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UDK 510.225 ON COFINITARY GROUPSB. Kastermans, Y. ZhangAbstra
tA 
o�nitary group is a subgroup of the symmetri
 group on the natural numbers in whi
h allnon-identity members have �nitely many �xed points. In this paper we des
ribe some questionsabout these groups that interest us as well as questions on related 
ardinal invariants andisomorphism types.Key words: 
o�nitary groups, 
ardinal invariants, isomorphism types.Introdu
tionThis paper is a review of some talks we have given on various o

asions. We hopepeople reading this will be
ome more interested in these questions and help with theirresolution. We begin by de�ning the main notions of this paper.De�nition 1.(i) We write Sym(N) for the symmetri
 group of the natural numbers; the group
onsisting of all bije
tions from the natural numbers to the natural numbers, with theoperation being 
omposition.(ii) An element g ∈ Sym(N) is 
o�nitary if and only if it either has �nitely many�xed points or is the identity.(iii) A group G ≤ Sym(N) is 
o�nitary or a 
o�nitary group if and only if all of itselements are 
o�nitary.(iv) A group G ≤ Sym(N) is a maximal 
o�nitary group (m
g) if and only if it isa 
o�nitary group and is not properly 
ontained in another 
o�nitary group.One of the sour
es of interest in these groups is their 
onne
tion with almost disjointfamilies. If we have a 
olle
tion A of in�nite obje
ts, we 
all elements x, y ∈ A almostdisjoint if and only if x∩ y is �nite. We 
all the family almost disjoint if and only if alldistin
t x, y ∈ A are almost disjoint. The family is maximal almost disjoint if and onlyif it is almost disjoint and not properly 
ontained in another almost disjoint family.If we apply the de�nitions in the last paragraph with A = P(N) , then we get theusual notion of (maximal) almost disjoint family (see, e.g., Kunen [1℄).Next we apply these de�nitions with A = Sym(N) . Here we use the 
onvention that
f ∈ Sym(N) is identi�ed with its graph, graph(f) , whi
h is a subset of the 
ountableset N×N . With this we get the notion of a (maximal) almost disjoint family of permu-tations. Requiring the group stru
ture on top of this, one obtains the notion of maximal
o�nitary group as in De�nition 1. We see this by 
onsidering the equivalen
es:

(f−1 ◦ g)(n) = n ⇔ g(n) = f(n) ⇔ (n, g(n)) ∈ g ∩ f,where f, g ∈ Sym(N) . From this equivalen
e you see that f−1 ◦ g has �nitely many�xed points if and only if g ∩ f is �nite.Note that the existen
e of maximal 
o�nitary groups follows dire
tly from Zorn'sLemma: the union of an in
reasing sequen
e of 
o�nitary groups is a 
o�nitary group(being 
o�nitary is a lo
al property).Some other basi
 results on these groups.



160 B. KASTERMANS, Y. ZHANGTheorem 1 (Adeleke [2℄, Truss [3℄). A 
ountable 
o�nitary group is not maximal.This theorem 
an be shown using the ideas from Appendix A2 by diagonalization.Theorem 2 (P. Neumann). There exists a 
o�nitary group of size |R| .P. Neumann showed this by studying 
o�nitary groups with all their orbits �nite(see, Cameron [4℄ for the proof). The following result shows that these two theoremsdo not determine the 
ardinality of maximal 
o�nitary groups in the 
ontext of thenegation of the 
ontinuum hypothesis.Theorem 3 (Zhang [5℄). For all κ su
h that ℵ0 < κ ≤ 2ω = λ there exists a 
.
.
.for
ing G su
h that in MG we have that 2ω = λ and there exists a maximal 
o�nitarygroup of size κ .This reasoning so far leads to two main motivations for work on 
o�nitary groups:Motivation 1. How similar/di�erent are (maximal) 
o�nitary groups from (maxi-mal) almost disjoint families?andMotivation 2. What algebrai
 properties do (maximal) 
o�nitary groups have?In the remainder of this paper we will work out some of the 
on
rete questions thisleads to. In Se
tion 1 we look at the des
riptive 
omplexity: we explain and des
ribewhat is known about the possible 
omplexities of maximal 
o�nitary groups. In Se
tion 2we 
onsider the related 
ardinal invariants: we de�ne a 
ouple of 
ardinal invariantsrelated to these families and des
ribe some questions about them. In Se
tion 3 we lookat isomorphism types: here we explain the very algebrai
 question of what the possibleisomorphism types of maximal 
o�nitary groups are. And �nally in Se
tion 4 we gathersome remaining questions that did not �t in the earlier se
tions: questions on orbitstru
tures and generating sets.1. Con
rete exampleWe observed above that settling the existen
e of maximal 
o�nitary groups is easy,Zorn's Lemma provides a maximal 
o�nitary group (in fa
t any 
o�nitary group 
anbe extended to a maximal 
o�nitary group with the same reasoning). An obje
t so
onstru
ted is one that is usually extremely non-
onstru
tive and the result thereforeusually hard to des
ribe. The following are some well-known examples of this phe-nomenon:
• (Suslin [6℄) No well-ordering of an un
ountable set of reals is analyti
.
• (Sierpinski) No free ultra�lter is measurable or has the property of Baire.
• (Talagrand [7℄) The interse
tion of 
ountably many nonmeasurable �lters is non-measurable.
• (Mathias [8℄) There is no analyti
 maximal almost disjoint family.The last of these items determines the least possible 
omplexity of maximal almostdisjoint families when 
ombined with the following theorem.Theorem 4 (Miller [9℄). The axiom of 
onstru
tibility implies the existen
e ofa 
oanalyti
 maximal almost disjoint family.These ideas and results together with Motivation 1 immediately give rise to thefollowing question.



ON COFINITARY GROUPS 161Question 1. What is the least possible 
omplexity of a maximal 
o�nitary group?The result analogous to Miller's result has been obtained for maximal 
o�nitarygroups. This was done in two steps.Theorem 5 (Gao and Zhang [10℄). The axiom of 
onstru
tibility implies theexisten
e of a maximal 
o�nitary group with a 
oanalyti
 generating set.They used the method developed by Miller and an interesting and ingenious 
oding:the key to applying this method is in proving a lemma of the following general form.Lemma 1 (Form of Key Lemma in Miller's method). Given
• a 
ountable family of the right type A , and
• a 
ountable obje
t f .We 
an 
onstru
t a new element g su
h that • A ∪ g is a family of the right type,
• f ≤T g uniformly, and
• if we iterate this 
onstru
tion (with some bookkeeping) ℵ1 many times, we geta maximal family of the right type (for this item note that we are in the 
ontext of theaxiom of 
onstru
tibility).Part of this requires being able to 
onstru
t a maximal family of the right typeunder the 
ontinuum hypothesis. This is done here by the method of good extensionsas des
ribed in [10℄ and here summarized in Appendix A.The family is then 
onstru
ted by iterating the Key Lemma for ω1 many steps at ev-ery step en
oding the 
onstru
tion performed so far into the next element. By de
odingthis information, we 
an then from an element de
ide if it belongs to the family.Doing this for maximal 
o�nitary groups, you do the en
oding into the genera-tors you 
onstru
t. In [10℄, we performed this 
onstru
tion with a very ni
e en
oding,obtaining the above result.The di�
ulty with 
o�nitary groups is that adding a generator (whi
h you 
onstru
t)also for
es lots of other elements to be added. These you have less 
ontrol over; however,these would also need to en
ode the 
onstru
tion up to that point.It 
an be shown that the Key Lemma fails for 
o�nitary groups (see Kastermans[11℄); that is, there does not exist a way to �nd g su
h that not only it en
odes the
onstru
tion up to this point, but also other new elements do. This means that Miller'smethod as it stands does not work. However, the 
oding requirement 
an be relaxed,to have non-uniform en
oding. Then by using a simple 
oding, we 
an perform the
onstru
tion and obtain the following theorem.Theorem 6 (Kastermans [11℄). The axiom of 
onstru
tibility implies the exis-ten
e of a 
oanalyti
 maximal 
o�nitary group.From the ideas that made us use Motivation 1 we believe that this is the best possibleresult in this dire
tion. That is, we believe that the result analogous to Mathias resultmentioned above should hold for m
g. There are some weak results in this dire
tion,but really the following question (also on Veli�
kovi�
 problem list) is very open.Question 2. Can there exist Borel maximal 
o�nitary groups?This is the right question sin
e Blass (see [10℄) has observed that any analyti
maximal 
o�nitary group is already Borel.2. Cardinal invariantsIn this se
tion we des
ribe a question on 
ardinal invariants related to maximalalmost disjoint families. For a good general overview of results and ideas around 
ardinal



162 B. KASTERMANS, Y. ZHANGinvariants see [12℄. Here we fo
us on 
ardinal invariants related to di�erent types ofmaximal almost disjoint families. These invariants are usually written as a with somesubs
ript. We give the de�nitions next.De�nition 2.(i) a is the least 
ardinality of a maximal almost disjoint family.(ii) ap is the least 
ardinality of a maximal almost disjoint family of permutations.(iii) ag is the least 
ardinality of a maximal 
o�nitary group.We think the most interesting question about these 
ardinal invariants is thefollowing.Question 3. [14℄ What is the relationship between ap and ag ?Other than the obvious (they 
an be equal), nothing is known. We mention someresults related to this that are known.Related to this Zhang in [15, 16℄ has shown that it is 
onsistent that there existsa maximal 
o�nitary group G 
ontained in a maximal almost disjoint family of permu-tations P where |G| < |P | , but that in the model for Theorem 5 ap and ag do notdi�er.The 
onsisten
y of a < ag was established in [17℄ and in [18℄, and the 
onsisten
yof a < ap in [19℄. There is an obvious question to be answered.Question 4. Can we prove the 
onsisten
y of ap , ag < a?J. Brendle on
e made a 
onje
ture that it should be provable from ZFC that
a ≤ ap , ag .A di�erent question on these invariants is whether they 
an be singular. Brendleproves in [20℄ using the method of template for
ing that a 
an be singular. We believe,but have not yet worked through the details, that the same result 
an be obtained for
ag by adjusting the method to work with groups.3. Isomorphism typesThis is the most immediate question following from Motivation 2. Say two groupshave the same isomorphism type if and only if they are isomorphi
. Write T (G) for theisomorphism type of the group G . Then the question is the following.Question 5. What is the 
olle
tion {T (G) | G is a maximal 
o�nitary group}?One restri
tion we know follows from the fa
t that a 
o�nitary group with all orbits�nite is not maximal (this follows from the fa
t that a maximal 
o�nitary group 
annothave in�nitely many orbits). From this we see that any maximal 
o�nitary group hasan in�nite orbit, whi
h (as Andreas Blass observed) qui
kly implies that a maximal
o�nitary group 
annot be Abelian. Suppose G is an Abelian 
o�nitary group withan in�nite orbit O , k ∈ O , and gn ∈ G , n ∈ N su
h that O = {gn(k) | n ∈ N} . Then
g ∈ G has g ↾ O 
ompletely determined by where it maps k , sin
e if l ∈ O , then
l = gn(k) for some n , therefore g(k) = g(gn(k)) = gn(g(k)) . From this you see thatif g, h ∈ G have g(k) = h(k) , then g ↾ O = h ↾ O whi
h (sin
e G is 
o�nitary) means
g = h . That is, we have shown G = {gn | n ∈ N} . Then G is not maximal sin
e nomaximal 
o�nitary group is 
ountable.This, together with the obvious restri
tions on 
ardinality, is the only restri
tionknown.Using the method of good extensions, the resulting groups have a lot of freeness inthem. At every step in the 
onstru
tion, all the newly 
onstru
ted elements are free



ON COFINITARY GROUPS 163over the earlier part of the group. In the notation of the appendix (starting on page163) we have that Gα+1
∼= Gα ∗ H for some group H .On the positive side we know that Martin's axiom implies that there exists a lo
ally�nite maximal 
o�nitary group (lo
ally �nite means that any �nite subset generatesa �nite subgroup). In this proof we do not extend �nite partial fun
tions, but �nitegroup a
tions. The lo
ally �nite isomorphism type is not determined a priori, but isdetermined, mostly outside of our 
ontrol, during the 
onstru
tion (see [13℄).4. Mis
ellanyFollowing from Motivation 2, we are also interested in the orbit stru
ture of maximal
o�nitary groups. Sin
e a 
o�nitary group is a subset of Sym(N) , any su
h group hasa natural a
tion on the natural numbers: (f, n) 7→ f(n) . The question then be
omesthe following.Question 6. What are the possible orbit stru
tures of maximal 
o�nitary groups?Above we already mentioned part of the answer: a maximal 
o�nitary group 
annothave in�nitely many orbits. We have shown though that fromMartin's Axiom a maximal
o�nitary group 
an be 
onstru
ted with any �nite number of �nite orbits and any non-zero �nite number of in�nite orbits. The orbit stru
ture of the diagonal a
tions has notyet been determined (here by a diagonal a
tion we mean an a
tion on Nk for some kde�ned by (f, (n1, . . . , nk)) 7→ (fn1, . . . , fnk) .Note that this relates to the question of isomorphism types, and the des
riptive
omplexity of maximal 
o�nitary groups, sin
e if the answer is that all diagonal a
tionshave only �nitely many orbits, then these groups are oligomorphi
. This in turn meansthat if they are 
losed they are the automorphism group of a ℵ0 -
ategori
al stru
ture.Above we mentioned the result of Gao and Zhang that under the axiom of 
on-stru
tibility there exists a maximal 
o�nitary group with a 
oanalyti
 generating set,and our result that then there exists a 
oanalyti
 maximal 
o�nitary group. We do notknow that these results are in fa
t di�erent results; it is 
on
eivable that every max-imal 
o�nitary group with a 
oanalyti
 generating set is already 
oanalyti
. The onlyapproximation to showing that they are di�erent is our positive answer to the follow-ing question by Verhik: does there exist a 
omputable set of generators that generatea 
o�nitary group whose isomorphism type is not 
omputable? See [13℄ for this result.This is still far removed from the question about 
oanalyti
 generating sets and groups.A Constru
tion from CH and MAIn this se
tion we des
ribe some of the 
ombinatori
s involved in establishing theresults mentioned above; this is just to give some of the �avor. We �rst establish somenotation.If G ≤ H and g ∈ H , we write 〈G, g〉 for the subgroup of H generated by the set

{G, g} . F (x) denotes the free group on the generator x . If G and H are groups, wewrite G ∗H for their free produ
t. We write WG for G ∗F (x) , whi
h 
an be identi�edwith the set of redu
ed words in x and elements of G , that is, expressions of the form
g0x

k0g1x
k1 · · ·xklgl+1,where gi ∈ G for i ≤ l + 1 , gi 6= id for 1 ≤ i ≤ l , and ki ∈ Z \ {0} .

p : A ⇀ B is the notation for a partial fun
tion from A to B (as usual, p : A → Bis the notation for a total fun
tion).



164 B. KASTERMANS, Y. ZHANGA1. Really easy from CH . First observe that with CH we do not need todo a 
ompli
ated 
onstru
tion. Enumerate Sym(N) by 〈fα+1 | α ∈ ω1〉 , and do thefollowing indu
tive 
onstru
tion of a sequen
e of 
o�nitary groups 〈Gα | α ∈ ω1∪{ω1}〉 :
• G0 = {id} ,
• Gα+1 =

{

〈Gα, fα+1〉 if 〈Gα, fα+1〉 is 
o�nitary;
Gα otherwise.

• Gλ =
⋃

α<λ

Gα , if λ is a limit ordinal.Then the group G = Gω1
is a maximal 
o�nitary group: (1) it is 
o�nitary sin
eit is the union of an in
reasing sequen
e of 
o�nitary groups. (2) it is maximal: suppose,towards a 
ontradi
tion, that there is a 
o�nitary group H of whi
h G is a propersubgroup. Choose g ∈ H \ G , note that g = fα+1 for some α ∈ ω1 . Note that 〈G, g〉is 
o�nitary. From this we see that 〈Gα, g〉 = 〈Gα, fα+1〉 is also 
o�nitary. But then bythe indu
tive 
onstru
tion fα+1 ∈ Gα+1 ≤ G whi
h is a 
ontradi
tion with g ∈ H \G .This 
onstru
tion is of very little use in answering questions like the ones in thispaper sin
e the group is really out of our 
ontrol. CH gives us an enumeration, and thisarbitrary enumeration determines whi
h elements are in and out. The same method
learly works using AC , then, however, it is easier to use Zorn's Lemma.This is why in the next paragraph we des
ribe a more 
ompli
ated 
onstru
tion.This 
onstru
tion and the ideas therein 
an be tweaked to be useful to many of theabove (that is, many of the obtained results above use these ideas).A2. Good extensions. The above easy 
onstru
tion from CH 
learly does nothelp us to prove a lemma of the form of Lemma 1. The enumeration that is axiomati
allyobtained from CH determines whi
h elements are in the group. In terms of de�nabilityof the resulting group this is as bad as 
onstru
ting it using AC .Gao and Zhang [10℄ des
ribe a more 
on
rete 
onstru
tion �tting with Lemma 1.Given a 
ountable 
o�nitary group G and an element f ∈ Sym(N) , we want to 
onstru
tan element g ∈ Sym(N) su
h that 〈G, g〉 is 
o�nitary, and 〈G, g, f〉 is either equal to

〈G, g〉 or is not 
o�nitary. The �rst 
ase applies if f ∈ G , so suppose that is not the
ase. Then it su�
es to 
onstru
t the element g su
h that 〈G, g〉 is 
o�nitary and f ∩gis in�nite but not equal to g .De�nition 3. Let p, q : N ⇀ N be �nite partial inje
tive fun
tions, and w ∈ WG .Then q is a good extension of p with respe
t to w if and only if p ⊆ q , and for every
n ∈ N su
h that w(q)(n) = n there exist l ∈ N , and u, z ∈ WG su
h that

• w = u−1zu without 
an
ellation,
• z(p)(l) = l , and
• u(q)(n) = l .Note that if w(p)(n) = n we 
an 
hoose z = w and u = id .With these de�nitions the following lemmas 
an be proved (see [10℄).Lemma 2. Let G ≤ Sym(N) , p : N ⇀ N �nite and inje
tive, f ∈ Sym(N) \G with

〈G, f〉 
o�nitary, and w ∈ WG . Then
• (Domain Extension Lemma) For ea
h n ∈ N \ dom(p) , for all but �nitely many

k ∈ N , the extension p ∪ {(n, k)} is a good extension of p with respe
t to w .
• (Range Extension Lemma) For ea
h k ∈ N \ ran(p) , for all but �nitely many

n ∈ N , the extension p ∪ {(n, k)} is a good extension of p with respe
t to w .
• (Hitting f Lemma) For all but �nitely many n ∈ N , the extension p∪{(n, f(n))}is a good extension of p with respe
t to w .With these lemmas we 
an do the 
onstru
tion by iterating the following lemma.



ON COFINITARY GROUPS 165Lemma 3. Let G ≤ Sym(N) be 
ountable, f ∈ Sym(N) \ G su
h that 〈G, f〉
o�nitary. Then we 
an 
onstru
t a g ∈ Sym(N) su
h that 〈G, g〉 is 
o�nitary, 〈G, g〉 ∼=
∼= G ∗ F (x) and f ∩ g is in�nite.We enumerate WG as E = 〈wn | n ∈ N〉 . This lemma is then proved by iterating theDomain/Range and Hitting f lemmas with enough bookkeeping to ensure the resultis a permutation and Hitting f is used in�nitely often, and taking good extensionswith referen
e to larger initial segments of the enumeration E . Sin
e Hitting f is usedin�nitely often, the resulting g satisfying f ∩ g is in�nite. Be
ause of this either g = for 〈G, g, f〉 is not 
o�nitary (sin
e f−1g has in�nitely many �xed points, but is not theidentity). We see that 〈G, g〉 ∼= G ∗ F (x) sin
e for every w ∈ WG from some point weare only taking good extensions with referen
e to it and all of its subwords. Then all�xed points that will appear in w(g) are already present in root.We 
an use these same ideas on 
onstru
tions from MA . Given a group G we de�nethe partial order PG :

• 〈p, F 〉 ∈ PG if p : N ⇀ N �nite, and G ⊆ WG �nite.
• 〈p1, F1〉 ≤ 〈p0, F0〉 if and only if p0 ⊆ p1 , F0 ⊆ F1 , and p1 is a good extension of

p0 with referen
e to all w ∈ F0 .This partial order is 
.
.
. sin
e all elements with the same �rst element are 
om-patible. The Domain, Range, and Hitting f Lemmas give the denseness of the sets
{〈p, F 〉 | n ∈ dom(p)} , {〈p, F 〉 | n ∈ ran(p)} , and {〈p, F | |p ∩ f | ≥ n} . Finally theobvious denseness of {〈p, F 〉 | w ∈ F} for w ∈ WG repla
es the initial segments of theenumeration above.The se
ond author's resear
h is partially supported by NSFC grant No. 10971237.�åçþìåÁ. Êàñòåðìàíñ, É. ×æàí. Ê âîïðîñó î êî�èíèòàðíûõ ãðóïïàõ.Êî�èíèòàðíàÿ ãðóïïà ïðåäñòàâëÿåò ñîáîé ïîäãðóïïó ñèììåòðè÷åñêîé ãðóïïû íà ìíî-æåñòâå íàòóðàëüíûõ ÷èñåë, â êîòîðîé âñå íååäèíè÷íûå ýëåìåíòû èìåþò áåñêîíå÷íî ìíî-ãî íåïîäâèæíûõ òî÷åê. Â äàííîé ðàáîòå ìû ðàññìàòðèâàåì íåêîòîðûå èíòåðåñóþùèå íàñâîïðîñû, êàñàþùèåñÿ òàêèõ ãðóïï, à òàêæå ñâÿçàííûõ ñ íèìè êàðäèíàëüíûõ èíâàðèàíòîâè òèïîâ èçîìîð�èçìà.Êëþ÷åâûå ñëîâà: êî�èíèòàðíûå ãðóïïû, êàðäèíàëüíûå èíâàðèàíòû, òèïû èçîìîð-�èçìà.
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