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1. Global and local structure of Banach
spaces.
The simplest Banach spaces are

e = {(an) : ||(an)ll, = (Z|an|p) < oo}, 1<p< oo,

and ¢y = {(ay,) : lim, o a, = 0},

(@)l == max ol

Banach: Can P and ¢y be considered as potential
building blocks? Whether every (infinite-dimensional)
Banach space must contain at least a copy of one of
these spaces?

Tsirelson (1974), the first example of a Banach space
that does not contain an isomorphic copy of (infinite-
dimensional) 7. 1 < p < oo (£ = ¢y).

In contrast to that, Dvoretzky (1960): any infinite-
dimensional Banach space contains an arbitrarily good
finite-dimensional copies of 2.



2. Some definitions and results.

Definition. A Banach space X contains a copy of
.1 < p < oo, if there exist a sequence {x;} C X
and C' > 0 such that for all n € N and a; € R

Ol < || S aer |, < ol
k=1

In other words: the sequence {x} is equivalent to
the unit vector basis of 7. We write |x;] ~ (P

Definition. (James, 1967). Let X be a Banach
space, 1 < p < oo. We say that ¢ is finitely repre-
sented in X if, for any n € N and ¢ > 0, there exist
x1,T9,...,x, € X such that for all a;,as,...,a, €

R
1+ @l < || D wa| < (0 + 2l

Theorem A (Dvoretzky (1960). (° is finitely
represented in arbitrary Banach space.

Theorem B (Krivine, 1976). Let z;, i =
1,2,..., do not form a relatively compact set in
a Banach space X. Then (P is block finitely rep-
resented in {z;}32, for some p € [1,00], i.e., for
every n € N and € > 0 there exist 0 = my <
mp < ---<m, and o; € R such that the vectors



mg

immy_1+1 Q4% k=1,2,...,n, satisfy

Ul —

Lo el < | S| < 0 +l@)l,

foralla, € R, k=1,...,n.
A problem: To identify the set of p such that 7 is
finitely represented in a given Banach space X.



3. The Maurey-Pisier contribution.

Let r, : [0,1] — R (n € N) be Rademacher func-
tions, that is, 7, (t) = sign(sin 2"7t). A Banach space
X has type p € [1,2] if there is a constant K > 0
such that, for any x1,...,z, € X, we have

1 n n 1/p
[t ae < x (Z |) -
0 =1 k=1

A Banach space X has cotype q € [2, oo if there is

a constant ' > 0 such that, for any x¢,..., 2, € X,
n 1/q 1 n
(Zﬂaqu) < K/ | 5= ey ot
— o "

If ¢ = oo we put maxy<p<y, ||zk||.
Every Banach space has type 1 and cotype oo. Let

px :=sup{p € [1,2]: X has type p},
qx = inf{q € [2,00] : X has cotype ¢}.

Then, px < gx. If 7 is finitely represented in X,

then p € |px, qx].

Theorem C (Maurey-Pisier (1976)). For
any Banach space X 1, and l,, are finitely rep-
resented 1n X.



4. Lattice finite representability.

Let X be a Banach lattice. Then, if /7 is finitely
represented in X and, moreover, elements x1, ..., x, €
X corresponding to the vectors of the standard basis
of /P can be chosen every time disjoint, we say that
(P is lattice finitely represented in X.

Let 1 < p < oo. A Banach lattice X satisfies an
p—upper estimate if there exists M > 0 such that,
for all disjoint elements x1, ..., x, from X,

n n 1/p
|3 < v (Z) |
k=1 k=1

If 1 < q < oo, then a Banach lattice X satisfies an
g—lower estimate if there exists M > 0 such that,
for all disjoint elements x1, ..., x, from X,

n 1/q n
(St < w1 -
k=1 k=1

In the case when p = 0o or ¢ = oo we put maxy<p<y, ||zk||-
ux = sup{p > 1: X satisfies an p—upper estimate},

vx = inf{g > 1: X satisfies an g-lower estimate}.

Then, uxy < vy. If £ is lattice finitely represented in
X, then p € |uyx, vx].

Theorem D (Shepp). Let X be a Banach lat-
tice. Then l,, and l,, are lattice finitely repre-
sented in X.



5. Rearrangement invariant spaces and
symmetric finite representability of /’-spaces.
If a function z(s) is measurable on [0, c0), then

ng(t) =m({s > 0:|z(s)| > t}),

where m is the usual Lebesgue measure. Functions
z(s) and y(s) are equimeasurable if n,(t) = n,(t) for
all ¢ > 0.

A Banach function space X on [0, 00) is said to be
a r.i. (symmetric) space if the conditions x € X
and n,(t) < ng(t) (¢ > 0) imply that y € X and
lyllx < llzf|x.

A ri. space X has the Fatou property if for any
increasing sequence {x,}>; C X such that 0 <
T, — x a.e. on [0,00) and sup, ||z,|, < oo we
have: x € X and ||z|, <liminf, . ||2n] -

In what follows, a r.i. space X is either separable
or it has the Fatou property:.

Definition. We say that /. 1 < p < oo, is sym-
metrically finitely represented in a r.i. space X
(p € F(X)) if, for any n € N and £ > 0, there exist
equimeasurable and disjoint . € X, k=1,2,....n,
such that for any a; € R

Lo al < | ]| < 0+ l@lh



6. An example: L, -spaces.
l <p<oo 1< g < oo, L,, consists of all
measurable functions x on (0, 0o) such that

. 1/q
|||, = ( /O z <t>qoz<tq/p>) < o0,

where z* is the non-increasing rearrangement of |z|
(i.e., ng(t) = ng(t), t > 0):

z*(s) = inf{t > 0: n,(t) <s}, s>0.

(a) ¢ = p, Ly, = Ly |z, = 7 isometrically for
every sequence {x,} C Ly, ||z,||z, = 1, of equimea-
surable and disjoint functions. For instance, for all
n € Nanda. € R

n n 1/p
| e, = ()
k=1 b k=1

In particular, F(L,) = {p}.

(b) g # p: if {z,} C Lyy, |lznllpg = 1, is a se-
quence of disjoint functions, then |x,] contains a sub-
space isomorphic to [, (Carothers-Dilworth, 1988).

More precisely, there exist 0 = myg < m; < --- <
my < ... and o; € R such that |uy] ~ €9, where
up =Y i, it k=12, Hence, if {x,} C

L, , is a sequence of disjoint functions with [z,] ~ ¢",

then r = q.
At the same time, F(L,,) = {p}.



7. Boyd indices of r.i. spaces.
For any 7 > 0, the dilation operator o,z(t) =

x(t/7)is bounded in any r.i. space X and ||o,||x x <
max(1, 7). The Boyd indices of X:

1

ax = — lim —logy [|[og—n | x-x,
n—oo N,

Bx = lim l1og2 |oon|| x - x-
n— T
Moreover, let oYz = xj10-(TXj01]) and oz =
X[1,00)0+(TX[1,00])- Define the following partial Boyd
indices:
1

oy = = lim ~logy [loy-ulx-x,
B = lim —log, 0% xx.

03 = — Tim —log, o [xx.
5% = lim —log, 3 x -+ x

Always 0 < axy < o < % < Bx < land 0 <
ay <af <pBF < Bx < 1L
Then, F(X) C |[1/8x,1/ax] for every X.
Theorem E. For arbitrary r.i. space X : F(X) #
0, max F(X) =1/ax, and min F(X) =1/Fx.
Theorem E has been stated (without proof) in Lindenstrauss-

Tzafriri, Classical Banach spaces, II. Function Spaces,
1979. The proof was given in 2011 by A.



8. A spectral characterization of the set

F(X).

Definition. Let X be a Banach space and let A :
X — X be a bounded linear operator. A sequence
{u,}o2, € X, |lun|| = 1, n = 1,2,..., is called
an approximate eigenvector corresponding to an ap-
prozimate eigenvalue A € R of the operator A it

| Awy — Aug||x — 0

(equivalently: the operator A — AI is either not in-
jective or not closed).

Theorem 1 (A 2011). Let X be a separable r.i.
space on [0,00). Then p € F(X) if and only if the
number X\ ;= 2Y7 is an approrimate eigenvalue of
the doubling operator oox(t) = x(t/2).

The proof of the "if” part: if {gx} is an approximate
eigenvector for A, then for each £ € N we define a
symmetric sequence space Fj by

m
| > ae;
j=1

where f @ g is the disjoint sum of functions f and g.
Then, we construct (using some Rosenthal’s ideas) a
chain of symmetric sequence spaces, every of which is
finitely represented in the previous one and the last
one coincides isometrically with £ or cj.

. = ||a19xPa29rD- - -Damgr|lx, m € R,
K



9. R.i. spaces of fundamental type.
Let ¢ be a positive function on (0, 00). We intro-
duce the dilation functions:

Y(ts) 0 Pits)
My(t) = su M(t):=  su
o(t) w0 0(s) o) pescmin(t i) O(S)
Y(ts)

M7>X(t) .=  sup :
v ( ) s>max(1,1/t) ¢<3)

Let ¥(t) = ¢x(s), where ¢y is the fundamental
function of X defined by ¢x(s) = |[x.s)|lx. Since
X(0,st) = Ut(X(O,s))a then

M¢X(t) _ ||0tX(o,s)HX
$>0 HX(o,s)HX

< |lotllx=x,

and similar inequalities for Mq?X(t), 0¥l x—x and
M (1), 105l o

We say that a r.i. space X is of fundamental type
if the opposite inequalities (up to constant) hold, i.e.,

lovl x—x < CMg (1), [0} lxox < CM (1),
HO}?OHX—>X < CM;;(t), t > 0.

The most known and important r.i. spaces are of
fundamental type (the first example of a r.i. space of
non-fundamental type was constructed by Shimogaki,
1970).

The Boyd indices of a r.i. space are of fundamental
type can be calculated via its fundamental function.



10. Examples of r.i. spaces.
(a) Lorentz spaces. Let 1 < ¢ < 00, 9 be an in-

creasing concave function on |0, co) such that 1(0) =
0. The Lorentz space A, (1)) is defined by

2] A (0) = (/OOO x*(t)qdlb(t))l/q < 00.

A,() is a separable r.i. space with the Fatou prop-
erty and ¢y ()(t) = ()9, The dilation indices of
A,(¢) can be calculated by

g Y(2h) \ 1
ay g = — lim —logy sup ( ) ,
n—oo 1, keZ <

")

1 2n+kz
= lim — log, su ( )
@M n—00 M 52 keg (
(27

1
O‘?b,q = — lim —log,sup (

1/q
@)
(

)\ Ve
Bwq = lim — log2 Sup (¢<2kn ) :

~ i L ( w<2> )”q
ag. = — lim —log,su ,
¥yq n=y00 T 82 kz% W (2k+n)
.1 (2N 14
 — lim ~ | ( )
= fm z omse (S



(b) Orlicz spaces. Let N be a convex continu-
ous increasing function on [0,00), N(0) = 0 and
N(oo) = oo. The Orlicz space Ly is defined by

the Luxemburg norm

|zl = inf{u >0 /OOO N(|z(8)|Ju) dt < 1} < .

In particular, L? = Ly, Ny(s) = s, 1 < p < oo.

Every Orlicz space Ly has the Fatou property and
it is separable iff the function N satisfies the As-
condition, i.e., sup,-g %25)) < 00. The fundamental
function ¢r, (t) = 1/N-Y(1/t), t > 0, where N~ is
the inverse function for N. The dilation indices of Ly
can be calculated by

’ 1 ! N—l(zk—n)
oy = — 1IN — 10285 Su
N 00 M) g9 keg N_1<2k) )
1 N—1(2F)
= lim —1
ON = 5y 108 D N i)
1 N—1(2F)
0 .
= — lim —1
VT TS B N2y
1 N—1<2k+n>
0 .
= lim ~1
S W =R
N po L N—LH(2k=m)
oy = — 1IN — 10g5 SU
N N300 T g9 kg% N_1<2k> )
1 N—1(2M)

% _ lim —1 |
Py = lim —log, ren N—1(2F=n)



11. Main results.

Theorem 2. Let X be a r.i. space on (0,00) of
fundamental type.
(i) If a5 < %, then the set of approrimate
eigenvalues of o9 in X is the interval [2°x,2°X],
(ii) If a5 > B%, then the set of approximate
eigenvalues of oo in X is the union [QO‘X,Qﬁgf] U
[20% | 20x],

From Theorems 1 and 2 it follows a description of
the set of p € [1, 00| such that 7 is symmetrically
finitely represented in a given separable r.i. space of
fundamental type.

Corollary 1. Let X be a separable r.i. space of
fundamental type. Then,

(i) if o < By, then F(X) = [1/Bx,1/ax];

(i) if o > BY%, then F(X) = [1/Bx,1/a5] U
[1/B%, 1/ ax].
Corollary 2. If X and Y are separable r.i. spaces
of fundamental type such that ¢px(t) < ¢y (t), t >
0, then F(X) = F(Y).

In particular, ¢, (t) = tir forall 1 < g < oo.
Hence, F(L,,) = {p}, 1 < q < 0.



12. Reduction to the task of identification
of the set of approximate eigenvalues of the
shift operator in a certain Banach sequence
lattice.

Let X be a r.i. space on (0,00). We associate to
X the Banach sequence lattice E'x equipped with the
norm

[(ar)kezll ey = H > arxa, R
keZ

where A, = [2F,28F1) k € Z. The sequence of
{xa, }rez 1s equivalent in X to the unit vector ba-
sis 1n EX.

Let oox(t) = 2(t/2),t > 0, 7(ag) = (ar—1), k € Z,
oy:=0—A,7=7—MX, A >0 ([ is the identity).

Proposition 1. For every r.i. space X on (0, 00)
and any A > 0
(i) oy is injective in X iff T\ is injective in Ex;
(ii) if oy is closed in X, then Ty is closed in Ex;
(iii) if Ty s ingective and closed in Ex, then o)
15 closed in X.

Corollary 3. Let X be a r.i. space on (0,00).
Then, X 1s an approrimate eigenvalue of the dou-
bling operator oo in X iff A is an approrimate
ergenvalue of the shift operator T in Ex.



13. The shift exponents of Banach sequence
lattices.

Let E be a Banach sequence lattice modelled on Z
such that 7,a == (ag_y), where a = (ay), is bounded
in F foreveryn € Z. Let Z_ ={k € Z : k < 0},
Z,={keZ: k>0},

Tga =xz_ - Tulaxz ), 7,°a:=xz. Tulaxz,).

The shift exponents of E' are defined by

1 1
e = — lim —logy [|[7[l, dp = lim —logy ||7|l,
n—oo M, n—oo 11
1 1
V= — lim —log, 7%, [, 0% = lim —logy |7,
v = — lim —logy 2], 0F = lim —logy [|7,7]].

There are direct connections between the norms of
the dilation operators in X and the shift operators in

Ex.

Proposition 2. For every r.i. space X on (0, 00)

I7allzy =< llollx s Imalley < llogllx , 1727 llex < ot

_ 0o _ -0 o0 . A,00 _

Opy, BY% = 5%)( and Y = 0p, -



14. A description of approximative eigen-
values of the shift operator in Banach se-
quence lattices.

Denote si := ||ex||p, where ey, k € Z, are elements
of the unit vector basis. We say that E is a lattice of
fundamental type if for all n € N

Sk

E—E = Sup ; HTn
keR Sn+k
E—E = Sup ; HTn
k>0 Sn+k
Slk—
Bop X sup—, ||
k<0 Sk

— Sk+n

E—E —~ Sup )
keR Sk

— Sk+n

E—E —~ Sup 3
k>0 Sk
Sk

E—E = Sup :

k<0 Sk—n

Then, the shift exponents of £ can be calculated by
using sy, k € Z.
The main technical result is following.

Theorem 3. Suppose a separable Banach sequence
lattice E 1s of fundamental type.

(i) if v < 8%, then the operator Ty is an iso-
morphic embedding in E iff X € (0,272)U(2°F, 00);

(ii) if v > 0%, then Ty is an isomorphic embed-
ding in E iff X € (0,2F) U (208, 2F) U (2°F, 00).

Moreover, if A € (0,275)U(2°F, 00), then Im 7\ =
E;if A e (25%,27%0), then Im Ty is the closed sub-
space of codimension 1 in E consisting of all (ay) €

E with

Zkkak = 0.

keZ



Corollary 4. Let E be a separable Banach se-
quence lattice of fundamental type. Then,

(i) if v& < 0%, then the set of approximative
eigenvalues of T is [2VE, 2°F];

(ii) if v > 0%, the set of approzimative eigen-
values of T is the union [27F, 298] U [27F, 298],

Necessity in Theorem 3.
A key fact: Suppose 7y is an isomorphic mapping
in /. Then, the following implication holds:

A (0,25 U 2%, o00) = A€ [2°F,20F].

Letn € N,k € Z and z,,, = I+ Xt + +
A\""7™)2e;. By the assumption, there exists ¢ > 0
such that for alln € N, k € Z

[ptw | Foayel| E 2 | Fo

Then the sequence (A*™"||exyrm||£), is increasing
for some n € N, k € Z.

Proof of Theorem 2.

Since X is a r.i. space of fundamental type and
ox(2F) = lIxallx = llellzy = sk for all k € Z,
by Proposition 2, Ex is also of fundamental type. It
remains to combine the results of Corollaries 3 and 4

(for £ = E¥).



15. A description of the set F(X) for Lorentz
and Orlicz spaces.

Theorem 4. (1) If oy, < By then F(Ay(1)) =
1/ By.gy 1/ ).
(ii) If agy, > B 4 then F(N(¥)) = [1/By,q, 1/ af? JU
:1/63,@ 1/0{@/)@:.
An Orlicz space Ly is separable iff the function N
satisfies the As-condition iff oy > 0.

Theorem 5. If an Orlicz function N s such that
ay > 0, then
(i) if o < BY, then F(Ly) = [1/Bx,1/an];
(ii) if aff > By, then F(Ly) = [1/Bn,1/aF] U
[1/5]0\[7 1/QN]'



16. Concluding examples and remarks.

Erample 1. For any 1 < p < r < oo we define
the functions ¢ (t) = max (¢1/7,¢/7) and ¢o(t) =
min (£1/7,¢1/7). Let us find the set F(X) for X =
M), 1=1,2.

For ¢1: ay, = 621 =1/r, aj; = By, = 1/p. Since
oy > 621, we get F(A1(yn)) = {p,r}.

For ¢o: ay, = afy = 1/r, By, = ﬁgz = 1/p. Since
g, < 532, we get F(A1(12)) = [p, 7]
Example 2. Let 1 < p <r < oo, X = L,(0,00) N
L, (0,00), and Y = L,(0,00) + L,(0, 00), with usual
NOIMmS:

11l = max(|| fl|,., | f]]£.)s
[Ny = int{{lgllc, Az, : f=9+h, g€ Ly, heL}
Then, X and Y are Orlicz spaces, X = Ly, and
Y = Ly,, where Ni(t) = max (¢,¢") and Ny(t) =
min (tp : tr>. By Theorem 5,

F(X)={p,r} and F(Y)=[p,r]

(this result has been proved earlier by Schep by using
different methods).



Remark 1. For any four numbers a, b, ¢, and d with
0 < a <min(b,c) <max(b,c) <d<1

there exists a concave on (0, co) function 1, for which
ay = a, a = b, 53 = ¢, and By = d. Then, by
Theorem 4,

F(M() =[1/d,1/a] if b<ec,
FM()=1[1/d,1/blU[1/c,1/a] if b> c.
Remark 2. Let X be an arbitrary separable r.i. space
X (in general, of non-fundamental type). Denote by
Boxs Voxs Koy and VgX the indices corresponding to
the dilation functions My (¢), M* (f) and ng(t).

Then, the following result holds:
If g, < VgX (resp. pg, > VgX), then the interval
0 00
[2/¢x  2"0x] (resp. the union [2/¢x 2"0x]U[2"x  2"0x])
consists of approximate eigenvalues of the operator o
in X. Therefore, in the first case

F(X) D[ vpy, 1 psyl,

in the second

F(X) D [1/vsy, Vg JU 1/vg s 1 oy,
Problem 1. To characterize the set of r such that
¢" is lattice finitely represented in a given Banach
(function) lattice X. In particular, to find the set of
r such that ¢" is lattice finitely represented in L,
Il<p<oo, 1< g<oo.



