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TANGENT BUNDLES AND GAUGE GROUPS
M. Rahula, V. Balan

Abstract

The differentials T%a (k > 1) of a diffeomorphism @ of a smooth manifold M induce in
the fibers of the fiber bundles T*M, i.e., in the corresponding tangent spaces, linear transfor-
mations, which embody the action of the gauge group Gi. This action extends in a natural
way to the osculating subbundles Osc* 'M c T*M .

Key words: diffeomorphism of a smooth manifold, fiber bundles, action of the gauge
group.

Introduction

The differential group G of a smooth manifold M induces in the tangent bundle
T*M an action of the group of k-jets of transformations. More specifically, if a is
a diffeomorphism of the manifold M , then its k-th differential T%a is a transformation
of the level T*M . Then the level T*M may be regarded as a homogeneous space
J*/Hy, where J* is the group of k-jets of transformations and Hj, is the stabilizer of
an element wu(,) € T*M . The gauge group Gy, is defined as a certain subgroup of the
linear group G'L(2%n,R), where n = dim M which is isomorphic to the stabilizer Hj,.
The action of the group G extends to the osculating subbundle Osc*~ 1M c T*M .

The paper contains all the necessary definitions and founds all the previous consider-
ations. Commented examples and groups of derived formulas are presented as exercises.

1. Tangent groups

1.1. Leibniz rule. We apply the tangent functor 7' to the Cartesian product of
smooth manifolds M; and Ms:

T(M1 X Mg) = (TMl X Mg) D (M1 X TMQ),
and for the smooth mapping from M; x Ms to some smooth manifold M
A My x My — M : (u,v) —w=u-v,

we define the tangent mapping T'\. First, by fixing the points u € M; and v € My we
define two mappings A, and \,:

Ao : Moy — M :v—u-wv, Ao My —> M:u—u-v.

Theorem 1. To the pair of vectors uy € T,My and vy € T, Ms the mapping T\
associates the vector wy € TyyM , and we have

‘w:um = wi=u-v+u-v, (1)

where uy - v =Ty (u1) and w-vy =T, (v1). In short, one can apply to the “product”
w = u-v the Leibniz rule.
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Proof. We specify that, by means of the tangent maps T\, and T\, , two vectors
uy € TyMy and vy € T, My are transported from the points v € My and v € M to the
point w € M, where their sum defines the vector wy, € T,,M . Locally, this is confirmed

by the formula:

ON . 0N
dui 1 + doa 1

where u’,v® w” are the coordinates of the points u,v,w and u¢,v® w{ are the com-
ponents of the vectors uq,v1,w; on the neighborhoods Uy C My, Uy C My, U C M,

i=1,....,dimM;, a=1,...,dim My, p=1,...,dim M. O

wP = )\”(ui,vo‘) = wf=

Using the Leibniz rule we derive a set of important formulas in coordinate free form.

Exercise 1: action of Leibniz rule. Show that the Leibniz rule can be applied to the “product”
of several factors, e.g.,
(w-v-whi=u-v-wtu-vi-wHu-v-w.
Exercise 2: prolongation of Leibniz rule. Prove that for the second tangent mapping T2\,
the following formulas hold true:
w=u-v, Wi =ul-v+u-v,
wa =ug - v+ u-vs, (2)
w12 =u12 v tu2 -v1 +uy -v2 +u-vi2.
Exercise 3: functional equation.
Question: how can one solve the equation (u-v)1 = w1 -v + w-v; with respect to u; for given vy

and (u-wv)1, or relative to vy for given w; and (u-wv)1? This reminds the method of integration by
parts:

d(uwv) =udv+vdu ~> uv:/ualvqt/valu7 whence

either /udv:uv—/vdu, or /vdu:uv—/udv.

1.2. Coordinate-free story. The rule (1) is easy to use while building tangent
groups and further, while studying representations of groups. If we have previously
denoted the “product” of elements by a dot, as in (1) and (2), then while denoting the
product of group elements, the dot will be omitted.

To a Lie group G with composition rule v : (a,b) — ¢ = ab, we associate the
tangent group T'G, having the composition law Ty :

‘c:ab = c1:a1b+ab1.‘ (3)

The vectors a; € T,G and by € T,G are transported by means of the right shift r, = v
and of the left shift [, = 7y, , more exactly, by means of the tangent mappings T'r, and
Tl, , from the points a and b to the point ¢, where the sum a1b+ab; = Try(ar)+T1,(b1)
determines the vector ¢; € T.G. This is the composition law on the tangent group TG.
The unity of the group T'G is the null vector from T,G. The inversion for the elements
of TG is defined by the rule:

a € T,G ~ afl =—ataat €T, G. (4)

Exercise 4: unity and inverse elements. Using (3), confirm the assertion regarding the unity
of the group T'G' and the inversion of the elements (4). The formula (4) is obtained by solving the
equation ai1b+ ab; = 0 relative to by for b=a"1.

Exercise 5: matrix representation. Prove that the formulas (3) can be represented in matrix

form as
a 0\ (b 0)_(a 0). e 0\ (b 0 5)
a1 a bp b)  \0 a alay +b1b71 e 0 b)”
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The sum of vectors in T,,G reduces to the sum in TG :
arb+aby = T(lgory)(a tar +b1b~1).
Explain the meaning of the equality a1b+ ab; = (a1a= ) c+c (b~ 1by).
Exercise 6: second tangent group. Prove that in the second tangent group TG the product
of elements is defined by the formulas
c=ab, c¢1=a1b+ aby,
co = az2b+ aby (6)
c12 = a12b + a2b1 + a1b2 + abi2,

and the inversion is performed by the rule

(a, a1,a2,a12)_1 = (a_l,afl,agl,a;;), where

al_l = —cflalcf1 s

—1 — -1
ay =—a aza” ", (7
a1_21 = —a_lalga_l + a_laga_lala_l —+ a_lala_laga_1 .

Exercise 7: classical formulas. Reduce the formulas (6) and (7) to the well known formulas
from Analysis:

(w) =dv+uw', ()’ =u"v+2u'v +uv”,

(l>/ u’ (1)’/ —uu”+2(u’)2.

u u2’ u3

u

Exercise 8: matrix relations. Using (6) and (7) prove the matrix relations:
c 0O 0 O a 0 0 O b 0 0 O
ctc ¢ 0 Ol _fa a O O bp b 0 O
co 0 ¢ O0f | a2 0 a O bo 0O b 0}
cl2 €3 ¢1 ¢ alo a2 a1 a bia b b1 b
a 0 0 o0\ ! a”l 0 0 0
ar a 0 O et a' 0 0
az 0 a O Tyt 0 a7t 0
a2 a2 a1 a a1_21 a2_1 al_1 a!

Which endomorphism is involved here?

Exercise 9: logarithmic derivatives. Following the example of (5), represent the product of
elements of the group 72G in the form:

a 0 0 O e 0 0 0 b 0 0 O
ai a 0 O 0 e 0 0 b1 b 0 O
0 0 a O a"lag + bob™! 0 e 0 0 0 b 0]
0 0 a1 a (a’lag + b2b71)1 alag +bb=1 0 e 0O 0 b1 b

where (a tag 4+b2b™ 1)1 =a"laia —a"tara " taz +biab~ !t — bab~1b1b~ L. In this generalization, both

logarithmic derivatives (ln(uv))/ and (ln(uv))”, are present.

At the unity e € G we fix the tangent vector e; € T.G. This vector is displaced
by left shifts I, over the group G to produce the left-invariant vector field ae; and by
right shifts r,, to produce the right-invariant vector field eja. If at the unit e € G we
provide a frame, i.e., a basis of the space T.G, then, in this way, two frame fields are
defined on G (one right-invariant and left-invariant). The transition from one frame to
another, at the point a € G, is defined by some matrix A(a), which is an element of
the linear group GL = GL(dim G,R). By this way, we define a homomorphism of the
group G into the linear group GL:

G — GL: aw— Aa). (8)
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Exercise 10: right/left shifts and inner automorphisms. Show that an 1-parametric sub-
group a; of the group G defines in the group G three flows corresponding to right shifts, left shifts
and inner automorphisms

ra, =exptX, la, =exptX, Agy = lay ora_tl =expt(X — X)

and, accordingly, the left-invariant operator X', the right-invariant operator X and the adjoint repre-
sentation operator Y = X — X . Prove this, using the formulas

Xf= (forat):fzov va = (folat)ézov Yf= (fOAat);fzov

where f is an arbitrary smooth function on G, taking into consideration that left shifts commute with
right shifts.

1.3. Elements of representation theory. We consider a differentiable manifold,
which we shall call representation space for the group G, or, in the following, simply
space. A smooth mapping

A: MxG — M : (u,a) — v=u-a
defines an action of the group G on the space M , if all the mappings
e M —Mu—u-a, VaeG,

are transformations (diffeomorphisms) of the space M, and the mapping a — A, is
a homomorphism of the group G into the group of transformations of the space M . The
homomorphism a +— A, is understood either in the sense of the equality Aqp = Mg 0 Ap
or in the sense of the equality A,y = A\p 0 Ay. In the first case we say that the action
of the group G on the space M is left-sided, and in the second case it is right-sided.
By writing v = a - u we have in view a left action, while by v = u - a — a right action:

v=a-u ~ (ab)-u=a-(b-u),
v=u-a ~ u-(ab)=(u-a)-b.

The next formulas correspond to the right-sided action of the group G on the space M .
The kernel of the homomorphism a — A, is called the stabilizer subgroup of the
group G. In the case of an effective action, the non-effectiveness kernel is trivial; it con-
sists of the unity e € G, and the mapping a — A, is injective.
For a fixed point v € M, the mapping

e : G—=>M :a—u-a

defines in the space M the orbit of this point. The whole space M is fibered into orbits
M (G). When A\, (G) = M, i.e., when the space M is the only orbit of the group G, we
say that the action of the Lie group G on the space M is transitive. In such a case, M
is called homogeneous group space. If moreover, the dimensions of G and M are equal,
then the action of G on M is simply transitive and such an action defines an ezact
representation of the group G.

Equation 11: action by right/left shifts and inner automorphisms. Show that the actions
of the group G on itself, provided by left and right shifts, are simply transitive actions. Prove that the
actions provided by inner automorphisms are non-transitive.

The tangent map of the mapping A, i.e., T\, defines a representation of the tangent
group T'G on the first level T M,

TN : TM xTG — TM : (uj,a1) — v1=ui-a+u-a.
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Formula (1) looks similarly:

v=u-a ~ U =Ul-a+u-a. (9)

We remark two particular cases:
for a; = 0 we define the action of the group G on the level T'M ,

a; =0 = U = U1 =Uj-a;
for u; = 0 we define the action of the tangent group T'G on the space M,
1

=0 = e1=a'taq — vn=u-a1=v-a tag=v-e.

The formula

‘ vy =v-a ‘aq ‘ (10)

is the fundamental formula of the theory of Lie group representations.

In fact, to the vector e; = a 'a; € T,G (which is an element of the Lie algebra g)
at the point v € M we associate some vector vy € T,,M, and since v is an arbitrary
point, it defines a vector field on the space M . This vector field is called the operator
of the group G, or simply group operator'. Depending on the choice of the vector
e1 € T.G, in the space M we have an infinite set of group operators, and all of them,
as vector fields, are tangent to the corresponding orbits.

For v; = 0 the equality (10) provides the equation v-a~ta; =0, or v-e; = 0, which
determines in the space T.G those directions e;, along which the point v € M remains
fixed. We define on the group G a Pfaff system, and its integral surface (solution),
which contains the point e € GG, is a subgroup H, C G called the stationary subgroup
or the stabilizer of the point v.

In coordinates (v*) on the neighborhood U C M of the point v € M, Eq. (10) is
written as a system dv® = Pw’, where w’ are the forms of the left-invariant coframe
on the group G'. There appears a matrix? ¢ = (£%), which determines a system of forms
J¢ on the group G, and in the space M, a system of basic operators X;:

o 0
i v
The number of operators X; is equal to the dimension of G, and the number of forms
9% is the dimension of M. Operators X; and forms ¥ are not necessarily linearly

independent. The Pfaff system {*w’ = 0 for a fixed point v € M is completely inte-
grable and defines the stabilizer H, C G.

1

Exercise 12: vision from the classical theory. Show that the system §?wi = 0 is the coordinate

form of the equation v-a~ta; =0.

1.4. Adjoint representation. In the groups G and T'G we define the action by
left shifts:

lg :b— c=ab,

Tly, : b1 —c1 = (ala_l)c—i—abl,

; (11)

‘ c1 = (aa e

ISince the time of S. Lie and frequently nowadays, group operators have been called infinitesimal
transformations or fundamental vector fields of the group.

2The matrix ¢ plays an essential role in the theory of Lie group representations (see, e.g., S. Lie
Theorems).
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right shifts:

re :b—c=ba,

Tre, by —c=bra+ c(a_lal),

‘ c1=c(aay) |, (12)
and inner automorphisms:
Ag:b— c=aba™?,
TA, by — ¢ = (ala_l)c — c(ala_l) +abiat,
‘ c1 = (ara™ Y e —c(aja™) ‘ . (13)

The basic formula (10) is rewritten, for b, = 0, in the forms (11), (12) and (13),
respectively.

Inner automorphisms are directly related to higher order movements.

Hence, when in the spaces A and B there take place the transformations a and b,
the mapping ¢ : A — B is brought into the mapping ¢ : A — B. This is shown by the
diagram:

% B

al Lo © ~ @ = bpa"
@
%, B

If we set here A = B, a =05 and if ¢ is a diffeomorphism, i.e., ¢ is a transformation of
the space A, then this diagram describes the transformation of the mapping ¢, subject
to the influence of the transformation a:

. A
al la 0~ @ =apat (14)
2, A

The transformation ¢ is subject to the inner automorphism.

Exercise 13: higher order transformations. The transformation of order 2 ¢ ~» ¢ is described
by the 2-dimensional diagram (1.14). Show that the transformation of order 3, i.e., a transformation
of transformation ¢ ~» @, is described by a 3-dimensional diagram and the transformation of order k
is described by a corresponding k-dimensional diagram.

If the arrow a in diagram (14) is assumed to represent the 1-parametric group a;
of transformations of the space A, or in brief, the flow a;, then we see how, to a change
of the parameter ¢ (of time), it corresponds to a change of the mapping ¢; = aspa; *.
We can talk then about a 1-parametric family of mappings ¢; in the field ay.

If the arrow ¢ in diagram (14) is regarded as a 1-parametric group of transformations
b, of the space A (the flow b.), then we can see how this flow changes under the
transformation a, i.e., b, WET =abya" !,

_ Exercise 14: transformation of the flow. Show that if b, is the flow of the vector field Y and
br is the flow of the field Y, then Y = TaY , and the tangent mapping T'a acts on the field Y':
br =expTY ~~ ETZGbTQ_lieXPT?, Y ~ Y = TaY.

Exercise 15: interaction of vector fields. Let X and Y be two vector fields. The flows of
these fields a; = exptX and b, = exp 7Y interact according to the scheme:

br ~» atbra_q¢, Y ~ Tary,
at ~> bratb_-, X ~Tbh: X.
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Using derivatives of the function f

Xf=(foar)i—g and Yf=(fobr)i_g,

perform the differentiation (the parameters ¢ or 7 from above the arrow mean differentiation relative
to ¢t for t — 0 or to 7, for 7 — 0):

folabra;l) =5 (Xf)obr —X(fobs) - (YX —XY)f,
folbrabsh) = (Yfloar—Y(foar) —— (XY —YX)f.

Check the validity of the relation (Ta:Y),_, = —(Tb,X)"_, and establish a connection with the
brackets [X,Y]=XY —-YX.

If in one flow the points move along trajectories and under the influence of the other
flow, this movement is transformed, and then the movement of the movement takes
place, or a second-order movement. Under the influence of a third flow, the movement
of second order changes its shape, then the movement of third order occurs, etc. In the
infinitesimal approach this reduces to the iterations

atWTatWTQ(ZtW...
and to the corresponding vector fields on the levels

(1) (2) k (k)
X X o X ool T a; =exptX, k=0,1,2,... (15)

In this way, the flow T%a; induces a movement of order k.
1.5. Gauge groups. Let us fix on each level a point
Uk) € T’“M, such that Fk(U(k)) = U(g—1); k=0,1,2,...

In the neighborhood T*U C T*M these points are defined by their coordinates:

U: ug ~ (u),
TU @ ugy ~ (u',uf),
T2Ut W) ~ (ui,ui,ué,uig),
T3U : Uy ~ (’u,i,’u,li,’U/é,UiQ,Ué,’U/i&Ugyuigg)7

Transformation of coordinates in the neighborhood U C M
u' s Uoa=a'
induces a change of coordinates in each neighborhood T*U :
(uiv ulia uéa uziQa o ) 7 (ai’ ﬂllv az% ai% ) = (aia aia a’é, 032; o )

Namely, if these transformations of coordinates in the neighborhood T'U are defined by

the system

= a',

i =al = aéu{,
with the Jacobian block-matrix

P i 2 0
a’ 0 . dad' - o“a . .
J s h o 27 ¢ 27 AYRICI A
wnere a, = - a = - a:)1 = a; .U
<(a;)1 a;) ) J auja ik 8u18uk’ ( g) k%1
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then the transformation of coordinates in the neighborhood T2U are defined by the
system

Ut = ai’
~io_ i i, ]
uy = aj = ajuy,
uh = ahy = aluy,
Pyt RN SRS S D i,
Uyp = A1p = Gy U Uy + AU,

with the Jacobian block-matrix

a; 0 0 0 (af)1 = ajyuf,
(@i aj 0 0 i i ok
(ab)2 0 ab 0 |” where 4 (a5)s = ajyus,
(@j)iz (ah)2 (aj)1 af (af)12 = afyuiuh + ajuty,

etc.
When performing a lift from one level to another, U ~» TU ~» T?U ~- ..., the
Jacobian matrix is inductively built according to the scheme:

a 0 O
( a 0) ap a 0
o~ ~y
a a aa 0 «a

12 a4z a1

a O O O

with repeated, as shown above, n-dimensional blocks

a= (aj)a a; = (a;.')la g = (aé)Q; a2 = (a; )12; e

Therefore, there follows the general rule: the Jacobian matriz of the transformation of
coordinates on the neighborhood T*U is of the form

(4 %)

where the block A is the Jacobian matriz on T*~'U and Ay = diA, k=1,2,...

In other words, the Jacobian matrix on the neighborhood T*U consists of four
blocks, where the Jacobian matrix A of the neighborhood T*~'U is repeated on the
diagonal, the upper-right block is zero, and the left-lower block is the differential of the
block A taking into consideration the k-th level, i.e., Ax = di.A.

Formula (17) defines the sequence of matrices (16).

Exercise 16: inversion rule. Show that the inversion of the matrix (17) takes place according

to the scheme:
A 0\ & 0y A 0 -
A, A) T \AATL € 0o A

(A oI At 0, £ 0
Ay A “Lo A4t —ApATL E£)
where £ is the identity block. See (4) and

1

a1 = (@a Na ~ a;t=—-a"Yara™t).

The matrix (17) depends on the point u) € TkU . If this point is fixed, then
a numeric matrix is defined, but still having the freedom to choose the function a*
(or the corresponding jet of the transformation).
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Exercise 17: gauge group. Show that all matrices of the form (17), with the point ) € TFU
fixed, determine a subgroup of the linear group of order 2¢n,,

Gr C GL(2Fn,R).
Prove the existence of the groups Gi, G2, Gz and extend to Gy .

We call the group Gy, of matrices (17) with fixed point u(y € T*U the gauge group of
order k on the manifold M . By setting £ =0,1,2,3, ..., we obtain an infinite sequence
of gauge groups

G ~ G ~ Go ~ Gz ~ ... (18)

Theorem 2. The gauge group of order k is isomorphic to the k-th tangent group
of the linear group GL(n,R), which, in its turn, is embedded in the linear group
GL(2Fn,R):

G, ~ TF(GL(n,R)) C GL(2"n,R), k=0,1,2,... (19)

In this case
dim GL(2%n,R) = (2"n)? and dim Gy = 2"n?.

Proof. We fix the element wu ) € T*M of the k-th level. Matrices (17) generate
a subgroup Gy of the linear group GL(2*n,R) (see Exercise 17). The fixing of the point
u(k) does not limit the freedom of choice for the element (17) in the group Gy . Hence,
the group Gy is uniquely defined regardless of the point u) € TkM . On the other
side, the tangent group T%(GL(n,R)) coincides up to an isomorphism, with the matrix
group (17), or Gi. This follows from the formulas (3)—(7) and Exercises 12-17, if we

assume G = GL(n,R). O
Further, in the matrix (17), besides the point u € T*U, there exists the k-jet of
coordinate transformations (aj,aj ;,,...,a};, ;). We shall denote as Ji the group of

such jets at the point u (see Exercise 5). The homomorphism is defined:

Xk : Jk — Gr. (20)

Exercise 18: jets and gauge group. Show that for k = 2, the mapping x2 is homomorphic,
i.e., to a composition of 2-jets (a} ,aj,) and (bf, afl) there corresponds the product of matrices Asg,

1 k N
< ia}cl OZ) kbjl Ok = ia;ckbj l iok )
ap i aj, bjlu1 bj (akbj Jiug akbj

; ; i i =1 - (a0 _=ios =k ; ; —1
and to the inverse 2-jet (a ajl) = (aj , —agay,a; ), there corresponds the inverse matrix A5

j bl
. —1 —i
il i - =1 .5 =k, 1 =i ]
aklul ak fasaklajul aj

Generalize this to the general case k.

Exercise 19: homogeneity of tangent space. Show that the kernel of the homomorphism xy
is the stabilizer Hu(k) of the element wu) € TFM in the group.Jy . The tangent space Tff(k)M is
identified with the homogeneous space Jk/Hu(k).

Let us consider once again the gauge groups of the sequence (18). The first group G
is the linear group GL(n,R),

G = GL(n,R).
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The second group G is isomorphic to the tangent group T'(GL(n,R)). Its elements
are block matrices of the form

<; 2), where a€ GL(n,R) and a; € gi(n,R).
1

The correspondence Gy «~ T(GL(n,R)) is one-to-one. The product of elements in the

group Gi,
a 0\ (b 0 _( ab 0
a; a by 6)  \(ab), ab)’
reduces to the Leibniz rule in the tangent group T(GL(n,R)),

(ab); = aib + aby,

and the inversion of elements in G,

a 0\ ' a~?! 0
a, a “\—alaga! at)’

al_1 =—a "aa

reduces to the rule

This speaks about an isomorphism between the groups G; and T(GL(n, R)) An inner
authomorphism in G; is generated as allows:

a 0\ (b 0\ (a O [ aba! 0
a; a by b a; a ~ \(aba"*), aba"')’
with the block (aba™*), = ab,a™* +a;a *(aba™*) — (aba *)a,a™*, etc.

The following group G, is isomorphic to the tangent group T?(GL(n,R)). The
stair-like structure appears again:

a 0O 0 O b 0O 0 O ab 0 0 0

ag a 0 0 by b 0 O (ab), ab 0 0

aa 0 a O b 0 b 0 (ab), 0 ab 0\’
o a4y a; a bia by by b (ab);, (ab), (ab); ab

where

(ab); = a1b+ aby,
(ab)o = asb + aby,
(ab)io = aiob + asby + a;by + abyo.

Exercise 20: logarithmic rule for gauge group. Show that while forming the blocks
a ~ alag ~ (a_lal)g =alas—a tagalag ~ ...
there appears the following property of the logarithmic function:

/ " 2
lnu«»»u—«»»u—fM ~
u u?

We shall further denote the Lie algebra of the group Gx by Gy.
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The general scheme is the following. An element of the group Gy is generated ac-
cording to the principle:

(j‘k 2\) , where A€ Gy 1, Ay €Gp 1.

The product and the inversion of elements,

(3 3)- (@ 8) - (e, )

A 0\ ' (AT 0
A A T At a )

(AB), = A B+ ABy, Al = —AA A

reduce to the rules:

The Lie algebra Gj_, is identified with the additive subgroup of the matrix group G,
whose matrices have the form:
E 0
(5 &) 1)

where £ is the unit block, i.e., the unity of the group Gi_1. The product and the
inversion of such matrices are performed in the following way:

£ 0\ (€ O [ & 0
A, & B, & - A, +B. &)’
e 0N (€ o0
A & T\-Ay &)

All these matrices generate within the group Gi a normal divisor,

A 0\ (€ 0) (A O\ _( & 0
.Ak A B, €& .Ak A o .ABk.A_l g

An inner automorphism of the group Gy leads to the transformation of the block
Br ~ Ek = .ABk.A_l.

Under such a transformation, the spectrum of the matrix By, is preserved. The invariants
will be the eigenvalues of this matrix and the corresponding symmetric polynomials,
which are coefficients in the Hamilton — Cayley formula.

Exercise 21: Lie algebra of the Lie group. Show that the Lie algebra of an arbitrary Lie group
G may be regarded as an additive subgroup and a normal divisor of the tangent group T'G. Describe
the cosets of this normal divisor and the corresponding quotient group of the group T'G.

Exercise 22: structure constants iterated. The structure constants of a Lie group G have
three indices and can be placed into a spacial matrix a). Prove that the structure constants of the
tangent groups TG, T?G and T3G can be similarly put into a spacial matrices of type b), c) and d),
respectively.
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2. Tangent bundles and osculators

2.1. Levels and sector-forms. The tangent functor 7' iterated k times as-
sociates to a smooth manifold M its k-fold tangent bundle T*M (the k-th level
of M) and associates to a smooth map ¢ : M; — My the graded morphism
Tk@ : TEM; — T*Msy, the k-th derivative of ¢. The level T*M has a multiple vector
bundle structure with k projections onto T~ 1M :

ps =TF Smy : TEM — TFIM, s=1,2,...,k,

where 7, is the natural projection T°M — TS 1M .
Local coordinates in neighborhoods

T°U C T*M, s =1,2,...,k, where T° 'U = (T*U),

are determined automatically by those in the neighborhood U C M, the quantities (u’)
being regarded either as coordinate functions on U or as the coordinate components of
the point u € U:

U: (u)),i=1,2,...,n=dimM,

TU: (u',ut), with o' =u'om, ul = du’,

T?U:  (u',ui,ub,uis), 4 4 4 4
with u' =’ omma, ul =du’ omy, uh =d(u"om), ulj,=d(du’), etc.

We set up the following convention: to introduce coordinates on T*U , we take the
coordinates on T*~'U and repeat them with an additional index k, so that a tangent
vector is preceded by its point of origin. This indexing is convenient since at present the
symbols with index s become fiber coordinates for the projection ps, s =1,2,...,k.

Thus, for example, under the projections p, : T3U — T2U, s = 1,2,3, the coordi-
nates with indices 1, 2 and 3 are each suppressed in turn:

(Ui Uz1 UzQ Uzﬁ Ué Ulis Ués U§23)
1 p2 | N\ P3

(u'upuyuyg) (' uiuguiy) (uluyupul,).

The level T*M is a smooth manifold of dimension 2*n and admits an important
subspace of dimension (k+ 1)n called the osculating bundle of M (briefly — osculator)
of order k — 1 and denoted by Osc*~'M . The bundle Osc¥~ 1M is determined by the
equality of the projections

pL=p2 = ... = Pk,

meaning that an element of T#M belongs to the bundle Osc*~'M precisely when
all its k projections into T*~'M coincide. In this case all coordinates with the same
number of lower indices coincide. For example, the first bundle Osc M is determined
in T2U C T?M by the equation u} = u), and the second bundle Osc?M is deter-
mined in 73U C T3°M by u! = ub = u}, uly = ul; = ul,, etc. The coordinates
in Osc*~'M will be denoted by the derivatives of the coordinate functions on U, that
is (u',du’, d*u’, ... d*u?).

The immersion ¢ : OscM < T?M and its derivative 7'¢ are determined in coor-
dinates by matrix formulas:

u' u' ul du’
i i i 2, /i
i TS Bl I B G R B
us du U d“u

0 2,1 0 3,,1
Uiy d“u Ulo3 d’u
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(2 9 9 N _ (9 9 9 9
out’ A(dut)’ O(d2ut) ) — \Ou’ Oui = Ouly’ Oul, )’
The fibres of the bundle Osc M are the integral manifolds of the distribution

o 0 B)
14 92.81%), with 8! 402 = -2 g2z 9
(9 + 07,07, with 0} 407 = 5h 4 o, A= S

The functions (u} — ub) vanish on Osc M .

Historically, osculating bundles were introduced under various names long before
the bundles T*M . The systematic study which was initiated 60 years ago by works
of V. Vagner [2] has been culminated in recent times in Miron— Atanasiu theory [3].
Meanwhile, the theme of levels 7% M remained unjustly neglected for the obvious reason
that the multiple fibre bundle structure demands a whole new understanding and new
approach (see [1, 4-6]). Attempts such as [7] and the so-called synthetic formulation of
T*M [8] made progress in that direction.

While an infinitesimal displacement of the point w € M is determined by a tan-
gent vector u; to M, an infinitesimal displacement of the element (u,u;) € TM is
determined by the quantities (us,u12), representing a tangent vector to M, etc. This
interpretation of the elements of T*M allows us to develop the theory of higher order
motion. Clearly, the future belongs to these bundles.

White considers on the level T*M or on a k-multiple vector bundle certain sector-
forms which are functions simultaneously linear on the fibres of all k& projections
(see [7]). In particular, the sector-forms on 72U and T3U can be written as

_ i,.J i
® = pijuiuy + piuls,
_ i,0,k 1,4,7 2,4, 3,4,7 i
U = thijrujupug + U;5uqting + ¥y usty g + jusug g + it as,

with coefficients in U. For example, in each term of ¥ the index 1 (or 2 or 3 respec-
tively) appears exactly once. This means that the function ¥ is linear on the fibres of
p1 (and po and p3).

Any scalar function can be lifted from the level T*~'M to the level T*M by k
different projections p, : T*M — T*~1M. For example, for the sector-form & (see
above) there are three possibilities of lifting to T3M :

— i) J % _ i, i _ i, J i
P op1 = pijuguz + pittys, P o pr = piuiuz+ piuyz, Do ps = piuiuy + piug,.

Proposition 1. Every exterior k-form can be regarded as a sector-form in the sense
of White, a scalar function on T*M that is constant on the fibres of Osc*~1M .

Proof. The sector-form & is constant on Osc M if and only if its derivatives vanish
on Osc M. Thus

o = @ijuiug + <piu§2 =
(0F + 07)® = ijul, + pjiu] = (pij + ji)u] — @ij(u] — ud),
0@ =9; = ¢u)=0, ¢ =0.

If ® is an antisymmetric bilinear form then it can be expressed in the coordinates
(u',du') as a 2-form ® = ¢p;;1du’ Adu’ . Thus the sector-form @ is constant on Osc M
if and only if it is a Cartan 2-form.
If k= 3 the fibres Osc2M of dimension 3n are the integral manifolds of the distri-
bution
(0} + 07+ 07, 07+ 01> + 0%, 9}™).
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For the sector-form ¥ (see above) we have
U= Z/fijkuziugul?f + 1/%1]“11“%3 + 1/%2]“5“{3 + l/ffjuéuﬁ + Yiulys =
(0} + 0} +0})¥ = wijk%ufﬁ T/sz'kujiu!; + wjkiujiug + 1/’3;‘“%3 + w?j“ﬁ + w?ju{Q ;
(07 + 01 + 01)¥ = jui +vful + i,
0BT = 9.
The derivatives vanish on the fibres Osc?2M when the following conditions hold:

Pagry =00 Wi+ UG+ Y% =0, i =0.

These conditions are necessary and sufficient for the sector-form ¥ to be constant
on Osc2M, but not for ¥ to be a Cartan 3-form. However, every 3-form ¥ =
= Pijk dut A du? A duF can be regarded as a homogeneous sector-form that is con-
stant on Osc?M .

The argument extends likewise to the cases when k£ > 3. O

White’s theory of sector-forms is much more extensive than that of Cartan exterior
forms. In particular, exterior differentiation is an operation on the set of sector-forms
that are constant on the osculating bundles.

2.2. Gauge groups on osculating spaces. The action of the gauge group Gx
on the k-th level T*M extends in a natural way to the osculating bundle Osc*~1M .
The diagram from below shows how the block-matrix 4 x 4 reduces, for u; = wus,
to a 3 x 3 block-matrix:

a 0 0 O a 0 0

ap a 0 0
UL = Uy = a 0 a 0 ~ da a O
2 d?a da a

a2 a2 a1 a

The blocks of the matrix from the right side are generated in the following way:

i ok

a1 ~ a‘,u . .

ar~aj, gk ,lg } ~ da ~ da;-:a;-kduk,
az ~ aj,us

ikl i ok 2 i kgl i g2k
aiz ~ Qjuius +ajuly ~ dta ~ ajy dutdut +ajdiu”

The action of the gauge group G» on the level T2M is obviously transported to the
subbundle Osc M C T2?M . While one passes from T2M to OscM by considering
(a1 = ag,a12) ~ (da,d?a), (9" +0?%,0") ~ (L L)
k) Y Y ) a(du)’ a(dQU) k)
the transformation of the natural basis on 72M is transported to the transformation
of the natural basis on Osc M :

a 0 O
ap a O
as 0 a
aiz a2 ai

(a al 82 812) .

(o) (o
Ou O(du) O(d?u) P2a da a

Q@ O O O

In the general case, the action of the group G, on the level T*M extends in a similar
way to the subbundle Osc*~ 1M/ .
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Pesome

M. Pazxysa, B. Basan. Kacatenbable paccioeHns u KaTUOPOBOYHBIE TDYIIIIHL.

Juddepennmansr T a (k > 1) muddeomopdusma a raagkoro muoroobpasua M waIy-
HUPYIOT B C10sX paccaoenuii TFM , T0 eCTh B COOTBETCTBYIOMUX KACATETBHBIX TPOCTPAHCT-
Bax, JuHelHbIe Ipeobpa3oBanusd, 3aKa0danmue B cebe nefictBue kaaubpoBounoil rpynmnbt Gy, .
D10 melcTBUE eCTECTBEHHBIM 00pPa30M PACIPOCTPAHAETCI HA CONPUKACAIONIUECS TOPACCI0e-
mnst Osc* 1M c T*M.

KuroueBsbie ciioBa: muddeomopdusm rIaJIKoro MHOr006pasus, MPOCTPAHCTBO PaCCIOe-
HUSI, TefCTBUE KAJINOPOBOYHOM IPYIIIIHL.
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