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Abstract

In this paper, we have considered the robust adaptive nonparametric estimation problem for
the drift coefficient in diffusion processes. It has been shown that the initial estimation problem
can be reduced to the estimation problem in a discrete time nonparametric heteroscedastic
regression model by using the sequential approach. We have developed a new sharp model
selection method for estimating the unknown drift function using the improved estimation
approach. An adaptive model selection procedure based on the improved weighted least square
estimates has been proposed. It has been established that such estimate outperforms in non-
asymptotic mean square accuracy the procedure based on the classical weighted least square
estimates. Sharp oracle inequalities for the robust risk have been obtained.

Keywords: improved estimation, stochastic diffusion process, mean-square accuracy,
model selection, sharp oracle inequality

Introduction

Let (€2, F,(F);>0,P) be a filtered probability space on which the following stochas-
tic differential equation is defined:

dy, = S(y,)dt +dw,, 0<t<T, (1)

where (w,)i>0 is a scalar standard Wiener process, the initial value y, is some given
constant, and S(-) is an unknown function.The problem is to estimate the function
S(x), z € [a,b], from the observations (y;)o<i<7 - The calibration problem for the model
(1) is important in various applications. In particular, it appears, when constructing op-
timal strategies for the investor behavior in diffusion financial markets. It is known that
the optimal strategy depends on unknown market parameters, in particular, on un-
known drift coefficient S. Therefore, in practical financial calculations it is necessary to
use statistical estimates for the function S which are reliable on some fixed time interval
[0, 7] [1]. Earlier, the problem of non-asymptotic estimation of the parameters of diffu-
sion processes was studied in [2]|. Here, it was shown that many difficulties of asymptotic
estimation of parameters for one-dimensional diffusion processes can be overcome by
using a sequantial approach. It turns out that the theoretical analysis of successive es-
timates is simpler than the analysis of classical procedures. In particular, it is possible
to calculate non-asymptotic bounds for quadratic risk. Owing to the use of a sequen-
tial approach, the problems of non-asymptotic estimation of parameters were studied
in [3] for multidimensional diffusion processes and, recently, in [4] for multidimensional
continuous and discrete semimartingales. In [5], a truncated sequential method for esti-
mating the parameters of diffusion processes was developed. Nonparametric estimation
has been covered in a number of publications. A consistent approach to nonparametric
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criteria for minimax estimation of the drift coefficient in (ergodic) diffusion processes
was developed in [6]. In this paper, sequential pointwise kernel estimates are conside-
red. For such estimates, non-asymptotic upper bounds of the root-mean-square risk are
obtained, and these estimates give the optimal convergence rate as T — oo.

The present paper deals with estimation of the unknown function S(z), a <z <b,
in the sense of the mean square risk

b
R(Sr,S) =EgSy - S|, ||S|\2:/52(I)dx, (2)

a

where S, is the estimate of S by observations (y, ) g<;<p » @ < b are some real numbers.
Here E 4 is the expectation with respect to the distribution P g of the random process
(y4 )o<t<r given the drift function S.

The purpose of this paper is to construct an adaptive estimate S* of the drift coef-
ficient S in (1) and to show that the quadratic risk of this estimate is less than the one
of the estimate proposed in [6], i.e., we construct the improved estimate in the mean
square accuracy sense. In order to fulfill this purpose, we use the improved estima-
tion approach proposed in [7] and [8] for parametric regression models and recently
developed in [9] for a nonparametric estimation problem. Moreover, we consider the es-
timation problem in adaptive setting, i.e., when the regularity of S is unknown, by
using a model selection method proposed in [10]. This approach provides an adaptive
solution for the nonparametric estimation through oracle inequalities, which give the
nonparametric upper bound for the quadratic risk of estimate.

1. Passage to a discrete time regression model

To obtain a reliable estimate of the function S, it is necessary to impose on it certain
conditions that are analogous to the periodicity of the deterministic signal in the white
noise model [11]. One of the conditions sufficient for this purpose is the assumption
that the process (y;),>¢ in (1) returns to any neighborhood of each points z € [a, b].
As in [6], in order to get the ergodicity of the process (1), we define the following
functional class:

Y, n={S€eLip,(R): [S(N)|<L; V|z|>N, 3 S(z) € C(R)

such that — L < inf S(z) < sup S(z) < —1/L}, (3)
|| =N || >N

where L > 1, N > |a| + |b|, S(z) is the derivative S(z),
LipL(R): fEC(R): sup MSL .
z,y€R |z — vy

We note that if S € ¥ 5, then there exists an invariant density

4(z) = qg(z) = exp{ 2 i S(z)dz / 7ooexp 2 ] S(z)dz b dy. (4)
0 —o0 0

We note that the functions in ¥, y are uniformly bounded on [a, b], i.e.

*

s*= sup sup S%*(z) < oo.
a<z<b SEX n
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We start with the partition of the interval [a,b] by the points (2} )<<, , defined as
k
xk=a+g(b—a), (5)

where n = n(T) is an integer-valued function of T, such that

. n(T)
< — = 1.
n(T)<T and Tlgr;o T 1 (6)

Now, at any point x,, , we estimate the function S by sequential kernel estimation. We
fix some 0 < t, < T and put

t
Tk:inf{tZtO:/Q<yshzk)dsZ Hk};

fo (7)

~ 1/ .
Sk:H-k/Q(yshk>dysa

to

where Q(z) =1y, <13, 14 is an indicator of the set A, h = (b—a)/(2n) and H) is
a positive threshold, which will be indicated below. From (1), it is easy to obtain that

Sk =S(xy) + -

The error (,, is represented as a sum of the approximating and stochastic parts, i.e.,

Tk
1 1 -
Ck:Bk—'_igk)’ Bk_H/Q<yéhk>AS(ys’xk)ds7
k
tU

VH
where AS(y,z) = S(y) — S(z) and
_ 1 i Ys — T
gk - \/H7k / Q( h )dws'

Taking into account that S is the Lipshitz function, we obtain an upper bound for
the approximating part as

B, | < Lh.

It is easy to see that random variables (£, )<<, are independent identically dis-
tributed from A(0,1). In [6], it is established that an effective kernel estimate of
the form (7) has a stochastic part distributed as N(0,2Thqg(z})), where gg(z})
is the ergodic density defined in (4). Therefore, for an effective estimate at each point
x;, by the kernel estimate (7), we need to estimate the density (4) from observations
(¢)o<t<t, -To this end, we establish that

qr(z),) = max{q(z, ), ez},

where e is positive, 0 < ep <1,

to
~ 1 Yg — Ty
q(zy) = 2t0h/Q <h k>d3-
0
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Now, we choose the threshold H, in (7):

H, = (T —t,) (2qr(z},) — %) h.

Let us suppose that the parameters ¢, = t,(T") and e, satisfy the following conditions:

H,) For any T > 32,
16<t, <T/2 and V2/t/®<e, <1.

H,)

li to(T) =00, i =0, 1 T ty(T) = oo.
lefcl)o o(T) =00 TEI;O€T Tgnoo e /[ty (T) = o0

H,) For any v >0 and m >0,

lim T€? =oo and lim T™e™” to = .
T—o0 T—o00

For example, for T > 32,

to = max{min{ln4T, T/2},16} and e, = \/ital/s.

Let B
{ glzagxn 7, < T} an k rir

Then, there exists a temporary heteroscedastic regression model on the set T’

Y, =S@,) +Cpy (=0, & +0,

2 _ n
(T =t )ar(zy) — €5 /2)(b—a)

It should be noted that from (6) and H; ), we get the following upper bound

(2

for which, by condition Hj),

0«

lim =0 forany m >0.

T—oo 1™

To estimate the function S from the observations of (9), we should study some proper-

ties of the set I' in (8).

Proposition 1. Let us suppose that the parameters t, and e, satisfy the following

conditions: H,)-Hy). Then

sup P4 (I'°) < II,
SET, v

where lim T™Il; =0 for any m > 0.



368 E.A. PCHELINTSEV et al.

2. Improved estimates

In this section, we consider the estimation problem for the model (9). The function
S(-) is unknown and has to be estimated from observations Y7,...,Y,.

The accuracy of any estimator S will be measured by the empirical squared error
of the form

b—a
n

> (S(z)) = S(ay)*.

=1

IS = S|7 = (5 ~5,5-5), =
Now, we fix a basis (¢;);<;<, , which is orthonormal for the empirical inner product:

J

b—a
n

(¢4, ¢j)n = Z¢i(xl)¢j(xl):Krijv
=1

where Kr,; is Kronecker’s symbol. By making use of this basis, we apply the discrete
Fourier transformation to (9) and obtain the Fourier coefficients and their least square

estimates

b—a

n

~ b—a

Zs(ml>¢j(ml)7 ej,n: n ZYz¢j($z)~
=1 =1

Ojn =

From (9), it follows directly that these Fourier coefficients satisfy the following equation

~ ) Ib—a
9j,n = 9j7n + C],n with CLH = 471 fj’n + 6j,n7

bh—a — b—a —
fj,n =\ n Zal§z¢j (z,;) and 5j,n - Z Wy ¢j(5171)-
1=1 1=1

Note that the upper bound (10) and the Bounyakovskii-Cauchy—Schwarz inequality
imply that

where

1051 < MI8117 195010 = 11611 -

We estimate the function S in (9) on the sieve (5) by the weighted least squares esti-
mator

=

<

where the weight vector A = (A(1),...,A(n)) belongs to some finite set A C [0,1]™. We
set for any a < x <b

~

S/\(I.C) = gk(xl)l{agxgxl} +Z§A(xl)1{xlfl<x§acl}' (11)
=2

Hereafter, we suppose that the first d < n components of the weight vector A\ are
equal to 1, i.e., A(j) =1 for any 1 < j <d.
We consider a new estimate for the function S in (9) of the form

n

S’;(ml) = Z A(j)&;n ¢j(‘rl)11“7 1<1<n,

j=1
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. c(d) ~
6j,n = (1 H9 1{1<g<d}> 0,

nll

where

where

_ 2 172
(d—1)oZL(b—a) ’ ”9 29
n(s* + y/do./n)

Now, we define the estimate for S in (1). We set for any a <z <b

c(d) =

Sf\(x) = Sj(xl)l{agngl} +ZS§($I)1{90[71<$§$L}' (12)
=2

We denote the difference of quadratic risks of the estimates (12) and (11) as
An(S) =Eg|S5 = SI% —EsllSy - SI3,-
The choice of estimate (12) is motivated by the desire to control the quadratic risk.

Theorem 1. The estimate (12) outperforms in the mean square accuracy the esti-
mate (11), i.e

sup A, (S) < —c*(d).
SeXrL. N

3. Oracle inequalities

In order to obtain a good estimator, we have to write a rule to choose a weight vector
A € A in (12). It is obvious that the best way is to minimize the empirical squared error
with respect to A:
2 .
Err,, (A) = |87 — S5, — min.

Making use of (12) and the Fourier transformation of .S implies

Err, (\) = Y N()07%, —2> A(6)05,.0,., +Zo
j=1 j=1

Since the coefficient 6, is unknown, we need to replace the term 6% 6., by some
J,n " 2n

estimator, which we choose as

0. =0, 0 _b—a& with s

Jn im”jn n Jmn jn

?¢3 (z))-

One has to pay a penalty for this substitution in the empirical squared error. Finally,
we define the cost function of the form

Jn(A)zzn: )67, —QZA W P, (\),
j=1

where the penalty term is defined as
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and 0 < p < 1 is some positive constant which will be chosen later. We set

~

A = argmin J, ()
AEA

and define an estimator of S of the form (11):

S*(x) =55 () for a<z<b (13)

Now, we obtain the non asymptotic upper bound for the quadratical risk of the estimator
(13).

Theorem 2. Let A C [0,1]™ be any finite set such that the first -d < n components
of the weight vector \ are equal to 1. Then, for any n > 3 and 0 < p < 1/6, the
estimator (13) satisfies the following oracle inequality

1+6p . a U (p)
E.||S* = S|? < E.|S, —5|? + X
sl 5, < 16y slISa 5, + —

where lim ¥, (p)/n=0.

n—00

Now, we consider the estimation problem (1) via model (9). We apply the estimating
procedure (13) with special weight set introduced in [6] to the regression scheme (9).
Denoting 57 =57  we set

S* = 8% with @ =argminJ,(\,).
acA.

We obtain through theorem 2 the following oracle inequality.

Theorem 3. Let us assume that S € X n and the number of the points n =
n(T) in the model(9) satisfies (6). Then, the procedure S* satisfies, for any T > 32,
the following inequality

(1L+p?*(1+6p) R(S*.8) + B (p)

R(S5*,S) <
( ’ )_ 1*6p aGAE n

)

where Tlim By (p)/n(T)=0.
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06 ysaydIinneHHOM oIleHMBaHuu (PyHKINNU cHOoca B AndPy3MOHHBIX Mpolleccax

E.A. [Tueaunyes, C.C. Ilepenescruti, U.A. Maxaposa

Hayuonaavrul uccaedosamenveruti Tomexuti 2ocydapemseenmnvili ynusepcumem,
2. Tomcx, 634050, Poccus

AnaHoTanusa

B pabore paccmoTpena 3agaua po6acTHOTO aIalITUBHOIO HEMTAPAMETPUIECKOTO OI€HUBAHUST
Ko3bdurmerTa cHoca B audPy3nOHHBIX Tporeccax. Ha oCHOBe mMocCaeqoBaTeIbHOTO TOIXO0Ia
ITOKA3aHO, YTO MCXOJHYIO 3a1a9y OIEHUBAHUsI MOXKHO CBECTH K 3a/a4e OLCEHUBAHUS (DYHKINN B
JIICKPETHOM HelmapaMeTpUIecKoil TeTepOCKEIaCTUIHON perpeccnoHHon mogmenu. [Ipemioxkena
aJAlITUBHAS TPOIEIyPa BBIOOPA MOJIEIN HA OCHOBE YJIyUIIEHHBIX B3BEIIEHHBIX OIEHOK IO Me-
roy HamMenbinux kBaaparos (MHK). Ycranosieno, 4ro takas oleHKa nMeer 60Jiee BHICOKYIO
HEACUMIITOTHIECKYIO CPEIHEKBAIPATUIECKYIO TOYHOCTD, YeM MPOIEAYpPa, TOCTPOEHHAs Ha OC-
HOBe Kjtaccmdecknx B3BerneHHbIX oreHkax MHK. IToxydeno Tounoe opakyabHOE HEPABEHCTBO
JIJIsT KBaIPATUIECKOTO PUCKA ITPEIJIOKEHHON TTPOIIEeLyPhl OIEHUBAHUsI, KOTOPOE J1aeT HEACUMII-
TOTHUYECKYIO BEPXHIOIO TPAHUILY JJIsl PUCKA.

KutroueBblie cjoBa: ysrydIlleHHOE OIEHUBAHNE, CTOXACTUIECKHH 1uddy3MOHHBI! IIpoIece,
CpeIHeKBapaTuiecKasi TOUHOCTh, BBIOOD MOJE/IH, OPAKYIbHOE HEPABEHCTBO
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