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1. Global and local structure of Banach
spaces.

The simplest Banach spaces are

`p = {(an) : ‖(an)‖p :=
( ∞∑
n=1

|an|p
)1/p

<∞}, 1 ≤ p <∞,

and c0 = {(an) : limn→∞ an = 0},

‖(an)‖∞ := max
n=1,2,...

|an|.

Banach: Can `p and c0 be considered as potential
building blocks? Whether every (infinite–dimensional)
Banach space must contain at least a copy of one of
these spaces?

Tsirelson (1974), the first example of a Banach space
that does not contain an isomorphic copy of (infinite–
dimensional) `p, 1 ≤ p ≤ ∞ (`∞ := c0).

In contrast to that, Dvoretzky (1960): any infinite–
dimensional Banach space contains an arbitrarily good
finite-dimensional copies of `2.
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2. Some definitions and results.

Definition. A Banach space X contains a copy of
`p, 1 ≤ p ≤ ∞, if there exist a sequence {xk} ⊂ X
and C > 0 such that for all n ∈ N and ak ∈ R

C−1‖(ak)‖p ≤
∥∥∥ n∑
k=1

akxk

∥∥∥
X
≤ C‖(ak)‖p.

In other words: the sequence {xk} is equivalent to
the unit vector basis of `p. We write [xk] ≈ `p.

Definition. (James, 1967). Let X be a Banach
space, 1 ≤ p ≤ ∞. We say that `p is finitely repre-
sented in X if, for any n ∈ N and ε > 0, there exist
x1, x2, . . . , xn ∈ X such that for all a1, a2, . . . , an ∈
R

(1 + ε)−1‖(ak)‖p ≤
∥∥∥ n∑
k=1

akxk

∥∥∥
X
≤ (1 + ε)‖(ak)‖p.

Theorem A (Dvoretzky (1960). `2 is finitely
represented in arbitrary Banach space.

Theorem B (Krivine, 1976). Let zi, i =
1, 2, . . . , do not form a relatively compact set in
a Banach space X. Then `p is block finitely rep-
resented in {zi}∞i=1 for some p ∈ [1,∞], i.e., for
every n ∈ N and ε > 0 there exist 0 = m0 <
m1 < · · · < mn and αi ∈ R such that the vectors
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uk =
∑mk

i=mk−1+1 αizi, k = 1, 2, . . . , n, satisfy

(1 + ε)−1‖(ak)‖p ≤
∥∥∥ n∑
k=1

akuk

∥∥∥
X
≤ (1 + ε)‖(ak)‖p

for all ak ∈ R, k = 1, . . . , n.
A problem: To identify the set of p such that `p is

finitely represented in a given Banach space X .
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3. The Maurey-Pisier contribution.
Let rn : [0, 1] → R (n ∈ N) be Rademacher func-

tions, that is, rn(t) = sign(sin 2nπt). A Banach space
X has type p ∈ [1, 2] if there is a constant K > 0
such that, for any x1, . . . , xn ∈ X , we have∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥ dt ≤ K

(
n∑
k=1

||xk||p
)1/p

.

A Banach space X has cotype q ∈ [2,∞] if there is
a constant K > 0 such that, for any x1, . . . , xn ∈ X ,(

n∑
k=1

||xk||q
)1/q

≤ K

∫ 1

0

∥∥∥ n∑
k=1

rk(t)xk

∥∥∥ dt.
If q =∞ we put max1≤k≤n ||xk||.

Every Banach space has type 1 and cotype∞. Let

pX := sup{p ∈ [1, 2] : X has type p},

qX := inf{q ∈ [2,∞] : X has cotype q}.
Then, pX ≤ qX . If `p is finitely represented in X ,
then p ∈ [pX, qX ].

Theorem C (Maurey-Pisier (1976)). For
any Banach space X lpX and lqX are finitely rep-
resented in X.
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4. Lattice finite representability.
Let X be a Banach lattice. Then, if `p is finitely

represented inX and, moreover, elements x1, . . . , xn ∈
X corresponding to the vectors of the standard basis
of `p can be chosen every time disjoint, we say that
`p is lattice finitely represented in X.

Let 1 ≤ p ≤ ∞. A Banach lattice X satisfies an
p–upper estimate if there exists M > 0 such that,
for all disjoint elements x1, . . . , xn from X ,∥∥∥ n∑

k=1

xk

∥∥∥ ≤M

(
n∑
k=1

||xk||p
)1/p

.

If 1 ≤ q ≤ ∞, then a Banach lattice X satisfies an
q–lower estimate if there exists M > 0 such that,
for all disjoint elements x1, . . . , xn from X ,(

n∑
k=1

||xk||q
)1/q

≤M
∥∥∥ n∑
k=1

xk

∥∥∥.
In the case when p =∞ or q =∞we put max1≤k≤n ||xk||.

uX := sup{p ≥ 1 : X satisfies an p–upper estimate},

vX := inf{q ≥ 1 : X satisfies an q–lower estimate}.
Then, uX ≤ vX. If `p is lattice finitely represented in
X, then p ∈ [uX, vX ].

Theorem D (Shepp). Let X be a Banach lat-
tice. Then luX and lvX are lattice finitely repre-
sented in X.
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5. Rearrangement invariant spaces and
symmetric finite representability of `p-spaces.

If a function x(s) is measurable on [0,∞), then

nx(t) := m({s > 0 : |x(s)| > t}),

where m is the usual Lebesgue measure. Functions
x(s) and y(s) are equimeasurable if nx(t) = ny(t) for
all t > 0.

A Banach function space X on [0,∞) is said to be
a r.i. (symmetric) space if the conditions x ∈ X
and ny(t) ≤ nx(t) (t > 0) imply that y ∈ X and
‖y‖X ≤ ‖x‖X .

A r.i. space X has the Fatou property if for any
increasing sequence {xn}∞n=1 ⊆ X such that 0 ≤
xn → x a.e. on [0,∞) and supn ‖xn‖X < ∞ we
have: x ∈ X and ‖x‖

X
≤ lim infn→∞ ‖xn‖X .

In what follows, a r.i. space X is either separable
or it has the Fatou property.

Definition. We say that `p, 1 ≤ p ≤ ∞, is sym-
metrically finitely represented in a r.i. space X
(p ∈ F(X)) if, for any n ∈ N and ε > 0, there exist
equimeasurable and disjoint xk ∈ X , k = 1, 2, . . . , n,
such that for any ak ∈ R

(1 + ε)−1‖(ak)‖p ≤
∥∥∥ n∑
k=1

akxk

∥∥∥
X
≤ (1 + ε)‖(ak)‖p.
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6. An example: Lp,q-spaces.
1 < p < ∞, 1 ≤ q < ∞, Lp,q consists of all

measurable functions x on (0,∞) such that

‖x‖p,q :=
(∫ ∞

0

x∗(t)q d(tq/p)
)1/q

<∞,

where x∗ is the non-increasing rearrangement of |x|
(i.e., nx∗(t) = nx(t), t > 0):

x∗(s) := inf{t > 0 : nx(t) ≤ s}, s > 0.

(a) q = p, Lp,p = Lp: [xn] ≈ `p isometrically for
every sequence {xn} ⊂ Lp, ‖xn‖Lp = 1, of equimea-
surable and disjoint functions. For instance, for all
n ∈ N and ak ∈ R∥∥∥ n∑

k=1

akχ(k−1,k]

∥∥∥
Lp

=
( n∑
k=1

|ak|p
)1/p

.

In particular, F(Lp) = {p}.
(b) q 6= p: if {xn} ⊂ Lp,q, ‖xn‖p,q = 1, is a se-

quence of disjoint functions, then [xn] contains a sub-
space isomorphic to lq (Carothers-Dilworth, 1988).
More precisely, there exist 0 = m0 < m1 < · · · <
mk < . . . and αi ∈ R such that [uk] ≈ `q, where
uk =

∑mk
i=mk−1+1 αixi, k = 1, 2, . . . . Hence, if {xn} ⊂

Lp,q is a sequence of disjoint functions with [xn] ≈ `r,
then r = q.

At the same time, F(Lp,q) = {p}.
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7. Boyd indices of r.i. spaces.
For any τ > 0, the dilation operator στx(t) :=

x(t/τ ) is bounded in any r.i. spaceX and ‖στ‖X→X ≤
max(1, τ ). The Boyd indices of X :

αX = − lim
n→∞

1

n
log2 ‖σ2−n‖X→X,

βX = lim
n→∞

1

n
log2 ‖σ2n‖X→X.

Moreover, let σ0
τx := χ[0,1]στ(xχ[0,1]) and σ∞τ x :=

χ[1,∞)στ(xχ[1,∞]). Define the following partial Boyd
indices:

α0
X = − lim

n→∞

1

n
log2 ‖σ0

2−n‖X→X,

β0
X = lim

n→∞

1

n
log2 ‖σ0

2n‖X→X,

α∞X = − lim
n→∞

1

n
log2 ‖σ∞2−n‖X→X,

β∞X = lim
n→∞

1

n
log2 ‖σ∞2n‖X→X.

Always 0 ≤ αX ≤ α0
X ≤ β0

X ≤ βX ≤ 1 and 0 ≤
αX ≤ α∞X ≤ β∞X ≤ βX ≤ 1.

Then, F(X) ⊂ [1/βX, 1/αX ] for every X .
Theorem E. For arbitrary r.i. space X: F(X) 6=
∅, maxF(X) = 1/αX, and minF(X) = 1/βX.

Theorem E has been stated (without proof) in Lindenstrauss-
Tzafriri, Classical Banach spaces, II. Function Spaces,
1979. The proof was given in 2011 by A.
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8. A spectral characterization of the set
F(X).

Definition. Let X be a Banach space and let A :
X → X be a bounded linear operator. A sequence
{un}∞n=1 ⊂ X, ‖un‖ = 1, n = 1, 2, . . . , is called
an approximate eigenvector corresponding to an ap-
proximate eigenvalue λ ∈ R of the operator A if

‖Aun − λun‖X → 0

(equivalently: the operator A − λI is either not in-
jective or not closed).

Theorem 1 (A,2011). Let X be a separable r.i.
space on [0,∞). Then p ∈ F(X) if and only if the
number λ := 21/p is an approximate eigenvalue of
the doubling operator σ2x(t) = x(t/2).

The proof of the ”if” part: if {gk} is an approximate
eigenvector for λ, then for each k ∈ N we define a
symmetric sequence space Fk by∥∥∥ m∑
j=1

ajej

∥∥∥
Fk

:= ‖a1gk⊕a2gk⊕· · ·⊕amgk‖X, m ∈ R,

where f ⊕ g is the disjoint sum of functions f and g.
Then, we construct (using some Rosenthal’s ideas) a
chain of symmetric sequence spaces, every of which is
finitely represented in the previous one and the last
one coincides isometrically with `p or c0.
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9. R.i. spaces of fundamental type.
Let ψ be a positive function on (0,∞). We intro-

duce the dilation functions:

Mψ(t) := sup
s>0

ψ(ts)

ψ(s)
, M 0

ψ(t) := sup
0<s≤min(1,1/t)

ψ(ts)

ψ(s)
,

M∞
ψ (t) := sup

s≥max(1,1/t)

ψ(ts)

ψ(s)
.

Let ψ(t) = φX(s), where φX is the fundamental
function of X defined by φX(s) = ‖χ(0,s)‖X . Since
χ(0,st) = σt(χ(0,s)), then

MφX(t) = sup
s>0

‖σtχ(0,s)‖X
‖χ(0,s)‖X

≤ ‖σt‖X→X,

and similar inequalities for M 0
φX

(t), ‖σ0
t ‖X→X and

M∞
φX

(t), ‖σ∞t ‖X→X .
We say that a r.i. space X is of fundamental type

if the opposite inequalities (up to constant) hold, i.e.,

‖σt‖X→X ≤ CMφX(t) , ‖σ0
t ‖X→X ≤ CM 0

φX
(t),

‖σ∞t ‖X→X ≤ CM∞
φX

(t), t > 0.

The most known and important r.i. spaces are of
fundamental type (the first example of a r.i. space of
non-fundamental type was constructed by Shimogaki,
1970).

The Boyd indices of a r.i. space are of fundamental
type can be calculated via its fundamental function.
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10. Examples of r.i. spaces.
(a) Lorentz spaces. Let 1 ≤ q < ∞, ψ be an in-

creasing concave function on [0,∞) such that ψ(0) =
0. The Lorentz space Λq(ψ) is defined by

‖x‖Λq(ψ) :=

(∫ ∞
0

x∗(t)qdψ(t)

)1/q

<∞.

Λq(ψ) is a separable r.i. space with the Fatou prop-
erty and φΛq(ψ)(t) = ψ(t)1/q. The dilation indices of
Λq(ψ) can be calculated by

αψ,q = − lim
n→∞

1

n
log2 sup

k∈Z

( ψ(2k)

ψ(2n+k)

)1/q

,

βψ,q = lim
n→∞

1

n
log2 sup

k∈Z

(ψ(2n+k)

ψ(2k)

)1/q

,

α0
ψ,q = − lim

n→∞

1

n
log2 sup

k≤0

(ψ(2k−n)

ψ(2k)

)1/q

,

β0
ψ,q = lim

n→∞

1

n
log2 sup

k≤0

( ψ(2k)

ψ(2k−n)

)1/q

,

α∞ψ,q = − lim
n→∞

1

n
log2 sup

k≥0

( ψ(2k)

ψ(2k+n)

)1/q

,

β∞ψ,q = lim
n→∞

1

n
log2 sup

k≥0

(ψ(2n+k)

ψ(2k)

)1/q

.
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(b) Orlicz spaces. Let N be a convex continu-
ous increasing function on [0,∞), N(0) = 0 and
N(∞) = ∞. The Orlicz space LN is defined by
the Luxemburg norm

‖x‖LN := inf
{
u > 0 :

∫ ∞
0

N(|x(t)|/u) dt ≤ 1
}
<∞.

In particular, Lp = LNp, Np(s) = sp, 1 ≤ p <∞.
Every Orlicz space LN has the Fatou property and

it is separable iff the function N satisfies the ∆2-
condition, i.e., supu>0

N(2u)
N(u) < ∞. The fundamental

function φLN (t) = 1/N−1(1/t), t > 0, where N−1 is
the inverse function for N . The dilation indices of LN
can be calculated by

αN = − lim
n→∞

1

n
log2 sup

k∈Z

N−1(2k−n)

N−1(2k)
,

βN = lim
n→∞

1

n
log2 sup

k∈Z

N−1(2k)

N−1(2k−n)
,

α0
N = − lim

n→∞

1

n
log2 sup

k≥0

N−1(2k)

N−1(2k+n)
,

β0
N = lim

n→∞

1

n
log2 sup

k≥0

N−1(2k+n)

N−1(2k)
,

α∞N = − lim
n→∞

1

n
log2 sup

k≤0

N−1(2k−n)

N−1(2k)
,

β∞N = lim
n→∞

1

n
log2 sup

k≤0

N−1(2k)

N−1(2k−n)
.

13



11. Main results.

Theorem 2. Let X be a r.i. space on (0,∞) of
fundamental type.

(i) If α∞X ≤ β0
X, then the set of approximate

eigenvalues of σ2 in X is the interval [2αX , 2βX ].
(ii) If α∞X > β0

X, then the set of approximate

eigenvalues of σ2 in X is the union [2αX , 2β
0
X ] ∪

[2α
∞
X , 2βX ].

From Theorems 1 and 2 it follows a description of
the set of p ∈ [1,∞] such that `p is symmetrically
finitely represented in a given separable r.i. space of
fundamental type.

Corollary 1. Let X be a separable r.i. space of
fundamental type. Then,

(i) if α∞X ≤ β0
X, then F(X) = [1/βX, 1/αX ];

(ii) if α∞X > β0
X, then F(X) = [1/βX, 1/α

∞
X ] ∪

[1/β0
X, 1/αX ].

Corollary 2. If X and Y are separable r.i. spaces
of fundamental type such that φX(t) � φY (t), t >
0, then F(X) = F(Y ).

In particular, φLp,q(t) = t1/p, for all 1 ≤ q < ∞.
Hence, F(Lp,q) = {p}, 1 ≤ q <∞.
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12. Reduction to the task of identification
of the set of approximate eigenvalues of the
shift operator in a certain Banach sequence
lattice.

Let X be a r.i. space on (0,∞). We associate to
X the Banach sequence lattice EX equipped with the
norm

‖(ak)k∈Z‖EX :=
∥∥∥∑
k∈Z

akχ∆k

∥∥∥
X
,

where ∆k = [2k, 2k+1), k ∈ Z. The sequence of
{χ∆k

}k∈Z is equivalent in X to the unit vector ba-
sis in EX .

Let σ2x(t) = x(t/2), t > 0, τ (ak) = (ak−1), k ∈ Z,
σλ := σ− λI , τλ = τ − λI , λ > 0 (I is the identity).

Proposition 1. For every r.i. space X on (0,∞)
and any λ > 0

(i) σλ is injective in X iff τλ is injective in EX;
(ii) if σλ is closed in X, then τλ is closed in EX;
(iii) if τλ is injective and closed in EX, then σλ

is closed in X.

Corollary 3. Let X be a r.i. space on (0,∞).
Then, λ is an approximate eigenvalue of the dou-
bling operator σ2 in X iff λ is an approximate
eigenvalue of the shift operator τ in EX.
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13. The shift exponents of Banach sequence
lattices.

Let E be a Banach sequence lattice modelled on Z
such that τna := (ak−n), where a = (ak), is bounded
in E for every n ∈ Z. Let Z− = {k ∈ Z : k ≤ 0},
Z+ = {k ∈ Z : k ≥ 0},

τ 0
na := χZ− · τn(aχZ−), τ∞n a := χZ+ · τn(aχZ+).

The shift exponents of E are defined by

γE = − lim
n→∞

1

n
log2 ‖τ−n‖, δE = lim

n→∞

1

n
log2 ‖τn‖,

γ0
E = − lim

n→∞

1

n
log2 ‖τ 0

−n‖, δ0
E = lim

n→∞

1

n
log2 ‖τ 0

n‖,

γ∞E = − lim
n→∞

1

n
log2 ‖τ∞−n‖, δ∞E = lim

n→∞

1

n
log2 ‖τ∞n ‖.

There are direct connections between the norms of
the dilation operators in X and the shift operators in
EX .

Proposition 2. For every r.i. space X on (0,∞)

‖τn‖EX � ‖σ2n‖X , ‖τ 0
n‖EX � ‖σ

0
2n‖X , ‖τ∞n ‖EX � ‖σ

∞
2n‖X.

Hence, αX = γEX , α0
X = γ0

EX
, α∞X = γ∞EX , βX =

δEX , β0
X = δ0

EX
and β∞X = δ∞EX .
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14. A description of approximative eigen-
values of the shift operator in Banach se-
quence lattices.

Denote sk := ‖ek‖E, where ek, k ∈ Z, are elements
of the unit vector basis. We say that E is a lattice of
fundamental type if for all n ∈ N

‖τ−n‖E→E � sup
k∈R

sk
sn+k

, ‖τn‖E→E � sup
k∈R

sk+n

sk
,

‖τ 0
−n‖E→E � sup

k≥0

sk
sn+k

, ‖τ 0
n‖E→E � sup

k≥0

sk+n

sk
,

‖τ∞−n‖E→E � sup
k≤0

sk−n
sk

, ‖τ∞n ‖E→E � sup
k≤0

sk
sk−n

.

Then, the shift exponents of E can be calculated by
using sk, k ∈ Z.

The main technical result is following.

Theorem 3. Suppose a separable Banach sequence
lattice E is of fundamental type.

(i) if γ∞E ≤ δ0
E, then the operator τλ is an iso-

morphic embedding in E iff λ ∈ (0, 2γE)∪(2δE ,∞);
(ii) if γ∞E > δ0

E, then τλ is an isomorphic embed-

ding in E iff λ ∈ (0, 2γE) ∪ (2δ
0
E , 2γ

∞
E ) ∪ (2δE ,∞).

Moreover, if λ ∈ (0, 2γE)∪(2δE ,∞), then Im τλ =

E; if λ ∈ (2δ
0
E , 2γ

∞
E ), then Im τλ is the closed sub-

space of codimension 1 in E consisting of all (ak) ∈
E with ∑

k∈Z

λkak = 0.
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Corollary 4. Let E be a separable Banach se-
quence lattice of fundamental type. Then,

(i) if γ∞E ≤ δ0
E, then the set of approximative

eigenvalues of τ is [2γE , 2δE ];
(ii) if γ∞E > δ0

E, the set of approximative eigen-

values of τ is the union [2γE , 2δ
0
E ] ∪ [2γ

∞
E , 2δE ].

Necessity in Theorem 3.
A key fact: Suppose τλ is an isomorphic mapping

in E. Then, the following implication holds:

λ 6∈ (0, 2γE ] ∪ [2δE ,∞) =⇒ λ ∈ [2δ
0
E , 2γ

∞
E ].

Let n ∈ N, k ∈ Z and xn,k = (I + λ−1τ + · · · +
λ−nτn)2ek. By the assumption, there exists c > 0
such that for all n ∈ N, k ∈ Z

‖τλxn,k‖E ≥ c‖xn,k‖E.

Then the sequence (λk+rn‖ek+rn‖E)∞r=0 is increasing
for some n ∈ N, k ∈ Z.

Proof of Theorem 2.
Since X is a r.i. space of fundamental type and

φX(2k) = ‖χ∆k
‖X = ‖ek‖EX = sk for all k ∈ Z,

by Proposition 2, EX is also of fundamental type. It
remains to combine the results of Corollaries 3 and 4
(for E = EX).
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15. A description of the set F(X) for Lorentz
and Orlicz spaces.

Theorem 4. (i) If α∞ψ,q ≤ β0
ψ,q, then F(Λq(ψ)) =

[1/βψ,q, 1/αψ,q].
(ii) If α∞ψ,q > β0

ψ,q, then F(Λq(ψ)) = [1/βψ,q, 1/α
∞
ψ,q]∪

[1/β0
ψ,q, 1/αψ,q].

An Orlicz space LN is separable iff the function N
satisfies the ∆2-condition iff αN > 0.

Theorem 5. If an Orlicz function N is such that
αN > 0, then

(i) if α∞N ≤ β0
N , then F(LN) = [1/βN , 1/αN ];

(ii) if α∞N > β0
N , then F(LN) = [1/βN , 1/α

∞
N ] ∪

[1/β0
N , 1/αN ].
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16. Concluding examples and remarks.

Example 1. For any 1 < p < r < ∞ we define
the functions ψ1(t) = max

(
t1/p, t1/r

)
and ψ2(t) =

min
(
t1/p, t1/r

)
. Let us find the set F(X) for X =

Λ1(ψi), i = 1, 2.
For ψ1: αψ1 = β0

ψ1
= 1/r, α∞ψ1

= βψ1 = 1/p. Since

α∞ψ1
> β0

ψ1
, we get F(Λ1(ψ1)) = {p, r}.

For ψ2: αψ2 = α∞ψ2
= 1/r, βψ2 = β0

ψ2
= 1/p. Since

α∞ψ2
< β0

ψ2
, we get F(Λ1(ψ2)) = [p, r].

Example 2. Let 1 ≤ p < r ≤ ∞, X = Lp(0,∞) ∩
Lr(0,∞), and Y = Lp(0,∞) + Lr(0,∞), with usual
norms:

‖f‖X := max(‖f‖Lp, ‖f‖Lr),
‖f‖Y := inf{‖g‖Lp+‖h‖Lr : f = g+h , g ∈ Lp , h ∈ Lr}.
Then, X and Y are Orlicz spaces, X = LN1 and
Y = LN2, where N1(t) = max

(
tp, tr

)
and N2(t) =

min
(
tp, tr

)
. By Theorem 5,

F(X) = {p, r} and F(Y ) = [p, r]

(this result has been proved earlier by Schep by using
different methods).
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Remark 1. For any four numbers a, b, c, and d with

0 < a ≤ min(b, c) ≤ max(b, c) ≤ d < 1

there exists a concave on (0,∞) function ψ, for which
αψ = a, α∞ψ = b, β0

ψ = c, and βψ = d. Then, by
Theorem 4,

F(Λ1(ψ)) = [1/d, 1/a] if b ≤ c,

F(Λ1(ψ)) = [1/d, 1/b] ∪ [1/c, 1/a] if b > c.

Remark 2. Let X be an arbitrary separable r.i. space
X (in general, of non-fundamental type). Denote by
µφX , νφX , µ∞φX and ν0

φX
the indices corresponding to

the dilation functions MφX(t), M∞
φX

(t) and M 0
φX

(t).
Then, the following result holds:

If µ∞φX ≤ ν0
φX

(resp. µ∞φX > ν0
φX

), then the interval

[2µφX , 2νφX ] (resp. the union [2µφX , 2
ν0
φX ]∪[2

µ∞φX , 2νφX ])
consists of approximate eigenvalues of the operator σ2

in X . Therefore, in the first case

F(X) ⊃ [1/νφX , 1/µφX ],

in the second

F(X) ⊃ [1/νφX , 1/µ
∞
φX

] ∪ [1/ν0
φX
, 1/µφX ].

Problem 1. To characterize the set of r such that
`r is lattice finitely represented in a given Banach
(function) lattice X. In particular, to find the set of
r such that `r is lattice finitely represented in Lp,q,
1 < p <∞, 1 ≤ q <∞.
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