Kazan (Volga region) Federal University Institute of Fundamental Medicine and Biology Department of Morphology and General Pathology

Overview of the Immune System

Immunology

- The Study Of Immune System
- Latin Word immunis="exempt"
- Earliest Written Reference was Thucydides
 430 BC
- Pasteur Was First To Successfully Apply Vaccination

Pasteur Observing Rabies Vaccination

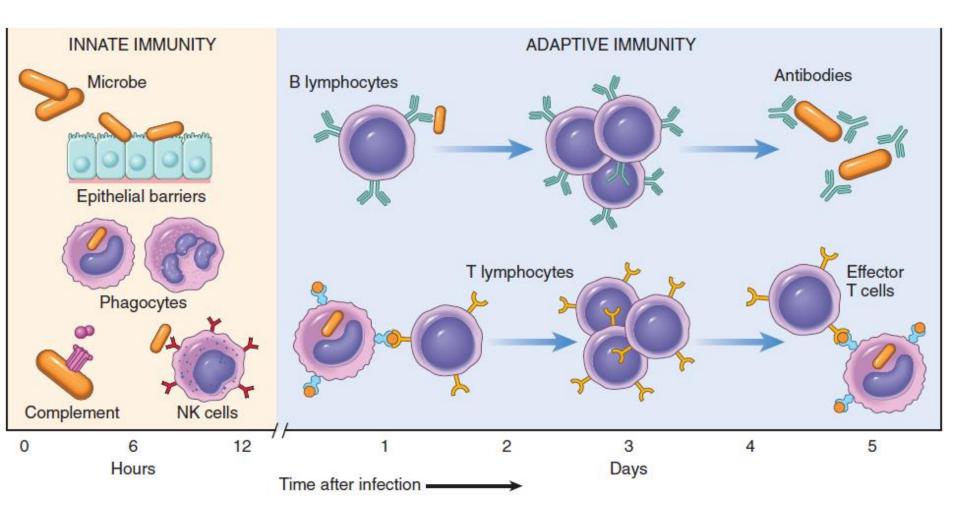
Humoral Or Cellular Immunity?

- Pasteur Did Not Know How Vaccination Worked
- Behring and Kitasato (1890) Proposed Serum Was Responsible For Immunity
- Elvin Kabat (1930), gamma-globulin, Antibody
- Antibodies Were Present in Body Fluids=Humor
- Therefore: Humoral Immunity

Innate (Non-Specific) Immunity

- Innate Immunity Made Up Of 4 Forms
- Anatomical, physiological, phagocytic and inflammatory
- Anatomical: skin, epidermis (densely packed dead cells)
- Flow of Mucus Prevents Bacterial Entry By Washing Them Away
- Normal Flora Colonize Epithelial Cells Of Mucosal Surfaces, Pathogens Compete With Them For Attachment Sites

Cell Mediated Immunity

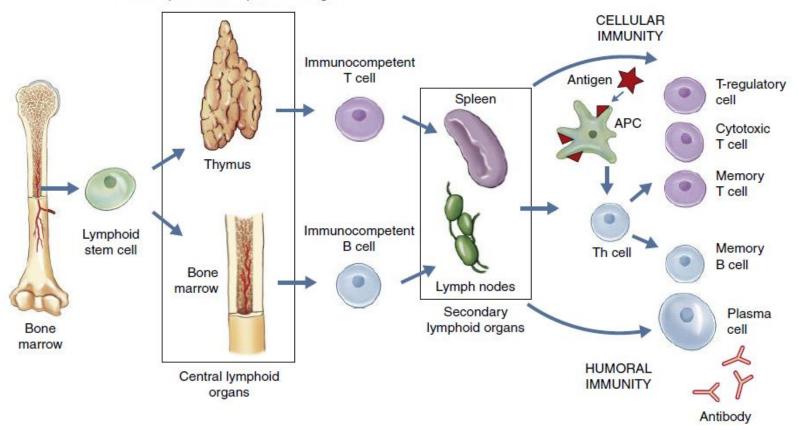

- In 1883 Ellie Metchnikoff Showed That Cells Responsible For Immune State
- Phagocytes More Active In Immune Animals
- She Hypothesized That Cells Responsible For Immunity, Not Serum Components
- Controversy Developed But Humoral School Prevailed Till 1940
- Merrill Chase Expt (1940) with Tuberculosis Infected Animals, Immunity Thru White Blood Cell Transfers

Innate (Non-Specific) Immunity

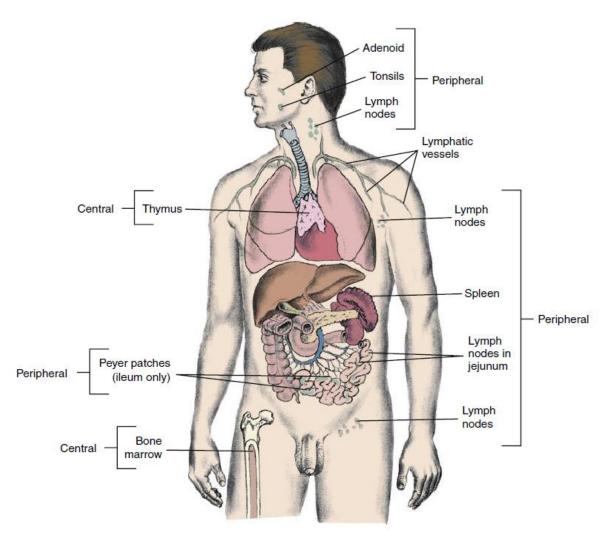
- Physiologic Barriers
 - pH (stomach)
 - Temperature (fever)
 - Soluble Factors (interferons, lysozyme)
- Phagocytic Barriers
 - Specialized Cells Perform Most Of
 Phagocytosis (macrophages, neutrophils)

Innate (Non-Specific) Immunity

- Inflammatory Barriers
 - Vasodilation
 - Cappillary permeability
 - Leukocyte Infiltration
 - Chemotactic means
 - Increased Adherence
 - Leaky capillaries


Overview of Immune Response

GENERATION OF CLONAL DIVERSITY


Production of T and B cells with all possible receptors for antigen

CLONAL SELECTION

Selection, proliferation, and differentiation of individual T and B cells with receptors for a specific antigen

Lymphoid Tissues: Sites of B-Cell and T-Cell Differentiation

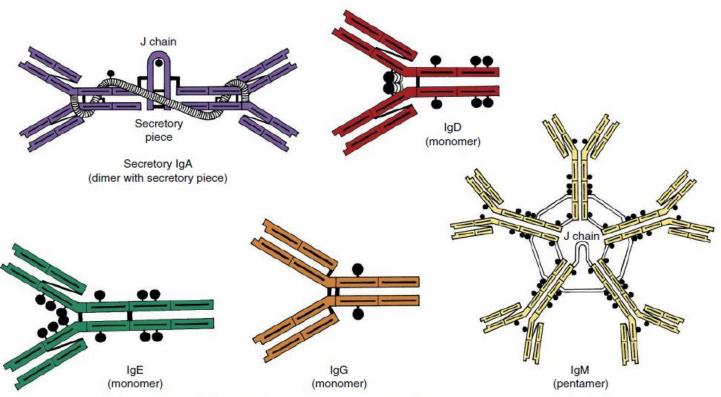


FIGURE 8-6 Structure of Different Immunoglobulins. Secretory IgA, IgD, IgE, IgG, and IgM. The black circles attached to each molecule represent carbohydrate residues.

TABLE 8-5	KEY CYTOKINES	AND RECEPT	ORS THAT INFLUE	NCE THE IMMUNE RESPONSE
CYTOKINE	PRIMARY SOURCE		PRIMARY FUNCTION	
Interleukin (IL)				
IL-1	APCs		Stimulates T cells to proliferat in inflammatory response; er	ion and differentiation; induces acute-phase proteins ndogenous pyrogen
IL-2	Th1 cells, NK cells		Stimulates proliferation and differentiation of T cells and NK cells	
IL-4	Th2 cells, mast cells		Induces B-cell proliferation and induces class-switch to IgE	d differentiation; up-regulates MHC class II expression;
IL-5	Th2 cells, mast cells		Induces eosinophil proliferation and differentiation; induces B-cell proliferation and differentiation	
IL-6	Th2 cells, APCs		Induces B-cell proliferation and differentiation into plasma cells; induces acute-phase proteins in inflammatory response	
IL-7	Thymic epithelial cells, bone marrow stromal cells		Major cytokine for induction of B- and T-cell proliferation and differentiation in central lymphoid organs	
IL-8	Macrophages		Chemotactic factor for neutrophils	
IL-10	Th cells, B cells		Inhibits cytokine production; activator of B cells	
IL-12	B cells, APCs		Induces NK-cell proliferation; increases production of IFN-γ	
IL-13	Th2 cells		IL-4–like properties; decreases inflammatory responses	
IL-17	Th17 cells		Increases inflammation; increased influx of neutrophils and macrophages; increased epithelial cell chemokine production	
IL-22	Th17 cells		-	ised epithelial cell production of antimicrobial peptides
Interferon (IFN)				
IFN-α, IFN-β	Macrophages, some virally in	nfacted calls	Antiviral: increases evaression	of MHC class I: activates NK calls
IFN-γ	Th1 cells, NK cells, Tc cells		Antiviral; increases expression of MHC class I; activates NK cells Increases expression of MHC class II; activates macrophages and NK cells	
Tumor Necrosis Factor (TNF)				
TNF-α (cachectin)	Macrophages		IL-1—like properties; induces cellular proliferation	
TNF-β (lymphotoxin)	Tc cells	Kills some cells; increases phagocytosis by macrophages and neutrophils		
Transforming Growth Factor (TGF)				
TGF-β Lymphocytes, macrophages, fibroblasts		Chemotactic for macrophages; increases macrophage IL-1 production; stimulates wound healing		
CYTOKINE RECE	PTORS	LIGAND		ADDITIONAL INFORMATION
Class I receptor dimers (α - and β -chains)		IL-3, IL-5, IL-6, IL-11, I	IL-12, IL-13	IL-3 and IL-5 share a common α-chain; IL-6 and IL-11 share a common β-chain
Trimers (α-, β-, and γ-chains)		IL-2, IL-4, IL-7, IL-9, IL	-15	All share a common γ-chain
Class II receptors		IFN-α, -β, and -γ		Two chains
TNF receptors		TNF-α, TNF-β, CD40,	Fas	Single chain
Immunoglobulin-like receptors		IL-1		Single chain with immunoglobulin-like characteristics

Chemical Mediators Of Inflammation

- C-Reactive Protein (liver)
- Histamine (vasodilation, increased permeability
- Kinins
 - Small peptides normally inactive in blood
 - Ex. Bradykinin (causes pain)

Innate and Adaptive Immunity Collaborate

- Close collaboration
 - Macrophages can secret cytokines that affect the type of adaptive immunity
- Macrophages/DCs Present Antigen
- Lymphocytes Increase Effectiveness of Macrophages

Adaptive Immunity

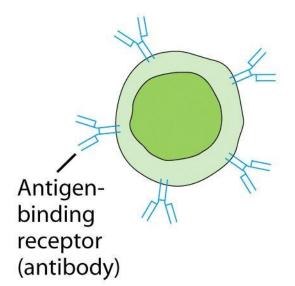
- 4 Characteristics
 - Memory
 - Diversity
 - Antigenic Specificity
 - Self/nonself recognition

Cell Frequency of Different Leukocytes in Healthy Individuals

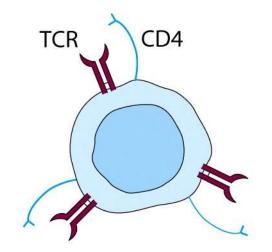
- ~ 60% neutrophils (50% 70%)
- ~ 3% eosinophils (>0% 5%)
- ~ 0.5% basophils (>0% 2%)
- ~ 5% monocytes (1% 9%)
- ~ 30% lymphocytes (20% 40%)

Cells Of The Immune System

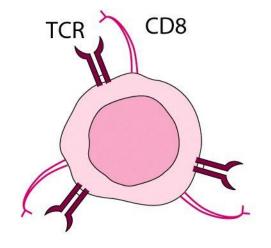
- Lymphocytes
 - B cells, mature in Bone Marrow (CD19, CD20)
 - in periphery they express a unique surface antibody
 - Plasma cells differentiated B cell, short lifespan, antibody factory
 - Memory B cell (CD45RO), long life span

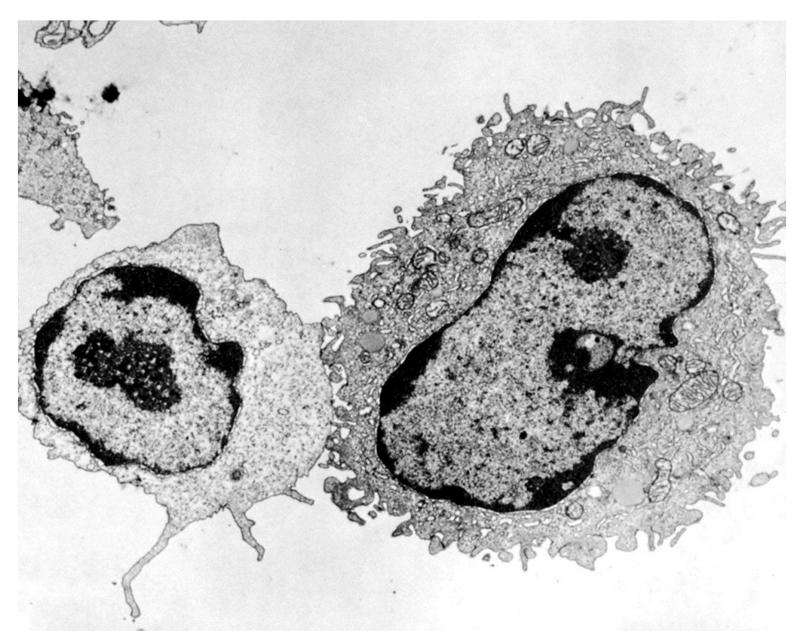

Cells Of Immune System

- T cells, mature in Thymus (CD3, CD4, CD8)
 - Two Major subsets, T_H (CD4) and T_C (CD8)
 - Third type T_S not as clear
 - Mature T cell expresses TCR
 - TCR cannot recognize antigen on its own
 - MHC I (all nucleated cells) or MHC II (APCs) is required
 - T_H cells secrete cytokines
 - T_C less cytokines, more cytotoxic (virus and tumor survailance)


Cells Of Immune System

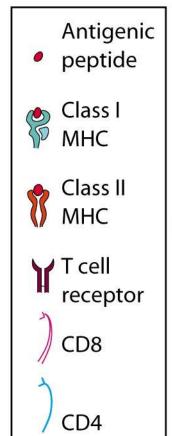
- Antigen Presenting Cells
 - Number of Cells capable of Antigen Presentation
 - Dendritic Cell (DC) professional APC
 - Macrophages, B cells
 - Besides Antigen They Provide Costimulation
 - APCs are a safeguard against autoimmunity

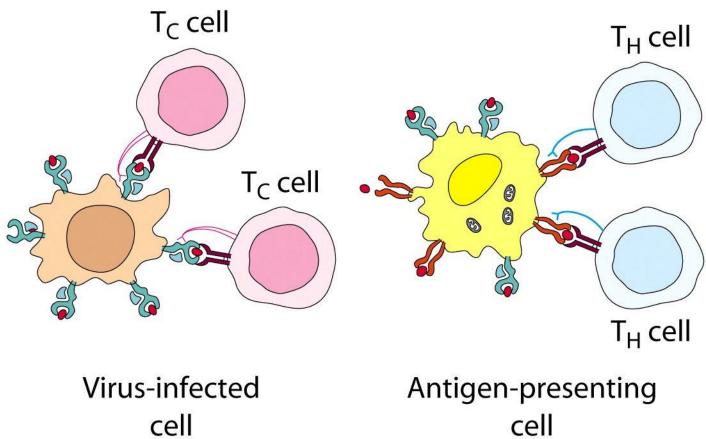

(a) B cell



(b) T_H cell

(c) T_C cell

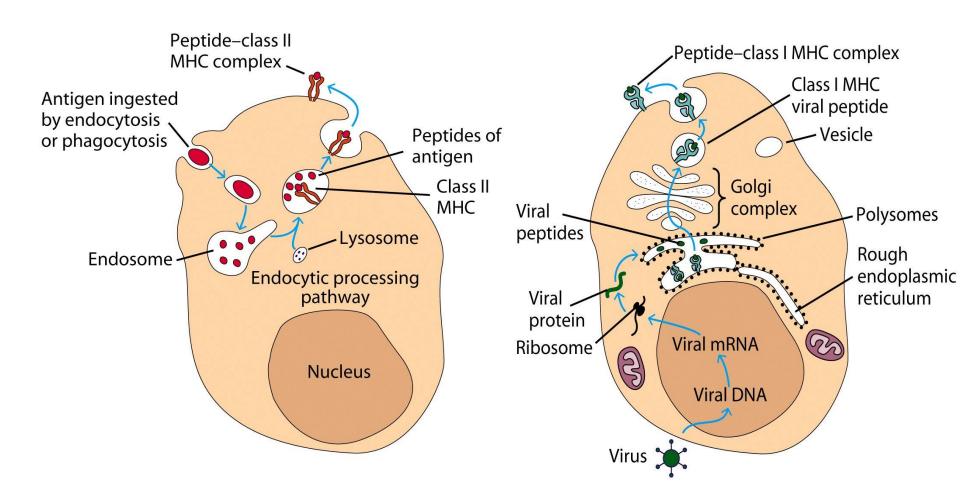

APC INTERACTING WITH T CELL


Specificity and Diversity

- B cells are specific, 100,000 identical antibodies on 1 B cell
- 10⁸ different B Cells in Bone Marrow, Enormous Diversity
- Reduction To Avoid Auto-antibodies
- Same for T Cells, Elimination in Thymus

Major Histocompatibility Complex (MHC)

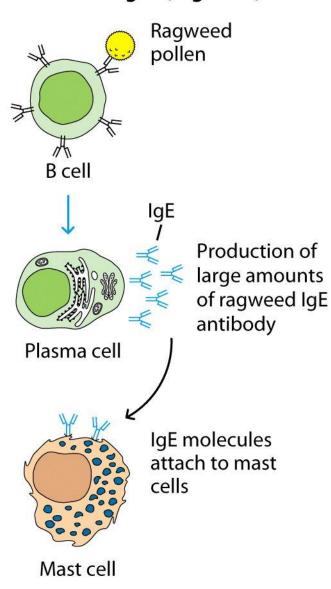
- Genetic Complex With Multiple Loci
- MHC I CTLs
- MHC II T_H
- MHC I+ β_2 -microglobulin
 - 3 classes A, B, C (human)
 - 2 classes K and D (mouse)
- MHC II
 - 3 classes DP, DQ, DR (human)
 - 2 classes IA, IE (mouse)
- Highly Polymorphic in Humans



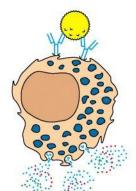
Processing and Presentation of Antigens

- First Protein Antigens Must Be Broken Down
- Form Complexes With MHC I or II
- Exogenous Antigens
 - Antigens Processed Thru Endocytic Pathway
 - Binding of Ags To MHC II
 - Expression of MHC II+Ags On Surface
 - CD4 T Cells Recognize Ag Thru Class II MHC
- Endogenous Antigens
 - Antigens Processed Thru Cytosolic Pathway
 - Produced Within Cell, Ex. Virus Ag, Cancer Ag
 - MHC I Molecules Bind Ag in ER
 - CD8 T Cells Recognize Ag Thru MHC I

Processing and Presentation of Antigens


Clonal Selection of Lymphocytes and Memory

- Ag Reactivity Determines Clonal Expansion
- Immunologic Memory is By-product of Clonal Expansion
- Humoral Primary Response
 - 7 Days Before Antibody Levels Rise
 - Antibody Titer is Low Compared to Secondary
- Humoral Secondary Response
 - 1-2 Days Antibodies Are Detected
 - Antibody Titer Higher (100-1000 fold higher)
 - Lasts Longer


Clonal Selection of Lymphocytes and Memory

- Cell Mediated Response (T_H or CTL) is Similar
 - Primary Response 10-14 Days For Skin Rejection
 - Secondary Response Starts Immediately

First contact with an allergen (ragweed)

Subsequent contact with allergen

IgE-primed mast cell releases molecules that cause wheezing, sneezing, runny nose, watery eyes, and other symptoms

Aberrant Respones – Allergy, Asthma, Anaphylaxis

Asthma/Allergies Attacks Are Very Common

Mediated Thru IgE

▶gE Binds Mast Cells, Basophils

Re-exposure Cross Links IgE

Causes Degranulation, Histamine, prostanoids