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UDK 514.763.2TANGENT BUNDLES AND GAUGE GROUPSM. Rahula, V. BalanAbstratThe di�erentials T ka (k ≥ 1) of a di�eomorphism a of a smooth manifold M indue inthe �bers of the �ber bundles T kM, i.e., in the orresponding tangent spaes, linear transfor-mations, whih embody the ation of the gauge group Gk . This ation extends in a naturalway to the osulating subbundles Osk−1M ⊂ T kM .Key words: di�eomorphism of a smooth manifold, �ber bundles, ation of the gaugegroup. IntrodutionThe di�erential group G of a smooth manifold M indues in the tangent bundle
T kM an ation of the group of k -jets of transformations. More spei�ally, if a isa di�eomorphism of the manifold M , then its k -th di�erential T ka is a transformationof the level T kM . Then the level T kM may be regarded as a homogeneous spae
Jk/Hk , where Jk is the group of k -jets of transformations and Hk is the stabilizer ofan element u(u) ∈ T kM . The gauge group Gk is de�ned as a ertain subgroup of thelinear group GL(2kn,R) , where n = dimM whih is isomorphi to the stabilizer Hk .The ation of the group G extends to the osulating subbundle Osk−1M ⊂ T kM .The paper ontains all the neessary de�nitions and founds all the previous onsider-ations. Commented examples and groups of derived formulas are presented as exerises.1. Tangent groups1.1. Leibniz rule. We apply the tangent funtor T to the Cartesian produt ofsmooth manifolds M1 and M2 :

T (M1 ×M2) = (TM1 ×M2) ⊕ (M1 × TM2),and for the smooth mapping from M1 ×M2 to some smooth manifold M

λ : M1 ×M2 −→M : (u, v) 7→ w = u · v,we de�ne the tangent mapping Tλ . First, by �xing the points u ∈M1 and v ∈M2 wede�ne two mappings λu and λv :
λu : M2 →M : v 7→ u · v, λv : M1 →M : u 7→ u · v .Theorem 1. To the pair of vetors u1 ∈ TuM1 and v1 ∈ TvM2 the mapping Tλassoiates the vetor w1 ∈ TwM , and we have

w = u · v ⇒ w1 = u1 · v + u · v1 , (1)where u1 · v = Tλv(u1) and u · v1 = Tλu(v1). In short, one an apply to the �produt�
w = u · v the Leibniz rule.



250 M. RAHULA, V. BALANProof. We speify that, by means of the tangent maps Tλv and Tλu , two vetors
u1 ∈ TuM1 and v1 ∈ TvM2 are transported from the points u ∈M1 and v ∈M2 to thepoint w ∈M, where their sum de�nes the vetor w1 ∈ TwM . Loally, this is on�rmedby the formula:

wρ = λρ(ui, vα) ⇒ wρ
1 =

∂λρ

∂ui
ui

1 +
∂λρ

∂vα
vα
1 ,where ui, vα, wρ are the oordinates of the points u, v, w and ui
1, v

α
1 , w

ρ
1 are the om-ponents of the vetors u1, v1, w1 on the neighborhoods U1 ⊂ M1, U2 ⊂ M2, U ⊂ M ,

i = 1, . . . ,dimM1, α = 1, . . . ,dimM2, ρ = 1, . . . ,dimM.Using the Leibniz rule we derive a set of important formulas in oordinate free form.Exerise 1: ation of Leibniz rule. Show that the Leibniz rule an be applied to the �produt�of several fators, e.g.,
(u · v · w)1 = u1 · v · w + u · v1 · w + u · v · w1.Exerise 2: prolongation of Leibniz rule. Prove that for the seond tangent mapping T 2λ ,the following formulas hold true:

w = u · v, w1 = u1 · v + u · v1,

w2 = u2 · v + u · v2, (2)
w12 = u12 · v + u2 · v1 + u1 · v2 + u · v12.Exerise 3: funtional equation.Question: how an one solve the equation (u · v)1 = u1 · v + u · v1 with respet to u1 for given v1and (u · v)1 , or relative to v1 for given u1 and (u · v)1 ? This reminds the method of integration byparts:

d(uv) = u dv + v du  uv =

∫
u dv +

∫
v du, wheneeither ∫

u dv = uv −

∫
v du, or ∫

v du = uv −

∫
u dv.1.2. Coordinate-free story. The rule (1) is easy to use while building tangentgroups and further, while studying representations of groups. If we have previouslydenoted the �produt� of elements by a dot, as in (1) and (2), then while denoting theprodut of group elements, the dot will be omitted.To a Lie group G with omposition rule γ : (a, b) 7→ c = ab , we assoiate thetangent group TG , having the omposition law Tγ :

c = ab ⇒ c1 = a1b + ab1. (3)The vetors a1 ∈ TaG and b1 ∈ TbG are transported by means of the right shift rb .
= γband of the left shift la .

= γa , more exatly, by means of the tangent mappings Trb and
T la , from the points a and b to the point c , where the sum a1b+ab1 = Trb(a1)+T la(b1)determines the vetor c1 ∈ TcG . This is the omposition law on the tangent group TG .The unity of the group TG is the null vetor from TeG. The inversion for the elementsof TG is de�ned by the rule:

a1 ∈ TaG  a−1
1 = −a−1a1a

−1 ∈ Ta−1G. (4)Exerise 4: unity and inverse elements. Using (3), on�rm the assertion regarding the unityof the group TG and the inversion of the elements (4). The formula (4) is obtained by solving theequation a1b + ab1 = 0 relative to b1 for b = a−1 .Exerise 5: matrix representation. Prove that the formulas (3) an be represented in matrixform as
(

a 0
a1 a

)
·

(
b 0
b1 b

)
=

(
a 0
0 a

)
·

(
e 0

a−1a1 + b1b−1 e

)
·

(
b 0
0 b

)
. (5)



TANGENT BUNDLES AND GAUGE GROUPS 251The sum of vetors in TabG redues to the sum in TGe :
a1b + ab1 = T (la ◦ rb)(a

−1a1 + b1b−1) .Explain the meaning of the equality a1b + ab1 = (a1a−1) c + c (b−1b1) .Exerise 6: seond tangent group. Prove that in the seond tangent group T 2G the produtof elements is de�ned by the formulas
c = ab , c1 = a1b + ab1 ,

c2 = a2b + ab2 , (6)
c12 = a12b + a2b1 + a1b2 + ab12 ,and the inversion is performed by the rule

(a, a1, a2, a12)−1 .
= (a−1, a−1

1 , a−1
2 , a−1

12 ), where
a−1
1 = −a−1a1a−1 ,

a−1
2 = −a−1a2a−1 , (7)

a−1
12 = −a−1a12a−1 + a−1a2a−1a1a−1 + a−1a1a−1a2a−1 .Exerise 7: lassial formulas. Redue the formulas (6) and (7) to the well known formulasfrom Analysis:

(uv)′ = u′v + uv′, (uv)′′ = u′′v + 2u′v′ + uv′′,

( 1

u

)
′

= −
u′

u2
,
( 1

u

)
′′

=
−uu′′ + 2(u′)2

u3
.Exerise 8: matrix relations. Using (6) and (7) prove the matrix relations:




c 0 0 0
c1 c 0 0
c2 0 c 0
c12 c2 c1 c


 =




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 ·




b 0 0 0
b1 b 0 0
b2 0 b 0
b12 b2 b1 b


 ,




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a




−1

=




a−1 0 0 0

a−1
1 a−1 0 0

a−1
2 0 a−1 0

a−1
12 a−1

2 a−1
1 a−1


 .Whih endomorphism is involved here?Exerise 9: logarithmi derivatives. Following the example of (5), represent the produt ofelements of the group T 2G in the form:




a 0 0 0
a1 a 0 0
0 0 a 0
0 0 a1 a


 ·




e 0 0 0
0 e 0 0

a−1a2 + b2b−1 0 e 0
(a−1a2 + b2b−1)1 a−1a2 + b2b−1 0 e


 ·




b 0 0 0
b1 b 0 0
0 0 b 0
0 0 b1 b


 ,where (a−1a2 + b2b−1)1 = a−1a12 − a−1a1a−1a2 + b12b−1 − b2b−1b1b−1. In this generalization, bothlogarithmi derivatives (ln(uv)

)
′ and (ln(uv)

)
′′ , are present.At the unity e ∈ G we �x the tangent vetor e1 ∈ TeG . This vetor is displaedby left shifts la over the group G to produe the left-invariant vetor �eld ae1 and byright shifts ra , to produe the right-invariant vetor �eld e1a . If at the unit e ∈ G weprovide a frame, i.e., a basis of the spae TeG , then, in this way, two frame �elds arede�ned on G (one right-invariant and left-invariant). The transition from one frame toanother, at the point a ∈ G , is de�ned by some matrix A(a) , whih is an element ofthe linear group GL = GL(dimG,R) . By this way, we de�ne a homomorphism of thegroup G into the linear group GL :

G→ GL : a 7→ A(a). (8)



252 M. RAHULA, V. BALANExerise 10: right/left shifts and inner automorphisms. Show that an 1-parametri sub-group at of the group G de�nes in the group G three �ows orresponding to right shifts, left shiftsand inner automorphisms
rat

= exp tX, lat
= exp tX̃, Aat

= lat
◦ r−1

at
= exp t(X̃ − X)and, aordingly, the left-invariant operator X , the right-invariant operator X̃ and the adjoint repre-sentation operator Y = X̃ − X . Prove this, using the formulas

Xf = (f ◦ rat
)′t=0, X̃f = (f ◦ lat

)′t=0, Y f = (f ◦ Aat
)′t=0,where f is an arbitrary smooth funtion on G , taking into onsideration that left shifts ommute withright shifts.1.3. Elements of representation theory.We onsider a di�erentiable manifold,whih we shall all representation spae for the group G , or, in the following, simplyspae. A smooth mapping

λ : M ×G −→ M : (u, a) 7→ v = u · ade�nes an ation of the group G on the spae M , if all the mappings
λa : M →M u 7→ u · a , ∀a ∈ G ,are transformations (di�eomorphisms) of the spae M , and the mapping a 7→ λa isa homomorphism of the group G into the group of transformations of the spae M . Thehomomorphism a 7→ λa is understood either in the sense of the equality λab = λa ◦ λbor in the sense of the equality λab = λb ◦ λa . In the �rst ase we say that the ationof the group G on the spae M is left-sided, and in the seond ase it is right-sided.By writing v = a · u we have in view a left ation, while by v = u · a � a right ation:
v = a · u  (ab) · u = a · (b · u),

v = u · a  u · (ab) = (u · a) · b.The next formulas orrespond to the right-sided ation of the group G on the spae M .The kernel of the homomorphism a 7→ λa is alled the stabilizer subgroup of thegroup G . In the ase of an e�etive ation, the non-e�etiveness kernel is trivial; it on-sists of the unity e ∈ G , and the mapping a 7→ λa is injetive.For a �xed point u ∈M , the mapping
λu : G→M : a 7→ u · ade�nes in the spae M the orbit of this point. The whole spae M is �bered into orbits

λu(G) . When λu(G) = M , i.e., when the spae M is the only orbit of the group G , wesay that the ation of the Lie group G on the spae M is transitive. In suh a ase, Mis alled homogeneous group spae. If moreover, the dimensions of G and M are equal,then the ation of G on M is simply transitive and suh an ation de�nes an exatrepresentation of the group G .Equation 11: ation by right/left shifts and inner automorphisms. Show that the ationsof the group G on itself, provided by left and right shifts, are simply transitive ations. Prove that theations provided by inner automorphisms are non-transitive.The tangent map of the mapping λ , i.e., Tλ , de�nes a representation of the tangentgroup TG on the �rst level TM ,
Tλ : TM × TG → TM : (u1, a1) 7→ v1 = u1 · a+ u · a1 .



TANGENT BUNDLES AND GAUGE GROUPS 253Formula (1) looks similarly:
v = u · a  v1 = u1 · a+ u · a1. (9)We remark two partiular ases:for a1 = 0 we de�ne the ation of the group G on the level TM ,
a1 = 0 ⇒ u1 7→ v1 = u1 · a;for u1 = 0 we de�ne the ation of the tangent group TG on the spae M ,

u1 = 0 ⇒ e1 = a−1a1 7→ v1 = u · a1 = v · a−1a1 = v · e1.The formula
v1 = v · a−1a1 (10)is the fundamental formula of the theory of Lie group representations.In fat, to the vetor e1 = a−1a1 ∈ TeG (whih is an element of the Lie algebra g )at the point v ∈ M we assoiate some vetor v1 ∈ TvM , and sine v is an arbitrarypoint, it de�nes a vetor �eld on the spae M . This vetor �eld is alled the operatorof the group G , or simply group operator1. Depending on the hoie of the vetor

e1 ∈ TeG , in the spae M we have an in�nite set of group operators, and all of them,as vetor �elds, are tangent to the orresponding orbits.For v1 = 0 the equality (10) provides the equation v ·a−1a1 = 0 , or v ·e1 = 0, whihdetermines in the spae TeG those diretions e1 , along whih the point v ∈M remains�xed. We de�ne on the group G a Pfa� system, and its integral surfae (solution),whih ontains the point e ∈ G , is a subgroup Hv ⊂ G alled the stationary subgroupor the stabilizer of the point v .In oordinates (vα) on the neighborhood U ⊂ M of the point v ∈ M , Eq. (10) iswritten as a system dvα = ξα
i ω

i, where ωi are the forms of the left-invariant oframeon the group G . There appears a matrix2 ξ = (ξα
i ) , whih determines a system of forms

ϑα on the group G , and in the spae M , a system of basi operators Xi :
ϑα = ξα

i ω
i, Xi = ξα

i

∂

∂vα
.The number of operators Xi is equal to the dimension of G , and the number of forms

ϑα is the dimension of M. Operators Xi and forms ϑα are not neessarily linearlyindependent. The Pfa� system ξα
i ω

i = 0 for a �xed point v ∈ M is ompletely inte-grable and de�nes the stabilizer Hv ⊂ G.Exerise 12: vision from the lassial theory. Show that the system ξα
i ωi = 0 is the oordinateform of the equation v · a−1a1 = 0 .1.4. Adjoint representation. In the groups G and TG we de�ne the ation byleft shifts:

la : b 7→ c = ab,

T la1 : b1 7→ c1 = (a1a
−1) c+ ab1,

c1 = (a1a
−1) c , (11)

1Sine the time of S. Lie and frequently nowadays, group operators have been alled in�nitesimaltransformations or fundamental vetor �elds of the group.
2The matrix ξ plays an essential role in the theory of Lie group representations (see, e.g., S. LieTheorems).



254 M. RAHULA, V. BALANright shifts:
ra : b 7→ c = b a,

T ra1 : b1 7→ c1 = b1 a+ c (a−1a1),

c1 = c (a−1a1) , (12)and inner automorphisms:
Aa : b 7→ c = aba−1,

TAa1 : b1 7→ c1 = (a1a
−1) c− c (a1a

−1) + a b1 a
−1,

c1 = (a1a
−1) c− c (a1a

−1) . (13)The basi formula (10) is rewritten, for b1 = 0 , in the forms (11), (12) and (13),respetively.Inner automorphisms are diretly related to higher order movements.Hene, when in the spaes A and B there take plae the transformations a and b ,the mapping ϕ : A→ B is brought into the mapping ϕ̃ : A→ B . This is shown by thediagram:
A

ϕ
−−→ B

a ↓ ↓ b

A
ϕ̃

−−→ B

ϕ ϕ̃ = bϕa−1If we set here A = B, a = b and if ϕ is a di�eomorphism, i.e., ϕ is a transformation ofthe spae A , then this diagram desribes the transformation of the mapping ϕ , subjetto the in�uene of the transformation a :
A

ϕ
−−→ A

a ↓ ↓ a

A
ϕ̃

−−→ A

ϕ ϕ̃ = aϕa−1 (14)The transformation ϕ is subjet to the inner automorphism.Exerise 13: higher order transformations.The transformation of order 2 ϕ ϕ̃ is desribedby the 2-dimensional diagram (1.14). Show that the transformation of order 3, i.e., a transformationof transformation ϕ ϕ̃ , is desribed by a 3-dimensional diagram and the transformation of order kis desribed by a orresponding k -dimensional diagram.If the arrow a in diagram (14) is assumed to represent the 1-parametri group atof transformations of the spae A , or in brief, the �ow at , then we see how, to a hangeof the parameter t (of time), it orresponds to a hange of the mapping ϕt = atϕa
−1
t .We an talk then about a 1-parametri family of mappings ϕt in the �eld at.If the arrow ϕ in diagram (14) is regarded as a 1-parametri group of transformations

bτ of the spae A (the �ow bτ ), then we an see how this �ow hanges under thetransformation a , i.e., bτ  b̃τ = abτa
−1 .Exerise 14: transformation of the �ow. Show that if bτ is the �ow of the vetor �eld Y and

b̃τ is the �ow of the �eld Ỹ , then Ỹ = TaY , and the tangent mapping Ta ats on the �eld Y :
bτ = exp τY  b̃τ = abτ a−1 = exp τỸ , Y  Ỹ = TaY.Exerise 15: interation of vetor �elds. Let X and Y be two vetor �elds. The �ows ofthese �elds at = exp tX and bτ = exp τY interat aording to the sheme:

bτ  atbτ a−t, Y  TatY,

at  bτ atb−τ , X  Tbτ X.



TANGENT BUNDLES AND GAUGE GROUPS 255Using derivatives of the funtion f

Xf = (f ◦ at)
′

t=0 and Y f = (f ◦ bτ )′τ=0 ,perform the di�erentiation (the parameters t or τ from above the arrow mean di�erentiation relativeto t for t → 0 or to τ , for τ → 0):
f ◦ (atbτ a−1

t )
t

−→ (Xf) ◦ bτ − X(f ◦ bτ )
τ

−→ (Y X − XY )f ,

f ◦ (bτ atb
−1
τ )

τ
−→ (Y f) ◦ at − Y (f ◦ at)

t
−→ (XY − Y X)f.Chek the validity of the relation (TatY )′t=0 = −(Tbτ X)′τ=0 and establish a onnetion with thebrakets [X, Y ] = XY − Y X .If in one �ow the points move along trajetories and under the in�uene of the other�ow, this movement is transformed, and then the movement of the movement takesplae, or a seond-order movement. Under the in�uene of a third �ow, the movementof seond order hanges its shape, then the movement of third order ours, et. In thein�nitesimal approah this redues to the iterations

at  Tat  T 2at  . . .and to the orresponding vetor �elds on the levels
X  

(1)

X  
(2)

X  . . . , T kat = exp t
(k)

X, k = 0, 1, 2, . . . (15)In this way, the �ow T kat indues a movement of order k .1.5. Gauge groups. Let us �x on eah level a point
u(k) ∈ T kM, suh that πk(u(k)) = u(k−1), k = 0, 1, 2, . . .In the neighborhood T kU ⊂ T kM these points are de�ned by their oordinates:

U : u(0)  (ui) ,

TU : u(1)  (ui, ui
1) ,

T 2U : u(2)  (ui, ui
1, u

i
2, u

i
12) ,

T 3U : u(3)  (ui, ui
1, u

i
2, u

i
12, u

i
3, u

i
13, u

i
23, u

i
123) ,

· · · · · ·Transformation of oordinates in the neighborhood U ⊂M

ui
 ũi ◦ a = aiindues a hange of oordinates in eah neighborhood T kU :

(ui, ui
1, u

i
2, u

i
12, . . . )  (ũi, ũi

1, ũ
i
2, ũ

i
12, . . . ) = (ai, ai

1, a
i
2, a

i
12, . . . ).Namely, if these transformations of oordinates in the neighborhood TU are de�ned bythe system {

ũi = ai,

ũi
1 = ai

1
.
= ai

ju
j
1,with the Jaobian blok-matrix

(
ai

j 0
(ai

j)1 ai
j

)
, where ai

j =
∂ai

∂uj
, ai

jk =
∂2ai

∂uj∂uk
, (ai

j)1
.
= ai

jku
k
1 ,



256 M. RAHULA, V. BALANthen the transformation of oordinates in the neighborhood T 2U are de�ned by thesystem 



ũi = ai,

ũi
1 = ai

1
.
= ai

ju
j
1,

ũi
2 = ai

2
.
= ai

ju
j
2,

ũi
12 = ai

12
.
= ai

jku
j
1u

k
2 + ai

ju
j
12,with the Jaobian blok-matrix




ai
j 0 0 0

(ai
j)1 ai

j 0 0
(ai

j)2 0 ai
j 0

(ai
j)12 (ai

j)2 (ai
j)1 ai

j


 , where 





(ai
j)1

.
= ai

jku
k
1 ,

(ai
j)2

.
= ai

jku
k
2 ,

(ai
j)12

.
= ai

jklu
k
1u

l
2 + ai

jku
k
12,et.When performing a lift from one level to another, U  TU  T 2U  . . . , theJaobian matrix is indutively built aording to the sheme:

a 

(
a 0
a1 a

)
 




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 . . . , (16)with repeated, as shown above, n-dimensional bloks

a = (ai
j), a1 = (ai

j)1, a2 = (ai
j)2, a12 = (ai

j )12, . . .Therefore, there follows the general rule: the Jaobian matrix of the transformation ofoordinates on the neighborhood T kU is of the form
(
A 0
Ak A

)
, (17)where the blok A is the Jaobian matrix on T k−1U and Ak

.
= dkA, k = 1, 2, . . .In other words, the Jaobian matrix on the neighborhood T kU onsists of fourbloks, where the Jaobian matrix A of the neighborhood T k−1U is repeated on thediagonal, the upper-right blok is zero, and the left-lower blok is the di�erential of theblok A taking into onsideration the k -th level, i.e., Ak

.
= dkA .Formula (17) de�nes the sequene of matries (16).Exerise 16: inversion rule. Show that the inversion of the matrix (17) takes plae aordingto the sheme: (

A 0
Ak A

)
=

(
E 0

AkA
−1 E

)
·

(
A 0
0 A

)
 

 

(
A 0
Ak A

)
−1

=

(
A−1 0

0 A−1

)
·

(
E 0

−AkA
−1 E

)
,where E is the identity blok. See (4) and

a1 = (a1a−1)a  a−1
1 = −a−1(a1a−1).The matrix (17) depends on the point u(k) ∈ T kU . If this point is �xed, thena numeri matrix is de�ned, but still having the freedom to hoose the funtion ai(or the orresponding jet of the transformation).



TANGENT BUNDLES AND GAUGE GROUPS 257Exerise 17: gauge group. Show that all matries of the form (17), with the point u(k) ∈ T kU�xed, determine a subgroup of the linear group of order 2kn ,
Gk ⊂ GL(2kn, R).Prove the existene of the groups G1, G2, G3 and extend to Gk .We all the group Gk of matries (17) with �xed point u(k) ∈ T kU the gauge group oforder k on the manifold M . By setting k = 0, 1, 2, 3, . . ., we obtain an in�nite sequeneof gauge groups

G  G1  G2  G3  . . . (18)Theorem 2. The gauge group of order k is isomorphi to the k -th tangent groupof the linear group GL(n,R) , whih, in its turn, is embedded in the linear group
GL(2kn,R) :

Gk ≈ T k
(
GL(n,R)

)
⊂ GL(2kn,R), k = 0, 1, 2, . . . (19)In this ase

dimGL(2kn,R) = (2kn)2 and dimGk = 2kn2.Proof. We �x the element u(k) ∈ T kM of the k -th level. Matries (17) generatea subgroup Gk of the linear group GL(2kn,R) (see Exerise 17). The �xing of the point
u(k) does not limit the freedom of hoie for the element (17) in the group Gk . Hene,the group Gk is uniquely de�ned regardless of the point u(k) ∈ T kM . On the otherside, the tangent group T k

(
GL(n,R)

) oinides up to an isomorphism, with the matrixgroup (17), or Gk . This follows from the formulas (3)�(7) and Exerises 12�17, if weassume G = GL(n,R) .Further, in the matrix (17), besides the point u(k) ∈ T kU , there exists the k -jet ofoordinate transformations (aj
i , a

j
i1i2

, . . . , aj
i1i2...ik

) . We shall denote as Jk the group ofsuh jets at the point u (see Exerise 5). The homomorphism is de�ned:
χk : Jk → Gk. (20)Exerise 18: jets and gauge group. Show that for k = 2 , the mapping χ2 is homomorphi,i.e., to a omposition of 2-jets (ai

k
, aj

kl
) and (bk

j , ak
jl

) there orresponds the produt of matries A2 ,
(

ai
k

0
ai

kl
ul
1 ai

k

)
·

(
bk
j 0

bk
jl

ul
1 bk

j

)
=

(
ai

k
bk
j 0

(ai
k
bk
j )lu

l
1 ai

k
bk
j

)
,and to the inverse 2-jet (ai

j , ai
jl

)−1 .
= (āi

j ,−āi
sas

kl
āk

j ) , there orresponds the inverse matrix A
−1
2

(
ai

k
0

ai
kl

ul
1 ai

k

)
−1

=

(
āi

j 0

−āi
sas

kl
āk

j ul
1 āi

j

)
.Generalize this to the general ase k .Exerise 19: homogeneity of tangent spae. Show that the kernel of the homomorphism χkis the stabilizer Hu(k)

of the element u(k) ∈ T kM in the groupJk . The tangent spae T k
u(k)

M isidenti�ed with the homogeneous spae Jk/Hu(k)
.Let us onsider one again the gauge groups of the sequene (18). The �rst group Gis the linear group GL(n,R) ,

G = GL(n,R).



258 M. RAHULA, V. BALANThe seond group G1 is isomorphi to the tangent group T (GL(n,R)
)
. Its elementsare blok matries of the form

(
a 0
a1 a

)
, where a ∈ GL(n,R) and a1 ∈ gl(n,R).The orrespondene G1 ! T

(
GL(n,R)

) is one-to-one. The produt of elements in thegroup G1 , (
a 0
a1 a

)
·

(
b 0
b1 b

)
=

(
ab 0

(ab)1 ab

)
,redues to the Leibniz rule in the tangent group T

(
GL(n,R)

) ,
(ab)1 = a1b + ab1,and the inversion of elements in G1 ,

(
a 0
a1 a

)
−1

=

(
a
−1 0

−a
−1

a1a
−1

a
−1

)
,redues to the rule

a
−1
1 = −a

−1
a1a

−1.This speaks about an isomorphism between the groups G1 and T
(
GL(n,R)

)
. An innerauthomorphism in G1 is generated as allows:

(
a 0
a1 a

)
·

(
b 0
b1 b

)
·

(
a 0
a1 a

)
−1

=

(
aba

−1 0

(aba
−1)1 aba

−1

)
,with the blok (aba

−1)1 = ab1a
−1 + a1a

−1(aba
−1) − (aba

−1)a1a
−1, et.The following group G2 is isomorphi to the tangent group T 2

(
GL(n,R)

)
. Thestair-like struture appears again:




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 ·




b 0 0 0
b1 b 0 0
b2 0 b 0
b12 b2 b1 b


 =




ab 0 0 0
(ab)1 ab 0 0
(ab)2 0 ab 0
(ab)12 (ab)2 (ab)1 ab


 ,where

(ab)1 = a1b + ab1,

(ab)2 = a2b + ab2,

(ab)12 = a12b + a2b1 + a1b2 + ab12.Exerise 20: logarithmi rule for gauge group. Show that while forming the bloks
a  a

−1
a1  (a−1

a1)2 = a
−1

a12 − a
−1

a2a
−1

a1  . . .there appears the following property of the logarithmi funtion:
ln u  

u′

u
 

u′′

u
−

(u′)2

u2
 . . .We shall further denote the Lie algebra of the group Gk by Gk .



TANGENT BUNDLES AND GAUGE GROUPS 259The general sheme is the following. An element of the group Gk is generated a-ording to the priniple:
(
A 0
Ak A

)
, where A ∈ Gk−1, Ak ∈ Gk−1.The produt and the inversion of elements,

(
A 0
Ak A

)
·

(
B 0
Bk B

)
=

(
AB 0

(AB )k AB

)
,

(
A 0
Ak A

)
−1

=

(
A−1 0
A−1

k A−1

)
,redue to the rules:

(AB)k = AkB + ABk, A−1
k = −A−1AkA

−1.The Lie algebra Gk−1 is identi�ed with the additive subgroup of the matrix group Gk ,whose matries have the form:
(

E 0
Ak E

)
, (21)where E is the unit blok, i.e., the unity of the group Gk−1 . The produt and theinversion of suh matries are performed in the following way:

(
E 0
Ak E

)
·

(
E 0
Bk E

)
=

(
E 0

Ak + Bk E

)
,

(
E 0
Ak E

)
−1

=

(
E 0

−Ak E

)
.All these matries generate within the group Gk a normal divisor,

(
A 0
Ak A

)
·

(
E 0
Bk E

)
·

(
A 0
Ak A

)
−1

=

(
E 0

ABkA
−1 E

)
.An inner automorphism of the group Gk leads to the transformation of the blok

Bk  B̃k = ABkA
−1.Under suh a transformation, the spetrum of the matrix Bk is preserved. The invariantswill be the eigenvalues of this matrix and the orresponding symmetri polynomials,whih are oe�ients in the Hamilton �Cayley formula.Exerise 21: Lie algebra of the Lie group. Show that the Lie algebra of an arbitrary Lie group

G may be regarded as an additive subgroup and a normal divisor of the tangent group TG . Desribethe osets of this normal divisor and the orresponding quotient group of the group TG .Exerise 22: struture onstants iterated. The struture onstants of a Lie group G havethree indies and an be plaed into a spaial matrix a). Prove that the struture onstants of thetangent groups TG, T 2G and T 3G an be similarly put into a spaial matries of type b), c) and d) ,respetively.



260 M. RAHULA, V. BALAN2. Tangent bundles and osulators2.1. Levels and setor-forms. The tangent funtor T iterated k times as-soiates to a smooth manifold M its k -fold tangent bundle T kM (the k -th levelof M ) and assoiates to a smooth map ϕ : M1 → M2 the graded morphism
T kϕ : T kM1 → T kM2 , the k -th derivative of ϕ . The level T kM has a multiple vetorbundle struture with k projetions onto T k−1M :

ρs
.
= T k−sπs : T kM → T k−1M, s = 1, 2, . . . , k,where πs is the natural projetion T sM → T s−1M .Loal oordinates in neighborhoods

T sU ⊂ T sM, s = 1, 2, . . . , k, where T s−1U = πs(T
sU),are determined automatially by those in the neighborhood U ⊂M , the quantities (ui)being regarded either as oordinate funtions on U or as the oordinate omponents ofthe point u ∈ U :

U : (ui), i = 1, 2, . . . , n = dimM,
TU : (ui, ui

1), with ui .= ui ◦ π1, u
i
1
.
= dui,

T 2U : (ui, ui
1, u

i
2, u

i
12),with ui .= ui ◦ π1π2, u

i
1
.
= dui ◦ π2, u

i
2
.
= d(ui ◦ π1), u

i
12

.
= d(dui), et.We set up the following onvention: to introdue oordinates on T kU , we take theoordinates on T k−1U and repeat them with an additional index k , so that a tangentvetor is preeded by its point of origin. This indexing is onvenient sine at present thesymbols with index s beome �ber oordinates for the projetion ρs, s = 1, 2, . . . , k .Thus, for example, under the projetions ρs : T 3U → T 2U, s = 1, 2, 3, the oordi-nates with indies 1, 2 and 3 are eah suppressed in turn:

(ui ui
1 u

i
2 u

i
12 u

i
3 u

i
13 u

i
23 u

i
123)

ρ1 ւ ρ2 ↓ ց ρ3

(ui ui
2 u

i
3 u

i
23) (ui ui

1 u
i
3 u

i
13) (ui ui

1 u
i
2 u

i
12).The level T kM is a smooth manifold of dimension 2kn and admits an importantsubspae of dimension (k + 1)n alled the osulating bundle of M (brie�y � osulator)of order k − 1 and denoted by Osk−1M . The bundle Osk−1M is determined by theequality of the projetions

ρ1 = ρ2 = . . . = ρk,meaning that an element of T kM belongs to the bundle Osk−1M preisely whenall its k projetions into T k−1M oinide. In this ase all oordinates with the samenumber of lower indies oinide. For example, the �rst bundle OsM is determinedin T 2U ⊂ T 2M by the equation ui
1 = ui

2 , and the seond bundle Os2M is deter-mined in T 3U ⊂ T 3M by ui
1 = ui

2 = ui
3, u

i
12 = ui

13 = ui
23, et. The oordinatesin Osk−1M will be denoted by the derivatives of the oordinate funtions on U , thatis (ui, dui, d2ui, . . . , dkui) .The immersion ζ : OsM →֒ T 2M and its derivative Tζ are determined in oor-dinates by matrix formulas:




ui

ui
1

ui
2

ui
12


 ◦ ζ =




ui

dui

dui

d2ui


 ,




ui
3

ui
13

ui
23

ui
123


 ◦ Tζ =




dui

d2ui

d2ui

d3ui


 ,
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Tζ

(
∂

∂ui
,

∂

∂(dui)
,

∂

∂(d2ui)

)
=

(
∂

∂ui
,

∂

∂ui
1

+
∂

∂ui
2

,
∂

∂ui
12

)
.The �bres of the bundle OsM are the integral manifolds of the distribution

〈 ∂1
i + ∂2

i , ∂
12
i 〉, with ∂1

i + ∂2
i

.
=

∂

∂ui
1

+
∂

∂ui
2

, ∂12
i

.
=

∂

∂ui
12

.The funtions (ui
1 − ui

2) vanish on OsM .Historially, osulating bundles were introdued under various names long beforethe bundles T kM . The systemati study whih was initiated 60 years ago by worksof V. Vagner [2℄ has been ulminated in reent times in Miron �Atanasiu theory [3℄.Meanwhile, the theme of levels T kM remained unjustly negleted for the obvious reasonthat the multiple �bre bundle struture demands a whole new understanding and newapproah (see [1, 4�6℄). Attempts suh as [7℄ and the so-alled syntheti formulation of
T kM [8℄ made progress in that diretion.While an in�nitesimal displaement of the point u ∈ M is determined by a tan-gent vetor u1 to M , an in�nitesimal displaement of the element (u, u1) ∈ TM isdetermined by the quantities (u2, u12) , representing a tangent vetor to TM , et. Thisinterpretation of the elements of T kM allows us to develop the theory of higher ordermotion. Clearly, the future belongs to these bundles.White onsiders on the level T kM or on a k -multiple vetor bundle ertain setor-forms whih are funtions simultaneously linear on the �bres of all k projetions(see [7℄). In partiular, the setor-forms on T 2U and T 3U an be written as

Φ = ϕiju
i
1u

j
2 + ϕiu

i
12,

Ψ = ψijku
i
1u

j
2u

k
3 + ψ1

iju
i
1u

j
23 + ψ2

iju
i
2u

j
13 + ψ3

iju
i
3u

j
12 + ψiu

i
123,with oe�ients in U . For example, in eah term of Ψ the index 1 (or 2 or 3 respe-tively) appears exatly one. This means that the funtion Ψ is linear on the �bres of

ρ1 (and ρ2 and ρ3 ).Any salar funtion an be lifted from the level T k−1M to the level T kM by kdi�erent projetions ρs : T kM → T k−1M . For example, for the setor-form Φ (seeabove) there are three possibilities of lifting to T 3M :
Φ ◦ ρ1 = ϕiju

i
2u

j
3 + ϕiu

i
23, Φ ◦ ρ2 = ϕiju

i
1u

j
3 + ϕiu

i
13, Φ ◦ ρ3 = ϕiju

i
1u

j
2 + ϕiu

i
12.Proposition 1. Every exterior k -form an be regarded as a setor-form in the senseof White, a salar funtion on T kM that is onstant on the �bres of Osk−1M .Proof. The setor-form Φ is onstant on OsM if and only if its derivatives vanishon OsM . Thus

Φ = ϕiju
i
1u

j
2 + ϕiu

i
12 ⇒

(∂1
i + ∂2

i )Φ = ϕiju
j
2 + ϕjiu

j
1 = (ϕij + ϕji)u

j
1 − ϕij(u

j
1 − uj

2),

∂12
i Φ = ϕi ⇒ ϕ(ij) = 0, ϕi = 0 .If Φ is an antisymmetri bilinear form then it an be expressed in the oordinates

(ui, dui) as a 2 -form Φ = ϕ[ij ]du
i ∧ duj . Thus the setor-form Φ is onstant on OsMif and only if it is a Cartan 2 -form.If k = 3 the �bres Os2M of dimension 3n are the integral manifolds of the distri-bution

〈 ∂1
i + ∂2

i + ∂3
i , ∂

23
i + ∂13

i + ∂12
i , ∂123

i 〉.



262 M. RAHULA, V. BALANFor the setor-form Ψ (see above) we have
Ψ = ψijku

i
1u

j
2u

k
3 + ψ1

iju
i
1u

j
23 + ψ2

iju
i
2u

j
13 + ψ3

iju
i
3u

j
12 + ψiu

i
123 ⇒

(∂1
i + ∂2

i + ∂3
i )Ψ = ψijku

j
2u

k
3+ ψjiku

j
1u

k
3 + ψjkiu

j
1u

k
2 + ψ1

iju
j
23 + ψ2

iju
j
13 + ψ3

iju
j
12 ,

(∂23
i + ∂13

i + ∂12
i )Ψ = ψ1

jiu
j
1+ψ2

jiu
j
2 + ψ3

jiu
j
3,

∂123
i Ψ = ψi.The derivatives vanish on the �bres Os2M when the following onditions hold:
ϕ(ijk) = 0, ψ1

ij + ψ2
ij + ψ3

ij = 0, ψi = 0.These onditions are neessary and su�ient for the setor-form Ψ to be onstanton Os2M , but not for Ψ to be a Cartan 3 -form. However, every 3 -form Ψ̃ =
= ϕijk du

i ∧ duj ∧ duk an be regarded as a homogeneous setor-form that is on-stant on Os2M .The argument extends likewise to the ases when k > 3 .White's theory of setor-forms is muh more extensive than that of Cartan exteriorforms. In partiular, exterior di�erentiation is an operation on the set of setor-formsthat are onstant on the osulating bundles.2.2. Gauge groups on osulating spaes. The ation of the gauge group Gkon the k -th level T kM extends in a natural way to the osulating bundle Osk−1M .The diagram from below shows how the blok-matrix 4 × 4 redues, for u1 = u2 ,to a 3 × 3 blok-matrix:
u1 = u2 ⇒




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


  




a 0 0
da a 0
d2a da a


 .The bloks of the matrix from the right side are generated in the following way:

a ∼ ai
j ,

a1 ∼ ai
jku

k
1

a2 ∼ ai
jku

k
2

}
 da ∼ dai

j = ai
jkdu

k,

a12 ∼ ai
jklu

k
1u

l
2 + ai

jku
k
12  d2a ∼ ai

jkl du
kdul + ai

jkd
2uk.The ation of the gauge group G2 on the level T 2M is obviously transported to thesubbundle OsM ⊂ T 2M . While one passes from T 2M to OsM by onsidering

(a1 = a2, a12)  (da , d2a), (∂1 + ∂2 , ∂12)  
( ∂

∂(du)
,

∂

∂(d2u)

)
,the transformation of the natural basis on T 2M is transported to the transformationof the natural basis on OsM :

(∂ ∂1 ∂2 ∂12) ·




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


  

(
∂

∂u

∂

∂(du)

∂

∂(d2u)

)
·




a 0 0
da a 0
d2a da a


 .In the general ase, the ation of the group Gk on the level T kM extends in a similarway to the subbundle Osk−1M .



TANGENT BUNDLES AND GAUGE GROUPS 263�åçþìåÌ. �àõóëà, Â. Áàëàí. Êàñàòåëüíûå ðàññëîåíèÿ è êàëèáðîâî÷íûå ãðóïïû.Äè��åðåíöèàëû T ka (k ≥ 1) äè��åîìîð�èçìà a ãëàäêîãî ìíîãîîáðàçèÿ M èíäó-öèðóþò â ñëîÿõ ðàññëîåíèé T kM , òî åñòü â ñîîòâåòñòâóþùèõ êàñàòåëüíûõ ïðîñòðàíñò-âàõ, ëèíåéíûå ïðåîáðàçîâàíèÿ, çàêëþ÷àþùèå â ñåáå äåéñòâèå êàëèáðîâî÷íîé ãðóïïû Gk .Ýòî äåéñòâèå åñòåñòâåííûì îáðàçîì ðàñïðîñòðàíÿåòñÿ íà ñîïðèêàñàþùèåñÿ ïîäðàññëîå-íèÿ Osk−1M ⊂ T kM .Êëþ÷åâûå ñëîâà: äè��åîìîð�èçì ãëàäêîãî ìíîãîîáðàçèÿ, ïðîñòðàíñòâî ðàññëîå-íèÿ, äåéñòâèå êàëèáðîâî÷íîé ãðóïïû.
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