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UDK 514.763.2TANGENT BUNDLES AND GAUGE GROUPSM. Rahula, V. BalanAbstra
tThe di�erentials T ka (k ≥ 1) of a di�eomorphism a of a smooth manifold M indu
e inthe �bers of the �ber bundles T kM, i.e., in the 
orresponding tangent spa
es, linear transfor-mations, whi
h embody the a
tion of the gauge group Gk . This a
tion extends in a naturalway to the os
ulating subbundles Os
k−1M ⊂ T kM .Key words: di�eomorphism of a smooth manifold, �ber bundles, a
tion of the gaugegroup. Introdu
tionThe di�erential group G of a smooth manifold M indu
es in the tangent bundle
T kM an a
tion of the group of k -jets of transformations. More spe
i�
ally, if a isa di�eomorphism of the manifold M , then its k -th di�erential T ka is a transformationof the level T kM . Then the level T kM may be regarded as a homogeneous spa
e
Jk/Hk , where Jk is the group of k -jets of transformations and Hk is the stabilizer ofan element u(u) ∈ T kM . The gauge group Gk is de�ned as a 
ertain subgroup of thelinear group GL(2kn,R) , where n = dimM whi
h is isomorphi
 to the stabilizer Hk .The a
tion of the group G extends to the os
ulating subbundle Os
k−1M ⊂ T kM .The paper 
ontains all the ne
essary de�nitions and founds all the previous 
onsider-ations. Commented examples and groups of derived formulas are presented as exer
ises.1. Tangent groups1.1. Leibniz rule. We apply the tangent fun
tor T to the Cartesian produ
t ofsmooth manifolds M1 and M2 :

T (M1 ×M2) = (TM1 ×M2) ⊕ (M1 × TM2),and for the smooth mapping from M1 ×M2 to some smooth manifold M

λ : M1 ×M2 −→M : (u, v) 7→ w = u · v,we de�ne the tangent mapping Tλ . First, by �xing the points u ∈M1 and v ∈M2 wede�ne two mappings λu and λv :
λu : M2 →M : v 7→ u · v, λv : M1 →M : u 7→ u · v .Theorem 1. To the pair of ve
tors u1 ∈ TuM1 and v1 ∈ TvM2 the mapping Tλasso
iates the ve
tor w1 ∈ TwM , and we have

w = u · v ⇒ w1 = u1 · v + u · v1 , (1)where u1 · v = Tλv(u1) and u · v1 = Tλu(v1). In short, one 
an apply to the �produ
t�
w = u · v the Leibniz rule.
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ify that, by means of the tangent maps Tλv and Tλu , two ve
tors
u1 ∈ TuM1 and v1 ∈ TvM2 are transported from the points u ∈M1 and v ∈M2 to thepoint w ∈M, where their sum de�nes the ve
tor w1 ∈ TwM . Lo
ally, this is 
on�rmedby the formula:

wρ = λρ(ui, vα) ⇒ wρ
1 =

∂λρ

∂ui
ui

1 +
∂λρ

∂vα
vα
1 ,where ui, vα, wρ are the 
oordinates of the points u, v, w and ui
1, v

α
1 , w

ρ
1 are the 
om-ponents of the ve
tors u1, v1, w1 on the neighborhoods U1 ⊂ M1, U2 ⊂ M2, U ⊂ M ,

i = 1, . . . ,dimM1, α = 1, . . . ,dimM2, ρ = 1, . . . ,dimM.Using the Leibniz rule we derive a set of important formulas in 
oordinate free form.Exer
ise 1: a
tion of Leibniz rule. Show that the Leibniz rule 
an be applied to the �produ
t�of several fa
tors, e.g.,
(u · v · w)1 = u1 · v · w + u · v1 · w + u · v · w1.Exer
ise 2: prolongation of Leibniz rule. Prove that for the se
ond tangent mapping T 2λ ,the following formulas hold true:

w = u · v, w1 = u1 · v + u · v1,

w2 = u2 · v + u · v2, (2)
w12 = u12 · v + u2 · v1 + u1 · v2 + u · v12.Exer
ise 3: fun
tional equation.Question: how 
an one solve the equation (u · v)1 = u1 · v + u · v1 with respe
t to u1 for given v1and (u · v)1 , or relative to v1 for given u1 and (u · v)1 ? This reminds the method of integration byparts:

d(uv) = u dv + v du  uv =

∫
u dv +

∫
v du, when
eeither ∫

u dv = uv −

∫
v du, or ∫

v du = uv −

∫
u dv.1.2. Coordinate-free story. The rule (1) is easy to use while building tangentgroups and further, while studying representations of groups. If we have previouslydenoted the �produ
t� of elements by a dot, as in (1) and (2), then while denoting theprodu
t of group elements, the dot will be omitted.To a Lie group G with 
omposition rule γ : (a, b) 7→ c = ab , we asso
iate thetangent group TG , having the 
omposition law Tγ :

c = ab ⇒ c1 = a1b + ab1. (3)The ve
tors a1 ∈ TaG and b1 ∈ TbG are transported by means of the right shift rb .
= γband of the left shift la .

= γa , more exa
tly, by means of the tangent mappings Trb and
T la , from the points a and b to the point c , where the sum a1b+ab1 = Trb(a1)+T la(b1)determines the ve
tor c1 ∈ TcG . This is the 
omposition law on the tangent group TG .The unity of the group TG is the null ve
tor from TeG. The inversion for the elementsof TG is de�ned by the rule:

a1 ∈ TaG  a−1
1 = −a−1a1a

−1 ∈ Ta−1G. (4)Exer
ise 4: unity and inverse elements. Using (3), 
on�rm the assertion regarding the unityof the group TG and the inversion of the elements (4). The formula (4) is obtained by solving theequation a1b + ab1 = 0 relative to b1 for b = a−1 .Exer
ise 5: matrix representation. Prove that the formulas (3) 
an be represented in matrixform as
(

a 0
a1 a

)
·

(
b 0
b1 b

)
=

(
a 0
0 a

)
·

(
e 0

a−1a1 + b1b−1 e

)
·

(
b 0
0 b

)
. (5)
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tors in TabG redu
es to the sum in TGe :
a1b + ab1 = T (la ◦ rb)(a

−1a1 + b1b−1) .Explain the meaning of the equality a1b + ab1 = (a1a−1) c + c (b−1b1) .Exer
ise 6: se
ond tangent group. Prove that in the se
ond tangent group T 2G the produ
tof elements is de�ned by the formulas
c = ab , c1 = a1b + ab1 ,

c2 = a2b + ab2 , (6)
c12 = a12b + a2b1 + a1b2 + ab12 ,and the inversion is performed by the rule

(a, a1, a2, a12)−1 .
= (a−1, a−1

1 , a−1
2 , a−1

12 ), where
a−1
1 = −a−1a1a−1 ,

a−1
2 = −a−1a2a−1 , (7)

a−1
12 = −a−1a12a−1 + a−1a2a−1a1a−1 + a−1a1a−1a2a−1 .Exer
ise 7: 
lassi
al formulas. Redu
e the formulas (6) and (7) to the well known formulasfrom Analysis:

(uv)′ = u′v + uv′, (uv)′′ = u′′v + 2u′v′ + uv′′,

( 1

u

)
′

= −
u′

u2
,
( 1

u

)
′′

=
−uu′′ + 2(u′)2

u3
.Exer
ise 8: matrix relations. Using (6) and (7) prove the matrix relations:




c 0 0 0
c1 c 0 0
c2 0 c 0
c12 c2 c1 c


 =




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 ·




b 0 0 0
b1 b 0 0
b2 0 b 0
b12 b2 b1 b


 ,




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a




−1

=




a−1 0 0 0

a−1
1 a−1 0 0

a−1
2 0 a−1 0

a−1
12 a−1

2 a−1
1 a−1


 .Whi
h endomorphism is involved here?Exer
ise 9: logarithmi
 derivatives. Following the example of (5), represent the produ
t ofelements of the group T 2G in the form:




a 0 0 0
a1 a 0 0
0 0 a 0
0 0 a1 a


 ·




e 0 0 0
0 e 0 0

a−1a2 + b2b−1 0 e 0
(a−1a2 + b2b−1)1 a−1a2 + b2b−1 0 e


 ·




b 0 0 0
b1 b 0 0
0 0 b 0
0 0 b1 b


 ,where (a−1a2 + b2b−1)1 = a−1a12 − a−1a1a−1a2 + b12b−1 − b2b−1b1b−1. In this generalization, bothlogarithmi
 derivatives (ln(uv)

)
′ and (ln(uv)

)
′′ , are present.At the unity e ∈ G we �x the tangent ve
tor e1 ∈ TeG . This ve
tor is displa
edby left shifts la over the group G to produ
e the left-invariant ve
tor �eld ae1 and byright shifts ra , to produ
e the right-invariant ve
tor �eld e1a . If at the unit e ∈ G weprovide a frame, i.e., a basis of the spa
e TeG , then, in this way, two frame �elds arede�ned on G (one right-invariant and left-invariant). The transition from one frame toanother, at the point a ∈ G , is de�ned by some matrix A(a) , whi
h is an element ofthe linear group GL = GL(dimG,R) . By this way, we de�ne a homomorphism of thegroup G into the linear group GL :

G→ GL : a 7→ A(a). (8)



252 M. RAHULA, V. BALANExer
ise 10: right/left shifts and inner automorphisms. Show that an 1-parametri
 sub-group at of the group G de�nes in the group G three �ows 
orresponding to right shifts, left shiftsand inner automorphisms
rat

= exp tX, lat
= exp tX̃, Aat

= lat
◦ r−1

at
= exp t(X̃ − X)and, a

ordingly, the left-invariant operator X , the right-invariant operator X̃ and the adjoint repre-sentation operator Y = X̃ − X . Prove this, using the formulas

Xf = (f ◦ rat
)′t=0, X̃f = (f ◦ lat

)′t=0, Y f = (f ◦ Aat
)′t=0,where f is an arbitrary smooth fun
tion on G , taking into 
onsideration that left shifts 
ommute withright shifts.1.3. Elements of representation theory.We 
onsider a di�erentiable manifold,whi
h we shall 
all representation spa
e for the group G , or, in the following, simplyspa
e. A smooth mapping

λ : M ×G −→ M : (u, a) 7→ v = u · ade�nes an a
tion of the group G on the spa
e M , if all the mappings
λa : M →M u 7→ u · a , ∀a ∈ G ,are transformations (di�eomorphisms) of the spa
e M , and the mapping a 7→ λa isa homomorphism of the group G into the group of transformations of the spa
e M . Thehomomorphism a 7→ λa is understood either in the sense of the equality λab = λa ◦ λbor in the sense of the equality λab = λb ◦ λa . In the �rst 
ase we say that the a
tionof the group G on the spa
e M is left-sided, and in the se
ond 
ase it is right-sided.By writing v = a · u we have in view a left a
tion, while by v = u · a � a right a
tion:
v = a · u  (ab) · u = a · (b · u),

v = u · a  u · (ab) = (u · a) · b.The next formulas 
orrespond to the right-sided a
tion of the group G on the spa
e M .The kernel of the homomorphism a 7→ λa is 
alled the stabilizer subgroup of thegroup G . In the 
ase of an e�e
tive a
tion, the non-e�e
tiveness kernel is trivial; it 
on-sists of the unity e ∈ G , and the mapping a 7→ λa is inje
tive.For a �xed point u ∈M , the mapping
λu : G→M : a 7→ u · ade�nes in the spa
e M the orbit of this point. The whole spa
e M is �bered into orbits

λu(G) . When λu(G) = M , i.e., when the spa
e M is the only orbit of the group G , wesay that the a
tion of the Lie group G on the spa
e M is transitive. In su
h a 
ase, Mis 
alled homogeneous group spa
e. If moreover, the dimensions of G and M are equal,then the a
tion of G on M is simply transitive and su
h an a
tion de�nes an exa
trepresentation of the group G .Equation 11: a
tion by right/left shifts and inner automorphisms. Show that the a
tionsof the group G on itself, provided by left and right shifts, are simply transitive a
tions. Prove that thea
tions provided by inner automorphisms are non-transitive.The tangent map of the mapping λ , i.e., Tλ , de�nes a representation of the tangentgroup TG on the �rst level TM ,
Tλ : TM × TG → TM : (u1, a1) 7→ v1 = u1 · a+ u · a1 .



TANGENT BUNDLES AND GAUGE GROUPS 253Formula (1) looks similarly:
v = u · a  v1 = u1 · a+ u · a1. (9)We remark two parti
ular 
ases:for a1 = 0 we de�ne the a
tion of the group G on the level TM ,
a1 = 0 ⇒ u1 7→ v1 = u1 · a;for u1 = 0 we de�ne the a
tion of the tangent group TG on the spa
e M ,

u1 = 0 ⇒ e1 = a−1a1 7→ v1 = u · a1 = v · a−1a1 = v · e1.The formula
v1 = v · a−1a1 (10)is the fundamental formula of the theory of Lie group representations.In fa
t, to the ve
tor e1 = a−1a1 ∈ TeG (whi
h is an element of the Lie algebra g )at the point v ∈ M we asso
iate some ve
tor v1 ∈ TvM , and sin
e v is an arbitrarypoint, it de�nes a ve
tor �eld on the spa
e M . This ve
tor �eld is 
alled the operatorof the group G , or simply group operator1. Depending on the 
hoi
e of the ve
tor

e1 ∈ TeG , in the spa
e M we have an in�nite set of group operators, and all of them,as ve
tor �elds, are tangent to the 
orresponding orbits.For v1 = 0 the equality (10) provides the equation v ·a−1a1 = 0 , or v ·e1 = 0, whi
hdetermines in the spa
e TeG those dire
tions e1 , along whi
h the point v ∈M remains�xed. We de�ne on the group G a Pfa� system, and its integral surfa
e (solution),whi
h 
ontains the point e ∈ G , is a subgroup Hv ⊂ G 
alled the stationary subgroupor the stabilizer of the point v .In 
oordinates (vα) on the neighborhood U ⊂ M of the point v ∈ M , Eq. (10) iswritten as a system dvα = ξα
i ω

i, where ωi are the forms of the left-invariant 
oframeon the group G . There appears a matrix2 ξ = (ξα
i ) , whi
h determines a system of forms

ϑα on the group G , and in the spa
e M , a system of basi
 operators Xi :
ϑα = ξα

i ω
i, Xi = ξα

i

∂

∂vα
.The number of operators Xi is equal to the dimension of G , and the number of forms

ϑα is the dimension of M. Operators Xi and forms ϑα are not ne
essarily linearlyindependent. The Pfa� system ξα
i ω

i = 0 for a �xed point v ∈ M is 
ompletely inte-grable and de�nes the stabilizer Hv ⊂ G.Exer
ise 12: vision from the 
lassi
al theory. Show that the system ξα
i ωi = 0 is the 
oordinateform of the equation v · a−1a1 = 0 .1.4. Adjoint representation. In the groups G and TG we de�ne the a
tion byleft shifts:

la : b 7→ c = ab,

T la1 : b1 7→ c1 = (a1a
−1) c+ ab1,

c1 = (a1a
−1) c , (11)

1Sin
e the time of S. Lie and frequently nowadays, group operators have been 
alled in�nitesimaltransformations or fundamental ve
tor �elds of the group.
2The matrix ξ plays an essential role in the theory of Lie group representations (see, e.g., S. LieTheorems).
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ra : b 7→ c = b a,

T ra1 : b1 7→ c1 = b1 a+ c (a−1a1),

c1 = c (a−1a1) , (12)and inner automorphisms:
Aa : b 7→ c = aba−1,

TAa1 : b1 7→ c1 = (a1a
−1) c− c (a1a

−1) + a b1 a
−1,

c1 = (a1a
−1) c− c (a1a

−1) . (13)The basi
 formula (10) is rewritten, for b1 = 0 , in the forms (11), (12) and (13),respe
tively.Inner automorphisms are dire
tly related to higher order movements.Hen
e, when in the spa
es A and B there take pla
e the transformations a and b ,the mapping ϕ : A→ B is brought into the mapping ϕ̃ : A→ B . This is shown by thediagram:
A

ϕ
−−→ B

a ↓ ↓ b

A
ϕ̃

−−→ B

ϕ ϕ̃ = bϕa−1If we set here A = B, a = b and if ϕ is a di�eomorphism, i.e., ϕ is a transformation ofthe spa
e A , then this diagram des
ribes the transformation of the mapping ϕ , subje
tto the in�uen
e of the transformation a :
A

ϕ
−−→ A

a ↓ ↓ a

A
ϕ̃

−−→ A

ϕ ϕ̃ = aϕa−1 (14)The transformation ϕ is subje
t to the inner automorphism.Exer
ise 13: higher order transformations.The transformation of order 2 ϕ ϕ̃ is des
ribedby the 2-dimensional diagram (1.14). Show that the transformation of order 3, i.e., a transformationof transformation ϕ ϕ̃ , is des
ribed by a 3-dimensional diagram and the transformation of order kis des
ribed by a 
orresponding k -dimensional diagram.If the arrow a in diagram (14) is assumed to represent the 1-parametri
 group atof transformations of the spa
e A , or in brief, the �ow at , then we see how, to a 
hangeof the parameter t (of time), it 
orresponds to a 
hange of the mapping ϕt = atϕa
−1
t .We 
an talk then about a 1-parametri
 family of mappings ϕt in the �eld at.If the arrow ϕ in diagram (14) is regarded as a 1-parametri
 group of transformations

bτ of the spa
e A (the �ow bτ ), then we 
an see how this �ow 
hanges under thetransformation a , i.e., bτ  b̃τ = abτa
−1 .Exer
ise 14: transformation of the �ow. Show that if bτ is the �ow of the ve
tor �eld Y and

b̃τ is the �ow of the �eld Ỹ , then Ỹ = TaY , and the tangent mapping Ta a
ts on the �eld Y :
bτ = exp τY  b̃τ = abτ a−1 = exp τỸ , Y  Ỹ = TaY.Exer
ise 15: intera
tion of ve
tor �elds. Let X and Y be two ve
tor �elds. The �ows ofthese �elds at = exp tX and bτ = exp τY intera
t a

ording to the s
heme:

bτ  atbτ a−t, Y  TatY,

at  bτ atb−τ , X  Tbτ X.
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tion f

Xf = (f ◦ at)
′

t=0 and Y f = (f ◦ bτ )′τ=0 ,perform the di�erentiation (the parameters t or τ from above the arrow mean di�erentiation relativeto t for t → 0 or to τ , for τ → 0):
f ◦ (atbτ a−1

t )
t

−→ (Xf) ◦ bτ − X(f ◦ bτ )
τ

−→ (Y X − XY )f ,

f ◦ (bτ atb
−1
τ )

τ
−→ (Y f) ◦ at − Y (f ◦ at)

t
−→ (XY − Y X)f.Che
k the validity of the relation (TatY )′t=0 = −(Tbτ X)′τ=0 and establish a 
onne
tion with thebra
kets [X, Y ] = XY − Y X .If in one �ow the points move along traje
tories and under the in�uen
e of the other�ow, this movement is transformed, and then the movement of the movement takespla
e, or a se
ond-order movement. Under the in�uen
e of a third �ow, the movementof se
ond order 
hanges its shape, then the movement of third order o

urs, et
. In thein�nitesimal approa
h this redu
es to the iterations

at  Tat  T 2at  . . .and to the 
orresponding ve
tor �elds on the levels
X  

(1)

X  
(2)

X  . . . , T kat = exp t
(k)

X, k = 0, 1, 2, . . . (15)In this way, the �ow T kat indu
es a movement of order k .1.5. Gauge groups. Let us �x on ea
h level a point
u(k) ∈ T kM, su
h that πk(u(k)) = u(k−1), k = 0, 1, 2, . . .In the neighborhood T kU ⊂ T kM these points are de�ned by their 
oordinates:

U : u(0)  (ui) ,

TU : u(1)  (ui, ui
1) ,

T 2U : u(2)  (ui, ui
1, u

i
2, u

i
12) ,

T 3U : u(3)  (ui, ui
1, u

i
2, u

i
12, u

i
3, u

i
13, u

i
23, u

i
123) ,

· · · · · ·Transformation of 
oordinates in the neighborhood U ⊂M

ui
 ũi ◦ a = aiindu
es a 
hange of 
oordinates in ea
h neighborhood T kU :

(ui, ui
1, u

i
2, u

i
12, . . . )  (ũi, ũi

1, ũ
i
2, ũ

i
12, . . . ) = (ai, ai

1, a
i
2, a

i
12, . . . ).Namely, if these transformations of 
oordinates in the neighborhood TU are de�ned bythe system {

ũi = ai,

ũi
1 = ai

1
.
= ai

ju
j
1,with the Ja
obian blo
k-matrix

(
ai

j 0
(ai

j)1 ai
j

)
, where ai

j =
∂ai

∂uj
, ai

jk =
∂2ai

∂uj∂uk
, (ai

j)1
.
= ai

jku
k
1 ,



256 M. RAHULA, V. BALANthen the transformation of 
oordinates in the neighborhood T 2U are de�ned by thesystem 



ũi = ai,

ũi
1 = ai

1
.
= ai

ju
j
1,

ũi
2 = ai

2
.
= ai

ju
j
2,

ũi
12 = ai

12
.
= ai

jku
j
1u

k
2 + ai

ju
j
12,with the Ja
obian blo
k-matrix




ai
j 0 0 0

(ai
j)1 ai

j 0 0
(ai

j)2 0 ai
j 0

(ai
j)12 (ai

j)2 (ai
j)1 ai

j


 , where 





(ai
j)1

.
= ai

jku
k
1 ,

(ai
j)2

.
= ai

jku
k
2 ,

(ai
j)12

.
= ai

jklu
k
1u

l
2 + ai

jku
k
12,et
.When performing a lift from one level to another, U  TU  T 2U  . . . , theJa
obian matrix is indu
tively built a

ording to the s
heme:

a 

(
a 0
a1 a

)
 




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 . . . , (16)with repeated, as shown above, n-dimensional blo
ks

a = (ai
j), a1 = (ai

j)1, a2 = (ai
j)2, a12 = (ai

j )12, . . .Therefore, there follows the general rule: the Ja
obian matrix of the transformation of
oordinates on the neighborhood T kU is of the form
(
A 0
Ak A

)
, (17)where the blo
k A is the Ja
obian matrix on T k−1U and Ak

.
= dkA, k = 1, 2, . . .In other words, the Ja
obian matrix on the neighborhood T kU 
onsists of fourblo
ks, where the Ja
obian matrix A of the neighborhood T k−1U is repeated on thediagonal, the upper-right blo
k is zero, and the left-lower blo
k is the di�erential of theblo
k A taking into 
onsideration the k -th level, i.e., Ak

.
= dkA .Formula (17) de�nes the sequen
e of matri
es (16).Exer
ise 16: inversion rule. Show that the inversion of the matrix (17) takes pla
e a

ordingto the s
heme: (

A 0
Ak A

)
=

(
E 0

AkA
−1 E

)
·

(
A 0
0 A

)
 

 

(
A 0
Ak A

)
−1

=

(
A−1 0

0 A−1

)
·

(
E 0

−AkA
−1 E

)
,where E is the identity blo
k. See (4) and

a1 = (a1a−1)a  a−1
1 = −a−1(a1a−1).The matrix (17) depends on the point u(k) ∈ T kU . If this point is �xed, thena numeri
 matrix is de�ned, but still having the freedom to 
hoose the fun
tion ai(or the 
orresponding jet of the transformation).
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ise 17: gauge group. Show that all matri
es of the form (17), with the point u(k) ∈ T kU�xed, determine a subgroup of the linear group of order 2kn ,
Gk ⊂ GL(2kn, R).Prove the existen
e of the groups G1, G2, G3 and extend to Gk .We 
all the group Gk of matri
es (17) with �xed point u(k) ∈ T kU the gauge group oforder k on the manifold M . By setting k = 0, 1, 2, 3, . . ., we obtain an in�nite sequen
eof gauge groups

G  G1  G2  G3  . . . (18)Theorem 2. The gauge group of order k is isomorphi
 to the k -th tangent groupof the linear group GL(n,R) , whi
h, in its turn, is embedded in the linear group
GL(2kn,R) :

Gk ≈ T k
(
GL(n,R)

)
⊂ GL(2kn,R), k = 0, 1, 2, . . . (19)In this 
ase

dimGL(2kn,R) = (2kn)2 and dimGk = 2kn2.Proof. We �x the element u(k) ∈ T kM of the k -th level. Matri
es (17) generatea subgroup Gk of the linear group GL(2kn,R) (see Exer
ise 17). The �xing of the point
u(k) does not limit the freedom of 
hoi
e for the element (17) in the group Gk . Hen
e,the group Gk is uniquely de�ned regardless of the point u(k) ∈ T kM . On the otherside, the tangent group T k

(
GL(n,R)

) 
oin
ides up to an isomorphism, with the matrixgroup (17), or Gk . This follows from the formulas (3)�(7) and Exer
ises 12�17, if weassume G = GL(n,R) .Further, in the matrix (17), besides the point u(k) ∈ T kU , there exists the k -jet of
oordinate transformations (aj
i , a

j
i1i2

, . . . , aj
i1i2...ik

) . We shall denote as Jk the group ofsu
h jets at the point u (see Exer
ise 5). The homomorphism is de�ned:
χk : Jk → Gk. (20)Exer
ise 18: jets and gauge group. Show that for k = 2 , the mapping χ2 is homomorphi
,i.e., to a 
omposition of 2-jets (ai

k
, aj

kl
) and (bk

j , ak
jl

) there 
orresponds the produ
t of matri
es A2 ,
(

ai
k

0
ai

kl
ul
1 ai

k

)
·

(
bk
j 0

bk
jl

ul
1 bk

j

)
=

(
ai

k
bk
j 0

(ai
k
bk
j )lu

l
1 ai

k
bk
j

)
,and to the inverse 2-jet (ai

j , ai
jl

)−1 .
= (āi

j ,−āi
sas

kl
āk

j ) , there 
orresponds the inverse matrix A
−1
2

(
ai

k
0

ai
kl

ul
1 ai

k

)
−1

=

(
āi

j 0

−āi
sas

kl
āk

j ul
1 āi

j

)
.Generalize this to the general 
ase k .Exer
ise 19: homogeneity of tangent spa
e. Show that the kernel of the homomorphism χkis the stabilizer Hu(k)

of the element u(k) ∈ T kM in the groupJk . The tangent spa
e T k
u(k)

M isidenti�ed with the homogeneous spa
e Jk/Hu(k)
.Let us 
onsider on
e again the gauge groups of the sequen
e (18). The �rst group Gis the linear group GL(n,R) ,

G = GL(n,R).
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ond group G1 is isomorphi
 to the tangent group T (GL(n,R)
)
. Its elementsare blo
k matri
es of the form

(
a 0
a1 a

)
, where a ∈ GL(n,R) and a1 ∈ gl(n,R).The 
orresponden
e G1 ! T

(
GL(n,R)

) is one-to-one. The produ
t of elements in thegroup G1 , (
a 0
a1 a

)
·

(
b 0
b1 b

)
=

(
ab 0

(ab)1 ab

)
,redu
es to the Leibniz rule in the tangent group T

(
GL(n,R)

) ,
(ab)1 = a1b + ab1,and the inversion of elements in G1 ,

(
a 0
a1 a

)
−1

=

(
a
−1 0

−a
−1

a1a
−1

a
−1

)
,redu
es to the rule

a
−1
1 = −a

−1
a1a

−1.This speaks about an isomorphism between the groups G1 and T
(
GL(n,R)

)
. An innerauthomorphism in G1 is generated as allows:

(
a 0
a1 a

)
·

(
b 0
b1 b

)
·

(
a 0
a1 a

)
−1

=

(
aba

−1 0

(aba
−1)1 aba

−1

)
,with the blo
k (aba

−1)1 = ab1a
−1 + a1a

−1(aba
−1) − (aba

−1)a1a
−1, et
.The following group G2 is isomorphi
 to the tangent group T 2

(
GL(n,R)

)
. Thestair-like stru
ture appears again:




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


 ·




b 0 0 0
b1 b 0 0
b2 0 b 0
b12 b2 b1 b


 =




ab 0 0 0
(ab)1 ab 0 0
(ab)2 0 ab 0
(ab)12 (ab)2 (ab)1 ab


 ,where

(ab)1 = a1b + ab1,

(ab)2 = a2b + ab2,

(ab)12 = a12b + a2b1 + a1b2 + ab12.Exer
ise 20: logarithmi
 rule for gauge group. Show that while forming the blo
ks
a  a

−1
a1  (a−1

a1)2 = a
−1

a12 − a
−1

a2a
−1

a1  . . .there appears the following property of the logarithmi
 fun
tion:
ln u  

u′

u
 

u′′

u
−

(u′)2

u2
 . . .We shall further denote the Lie algebra of the group Gk by Gk .



TANGENT BUNDLES AND GAUGE GROUPS 259The general s
heme is the following. An element of the group Gk is generated a
-
ording to the prin
iple:
(
A 0
Ak A

)
, where A ∈ Gk−1, Ak ∈ Gk−1.The produ
t and the inversion of elements,

(
A 0
Ak A

)
·

(
B 0
Bk B

)
=

(
AB 0

(AB )k AB

)
,

(
A 0
Ak A

)
−1

=

(
A−1 0
A−1

k A−1

)
,redu
e to the rules:

(AB)k = AkB + ABk, A−1
k = −A−1AkA

−1.The Lie algebra Gk−1 is identi�ed with the additive subgroup of the matrix group Gk ,whose matri
es have the form:
(

E 0
Ak E

)
, (21)where E is the unit blo
k, i.e., the unity of the group Gk−1 . The produ
t and theinversion of su
h matri
es are performed in the following way:

(
E 0
Ak E

)
·

(
E 0
Bk E

)
=

(
E 0

Ak + Bk E

)
,

(
E 0
Ak E

)
−1

=

(
E 0

−Ak E

)
.All these matri
es generate within the group Gk a normal divisor,

(
A 0
Ak A

)
·

(
E 0
Bk E

)
·

(
A 0
Ak A

)
−1

=

(
E 0

ABkA
−1 E

)
.An inner automorphism of the group Gk leads to the transformation of the blo
k

Bk  B̃k = ABkA
−1.Under su
h a transformation, the spe
trum of the matrix Bk is preserved. The invariantswill be the eigenvalues of this matrix and the 
orresponding symmetri
 polynomials,whi
h are 
oe�
ients in the Hamilton �Cayley formula.Exer
ise 21: Lie algebra of the Lie group. Show that the Lie algebra of an arbitrary Lie group

G may be regarded as an additive subgroup and a normal divisor of the tangent group TG . Des
ribethe 
osets of this normal divisor and the 
orresponding quotient group of the group TG .Exer
ise 22: stru
ture 
onstants iterated. The stru
ture 
onstants of a Lie group G havethree indi
es and 
an be pla
ed into a spa
ial matrix a). Prove that the stru
ture 
onstants of thetangent groups TG, T 2G and T 3G 
an be similarly put into a spa
ial matri
es of type b), c) and d) ,respe
tively.
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ulators2.1. Levels and se
tor-forms. The tangent fun
tor T iterated k times as-so
iates to a smooth manifold M its k -fold tangent bundle T kM (the k -th levelof M ) and asso
iates to a smooth map ϕ : M1 → M2 the graded morphism
T kϕ : T kM1 → T kM2 , the k -th derivative of ϕ . The level T kM has a multiple ve
torbundle stru
ture with k proje
tions onto T k−1M :

ρs
.
= T k−sπs : T kM → T k−1M, s = 1, 2, . . . , k,where πs is the natural proje
tion T sM → T s−1M .Lo
al 
oordinates in neighborhoods

T sU ⊂ T sM, s = 1, 2, . . . , k, where T s−1U = πs(T
sU),are determined automati
ally by those in the neighborhood U ⊂M , the quantities (ui)being regarded either as 
oordinate fun
tions on U or as the 
oordinate 
omponents ofthe point u ∈ U :

U : (ui), i = 1, 2, . . . , n = dimM,
TU : (ui, ui

1), with ui .= ui ◦ π1, u
i
1
.
= dui,

T 2U : (ui, ui
1, u

i
2, u

i
12),with ui .= ui ◦ π1π2, u

i
1
.
= dui ◦ π2, u

i
2
.
= d(ui ◦ π1), u

i
12

.
= d(dui), et
.We set up the following 
onvention: to introdu
e 
oordinates on T kU , we take the
oordinates on T k−1U and repeat them with an additional index k , so that a tangentve
tor is pre
eded by its point of origin. This indexing is 
onvenient sin
e at present thesymbols with index s be
ome �ber 
oordinates for the proje
tion ρs, s = 1, 2, . . . , k .Thus, for example, under the proje
tions ρs : T 3U → T 2U, s = 1, 2, 3, the 
oordi-nates with indi
es 1, 2 and 3 are ea
h suppressed in turn:

(ui ui
1 u

i
2 u

i
12 u

i
3 u

i
13 u

i
23 u

i
123)

ρ1 ւ ρ2 ↓ ց ρ3

(ui ui
2 u

i
3 u

i
23) (ui ui

1 u
i
3 u

i
13) (ui ui

1 u
i
2 u

i
12).The level T kM is a smooth manifold of dimension 2kn and admits an importantsubspa
e of dimension (k + 1)n 
alled the os
ulating bundle of M (brie�y � os
ulator)of order k − 1 and denoted by Os
k−1M . The bundle Os
k−1M is determined by theequality of the proje
tions

ρ1 = ρ2 = . . . = ρk,meaning that an element of T kM belongs to the bundle Os
k−1M pre
isely whenall its k proje
tions into T k−1M 
oin
ide. In this 
ase all 
oordinates with the samenumber of lower indi
es 
oin
ide. For example, the �rst bundle Os
M is determinedin T 2U ⊂ T 2M by the equation ui
1 = ui

2 , and the se
ond bundle Os
2M is deter-mined in T 3U ⊂ T 3M by ui
1 = ui

2 = ui
3, u

i
12 = ui

13 = ui
23, et
. The 
oordinatesin Os
k−1M will be denoted by the derivatives of the 
oordinate fun
tions on U , thatis (ui, dui, d2ui, . . . , dkui) .The immersion ζ : Os
M →֒ T 2M and its derivative Tζ are determined in 
oor-dinates by matrix formulas:




ui

ui
1

ui
2

ui
12


 ◦ ζ =




ui

dui

dui

d2ui


 ,




ui
3

ui
13

ui
23

ui
123


 ◦ Tζ =




dui

d2ui

d2ui

d3ui


 ,
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Tζ

(
∂

∂ui
,

∂

∂(dui)
,

∂

∂(d2ui)

)
=

(
∂

∂ui
,

∂

∂ui
1

+
∂

∂ui
2

,
∂

∂ui
12

)
.The �bres of the bundle Os
M are the integral manifolds of the distribution

〈 ∂1
i + ∂2

i , ∂
12
i 〉, with ∂1

i + ∂2
i

.
=

∂

∂ui
1

+
∂

∂ui
2

, ∂12
i

.
=

∂

∂ui
12

.The fun
tions (ui
1 − ui

2) vanish on Os
M .Histori
ally, os
ulating bundles were introdu
ed under various names long beforethe bundles T kM . The systemati
 study whi
h was initiated 60 years ago by worksof V. Vagner [2℄ has been 
ulminated in re
ent times in Miron �Atanasiu theory [3℄.Meanwhile, the theme of levels T kM remained unjustly negle
ted for the obvious reasonthat the multiple �bre bundle stru
ture demands a whole new understanding and newapproa
h (see [1, 4�6℄). Attempts su
h as [7℄ and the so-
alled syntheti
 formulation of
T kM [8℄ made progress in that dire
tion.While an in�nitesimal displa
ement of the point u ∈ M is determined by a tan-gent ve
tor u1 to M , an in�nitesimal displa
ement of the element (u, u1) ∈ TM isdetermined by the quantities (u2, u12) , representing a tangent ve
tor to TM , et
. Thisinterpretation of the elements of T kM allows us to develop the theory of higher ordermotion. Clearly, the future belongs to these bundles.White 
onsiders on the level T kM or on a k -multiple ve
tor bundle 
ertain se
tor-forms whi
h are fun
tions simultaneously linear on the �bres of all k proje
tions(see [7℄). In parti
ular, the se
tor-forms on T 2U and T 3U 
an be written as

Φ = ϕiju
i
1u

j
2 + ϕiu

i
12,

Ψ = ψijku
i
1u

j
2u

k
3 + ψ1

iju
i
1u

j
23 + ψ2

iju
i
2u

j
13 + ψ3

iju
i
3u

j
12 + ψiu

i
123,with 
oe�
ients in U . For example, in ea
h term of Ψ the index 1 (or 2 or 3 respe
-tively) appears exa
tly on
e. This means that the fun
tion Ψ is linear on the �bres of

ρ1 (and ρ2 and ρ3 ).Any s
alar fun
tion 
an be lifted from the level T k−1M to the level T kM by kdi�erent proje
tions ρs : T kM → T k−1M . For example, for the se
tor-form Φ (seeabove) there are three possibilities of lifting to T 3M :
Φ ◦ ρ1 = ϕiju

i
2u

j
3 + ϕiu

i
23, Φ ◦ ρ2 = ϕiju

i
1u

j
3 + ϕiu

i
13, Φ ◦ ρ3 = ϕiju

i
1u

j
2 + ϕiu

i
12.Proposition 1. Every exterior k -form 
an be regarded as a se
tor-form in the senseof White, a s
alar fun
tion on T kM that is 
onstant on the �bres of Os
k−1M .Proof. The se
tor-form Φ is 
onstant on Os
M if and only if its derivatives vanishon Os
M . Thus

Φ = ϕiju
i
1u

j
2 + ϕiu

i
12 ⇒

(∂1
i + ∂2

i )Φ = ϕiju
j
2 + ϕjiu

j
1 = (ϕij + ϕji)u

j
1 − ϕij(u

j
1 − uj

2),

∂12
i Φ = ϕi ⇒ ϕ(ij) = 0, ϕi = 0 .If Φ is an antisymmetri
 bilinear form then it 
an be expressed in the 
oordinates

(ui, dui) as a 2 -form Φ = ϕ[ij ]du
i ∧ duj . Thus the se
tor-form Φ is 
onstant on Os
Mif and only if it is a Cartan 2 -form.If k = 3 the �bres Os
2M of dimension 3n are the integral manifolds of the distri-bution

〈 ∂1
i + ∂2

i + ∂3
i , ∂

23
i + ∂13

i + ∂12
i , ∂123

i 〉.
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tor-form Ψ (see above) we have
Ψ = ψijku

i
1u

j
2u

k
3 + ψ1

iju
i
1u

j
23 + ψ2

iju
i
2u

j
13 + ψ3

iju
i
3u

j
12 + ψiu

i
123 ⇒

(∂1
i + ∂2

i + ∂3
i )Ψ = ψijku

j
2u

k
3+ ψjiku

j
1u

k
3 + ψjkiu

j
1u

k
2 + ψ1

iju
j
23 + ψ2

iju
j
13 + ψ3

iju
j
12 ,

(∂23
i + ∂13

i + ∂12
i )Ψ = ψ1

jiu
j
1+ψ2

jiu
j
2 + ψ3

jiu
j
3,

∂123
i Ψ = ψi.The derivatives vanish on the �bres Os
2M when the following 
onditions hold:
ϕ(ijk) = 0, ψ1

ij + ψ2
ij + ψ3

ij = 0, ψi = 0.These 
onditions are ne
essary and su�
ient for the se
tor-form Ψ to be 
onstanton Os
2M , but not for Ψ to be a Cartan 3 -form. However, every 3 -form Ψ̃ =
= ϕijk du

i ∧ duj ∧ duk 
an be regarded as a homogeneous se
tor-form that is 
on-stant on Os
2M .The argument extends likewise to the 
ases when k > 3 .White's theory of se
tor-forms is mu
h more extensive than that of Cartan exteriorforms. In parti
ular, exterior di�erentiation is an operation on the set of se
tor-formsthat are 
onstant on the os
ulating bundles.2.2. Gauge groups on os
ulating spa
es. The a
tion of the gauge group Gkon the k -th level T kM extends in a natural way to the os
ulating bundle Os
k−1M .The diagram from below shows how the blo
k-matrix 4 × 4 redu
es, for u1 = u2 ,to a 3 × 3 blo
k-matrix:
u1 = u2 ⇒




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


  




a 0 0
da a 0
d2a da a


 .The blo
ks of the matrix from the right side are generated in the following way:

a ∼ ai
j ,

a1 ∼ ai
jku

k
1

a2 ∼ ai
jku

k
2

}
 da ∼ dai

j = ai
jkdu

k,

a12 ∼ ai
jklu

k
1u

l
2 + ai

jku
k
12  d2a ∼ ai

jkl du
kdul + ai

jkd
2uk.The a
tion of the gauge group G2 on the level T 2M is obviously transported to thesubbundle Os
M ⊂ T 2M . While one passes from T 2M to Os
M by 
onsidering

(a1 = a2, a12)  (da , d2a), (∂1 + ∂2 , ∂12)  
( ∂

∂(du)
,

∂

∂(d2u)

)
,the transformation of the natural basis on T 2M is transported to the transformationof the natural basis on Os
M :

(∂ ∂1 ∂2 ∂12) ·




a 0 0 0
a1 a 0 0
a2 0 a 0
a12 a2 a1 a


  

(
∂

∂u

∂

∂(du)

∂

∂(d2u)

)
·




a 0 0
da a 0
d2a da a


 .In the general 
ase, the a
tion of the group Gk on the level T kM extends in a similarway to the subbundle Os
k−1M .



TANGENT BUNDLES AND GAUGE GROUPS 263�åçþìåÌ. �àõóëà, Â. Áàëàí. Êàñàòåëüíûå ðàññëîåíèÿ è êàëèáðîâî÷íûå ãðóïïû.Äè��åðåíöèàëû T ka (k ≥ 1) äè��åîìîð�èçìà a ãëàäêîãî ìíîãîîáðàçèÿ M èíäó-öèðóþò â ñëîÿõ ðàññëîåíèé T kM , òî åñòü â ñîîòâåòñòâóþùèõ êàñàòåëüíûõ ïðîñòðàíñò-âàõ, ëèíåéíûå ïðåîáðàçîâàíèÿ, çàêëþ÷àþùèå â ñåáå äåéñòâèå êàëèáðîâî÷íîé ãðóïïû Gk .Ýòî äåéñòâèå åñòåñòâåííûì îáðàçîì ðàñïðîñòðàíÿåòñÿ íà ñîïðèêàñàþùèåñÿ ïîäðàññëîå-íèÿ Os
k−1M ⊂ T kM .Êëþ÷åâûå ñëîâà: äè��åîìîð�èçì ãëàäêîãî ìíîãîîáðàçèÿ, ïðîñòðàíñòâî ðàññëîå-íèÿ, äåéñòâèå êàëèáðîâî÷íîé ãðóïïû.
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