of Green's fun
tions.Remark 4.7. In this paper, we do not dis
uss 
onvergen
e of the des
ribed Riesz �Galerkin methods for the minimization of the fun
tionals of the 
omplementary workor 
orresponding integral equations of the splitting method. The analysis of the 
onver-gen
e does not meet di�
ulties. For the te
hniques whi
h 
an be applied and results werefer to Korneev/Rozin [29, 30℄ and Korneev [19�21, 25, 27℄. In these works, simpler forthe realization, but more 
ompli
ated for the analysis dis
retizations were studied. Forinstan
e, in Korneev [20, 21℄ 1-d integrals in (4.22) were approximated by the trapez-ium quadratures on a re
tangular grid and then the 
ollo
ation method was applied forobtaining the system of algebrai
 equations. Namely, it was required that (4.22) holdsfor the quadrature nodes. Let us also note, that integral equations obtained by themethod of splitting for the bending problem of thin plates and 
ylindri
al shells werestudied by Korneev/Rozin [29, 30℄ and Korneev [22℄� [25℄. Constru
tion of lo
alizedequilibrated fun
tions of internal for
es for thin shells and shells of moderate thi
knesswas 
ompleted in Korneev [27℄ under rather general assumptions on the 
on�gurationof the middle surfa
e. Also in [27℄ the analysis of the 
onvergen
e may be found fornumeri
al methods, based on the use of these equilibrated fun
tions for the minimiza-tion of the fun
tional of the 
omplementary work for shells with arbitrary su�
ientlysmooth middle surfa
es.



128 I.E. ANUFRIEV ET AL.Remark 4.8. For the boundary value problems of me
hani
s of solid bodies twolevel of splitting are distinguished: i) splitting of the equilibrium equations and ii) split-ting of partial di�erential equations of a boundary value problem in respe
t to displa
e-ments. The latter means that we are able to split the equilibrium, stress-strain, strain-displa
ements relations and boundary 
onditions. When this is possible, one 
an obtainintegral equations of the method of splitting, whi
h were introdu
ed in me
hani
s ofsolid bodies by Rozin [45, 46℄. From his and other works, mentioned in Remark 4.7,it follows that in rather general 
ase ii) 
an be a

omplished, if the Poisson ratio νis zero. However, for an e�
ient use of the a posteriori error estimation algorithmsof the spe
i�
 
lass under 
onsideration one needs only to split equilibrium equations,whi
h is always possible. The latter is true for the possibility of obtaining dis
rete dualformulations based on the Castigliano prin
iple, whi
h are 
omparable in the 
ompu-tational 
ost of their solution with FE methods for primal formulations in respe
t todispla
ements.Remark 4.9. Let ũfem be the fun
tion from the FE spa
e interpolating the exa
tsolution u . We rewrite (2.8) in the form
‖∇u−∇ufem‖ ≤ ‖∇(ũfem − ufem)‖ + ‖∇ũfem − z‖ ∀ z ∈ Qf , (4.27)and assume that the FE spa
e is the spa
e of the 
ontinuous pie
e wise bilinear fun
tions.We assume also that z is obtained by the approximate solution of the dual problem.Note that all fun
tions in the right part are from the �nite dimensional spa
es. For
onvenien
e, let us 
all by the gauge order the order of 
onvergen
e of the norm in theleft, given by the a priori estimate. Due to the super
onvergen
e property, the �rst termin the right 
an be estimated with an additional with respe
t to the gauge order, see,e.g., Oganesian/Ruhovets [38℄, Korneev [28℄ and Whalbin [53℄, Babuska/Strobolis [7℄.At the approximation of q by the pie
e wise 
onstant fun
tions it is easy to prove theestimate of the se
ond norm with the gauge order. Therefore, the a

ura
y of the aposteriori error estimate is at list the same in the order as of the a priori estimate.Comparison of dis
rete primal and dual formulations. The equality CI =

= K takes pla
e in a mu
h more general 
ase. To illustrate this we turn to the Diri
hletproblem (2.26) in an arbitrary su�
iently smooth domain and its FE dis
retization(2.27). We 
an assume that the �nite elements of the FE assemblage are arbitrary whi
h
an provide that V̊ (Ω) ∈ C(Ω)∩ H̊1(Ω) . In other words, the �nite elements are allowedto be be 
urvilinear and asso
iated with the triangular or re
tangular referen
e elementwith any 
ompatible in C(Ω) ∩ H̊1(Ω) shape fun
tions. The Hermite �nite elementsare not ex
luded, but we number the FE Galerkin basis fun
tions of the spa
e V (Ω)
onse
utively with the use of the number l = 1, 2, . . . , L without making di�eren
ebetween basis fun
tions, 
orresponding to the values of FE fun
tions or their derivativesat the nodes. Therefore, L is the total number of the FE Galerkin basis fun
tions, forwhi
h we use now the notation p[l](x) . The number of the internal basis fun
tions isdenoted by LI so that and V̊ (Ω) = span[p[l]]L I

l=1 . The �nite element solution satis�esthe identity (2.27). The basis self-equilibrated ve
tors φ
[l]
0 = (φ

[l]
0,1, φ

[l]
0,2)

⊤ in the spa
e
Q0 = span[φ

[l]
0 ]Ll=1 
an be de�ned by means of the FE basis fun
tions a

ording to

φ
[l]
0,k = (−1)1−k ∂φ[l]

∂x3−k
, k = 1, 2, l = 1, 2, . . . , LI . (4.28)It is 
lear that ve
tors φ[l]

0,k satisfy the equilibrium equation
∂φ[l]

∂x1
+
∂φ[l]

∂x2
=

∂2φ[l]

∂x1∂x2
− ∂2φ[l]

∂x2∂x1
= 0 (4.29)
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lassi
al sense only when the �nite elements are 
ompatible in C1 . In general, forelements 
ompatible in C , se
ond derivatives in (4.29) are Dira
k's deltas on the bor-ders of �nite elements, and therefore (4.29) involves equalities for the Dira
k's deltas
orresponding to ∂2φ[l]/∂xk∂x3−k for k = 1, 2. However, in the weak sense, see (4.1),the equilibrium equations are satis�ed. Now we see that KI = CI , where
K = {kl,m}l,m∈LI

, C = {cl,m}l,m∈LI
,

kl,m =

∫

Ω

∇p[l] · ∇p[m] dx, cl,m =

∫

Ω

φ(l) · φ(m) dx. (4.30)Clearly, in the 
ase of more general equations of se
ond order, e.g., when the 
oe�
ientsare di�erent and variable, the matri
es KI and CI are not equal. For instan
e, if weturn to the equation ∇· ρ∇u = f where ρ is a diagonal 2×2 matrix ρ = diag[ρ1, ρ2] ,then KI is the same as CI for the similar equation with ρ = diag[ρ−1
2 , ρ−1

1 ] . Indeed,the basis in Qf is the same, and the 
oe�
ients of the sti�ness and de�e
tion matri
esare the integrals
kl,m =

∫

Ω

∇p[l] · ρ∇p[m] dx, cl,m =

∫

Ω

φ (l) · ρ−1φ (m) dx.From the above 
onsiderations, one 
an 
on
lude that at least for regular ellipti
problems 
omputational properties of the dis
retizations of primal and dual problemsare in essential the same and solutions of these die
retizations 
an be obtained by fastsolvers of the same types.Remark 4.10. For 3-d Diri
hlet problem (2.15) we have for the �ux t = (t1, t2, t3)
⊤the balan
e equation

∂t1
∂x1

+
∂t2
∂x2

+
∂t3
∂x3

+ f = 0. (4.31)Therefore, in order to obtain an equilibrated �ux, two of the 
omponents 
an be spe
i�edby arbitrary fun
tions and only third found from (4.31). Again, su�
iently smooth lo
alfun
tions 
an be used for generating self-balan
ed �uxes. Suppose that φ(x) has lo
alsupport δ and ∂3φ/∂x1∂x2∂x3 is bounded in the vi
inity of δ . Then for su�
ientlysmooth fun
tions αk, k = 1, 2, 3, 
omponents of a self-balan
ed �ux are de�ned by
tk = αk

∂2tk
∂xk+1∂xk+2

, k = 1, 2, 3. (4.32)Suppose, V (Ω), Ω = (0, 1)3, is the spa
e of the 
ontinuous pie
e wise linear fun
tion onthe FE 
ubi
 mesh of size h and φ(i)(x) satis�es φ(i)(x(j)) = δi,j , where i = (i1, i2, i3),
j = (j1, j2, j3), x

(i) = hi, x(j) = hj and h = 1/n . Then substituting φ(x) = φ(i)(x) in(4.32), one obtains lo
al self-balan
ed �uxes t(i) = (t
(i)
1 , t

(i)
2 , t

(i)
3 )⊤ .4.3. Linear elasti
ity problems. State of plain stress. In this se
tion wewill use the matrix-ve
tor form of the stress strain relations for the state of plain stress

σ = Dε , D =
E

(1 + ν)(1 − 2ν)




1 − ν ν 0
ν 1 − ν 0
0 0 (1 − 2ν)/2



 ,where
σ = (σ11, σ22, σ12)

⊤, ε = (ε11, ε22, γ12)
⊤, γ12 = 2ε12,



130 I.E. ANUFRIEV ET AL.and we turn to the problem (3.6). The solution of the dual problem is the stress ve
tor
z = z0+tf , where tf any ve
tor from Qf and the ve
tor z0 ∈ Q0 satis�es the equation

∫

Ω

(z0 − tf )D−1t0 dx = 0 ∀ t0 ∈ Q0. (4.33)In order to dis
retize this integral identity, one 
an pro
eed along the lines of AlgorithmsA or B. Suppose for simpli
ity that the domain is 
overed by the square mesh of size
h , Ωh is some mesh domain 
ontaining Ω and de�ned below, and

V (Ωh) = {v : v ∈ C(Ω
h
), v

∣∣
τi

∈ Qp, p ≥ 1},where Qp is the spa
e of polynomials of the the order p in ea
h variable. For de�ninga dis
rete subspa
e Qh
0 (Ω) ⊂ Q0(Ω) , at �rst we de�ne the spa
e of stresses σ12 as therestri
tion V (Ω) of the spa
e V (Ωh) to Ω . The stresses σkk are evaluated a

ording(3.13), (3.14) with fk ≡ 0 and fun
tions ψkk,Γk,−

from appropriate �nite dimensionalspa
es of tra
es. The 
oe�
ients before the basis fun
tions of these spa
es are 
learlyadditional unknowns in the dis
rete dual formulation. It is possible to avoid spe
ialdes
ription of fun
tions ψkk,Γk,−
by 
hoosing a proper basis in V (Ωh) . At the sametime, it is possible to de�ne the basis fun
tions in su
h a way that their supports will belo
alized on the squares, 
ontaining 9 mesh sells. Sin
e the generalization to any p ≥ 1is obvious, we will des
ribe one of the bases for the 
ase p = 1 .Let p(i)(x), p(i)(x(j)) = δi,j be the usual nodal 
oordinate fun
tion in the spa
e of
ontinuous pie
e wise bilinear fun
tions, and

φ(i)(x) = p(i)(x) − p(i1−1,i2)(x) − p(i1,i2−1)(x) + p(i1−1,i2−1)(x), (4.34)so that supp [φ(i)(x)] = ω(i), and ω(i) = {x : (ik − 2)h < xk < (ik + 1)h} . First, wede�ne the master basis ve
tor µ (i) by the equalities
µ

(i)
12 = φ(i)(x), µ

(i)
kk = −

xk∫

(ik−2)h

∂φ(i)

∂x3−k
(ηk, x3−k) dηk.Elements of the basis {φ

h,i
0 }I h , I h = {i : κ(i) := ω(i) ∩ Ω 6= ∅} in Qh

0 (Ω) are therestri
tions of µ (i) to Ω . Note that for Ωh one 
an take the domain with the 
losure
Ω

h
= ∪I hω(i) . Dis
rete formulation of (4.33) is the following one: �nd su
h ve
tor

z = z0,h + tf with zh
0 ∈ Qh

0(Ω) that
∫

Ω

(zh
0 − tf )D−1 φ

h,i
0 dx = 0, ∀ φ

h,i
0 ∈ Qh

0 . (4.35)3-d elasti
ity. As it is seen from Se
tion 3, the 
onstru
tion of the spa
e ofthe self-equilibrated stresses for 3-d is similar to 2-d 
ase. The same is true about the
onstru
tion of the basis fun
tions in the spa
e Qh
0 , whi
h have lo
al supports. In thematrix-ve
tor form the stress strain relations are

σ = Dε,

D =
E

(1 + ν)(1 − 2ν)




1 − ν ν ν 0 0 0
1 − ν ν 0 0 0

1 − ν 0 0 0
(1 − 2ν)/2 0 0

SY M (1 − 2ν)/2 0
(1 − 2ν)/2


,

(4.36)
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σ = (σ11, σ22, σ33, σ12, σ23, σ13)

⊤, ε = (ε11, ε22, ε33, γ12, γ23, γ12)
⊤, γkl = 2εkl, k 6= l.As for the 2-d problem, we 
over the domain by the square mesh of size h , 
onsidersome domain Ωh ⊇ Ω 
ontaining Ω , and the spa
e V (Ωh) = {v : v ∈ C(Ω

h
), v

∣∣
τi

∈
∈ Qp, p ≥ 1}, where Qp is the spa
e of polynomials of the the order p in ea
h variable.For Ωh we take the mesh domain 
ontaining all nests τi, i = (i1, i2, i3) involved in thede�nition of the basis in the spa
e Qh

0 .Let p(i)(x), p(i)(x(j)) = δi,j be the usual nodal 
oordinate fun
tion in the spa
e of
ontinuous pie
e wise bilinear fun
tions, and
φ(i)(x) = p(i)(x) − p(i1−1,i2,i3)(x) − p(i1,i2−1,i3)(x) + p(i1−1,i2−1,i3)(x)−
− p(i1,i2,i3−1)(x) + p(i1−1,i2,i3−1)(x) + p(i1,i2−1,i3−1)(x) − p(i1−1,i2−1,i3−1)(x), (4.37)so that supp [φ(i)(x)] = ω(i), and ω(i) = {x : (ik − 2)h < xk < (ik + 1)h, k = 1, 2, 3} .We de�ne the master basis ve
tor µ (i) by the equalities
µ

(i)
kl = φ(i)(x), µ

(i)
kk = −

xk∫

(ik−2)h

(
∂φ(i)

∂xk+1
+

∂φ(i)

∂xk+2

)
(ηk, xk+1, xk+2) dηk, k 6= l,and the elements of the basis {φ

h,i
0 }I h , I h = {i : κ(i) := ω(i) ∩Ω 6= ∅} , in Qh

0 (Ω) asthe restri
tions of µ (i) to Ω .The dis
rete formulation of the dual problem has the same form (4.35) and requiressolution of the system of linear algebrai
 equations with the banded matrix.5. Numeri
al resultsIn this se
tion, we dis
uss the results of numeri
al experiments with the equilibriumbased a posteriori error estimates des
ribed in previous se
tions. The purpose of ourexperiments is to demonstrate that our algorithms are able to produ
e su
h estimateswith the very good e�e
tiveness index and for the optimal in the order number ofarithmeti
 operations. For model problems, linear and nonlinear se
ond order ellipti
equations in the unite square were used, in
luding the equation with jumping 
oe�
ientsand the plain strain linear elasti
ity problem. Main 
on
lusions made from numeri
alresults are that our a posteriori estimatesare asymptoti
ally exa
t, and, more over, in many 
ases 
onvergen
e of the e�e
tive-ness index to the unity was observed at h→ 0 ,are asymptoti
ally optimal in the 
omputational 
ost, the number of arithmeti
 op-erations was always proportional to the number of unknowns,
an be easily made robust in respe
t to 
oe�
ients jumps after ne
essary modi�
a-tions of the algorithms.We tested also the a posteriori estimators in whi
h the equilibrated �elds wereobtained by solving the dual problem, expressing the Castigliano prin
iple.
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Fig. 1. Energy norm of FE error and a posteriori estimator against number of unknowns forthe problem (5.1)5.1. The Poisson equation.5.1.1. Dire
t evaluation algorithms. Consider the model problem
− ∆u =

5π2

2
cos

3π

2
x1 cos

π

2
x2 , (x1, x2) ∈ Ω = (0, 1)× (0, 1),

u|ΓD
= 0, u|ΓN

= 0,

ΓD = {(x1, x2)| x1 ∈ [0, 1] , x2 = 1} ∪ {(x1, x2)| x1 = 1 , x2 ∈ [0, 1]} ,
ΓN = {(x1, x2)| x1 ∈ [0, 1] , x2 = 0} ∪ {(x1, x2)| x1 = 0 , x2 ∈ [0, 1]} .

(5.1)with the exa
t solution
u(x1, x2) = cos

3π

2
x1 cos

π

2
x2 . (5.2)The FE spa
e of the pie
e wise bilinear fun
tions for this problem V 0(Ω) was de�nedin Se
tion 2. For the FE solution ufem on the mesh of size h , we used Algorithm 2.1 inorder to 
al
ulate the ve
tor-valued fun
tion t(x) = (t1(x), t2(x))

⊤ , whi
h satis�es thebalan
e equation (2.5) and the boundary 
onditions (2.6). Then we 
al
ulated the energynorm of the error e = ‖∇(u− ufem)‖ and the a posteriori estimator η = ‖∇ufem − t‖ ,i.e., the left and right sides 
orrespondingly in (2.8).Fig. 1 shows the dependen
e of the energy norm of the FE error and of the a pos-teriori estimator on the number of unknowns N . It demonstrates the same asymptoti
behavior of the both values. The number of unknowns in this experiment ex
eeded
4 · 106 , but these lines pra
ti
ally 
oin
ide for N greater than 104 . The a posteriori es-timator η stays greater than the energy norm of the error e (see Table 1). This validatesthat the equilibrium based a posteriori estimate guarantees the upper asymptoti
allyexa
t estimate.Fig. 2 shows the dependen
e of (Ieff − 1 on N ), where

Ieff =
η

e
(5.3)is the e�e
tiveness index of the a posteriori estimate. We see that Ieff 
onverges to 1rather fast and always stays grater then 1, see also Table 1.
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N e η Ieff

16 8.40422 · 10−1 2.87729 · 10−1 3.42362
64 4.08785 · 10−1 8.38575 · 10−1 2.05138
256 2.02318 · 10−1 2.67228 · 10−1 1.32083
1024 1.00877 · 10−1 1.09368 · 10−1 1.08417
4096 5.04023 · 10−2 5.14654 · 10−2 1.02109
16384 2.51966 · 10−2 2.53287 · 10−2 1.00525
65536 1.25977 · 10−2 1.26141 · 10−2 1.00131
262144 6.29880 · 10−3 6.30085 · 10−3 1.00033
1048576 3.14939 · 10−3 3.14965 · 10−3 1.00008
4194304 1.57469 · 10−3 1.57473 · 10−3 1.00002

Fig. 2. Dependen
e Ieff − 1 on the number of unknowns N for the problem (5.1)We also 
ompared the 
omputational 
osts of the a posteriori estimator and optimalmultigrid solver for the problem (5.1). These results are shown on the Fig. 3 and demon-strate that the equilibrium based a posteriori estimator is optimal with respe
t to thenumber of arithmeti
 operations. Moreover, 
omputation of the a posteriori estimator isabout twi
e 
heaper than solving the �nite element system (this results were obtainedon AMD Athlon 64 3200+ 2.01 GHz with 2 Gb of RAM).5.1.2. Algorithms based on the Castigliano prin
iple. In the unite square,we 
onsidered the Diri
hlet problem having for the exa
t solution
u = sin(2πx1) sin(πx2) + (x1 + 1)(2x2 + 1).The 
orresponding right part is f = 5π2 sin(2πx1) sin(πx2) and nonhomogeneous Di-ri
hlet boundary 
ondition is u∣∣

∂Ω
= (x1 + 1)(2x2 + 1) .The FE solution ufem was obtained by means of the spa
e of the 
ontinuous pie
ewise bilinear fun
tions. For obtaining the approximate solution zh of the dis
retizeddual problem (4.4), we used the subspa
e Qh

0 with the lo
al �ux basis ve
tors φ (i) ,des
ribed in Subse
tion 4.1. Two 
hoi
es for the ve
tor tf and respe
tively for the set
Qh

f were implemented: one a

ording to se
ond line of (4.8) and another a

ording to
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Fig. 3. Computational 
osts (in ms) of multigrid solver and η against the number of unknownsfor the problem (5.1) Table 2
N e Ieff I1

eff I2
eff

16 1.59912 2.93605 2.05747 1.20610
64 7.60498 · 10−1 1.95927 2.16500 1.23228
256 3.70781 · 10−1 1.26742 2.21586 1.24493
1024 1.84023 · 10−1 1.07113 2.23084 1.24869
4096 9.18344 · 10−2 1.01826 2.23475 1.24967
16384 4.58949 · 10−2 1.00460 2.23574 1.24992
65536 2.29446 · 10−2 1.00115 2.23599 1.24998
262144 1.14720 · 10−2 1.00029 2.23605 1.24999
1048576 5.73594 · 10−3 1.00007 2.23606 1.25000the formulas
tf (x) = (tf,1, tf,2)

⊤, tf,k(x) =
1

2

xk∫

0

f(ηk, x3−k) dηk.For these two 
hoi
es of �uxes, satisfying the balan
e equation, we introdu
e notations
tf = t

(1)
f , t

(2)
f . These �uxes result in the two a posteriori estimators

ηc,j = ‖∇ufem − zh,j‖, zh,j = z
h,j
0 + t

(j)
f , j = 1, 2,with the e�e
tiveness indi
es denoted I j

eff . The dire
t evaluation algorithm was alsoapplied to the problem. In essen
e it is Algorithm 2.1, but adapted to the 
ase, whenone has the Diri
hlet boundary 
ondition at ΓN as it is de�ned in (2.2). The adapta-tion was performed with the use of spe
ial algorithm, whi
h optimizes the a posterioriestimator among di�erent boundary �uxes in the appropriate �nite dimensional spa
e.The e�e
tiveness index for the the estimator produ
ed by the adapted Algorithm 2.1 isdenoted Ieff .The dependen
e of the energy norm for the error and of the des
ribed e�e
tivenessindi
es on N is presented in Table 2.
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iple based a posteriori estimators. The numeri
al results showed similar behaviorof the estimators of this 
lass and allow us to 
ome to the following 
on
lusions.
α) The equilibrated �uxes obtained by means of the Castigliano prin
iple providegood error estimators with good e�e
tiveness indi
es, one of whi
h stays below 1.3.
β ) However, both indi
es I j

eff do not 
onverge at h→ 0 , whereas Ieff does.
γ ) The 
omputational time for solving the system of algebrai
 equations (4.5), re-sulting from the Castigliano prin
iple, and for evaluating the a posteriori estimatorsis proportional to the number of unknowns N . Therefore, the algorithms are asymp-toti
ally optimal in the 
omputational 
ost. However, the 
omputer time is greaterapproximately in 1.5 times, than the 
omputational time for the dire
t evaluation algo-rithm with the e�e
tiveness index Ieff .Item β ) 
an be explained by the fa
t that the FE method for solving the primaland dual problems have the same rate of 
onvergen
e in the energy norms. Namely,

‖∇(u− ufem)‖ ≍ ‖∇u− z‖ = O (h).Apparently, the 
onvergen
e of the e�e
tiveness index to the unity for our algorithms ofthe dire
t evaluation of the balan
ed �uxes is related to the fa
t of the super
onvergen
eof the FE solution ufem to the 
ontinuous pie
e wise bilinear interpolation of the exa
tsolution u .Item γ ) 
ompletely approves 
on
lusions made in Subse
tion 4.2 in the part titledComparison of dis
rete primal and dual formulations.The set Qf does not depend on the 
hoi
e of the ve
tor tf , whi
h enter the de�nitionof this set. However, the sets Qh,j
f := Qh

0 +t
(j)
f depend, and, a

ording to the numeri
alresults, some allow to approximate true �uxes better. Besides, the error estimator ηc,2is more symmetri
 with respe
t to the axes xk , than ηc,1 . Probably, these fa
tors 
ausedthe di�eren
e of the e�e
tiveness indexes, re�e
ted in α) .5.2. Se
ond order ellipti
 equation with dis
ontinuous 
oe�
ient. Wetested also our a posteriori estimator as applied to the problem:

−∇ · (ρ(x)∇u) = f(x), x ∈ Ω = (0, 1) × (0, 1), (5.4)with the same boundary 
onditions as in (5.1) and the pie
e-wise 
onstant 
oe�
ient,whi
h has a jump a
ross the 
ommon boundary γ for the two parts of Ω :
Ω1 = {x| x1 ∈ (0, 0.5), x2 ∈ (0, 1)} , (5.5)
Ω2 = {x| x1 ∈ (0.5, 1), x2 ∈ (0, 1)} . (5.6)For the fun
tion ρ , we used
ρ(x) =

{
ρ1 = 10−2, x ∈ Ω1,

ρ2 = 102, x ∈ Ω2.
(5.7)The right-hand side f as well as the mixed boundary 
onditions 
orresponded to theexa
t solution

u = (cos(2πx) − 1) cos

(
3π

2
y

){
x2 + 1, x < 0.5,

−(x− 1)2 ρ1

ρ2
+ 0.25 ρ1

ρ2
+ 1.25, x > 0.5.For obtaining FE solution, we used the spa
e V 0(Ω) of the 
ontinuous pie
e-wisebilinear fun
tions, satisfying the Diri
hlet boundary 
ondition on ΓD .
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Fig. 4. Energy norm of the �nite element error and the a posteriori estimator against thenumber of unknowns for the problem (5.4)

Fig. 5. Dependen
e of Ieff − 1 on the number of unknowns N for the problem (5.4)The ve
tor t(x) = (t(x)1, t(x)2)
⊤ , satisfying the balan
e equation (2.5) and theNeumann boundary 
onditions (5.1) on ΓN , was 
al
ulated a

ording to Algorithm 2.4in Subse
tion 2.3. In turn, this ve
tor allowed to evaluate the a posteriori estimator

ηρ = ‖ρ∇ufem−t‖ρ−1 , whi
h enters the estimate (2.33). Fig. 4 shows the dependen
e ofthe energy norm, of the error e = ‖∇(u−ufem)‖ρ and of ηρ on the number of unknowns
N ( in this numeri
al experiment N also ex
eeded 1 · 106 , but for N > 104 the lineson the graph 
oin
ide). The e�e
tiveness index tends to 1 rather fast, as it is illustratedby Fig. 5, in whi
h the value of Ieff − 1 is plotted against N . At the same time thee�e
tiveness index is always grater then 1 (see also Table 2) that validates that the aposteriori estimate (2.33) is a guaranteed upper asymptoti
ally exa
t bound.The 
omparison of the 
omputational 
osts of the a posteriori estimator and theoptimal multigrid solver for the FE system of linear algebrai
 equations is presentedin Fig. 6. These results demonstrate the optimality of the a posteriori estimator. Note,that the a posteriori estimator is more than twi
e 
heaper, than solving the FE systemby the multigrid method.
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Fig. 6. Computational 
osts of the a posteriori estimator and the multigrid solver against thenumber of unknowns for the problem (5.4)

Fig. 7. Energy norm of FE error and a posteriori estimator η(1) against the number of unknownsfor the problem (5.8)5.3. Linear elasti
ity problem. Algorithms 3.1 and 3.2 were applied to severallinear elasti
ity problems with nonhomogeneous Diri
hlet boundary 
onditions. Sin
ethe results re�e
t similarly the di�eren
e of these algorithms and the level of theire�
ien
y, we present them only for one problem (3.1)�(3.3) in the unite square Ω =
[0, 1] × [0, 1] . The ve
tor f and the Diri
hlet boundary 
onditions 
orrespond to theexa
t solution u = (u1, u2)

⊤ ,
u1(x) = sin(πx1) sin(2πx2) + x1 + x2,

u2(x) = sin(2πx1) sin(πx2) +
1

4
(x1 + 1)(x2 + 1).

(5.8)Algorithms 3.1 and 3.2 produ
e the a posteriori estimators η(1) and η(2) , respe
tively,a

ording to their des
ription in Subse
tion 3.3.Fig. 7 and 8 demonstrate the behavior of η(1) . The results obtained for η(2) arepresented in Fig. 9�11, see also Table 3 for numbers. The numeri
al results show, that
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Fig. 8. Computational 
ost of multigrid solver and of the a posteriori estimator η(1) againstthe number of unknowns for the problem (5.8)

Fig. 9. Energy norm of FE error and the a posteriori estimator η(2) against the number ofunknowns for the problem (5.8) Table 3
N e η Ieff

64 9.14308 1.02954 · 101 1.12604
256 4.44483 4.77467 1.07421
1024 2.20395 2.25318 1.02234
4096 1.09958 1.10628 1.00609
16384 5.49486 · 10−1 5.50364 · 10−1 1.00160
65536 2.74705 · 10−1 2.74818 · 10−1 1.00041
262144 1.37348 · 10−1 1.37362 · 10−1 1.00010
1048576 6.86734 · 10−2 6.86751 · 10−2 1.00003the a posteriori estimator η(2) outperforms η(1) . The e�e
tiveness index I

(2)
eff of η(2)tends to 1 staying grater then 1, whereas the e�e
tiveness index I

(1)
eff of η(1) does not
onverge and stays slightly greater than 2. Both a posteriori estimators are optimal inthe 
omputational 
ost. Fig. 8 and 11 present the 
omparison of their 
omputational 
ost
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Fig. 10. Dependen
e of Ieff − 1 for the aposteriori estimator η(2) on the number of unknowns
N for the problem (5.8)

Fig. 11. Computational 
osts of the multigrid solver and the a posteriori estimator η(2) againstthe number of unknowns for the problem (5.8) Table 4
N e η(1) I

(1)
eff η(2) I

(2)
eff

16 3.29126 · 10−1 2.11430 6.42399 2.45022 7.44462
64 1.63481 · 10−1 5.54014 · 10−1 3.38885 3.54162 · 10−1 2.16638
256 8.17444 · 10−2 1.94481 · 10−1 2.37914 1.46349 · 10−1 1.79033
1024 4.08766 · 10−2 8.62833 · 10−2 2.11083 5.45946 · 10−2 1.33560
4096 2.04389 · 10−2 4.18226 · 10−2 2.04622 2.56000 · 10−2 1.10387
16384 1.02196 · 10−2 2.07433 · 10−2 2.02976 1.05054 · 10−2 1.02797
65536 5.10979 · 10−3 1.03501 · 10−2 2.02554 5.14644 · 10−3 1.00717
262144 2.55490 · 10−3 5.17229 · 10−3 2.02446 2.55953 · 10−3 1, 00181
1048576 1.27745 · 10−3 2.58580 · 10−3 2.02419 1.27804 · 10−3 1.00046and the 
omputational 
ost of the multigrid solver for solving the problem (3.1)�(3.3)with the Diri
hlet boundary 
onditions.
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e in the behavior of the a posteriori estimators η(1) and η(2) (see Ta-ble 4) shows that the quality of the error estimators strongly depend on how a

uratelythe properties of the super
onvergen
e of FE solutions are taken into a

ount at theirevaluation. Clearly, the 
onvergen
e of the e�e
tiveness index 
an take pla
e only if ana posteriori error estimator is super
onvergent. Algorithm 3.1 is simpler, but it is notinvariant in respe
t to axes xk and the a

ura
y of approximation of the boundaryvalues for stresses provides only an approximation of the order of h .Resear
h is supported by the grant from the Russian Fund of Basi
 Resear
h No 05-01-00779-a. The se
ond author has partially been supported by the Austrian S
ien
eFund (FWF) through the spe
ial resear
h programme (SFB) F013, proje
t 16.�åçþìåÈ.Å. Àíó�ðèåâ, Â.�. Êîðíååâ, Â.Ñ. Êîñòûëåâ. Òî÷íî óðàâíîâåøåííûå ïîëÿ: ìîãóò ëèîíè áûòü ý��åêòèâíî èñïîëüçîâàíû äëÿ ïîëó÷åíèÿ àïîñòåðèîðíûõ îöåíîê ïîãðåøíîñòè.Ïîêàçûâàåòñÿ, ÷òî êîíñòðóêòèâíîå îïðåäåëåíèå ëèíåàëîâ òåíçîðîâ íàïðÿæåíèé, óäî-âëåòâîðÿþùèõ óðàâíåíèÿì ðàâíîâåñèÿ, ÿâëÿåòñÿ ïðîñòîé äëÿ ÷èñëåííîé ðåàëèçàöèèîïåðàöèåé. Ýòî ïîçâîëÿåò ý��åêòèâíî ïðèìåíÿòü êëàññè÷åñêèå àïîñòåðèîðíûå îöåíêèïîãðåøíîñòè ïðèáëèæåííûõ ðåøåíèé êðàåâûõ çàäà÷, ïðîèñòåêàþùèå èç äâóõ âçàèì-íî äîïîëíèòåëüíûõ ïðèíöèïîâ � ïðèíöèïà Ëàãðàíæà ìèíèìóìà ýíåðãèè äå�îðìàöèèè ïðèíöèïà Êàñòèëüÿíî ìèíèìóìà äîïîëíèòåëüíîé ðàáîòû, ÿâëÿþùåãîñÿ äâîéñòâåííûìïî îòíîøåíèþ ê ïåðâîìó. Ïðèìåíèòåëüíî ê çàäà÷àì ëèíåéíîé òåîðèè óïðóãîñòè â òàêèõîöåíêàõ ýíåðãèÿ ïîãðåøíîñòè ïðèáëèæåííîãî ðåøåíèÿ, óäîâëåòâîðÿþùåãî âñåì ãåîìåòðè-÷åñêèì óñëîâèÿì, îöåíèâàåòñÿ ýíåðãèåé, îòâå÷àþùåé ðàçíîñòè òåíçîðà íàïðÿæåíèé ïðè-áëèæåííîãî ðåøåíèÿ è ëþáîãî òåíçîðà íàïðÿæåíèé, óäîâëåòâîðÿþùåãî óðàâíåíèÿì ðàâ-íîâåñèÿ. Âîïðåêè ðàñïðîñòðàíåííîìó ìíåíèþ î áîëüøîé âû÷èñëèòåëüíîé òðóäîåìêîñòèïîñòðîåíèÿ óðàâíîâåøåííûõ òåíçîðîâ, áëèçêèõ ïîëó÷àåìûì ïîñðåäñòâîì ÌÊÝ (ìåòîäàêîíå÷íûõ ýëåìåíòîâ), ìû ïîêàçûâàåì, ÷òî âî ìíîãèõ ñëó÷àÿõ ýòî ìîæåò áûòü ñäåëàíîçà îïòèìàëüíîå ÷èñëî àðè�ìåòè÷åñêèõ äåéñòâèé. Äîêàçûâàþòñÿ òàêæå íîâûå àïîñòå-ðèîðíûå îöåíêè ïîñðåäñòâîì íåóðàâíîâåøåííûõ òåíçîðîâ íàïðÿæåíèé. Ïî ñðàâíåíèþñ èçâåñòíûìè îöåíêàìè, ñîäåðæàùèìè, íàïðèìåð, â ñëó÷àå óðàâíåíèÿ Ïóàññîíà íîðìóíåâÿçêè (â óðàâíåíèè áàëàíñà äëÿ èñïîëüçóåìîãî âåêòîðà ïîòîêà) â ïðîñòðàíñòâå H−1 ,îíè âû÷èñëÿåìû è áîëåå òî÷íû. Ïðèâîäÿòñÿ ðÿä àëãîðèòìîâ âû÷èñëåíèÿ àïîñòåðèîðíûõîöåíîê äëÿ óðàâíåíèÿ Ïóàññîíà è ñèñòåìû óðàâíåíèé òåîðèè óïðóãîñòè è ðåçóëüòàòû ÷èñ-ëåííûõ ýêñïåðèìåíòîâ, ïîäòâåðæäàþùèõ âåñüìà âûñîêóþ ý��åêòèâíîñòü àëãîðèòìîâ èèõ ðîáàñòíîñòü.
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