ON LOCAL STRUCTURE OF REARRANGEMENT INVARIANT SPACES OF FUNDAMENTAL TYPE

Sergey Astashkin, Samara National Research University

1. Global and local structure of Banach spaces.

The simplest Banach spaces are

$$\ell^{p} = \{(a_{n}) : ||(a_{n})||_{p} := \left(\sum_{n=1}^{\infty} |a_{n}|^{p}\right)^{1/p} < \infty\}, \quad 1 \le p < \infty,$$
and $c_{0} = \{(a_{n}) : \lim_{n \to \infty} a_{n} = 0\},$

$$||(a_{n})||_{\infty} := \max_{n=1,2,\dots} |a_{n}|.$$

Banach: Can ℓ^p and c_0 be considered as potential building blocks? Whether every (infinite-dimensional) Banach space must contain at least a copy of one of these spaces?

Tsirelson (1974), the first example of a Banach space that does not contain an isomorphic copy of (infinite-dimensional) ℓ^p , $1 \le p \le \infty$ ($\ell^\infty := c_0$).

In contrast to that, Dvoretzky (1960): any infinite-dimensional Banach space contains an arbitrarily good finite-dimensional copies of ℓ^2 .

2. Some definitions and results.

Definition. A Banach space X contains a copy of ℓ^p , $1 \le p \le \infty$, if there exist a sequence $\{x_k\} \subset X$ and C > 0 such that for all $n \in \mathbb{N}$ and $a_k \in \mathbb{R}$

$$C^{-1}\|(a_k)\|_p \le \left\|\sum_{k=1}^n a_k x_k\right\|_X \le C\|(a_k)\|_p.$$

In other words: the sequence $\{x_k\}$ is equivalent to the unit vector basis of ℓ^p . We write $[x_k] \approx \ell^p$.

Definition. (James, 1967). Let X be a Banach space, $1 \le p \le \infty$. We say that ℓ^p is finitely represented in X if, for any $n \in \mathbb{N}$ and $\varepsilon > 0$, there exist $x_1, x_2, \ldots, x_n \in X$ such that for all $a_1, a_2, \ldots, a_n \in \mathbb{R}$

$$(1+\varepsilon)^{-1}\|(a_k)\|_p \le \left\|\sum_{k=1}^n a_k x_k\right\|_X \le (1+\varepsilon)\|(a_k)\|_p.$$

Theorem A (Dvoretzky (1960). ℓ^2 is finitely represented in arbitrary Banach space.

Theorem B (Krivine, 1976). Let z_i , i = 1, 2, ..., do not form a relatively compact set in a Banach space X. Then ℓ^p is block finitely represented in $\{z_i\}_{i=1}^{\infty}$ for some $p \in [1, \infty]$, i.e., for every $n \in \mathbb{N}$ and $\varepsilon > 0$ there exist $0 = m_0 < m_1 < \cdots < m_n$ and $\alpha_i \in \mathbb{R}$ such that the vectors

$$u_k = \sum_{i=m_{k-1}+1}^{m_k} \alpha_i z_i, \ k = 1, 2, \dots, n, \ satisfy$$

$$(1+\varepsilon)^{-1} \|(a_k)\|_p \le \left\| \sum_{k=1}^n a_k u_k \right\|_X \le (1+\varepsilon) \|(a_k)\|_p$$

for all $a_k \in \mathbb{R}$, $k = 1, \ldots, n$.

A problem: To identify the set of p such that ℓ^p is finitely represented in a given Banach space X.

3. The Maurey-Pisier contribution.

Let $r_n: [0,1] \to \mathbb{R}$ $(n \in \mathbb{N})$ be Rademacher functions, that is, $r_n(t) = sign(\sin 2^n \pi t)$. A Banach space X has $type \ p \in [1,2]$ if there is a constant K > 0 such that, for any $x_1, \ldots, x_n \in X$, we have

$$\int_0^1 \left\| \sum_{k=1}^n r_k(t) x_k \right\| dt \le K \left(\sum_{k=1}^n ||x_k||^p \right)^{1/p}.$$

A Banach space X has cotype $q \in [2, \infty]$ if there is a constant K > 0 such that, for any $x_1, \ldots, x_n \in X$,

$$\left(\sum_{k=1}^{n} ||x_k||^q\right)^{1/q} \le K \int_0^1 \left\| \sum_{k=1}^{n} r_k(t) x_k \right\| dt.$$

If $q = \infty$ we put $\max_{1 \le k \le n} ||x_k||$.

Every Banach space has type 1 and cotype ∞ . Let

$$p_X := \sup\{p \in [1, 2] : X \text{ has type } p\},$$

$$q_X := \inf\{q \in [2, \infty] : X \text{ has cotype } q\}.$$

Then, $p_X \leq q_X$. If ℓ^p is finitely represented in X, then $p \in [p_X, q_X]$.

Theorem C (Maurey-Pisier (1976)). For any Banach space X l_{p_X} and l_{q_X} are finitely represented in X.

4. Lattice finite representability.

Let X be a Banach lattice. Then, if ℓ^p is finitely represented in X and, moreover, elements $x_1, \ldots, x_n \in X$ corresponding to the vectors of the standard basis of ℓ^p can be chosen every time disjoint, we say that ℓ^p is lattice finitely represented in X.

Let $1 \leq p \leq \infty$. A Banach lattice X satisfies an p-upper estimate if there exists M > 0 such that, for all disjoint elements x_1, \ldots, x_n from X,

$$\left\| \sum_{k=1}^{n} x_k \right\| \le M \left(\sum_{k=1}^{n} ||x_k||^p \right)^{1/p}.$$

If $1 \le q \le \infty$, then a Banach lattice X satisfies an q-lower estimate if there exists M > 0 such that, for all disjoint elements x_1, \ldots, x_n from X,

$$\left(\sum_{k=1}^{n} ||x_k||^q\right)^{1/q} \le M \left\| \sum_{k=1}^{n} x_k \right\|.$$

In the case when $p = \infty$ or $q = \infty$ we put $\max_{1 \le k \le n} ||x_k||$.

 $u_X := \sup\{p \ge 1 : X \text{ satisfies an } p\text{-upper estimate}\},$

 $v_X := \inf\{q \geq 1 : X \text{ satisfies an } q\text{-lower estimate}\}.$

Then, $u_X \leq v_X$. If ℓ^p is lattice finitely represented in X, then $p \in [u_X, v_X]$.

Theorem D (Shepp). Let X be a Banach lattice. Then l_{u_X} and l_{v_X} are lattice finitely represented in X.

.

5. Rearrangement invariant spaces and symmetric finite representability of ℓ^p -spaces.

If a function x(s) is measurable on $[0, \infty)$, then

$$n_x(t) := m(\{s > 0 : |x(s)| > t\}),$$

where m is the usual Lebesgue measure. Functions x(s) and y(s) are equimeasurable if $n_x(t) = n_y(t)$ for all t > 0.

A Banach function space X on $[0, \infty)$ is said to be a r.i. (symmetric) space if the conditions $x \in X$ and $n_y(t) \leq n_x(t)$ (t > 0) imply that $y \in X$ and $||y||_X \leq ||x||_X$.

A r.i. space X has the Fatou property if for any increasing sequence $\{x_n\}_{n=1}^{\infty} \subseteq X$ such that $0 \le x_n \to x$ a.e. on $[0, \infty)$ and $\sup_n \|x_n\|_X < \infty$ we have: $x \in X$ and $\|x\|_X \le \liminf_{n \to \infty} \|x_n\|_X$.

In what follows, a r.i. space X is either separable or it has the Fatou property.

Definition. We say that ℓ^p , $1 \leq p \leq \infty$, is symmetrically finitely represented in a r.i. space X $(p \in \mathcal{F}(X))$ if, for any $n \in \mathbb{N}$ and $\varepsilon > 0$, there exist equimeasurable and disjoint $x_k \in X$, $k = 1, 2, \ldots, n$, such that for any $a_k \in \mathbb{R}$

$$(1+\varepsilon)^{-1}\|(a_k)\|_p \le \left\|\sum_{k=1}^n a_k x_k\right\|_X \le (1+\varepsilon)\|(a_k)\|_p.$$

6. An example: $L_{p,q}$ -spaces.

1 consists of all measurable functions <math>x on $(0, \infty)$ such that

$$||x||_{p,q} := \left(\int_0^\infty x^*(t)^q d(t^{q/p})\right)^{1/q} < \infty,$$

where x^* is the non-increasing rearrangement of |x| (i.e., $n_{x^*}(t) = n_x(t)$, t > 0):

$$x^*(s) := \inf\{t > 0 : n_x(t) \le s\}, \quad s > 0.$$

(a) q = p, $L_{p,p} = L_p$: $[x_n] \approx \ell^p$ isometrically for every sequence $\{x_n\} \subset L_p$, $||x_n||_{L_p} = 1$, of equimeasurable and disjoint functions. For instance, for all $n \in \mathbb{N}$ and $a_k \in \mathbb{R}$

$$\left\| \sum_{k=1}^{n} a_k \chi_{(k-1,k]} \right\|_{L_p} = \left(\sum_{k=1}^{n} |a_k|^p \right)^{1/p}.$$

In particular, $\mathcal{F}(L_p) = \{p\}.$

(b) $q \neq p$: if $\{x_n\} \subset L_{p,q}$, $||x_n||_{p,q} = 1$, is a sequence of disjoint functions, then $[x_n]$ contains a subspace isomorphic to l_q (Carothers-Dilworth, 1988). More precisely, there exist $0 = m_0 < m_1 < \cdots < m_k < \ldots$ and $\alpha_i \in \mathbb{R}$ such that $[u_k] \approx \ell^q$, where $u_k = \sum_{i=m_{k-1}+1}^{m_k} \alpha_i x_i, k = 1, 2, \ldots$ Hence, if $\{x_n\} \subset L_{p,q}$ is a sequence of disjoint functions with $[x_n] \approx \ell^r$, then r = q.

At the same time, $\mathcal{F}(L_{p,q}) = \{p\}.$

7. Boyd indices of r.i. spaces.

For any $\tau > 0$, the dilation operator $\sigma_{\tau}x(t) := x(t/\tau)$ is bounded in any r.i. space X and $\|\sigma_{\tau}\|_{X\to X} \le \max(1,\tau)$. The *Boyd indices* of X:

$$\alpha_X = -\lim_{n \to \infty} \frac{1}{n} \log_2 \|\sigma_{2^{-n}}\|_{X \to X},$$

$$\beta_X = \lim_{n \to \infty} \frac{1}{n} \log_2 \|\sigma_{2^n}\|_{X \to X}.$$

Moreover, let $\sigma_{\tau}^0 x := \chi_{[0,1]} \sigma_{\tau}(x \chi_{[0,1]})$ and $\sigma_{\tau}^{\infty} x := \chi_{[1,\infty)} \sigma_{\tau}(x \chi_{[1,\infty]})$. Define the following partial Boyd indices:

$$\alpha_{X}^{0} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \|\sigma_{2^{-n}}^{0}\|_{X \to X},$$

$$\beta_{X}^{0} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \|\sigma_{2^{n}}^{0}\|_{X \to X},$$

$$\alpha_{X}^{\infty} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \|\sigma_{2^{-n}}^{\infty}\|_{X \to X},$$

$$\beta_{X}^{\infty} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \|\sigma_{2^{n}}^{\infty}\|_{X \to X}.$$

Always $0 \le \alpha_X \le \alpha_X^0 \le \beta_X^0 \le \beta_X \le 1$ and $0 \le \alpha_X \le \alpha_X^\infty \le \beta_X^\infty \le \beta_X \le 1$.

Then, $\mathcal{F}(X) \subset [1/\beta_X, 1/\alpha_X]$ for every X.

Theorem E. For arbitrary r.i. space $X: \mathcal{F}(X) \neq \emptyset$, $\max \mathcal{F}(X) = 1/\alpha_X$, and $\min \mathcal{F}(X) = 1/\beta_X$.

Theorem E has been stated (without proof) in Lindenstrauss-Tzafriri, Classical Banach spaces, II. Function Spaces, 1979. The proof was given in 2011 by A.

8. A spectral characterization of the set $\mathcal{F}(X)$.

Definition. Let X be a Banach space and let A: $X \to X$ be a bounded linear operator. A sequence $\{u_n\}_{n=1}^{\infty} \subset X$, $||u_n|| = 1$, $n = 1, 2, \ldots$, is called an approximate eigenvector corresponding to an approximate eigenvalue $\lambda \in \mathbb{R}$ of the operator A if

$$||Au_n - \lambda u_n||_X \to 0$$

(equivalently: the operator $A - \lambda I$ is either not injective or not closed).

Theorem 1 (A,2011). Let X be a separable r.i. space on $[0, \infty)$. Then $p \in \mathcal{F}(X)$ if and only if the number $\lambda := 2^{1/p}$ is an approximate eigenvalue of the doubling operator $\sigma_2 x(t) = x(t/2)$.

The proof of the "if" part: if $\{g_k\}$ is an approximate eigenvector for λ , then for each $k \in \mathbb{N}$ we define a symmetric sequence space F_k by

$$\left\| \sum_{j=1}^m a_j e_j \right\|_{F_k} := \|a_1 g_k \oplus a_2 g_k \oplus \cdots \oplus a_m g_k\|_X, \ m \in \mathbb{R},$$

where $f \oplus g$ is the disjoint sum of functions f and g. Then, we construct (using some Rosenthal's ideas) a chain of symmetric sequence spaces, every of which is finitely represented in the previous one and the last one coincides isometrically with ℓ^p or c_0 .

- -

9. R.i. spaces of fundamental type.

Let ψ be a positive function on $(0, \infty)$. We introduce the *dilation functions*:

$$M_{\psi}(t) := \sup_{s>0} \frac{\psi(ts)}{\psi(s)}, \quad M_{\psi}^{0}(t) := \sup_{0 < s \le \min(1,1/t)} \frac{\psi(ts)}{\psi(s)},$$

$$M_{\psi}^{\infty}(t) := \sup_{s \ge \max(1, 1/t)} \frac{\psi(ts)}{\psi(s)}.$$

Let $\psi(t) = \phi_X(s)$, where ϕ_X is the fundamental function of X defined by $\phi_X(s) = \|\chi_{(0,s)}\|_X$. Since $\chi_{(0,st)} = \sigma_t(\chi_{(0,s)})$, then

$$M_{\phi_X}(t) = \sup_{s>0} \frac{\|\sigma_t \chi_{(0,s)}\|_X}{\|\chi_{(0,s)}\|_X} \le \|\sigma_t\|_{X \to X},$$

and similar inequalities for $M_{\phi_X}^0(t)$, $\|\sigma_t^0\|_{X\to X}$ and $M_{\phi_X}^\infty(t)$, $\|\sigma_t^\infty\|_{X\to X}$.

We say that a r.i. space X is of fundamental type if the opposite inequalities (up to constant) hold, i.e.,

$$\|\sigma_t\|_{X\to X} \le CM_{\phi_X}(t) , \|\sigma_t^0\|_{X\to X} \le CM_{\phi_X}^0(t), \|\sigma_t^\infty\|_{X\to X} \le CM_{\phi_X}^\infty(t), t > 0.$$

The most known and important r.i. spaces are of fundamental type (the first example of a r.i. space of non-fundamental type was constructed by Shimogaki, 1970).

The Boyd indices of a r.i. space are of fundamental type can be calculated via its fundamental function.

__

10. Examples of r.i. spaces.

(a) Lorentz spaces. Let $1 \leq q < \infty$, ψ be an increasing concave function on $[0, \infty)$ such that $\psi(0) = 0$. The Lorentz space $\Lambda_q(\psi)$ is defined by

$$||x||_{\Lambda_q(\psi)} := \left(\int_0^\infty x^*(t)^q d\psi(t)\right)^{1/q} < \infty.$$

 $\Lambda_q(\psi)$ is a separable r.i. space with the Fatou property and $\phi_{\Lambda_q(\psi)}(t) = \psi(t)^{1/q}$. The dilation indices of $\Lambda_q(\psi)$ can be calculated by

$$\alpha_{\psi,q} = -\lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \in \mathbb{Z}} \left(\frac{\psi(2^k)}{\psi(2^{n+k})} \right)^{1/q},$$

$$\beta_{\psi,q} = \lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \in \mathbb{Z}} \left(\frac{\psi(2^{n+k})}{\psi(2^k)} \right)^{1/q},$$

$$\alpha_{\psi,q}^0 = -\lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \le 0} \left(\frac{\psi(2^{k-n})}{\psi(2^k)} \right)^{1/q},$$

$$\beta_{\psi,q}^0 = \lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \le 0} \left(\frac{\psi(2^k)}{\psi(2^{k-n})} \right)^{1/q},$$

$$\alpha_{\psi,q}^\infty = -\lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \ge 0} \left(\frac{\psi(2^k)}{\psi(2^{k+n})} \right)^{1/q},$$

$$\beta_{\psi,q}^\infty = \lim_{n \to \infty} \frac{1}{n} \log_2 \sup_{k \ge 0} \left(\frac{\psi(2^{n+k})}{\psi(2^k)} \right)^{1/q}.$$

(b) Orlicz spaces. Let N be a convex continuous increasing function on $[0, \infty)$, N(0) = 0 and $N(\infty) = \infty$. The Orlicz space L_N is defined by the Luxemburg norm

$$||x||_{L_N} := \inf \left\{ u > 0 : \int_0^\infty N(|x(t)|/u) \, dt \le 1 \right\} < \infty.$$

In particular, $L^p = L_{N_p}$, $N_p(s) = s^p$, $1 \le p < \infty$.

Every Orlicz space L_N has the Fatou property and it is separable iff the function N satisfies the Δ_2 condition, i.e., $\sup_{u>0} \frac{N(2u)}{N(u)} < \infty$. The fundamental function $\phi_{L_N}(t) = 1/N^{-1}(1/t)$, t>0, where N^{-1} is the inverse function for N. The dilation indices of L_N can be calculated by

$$\alpha_{N} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \in \mathbb{Z}} \frac{N^{-1}(2^{k-n})}{N^{-1}(2^{k})},$$

$$\beta_{N} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \in \mathbb{Z}} \frac{N^{-1}(2^{k})}{N^{-1}(2^{k-n})},$$

$$\alpha_{N}^{0} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \ge 0} \frac{N^{-1}(2^{k})}{N^{-1}(2^{k+n})},$$

$$\beta_{N}^{0} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \ge 0} \frac{N^{-1}(2^{k+n})}{N^{-1}(2^{k})},$$

$$\alpha_{N}^{\infty} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \le 0} \frac{N^{-1}(2^{k-n})}{N^{-1}(2^{k})},$$

$$\beta_{N}^{\infty} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \sup_{k \le 0} \frac{N^{-1}(2^{k})}{N^{-1}(2^{k-n})}.$$

11. Main results.

Theorem 2. Let X be a r.i. space on $(0, \infty)$ of fundamental type.

- (i) If $\alpha_X^{\infty} \leq \beta_X^0$, then the set of approximate eigenvalues of σ_2 in X is the interval $[2^{\alpha_X}, 2^{\beta_X}]$.
- (ii) If $\alpha_X^{\infty} > \beta_X^0$, then the set of approximate eigenvalues of σ_2 in X is the union $[2^{\alpha_X}, 2^{\beta_X^0}] \cup [2^{\alpha_X^{\infty}}, 2^{\beta_X}]$.

From Theorems 1 and 2 it follows a description of the set of $p \in [1, \infty]$ such that ℓ^p is symmetrically finitely represented in a given separable r.i. space of fundamental type.

Corollary 1. Let X be a separable r.i. space of fundamental type. Then,

- (i) if $\alpha_X^{\infty} \leq \beta_X^0$, then $\mathcal{F}(X) = [1/\beta_X, 1/\alpha_X]$;
- (ii) if $\alpha_X^{\infty} > \beta_X^0$, then $\mathcal{F}(X) = [1/\beta_X, 1/\alpha_X^{\infty}] \cup [1/\beta_X^0, 1/\alpha_X]$.

Corollary 2. If X and Y are separable r.i. spaces of fundamental type such that $\phi_X(t) \simeq \phi_Y(t)$, t > 0, then $\mathcal{F}(X) = \mathcal{F}(Y)$.

In particular, $\phi_{L_{p,q}}(t) = t^{1/p}$, for all $1 \leq q < \infty$. Hence, $\mathcal{F}(L_{p,q}) = \{p\}, 1 \leq q < \infty$. 12. Reduction to the task of identification of the set of approximate eigenvalues of the shift operator in a certain Banach sequence lattice.

Let X be a r.i. space on $(0, \infty)$. We associate to X the Banach sequence lattice E_X equipped with the norm

$$\|(a_k)_{k\in\mathbb{Z}}\|_{E_X} := \left\| \sum_{k\in\mathbb{Z}} a_k \chi_{\Delta_k} \right\|_X,$$

where $\Delta_k = [2^k, 2^{k+1}), k \in \mathbb{Z}$. The sequence of $\{\chi_{\Delta_k}\}_{k\in\mathbb{Z}}$ is equivalent in X to the unit vector basis in E_X .

Let $\sigma_2 x(t) = x(t/2), t > 0, \tau(a_k) = (a_{k-1}), k \in \mathbb{Z},$ $\sigma_{\lambda} := \sigma - \lambda I, \tau_{\lambda} = \tau - \lambda I, \lambda > 0$ (*I* is the identity).

Proposition 1. For every r.i. space X on $(0, \infty)$ and any $\lambda > 0$

- (i) σ_{λ} is injective in X iff τ_{λ} is injective in E_X ;
- (ii) if σ_{λ} is closed in X, then τ_{λ} is closed in E_X ;
- (iii) if τ_{λ} is injective and closed in E_X , then σ_{λ} is closed in X.

Corollary 3. Let X be a r.i. space on $(0, \infty)$. Then, λ is an approximate eigenvalue of the doubling operator σ_2 in X iff λ is an approximate eigenvalue of the shift operator τ in E_X .

13. The shift exponents of Banach sequence lattices.

Let E be a Banach sequence lattice modelled on \mathbb{Z} such that $\tau_n a := (a_{k-n})$, where $a = (a_k)$, is bounded in E for every $n \in \mathbb{Z}$. Let $\mathbb{Z}_- = \{k \in \mathbb{Z} : k \leq 0\}$, $\mathbb{Z}_+ = \{k \in \mathbb{Z} : k \geq 0\}$,

$$\tau_n^0 a := \chi_{\mathbb{Z}_-} \cdot \tau_n(a\chi_{\mathbb{Z}_-}), \quad \tau_n^\infty a := \chi_{\mathbb{Z}_+} \cdot \tau_n(a\chi_{\mathbb{Z}_+}).$$

The shift exponents of E are defined by

$$\gamma_{E} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{-n}\|, \quad \delta_{E} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{n}\|,$$

$$\gamma_{E}^{0} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{-n}^{0}\|, \quad \delta_{E}^{0} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{n}^{0}\|,$$

$$\gamma_{E}^{\infty} = -\lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{-n}^{\infty}\|, \quad \delta_{E}^{\infty} = \lim_{n \to \infty} \frac{1}{n} \log_{2} \|\tau_{n}^{\infty}\|.$$

There are direct connections between the norms of the dilation operators in X and the shift operators in E_X .

Proposition 2. For every r.i. space X on $(0, \infty)$

$$\|\tau_n\|_{E_X} \asymp \|\sigma_{2^n}\|_X \ , \ \|\tau_n^0\|_{E_X} \asymp \|\sigma_{2^n}^0\|_X \ , \ \|\tau_n^\infty\|_{E_X} \asymp \|\sigma_{2^n}^\infty\|_X.$$

Hence,
$$\alpha_X = \gamma_{E_X}$$
, $\alpha_X^0 = \gamma_{E_X}^0$, $\alpha_X^\infty = \gamma_{E_X}^\infty$, $\beta_X = \delta_{E_X}^0$, $\beta_X^0 = \delta_{E_X}^0$ and $\beta_X^\infty = \delta_{E_X}^\infty$.

14. A description of approximative eigenvalues of the shift operator in Banach sequence lattices.

Denote $s_k := ||e_k||_E$, where e_k , $k \in \mathbb{Z}$, are elements of the unit vector basis. We say that E is a lattice of fundamental type if for all $n \in \mathbb{N}$

$$\|\tau_{-n}\|_{E\to E} \asymp \sup_{k\in\mathbb{R}} \frac{s_k}{s_{n+k}}, \quad \|\tau_n\|_{E\to E} \asymp \sup_{k\in\mathbb{R}} \frac{s_{k+n}}{s_k},$$

$$\|\tau_{-n}^0\|_{E\to E} \asymp \sup_{k\geq 0} \frac{s_k}{s_{n+k}}, \quad \|\tau_n^0\|_{E\to E} \asymp \sup_{k\geq 0} \frac{s_{k+n}}{s_k},$$

$$\|\tau_{-n}^\infty\|_{E\to E} \asymp \sup_{k\leq 0} \frac{s_{k-n}}{s_k}, \quad \|\tau_n^\infty\|_{E\to E} \asymp \sup_{k\leq 0} \frac{s_k}{s_{k-n}}.$$

Then, the shift exponents of E can be calculated by using s_k , $k \in \mathbb{Z}$.

The main technical result is following.

Theorem 3. Suppose a separable Banach sequence lattice E is of fundamental type.

- (i) if $\gamma_E^{\infty} \leq \delta_E^0$, then the operator τ_{λ} is an isomorphic embedding in E iff $\lambda \in (0, 2^{\gamma_E}) \cup (2^{\delta_E}, \infty)$;
- (ii) if $\gamma_E^{\infty} > \delta_E^0$, then τ_{λ} is an isomorphic embedding in E iff $\lambda \in (0, 2^{\gamma_E}) \cup (2^{\delta_E^0}, 2^{\gamma_E^{\infty}}) \cup (2^{\delta_E}, \infty)$.

Moreover, if $\lambda \in (0, 2^{\gamma_E}) \cup (2^{\delta_E}, \infty)$, then $\operatorname{Im} \tau_{\lambda} = E$; if $\lambda \in (2^{\delta_E^0}, 2^{\gamma_E^\infty})$, then $\operatorname{Im} \tau_{\lambda}$ is the closed subspace of codimension 1 in E consisting of all $(a_k) \in E$ with

$$\sum_{k \in \mathbb{Z}} \lambda^k a_k = 0.$$

. _

Corollary 4. Let E be a separable Banach sequence lattice of fundamental type. Then,

- (i) if $\gamma_E^{\infty} \leq \delta_E^0$, then the set of approximative eigenvalues of τ is $[2^{\gamma_E}, 2^{\delta_E}]$;
- (ii) if $\gamma_E^{\infty} > \delta_E^0$, the set of approximative eigenvalues of τ is the union $[2^{\gamma_E}, 2^{\delta_E^0}] \cup [2^{\gamma_E^{\infty}}, 2^{\delta_E}]$.

Necessity in Theorem 3.

A key fact: Suppose τ_{λ} is an isomorphic mapping in E. Then, the following implication holds:

$$\lambda \not\in (0, 2^{\gamma_E}] \cup [2^{\delta_E}, \infty) \implies \lambda \in [2^{\delta_E^0}, 2^{\gamma_E^\infty}].$$

Let $n \in \mathbb{N}$, $k \in \mathbb{Z}$ and $x_{n,k} = (I + \lambda^{-1}\tau + \cdots + \lambda^{-n}\tau^n)^2 e_k$. By the assumption, there exists c > 0 such that for all $n \in \mathbb{N}$, $k \in \mathbb{Z}$

$$\|\tau_{\lambda}x_{n,k}\|_{E} \ge c\|x_{n,k}\|_{E}.$$

Then the sequence $(\lambda^{k+rn} || e_{k+rn} ||_E)_{r=0}^{\infty}$ is increasing for some $n \in \mathbb{N}$, $k \in \mathbb{Z}$.

Proof of Theorem 2.

Since X is a r.i. space of fundamental type and $\phi_X(2^k) = \|\chi_{\Delta_k}\|_X = \|e_k\|_{E_X} = s_k$ for all $k \in \mathbb{Z}$, by Proposition 2, E_X is also of fundamental type. It remains to combine the results of Corollaries 3 and 4 (for $E = E_X$).

15. A description of the set $\mathcal{F}(X)$ for Lorentz and Orlicz spaces.

Theorem 4. (i) If $\alpha_{\psi,q}^{\infty} \leq \beta_{\psi,q}^{0}$, then $\mathcal{F}(\Lambda_{q}(\psi)) = [1/\beta_{\psi,q}, 1/\alpha_{\psi,q}]$. (ii) If $\alpha_{\psi,q}^{\infty} > \beta_{\psi,q}^{0}$, then $\mathcal{F}(\Lambda_{q}(\psi)) = [1/\beta_{\psi,q}, 1/\alpha_{\psi,q}^{\infty}] \cup [1/\beta_{\psi,q}^{0}, 1/\alpha_{\psi,q}]$.

An Orlicz space L_N is separable iff the function N satisfies the Δ_2 -condition iff $\alpha_N > 0$.

Theorem 5. If an Orlicz function N is such that $\alpha_N > 0$, then

(i) if $\alpha_N^{\infty} \leq \beta_N^0$, then $\mathcal{F}(L_N) = [1/\beta_N, 1/\alpha_N]$; (ii) if $\alpha_N^{\infty} > \beta_N^0$, then $\mathcal{F}(L_N) = [1/\beta_N, 1/\alpha_N^{\infty}] \cup [1/\beta_N^0, 1/\alpha_N]$.

16. Concluding examples and remarks.

Example 1. For any $1 we define the functions <math>\psi_1(t) = \max(t^{1/p}, t^{1/r})$ and $\psi_2(t) = \min(t^{1/p}, t^{1/r})$. Let us find the set $\mathcal{F}(X)$ for $X = \Lambda_1(\psi_i)$, i = 1, 2.

For ψ_1 : $\alpha_{\psi_1} = \beta_{\psi_1}^0 = 1/r$, $\alpha_{\psi_1}^{\infty} = \beta_{\psi_1} = 1/p$. Since $\alpha_{\psi_1}^{\infty} > \beta_{\psi_1}^0$, we get $\mathcal{F}(\Lambda_1(\psi_1)) = \{p, r\}$.

For ψ_2 : $\alpha_{\psi_2} = \alpha_{\psi_2}^{\infty} = 1/r$, $\beta_{\psi_2} = \beta_{\psi_2}^0 = 1/p$. Since $\alpha_{\psi_2}^{\infty} < \beta_{\psi_2}^0$, we get $\mathcal{F}(\Lambda_1(\psi_2)) = [p, r]$.

Example 2. Let $1 \leq p < r \leq \infty$, $X = L_p(0, \infty) \cap L_r(0, \infty)$, and $Y = L_p(0, \infty) + L_r(0, \infty)$, with usual norms:

$$||f||_X := \max(||f||_{L_p}, ||f||_{L_r}),$$

 $||f||_Y := \inf\{||g||_{L_p} + ||h||_{L_r}: f = g+h, g \in L_p, h \in L_r\}.$ Then, X and Y are Orlicz spaces, $X = L_{N_1}$ and $Y = L_{N_2}$, where $N_1(t) = \max(t^p, t^r)$ and $N_2(t) = \min(t^p, t^r)$. By Theorem 5,

$$\mathcal{F}(X) = \{p, r\} \text{ and } \mathcal{F}(Y) = [p, r]$$

(this result has been proved earlier by Schep by using different methods).

Remark 1. For any four numbers a, b, c, and d with

$$0 < a \le \min(b, c) \le \max(b, c) \le d < 1$$

there exists a concave on $(0, \infty)$ function ψ , for which $\alpha_{\psi} = a$, $\alpha_{\psi}^{\infty} = b$, $\beta_{\psi}^{0} = c$, and $\beta_{\psi} = d$. Then, by Theorem 4,

$$\mathcal{F}(\Lambda_1(\psi)) = [1/d, 1/a] \text{ if } b \leq c,$$

$$\mathcal{F}(\Lambda_1(\psi)) = [1/d, 1/b] \cup [1/c, 1/a] \text{ if } b > c.$$

Remark 2. Let X be an arbitrary separable r.i. space X (in general, of non-fundamental type). Denote by μ_{ϕ_X} , ν_{ϕ_X} , $\mu_{\phi_X}^{\infty}$ and $\nu_{\phi_X}^0$ the indices corresponding to the dilation functions $M_{\phi_X}(t)$, $M_{\phi_X}^{\infty}(t)$ and $M_{\phi_X}^0(t)$. Then, the following result holds:

If $\mu_{\phi_X}^{\infty} \leq \nu_{\phi_X}^0$ (resp. $\mu_{\phi_X}^{\infty} > \nu_{\phi_X}^0$), then the interval $[2^{\mu_{\phi_X}}, 2^{\nu_{\phi_X}}]$ (resp. the union $[2^{\mu_{\phi_X}}, 2^{\nu_{\phi_X}}] \cup [2^{\mu_{\phi_X}^{\infty}}, 2^{\nu_{\phi_X}}]$) consists of approximate eigenvalues of the operator σ_2 in X. Therefore, in the first case

$$\mathcal{F}(X) \supset [1/\nu_{\phi_X}, 1/\mu_{\phi_X}],$$

in the second

$$\mathcal{F}(X) \supset [1/\nu_{\phi_X}, 1/\mu_{\phi_X}^{\infty}] \cup [1/\nu_{\phi_X}^0, 1/\mu_{\phi_X}].$$

Problem 1. To characterize the set of r such that ℓ^r is lattice finitely represented in a given Banach (function) lattice X. In particular, to find the set of r such that ℓ^r is lattice finitely represented in $L_{p,q}$, $1 , <math>1 \le q < \infty$.