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ON COFINITARY GROUPS
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Abstract
A cofinitary group is a subgroup of the symmetric group on the natural numbers in which all
non-identity members have finitely many fixed points. In this paper we describe some questions
about these groups that interest us as well as questions on related cardinal invariants and
isomorphism types.
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Introduction

This paper is a review of some talks we have given on various occasions. We hope
people reading this will become more interested in these questions and help with their
resolution. We begin by defining the main notions of this paper.

Definition 1.

(i) We write Sym(N) for the symmetric group of the natural numbers; the group
consisting of all bijections from the natural numbers to the natural numbers, with the
operation being composition.

(ii) An element g € Sym(N) is cofinitary if and only if it either has finitely many
fixed points or is the identity.

(iii) A group G < Sym(N) is cofinitary or a cofinitary group if and only if all of its
elements are cofinitary.

(iv) A group G < Sym(N) is a mazimal cofinitary group (mcg) if and only if it is
a cofinitary group and is not properly contained in another cofinitary group.

One of the sources of interest in these groups is their connection with almost disjoint
families. If we have a collection A of infinite objects, we call elements x,y € A almost
disjoint if and only if x Ny is finite. We call the family almost disjoint if and only if all
distinct x,y € A are almost disjoint. The family is maximal almost disjoint if and only
if it is almost disjoint and not properly contained in another almost disjoint family.

If we apply the definitions in the last paragraph with A4 = P(N), then we get the
usual notion of (maximal) almost disjoint family (see, e.g., Kunen [1]).

Next we apply these definitions with A = Sym(N). Here we use the convention that
f € Sym(N) is identified with its graph, graph(f), which is a subset of the countable
set N x N. With this we get the notion of a (mazimal) almost disjoint family of permu-
tations. Requiring the group structure on top of this, one obtains the notion of maximal
cofinitary group as in Definition 1. We see this by considering the equivalences:

(fTlog)n)=n & g(n)=f(n) <« (n,gn)egnf,

where f,g € Sym(N). From this equivalence you see that f~! o g has finitely many
fixed points if and only if g N f is finite.

Note that the existence of maximal cofinitary groups follows directly from Zorn’s
Lemma: the union of an increasing sequence of cofinitary groups is a cofinitary group
(being cofinitary is a local property).

Some other basic results on these groups.
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Theorem 1 (Adeleke [2], Truss [3]). A countable cofinitary group is not mazimal.
This theorem can be shown using the ideas from Appendix A2 by diagonalization.
Theorem 2 (P. Neumann). There ezists a cofinitary group of size |R|.

P. Neumann showed this by studying cofinitary groups with all their orbits finite
(see, Cameron [4] for the proof). The following result shows that these two theorems
do not determine the cardinality of maximal cofinitary groups in the context of the
negation of the continuum hypothesis.

Theorem 3 (Zhang [5]). For all x such that Xg < k < 2% = X there exists a c.c.c.
forcing G such that in M we have that 2 = \ and there exists a mazimal cofinitary
group of size K.

This reasoning so far leads to two main motivations for work on cofinitary groups:

Motivation 1. How similar/different are (maximal) cofinitary groups from (maxi-
mal) almost disjoint families?

and
Motivation 2. What algebraic properties do (maximal) cofinitary groups have?

In the remainder of this paper we will work out some of the concrete questions this
leads to. In Section 1 we look at the descriptive complexity: we explain and describe
what is known about the possible complexities of maximal cofinitary groups. In Section 2
we consider the related cardinal invariants: we define a couple of cardinal invariants
related to these families and describe some questions about them. In Section 3 we look
at isomorphism types: here we explain the very algebraic question of what the possible
isomorphism types of maximal cofinitary groups are. And finally in Section 4 we gather
some remaining questions that did not fit in the earlier sections: questions on orbit
structures and generating sets.

1. Concrete example

We observed above that settling the existence of maximal cofinitary groups is easy,
Zorn’s Lemma provides a maximal cofinitary group (in fact any cofinitary group can
be extended to a maximal cofinitary group with the same reasoning). An object so
constructed is one that is usually extremely non-constructive and the result therefore
usually hard to describe. The following are some well-known examples of this phe-
nomenon:

e (Suslin [6]) No well-ordering of an uncountable set of reals is analytic.

e (Sierpinski) No free ultrafilter is measurable or has the property of Baire.

e (Talagrand [7]) The intersection of countably many nonmeasurable filters is non-
measurable.

e (Mathias [8]) There is no analytic maximal almost disjoint family.

The last of these items determines the least possible complexity of maximal almost
disjoint families when combined with the following theorem.

Theorem 4 (Miller [9]). The aziom of constructibility implies the existence of
a coanalytic mazximal almost disjoint family.

These ideas and results together with Motivation 1 immediately give rise to the
following question.
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Question 1. What is the least possible complexity of a maximal cofinitary group?

The result analogous to Miller’s result has been obtained for maximal cofinitary
groups. This was done in two steps.

Theorem 5 (Gao and Zhang [10]). The aziom of constructibility implies the
ezistence of a mazximal cofinitary group with a coanalytic generating set.

They used the method developed by Miller and an interesting and ingenious coding:
the key to applying this method is in proving a lemma of the following general form.

Lemma 1 (Form of Key Lemma in Miller’s method). Given

e a countable family of the right type A, and

e a countable object f.

We can construct a new element g such that e AU g is a family of the right type,

o f <p g uniformly, and

o if we iterate this construction (with some bookkeeping) Ny many times, we get
a mazimal family of the right type (for this item note that we are in the context of the
aziom of constructibility).

Part of this requires being able to construct a maximal family of the right type
under the continuum hypothesis. This is done here by the method of good extensions
as described in [10] and here summarized in Appendix A.

The family is then constructed by iterating the Key Lemma for w; many steps at ev-
ery step encoding the construction performed so far into the next element. By decoding
this information, we can then from an element decide if it belongs to the family.

Doing this for maximal cofinitary groups, you do the encoding into the genera-
tors you construct. In [10], we performed this construction with a very nice encoding,
obtaining the above result.

The difficulty with cofinitary groups is that adding a generator (which you construct)
also forces lots of other elements to be added. These you have less control over; however,
these would also need to encode the construction up to that point.

It can be shown that the Key Lemma fails for cofinitary groups (see Kastermans
[11]); that is, there does not exist a way to find ¢ such that not only it encodes the
construction up to this point, but also other new elements do. This means that Miller’s
method as it stands does not work. However, the coding requirement can be relaxed,
to have non-uniform encoding. Then by using a simple coding, we can perform the
construction and obtain the following theorem.

Theorem 6 (Kastermans [11]). The aziom of constructibility implies the exis-
tence of a coanalytic mazimal cofinitary group.

From the ideas that made us use Motivation 1 we believe that this is the best possible
result in this direction. That is, we believe that the result analogous to Mathias result
mentioned above should hold for mcg. There are some weak results in this direction,
but really the following question (also on Veli¢kovié¢ problem list) is very open.

Question 2. Can there exist Borel maximal cofinitary groups?
This is the right question since Blass (see [10]) has observed that any analytic

maximal cofinitary group is already Borel.

2. Cardinal invariants

In this section we describe a question on cardinal invariants related to maximal
almost disjoint families. For a good general overview of results and ideas around cardinal



162 B. KASTERMANS, Y. ZHANG

invariants see [12]. Here we focus on cardinal invariants related to different types of
maximal almost disjoint families. These invariants are usually written as a with some
subscript. We give the definitions next.

Definition 2.

(i) a is the least cardinality of a maximal almost disjoint family.

(ii) a, is the least cardinality of a maximal almost disjoint family of permutations.
(iii) a, is the least cardinality of a maximal cofinitary group.

We think the most interesting question about these cardinal invariants is the
following.

Question 3. [14] What is the relationship between a, and a,?

Other than the obvious (they can be equal), nothing is known. We mention some
results related to this that are known.

Related to this Zhang in [15, 16] has shown that it is consistent that there exists
a maximal cofinitary group G contained in a maximal almost disjoint family of permu-
tations P where |G| < |P|, but that in the model for Theorem 5 a, and a, do not
differ.

The consistency of a < a, was established in [17] and in [18], and the consistency
of a < a, in [19]. There is an obvious question to be answered.

Question 4. Can we prove the consistency of a,, a5z < a?

J. Brendle once made a conjecture that it should be provable from ZFC that
a<a,, d4.

A different question on these invariants is whether they can be singular. Brendle
proves in [20] using the method of template forcing that a can be singular. We believe,
but have not yet worked through the details, that the same result can be obtained for
a, by adjusting the method to work with groups.

3. Isomorphism types

This is the most immediate question following from Motivation 2. Say two groups
have the same isomorphism type if and only if they are isomorphic. Write T'(G) for the
isomorphism type of the group G. Then the question is the following.

Question 5. What is the collection {T'(G) | G is a maximal cofinitary group}?

One restriction we know follows from the fact that a cofinitary group with all orbits
finite is not maximal (this follows from the fact that a maximal cofinitary group cannot
have infinitely many orbits). From this we see that any maximal cofinitary group has
an infinite orbit, which (as Andreas Blass observed) quickly implies that a maximal
cofinitary group cannot be Abelian. Suppose G is an Abelian cofinitary group with
an infinite orbit O, k € O, and g, € G, n € N such that O = {g,(k) | n € N}. Then
g € G has g | O completely determined by where it maps k, since if [ € O, then
I = gn(k) for some n, therefore g(k) = g(gn(k)) = gn(g(k)). From this you see that
if g, h € G have g(k) = h(k), then g [ O = h | O which (since G is cofinitary) means
g = h. That is, we have shown G = {g, | n € N}. Then G is not maximal since no
maximal cofinitary group is countable.

This, together with the obvious restrictions on cardinality, is the only restriction
known.

Using the method of good extensions, the resulting groups have a lot of freeness in
them. At every step in the construction, all the newly constructed elements are free
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over the earlier part of the group. In the notation of the appendix (starting on page
163) we have that G,11 = G, * H for some group H.

On the positive side we know that Martin’s axiom implies that there exists a locally
finite maximal cofinitary group (locally finite means that any finite subset generates
a finite subgroup). In this proof we do not extend finite partial functions, but finite
group actions. The locally finite isomorphism type is not determined a priori, but is
determined, mostly outside of our control, during the construction (see [13]).

4. Miscellany

Following from Motivation 2, we are also interested in the orbit structure of maximal
cofinitary groups. Since a cofinitary group is a subset of Sym(N), any such group has
a natural action on the natural numbers: (f,n) — f(n). The question then becomes
the following.

Question 6. What are the possible orbit structures of maximal cofinitary groups?

Above we already mentioned part of the answer: a maximal cofinitary group cannot
have infinitely many orbits. We have shown though that from Martin’s Axiom a maximal
cofinitary group can be constructed with any finite number of finite orbits and any non-
zero finite number of infinite orbits. The orbit structure of the diagonal actions has not
yet been determined (here by a diagonal action we mean an action on N* for some k
defined by (f, (n1,...,nk)) — (fny,..., fng).

Note that this relates to the question of isomorphism types, and the descriptive
complexity of maximal cofinitary groups, since if the answer is that all diagonal actions
have only finitely many orbits, then these groups are oligomorphic. This in turn means
that if they are closed they are the automorphism group of a Rg-categorical structure.

Above we mentioned the result of Gao and Zhang that under the axiom of con-
structibility there exists a maximal cofinitary group with a coanalytic generating set,
and our result that then there exists a coanalytic maximal cofinitary group. We do not
know that these results are in fact different results; it is conceivable that every max-
imal cofinitary group with a coanalytic generating set is already coanalytic. The only
approximation to showing that they are different is our positive answer to the follow-
ing question by Verhik: does there exist a computable set of generators that generate
a cofinitary group whose isomorphism type is not computable? See [13] for this result.
This is still far removed from the question about coanalytic generating sets and groups.

A Construction from CH and MA

In this section we describe some of the combinatorics involved in establishing the
results mentioned above; this is just to give some of the flavor. We first establish some
notation.

If G <H and g € H, we write (G, g) for the subgroup of H generated by the set
{G,g}. F(x) denotes the free group on the generator x. If G and H are groups, we
write G x H for their free product. We write W¢ for G * F(x), which can be identified
with the set of reduced words in = and elements of G, that is, expressions of the form

k k k
gor g1t -2 gpg,

where g; € G for i <1+1, g; #id for 1 <i <[, and k; € Z\ {0}.
p: A — B is the notation for a partial function from A to B (as usual, p: A — B
is the notation for a total function).
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Al. Really easy from CH. First observe that with CH we do not need to
do a complicated construction. Enumerate Sym(N) by (fa41 | @ € wi), and do the
following inductive construction of a sequence of cofinitary groups (G, | @ € w1 U{w1}):

o Gy = {id},

(Gas fat1) it (G, fas1) is cofinitary;
Ga otherwise.
e Gy= |J Gq,if X is a limit ordinal.

a<
Then the group G = Gy, is a maximal cofinitary group: (1) it is cofinitary since

it is the union of an increasing sequence of cofinitary groups. (2) it is maximal: suppose,
towards a contradiction, that there is a cofinitary group H of which G is a proper
subgroup. Choose g € H \ G, note that g = f,11 for some «a € w;. Note that (G, g)
is cofinitary. From this we see that (G, g) = (G4, fat+1) is also cofinitary. But then by
the inductive construction f,41 € Got+1 < G which is a contradiction with g € H \ G.

This construction is of very little use in answering questions like the ones in this
paper since the group is really out of our control. CH gives us an enumeration, and this
arbitrary enumeration determines which elements are in and out. The same method
clearly works using AC, then, however, it is easier to use Zorn’s Lemma.

This is why in the next paragraph we describe a more complicated construction.
This construction and the ideas therein can be tweaked to be useful to many of the
above (that is, many of the obtained results above use these ideas).

° GaJrl -

A2. Good extensions. The above easy construction from CH clearly does not
help us to prove a lemma of the form of Lemma 1. The enumeration that is axiomatically
obtained from CH determines which elements are in the group. In terms of definability
of the resulting group this is as bad as constructing it using AC.

Gao and Zhang [10] describe a more concrete construction fitting with Lemma 1.
Given a countable cofinitary group G and an element f € Sym(N), we want to construct
an element g € Sym(N) such that (G, g) is cofinitary, and (G, g, f) is either equal to
(G,g) or is not cofinitary. The first case applies if f € G, so suppose that is not the
case. Then it suffices to construct the element ¢ such that (G, g) is cofinitary and fNg
is infinite but not equal to g.

Definition 3. Let p,q: N — N be finite partial injective functions, and w € Wg.
Then ¢ is a good extension of p with respect to w if and only if p C ¢, and for every

n € N such that w(q)(n) = n there exist [ € N, and u, z € W such that
1

e w =u"zu without cancellation,
e 2(p)(I) =1, and
e u(q)(n) =1.

Note that if w(p)(n) =mn we can choose z = w and u = id.
With these definitions the following lemmas can be proved (see [10]).

Lemma 2. Let G < Sym(N), p: N —= N finite and injective, f € Sym(N)\ G with
(G, f) cofinitary, and w € W¢ . Then

e (Domain Extension Lemma) For each n € N\ dom(p), for all but finitely many
k € N, the extension pU{(n,k)} is a good extension of p with respect to w.

e (Range Eztension Lemma) For each k € N\ ran(p), for all but finitely many
n € N, the extension pU{(n,k)} is a good extension of p with respect to w.

e (Hitting f Lemma) For all but finitely many n € N, the extension pU{(n, f(n))}
is a good extension of p with respect to w.

With these lemmas we can do the construction by iterating the following lemma.
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Lemma 3. Let G < Sym(N) be countable, f € Sym(N)\ G such that (G, f)
cofinitary. Then we can construct a g € Sym(N) such that (G, g) is cofinitary, (G, g) =
> G« F(x) and fNg is infinite.

We enumerate Wg as E = (w,, | n € N). This lemma is then proved by iterating the
Domain/Range and Hitting f lemmas with enough bookkeeping to ensure the result
is a permutation and Hitting f is used infinitely often, and taking good extensions
with reference to larger initial segments of the enumeration E. Since Hitting f is used
infinitely often, the resulting ¢ satisfying f Mg is infinite. Because of this either g = f
or (G,g, f) is not cofinitary (since f~'g has infinitely many fixed points, but is not the
identity). We see that (G,g) = G % F(x) since for every w € W¢ from some point we
are only taking good extensions with reference to it and all of its subwords. Then all
fixed points that will appear in w(g) are already present in root.

We can use these same ideas on constructions from MA. Given a group G we define
the partial order Pg:

e (p,F) €Pq if p: N— N finite, and G C W finite.

o (p1, F1) < {(po, Fp) if and only if py C p1, Fy C F1, and p; is a good extension of
po with reference to all w € Fj.

This partial order is c.c.c. since all elements with the same first element are com-
patible. The Domain, Range, and Hitting f Lemmas give the denseness of the sets
{(p.F) | n € dom(p)}, {(p.F) | n € ran(p)}, and {(p, F | |pN f| > n}. Finally the
obvious denseness of {(p, F') | w € F} for w € W replaces the initial segments of the
enumeration above.

The second author’s research is partially supported by NSFC grant No. 10971237.

Pesome

B. Kacmepmane, H. Yowcan. K BOIpocy 0 KOGUHHTAPHBIX TPYIIIAX.

Kodwnnnrapruas rpymnma npeacrasisier coboit TOATPYIITy CHMMETPUYIECKO IPYTIIIBI HA MHO-
JKeCTBE HATYPAIbHBIX YHCEJ, B KOTOPO BCE HEeIMHWIHBIE 9JIEMEHTHl UMEIOT OECKOHETHO MHO-
I'0 HEIOJBYZKHBIX TO4eK. B manHOi pabore Mbl paccMaTpuBaeM HEKOTOPbIE HHTEPECYIOIIHe HAC
BOIIPOCHI, KACAIOMINECST TAKUX IPYIII, & TAKYKE CBI3AHHBIX C HUMH KapIMHAJIHHBIX HTHBAPUAHTOB
¥ TUIOB W30MOpdu3Ma.

KiroueBble ciioBa: KOQUHUTAPHBIE TPYIIHI, KapAMHAIBHBIE MHBAPUAHTHI, TUITHI U30MOD-
dusma.
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