Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ФУНДАМЕНТАЛЬНОЙ МЕДИЦИНЫ И БИОЛОГИИ КАФЕДРА ОХРАНЫ ЗДОРОВЬЯ ЧЕЛОВЕКА

Направление (специальность): 06.04.01 биология Профиль: «Физиологические основы функциональной диагностики»

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ ОСОБЕННОСТИ РАБОТЫ ИЗОЛИРОВАННОГО СЕРДЦА КРЫС ПОСЛЕ ГИПОКИНЕЗИИ

Работа завершен: « <u>14</u> » <u></u> МОИ	а: 2019 г	A-	(Кудинова А.К.)
Работа допущена Научный руководи			
Доктор медицинск « <u>LO</u> » <u>MOU</u>	сих наук, професс 2019 г	cop	(Зефиров Т.Л.)
Заведующий кафо	едрой	BI BCCALA	OBAHMS
Доктор медицинск « <u>4</u> » <i>ШОШ</i>	их наук, професс 2019 г	Jey	(Зефиров Т.Л.)

Содержание:

УСЛОВНЫЕ ОБОЗНАЧЕНИЯ	3
введение	4
ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ	4
1.1. Ограничение двигательной активности и гипокинезия	7
1.1.1. Влияние гипокинезии на функциональные системы организма	7
1.1.2. Влияние ограничения двигательной активности на эндокринную систему	
1.1.3. Метаболические изменения при ограничении двигательной активности	8
1.1.4. Ограничение двигательной активности и оксид азота	
1.1.5. Влияние ограничения двигательной активности на нервную сис 20	тему
1.1.6. Влияние ограничения двигательной активности на опорнодвигательный аппарат	23
1.1.7. Влияние ограничения двигательной активности на сердечно-сосудистую систему	26
1.1.8. Методики моделирования гипокинезии	30
1.2. Особенности работы изолированного сердца	31
1.3. Альфа-адренергическая регуляция сердца	33
1.3.1. Альфа1-адренорецепторы	33
1.3.2. Альфа2-адренорецепторы	36
ГЛАВА 2. ОРГАНИЗАЦИЯ И МЕТОДЫ ИССЛЕДОВАНИЯ	40
2.1. Объект исследования	40
2.2.Методика моделирования ограничения двигательной активности	40
2.3. Методика изолированного сердца по Лангендорфу	42
ГЛАВА 3. РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ	45
ВЫВОДЫ	50
ЗАКЛЮЧЕНИЕ	
Список используемой питепатуры	51

ВВЕДЕНИЕ

Двигательная активность служит одним из основных факторов, определяющих функциональное состояние всех систем человека, в первую очередь сердечно-сосудистой, опорно-двигательной, мышечной и легочной систем, а также обменных процессов организма.

Для полноценной и гармоничной работы организма необходим некоторый оптимальный уровень физической активности, стимулирующий функциональные возможности всех систем, обеспечивающий успешную адаптацию к новым и изменяющимся условиям жизни.

заболевания Сердечно-сосудистые различной этологии широко распространены в современном мире. Если одни из них имеют генетическую предрасположенность, другие развиваются в результате образа жизни Обучение в учебных заведениях, работа в сидячем положении, человека. восстановление после болезни и травм увеличивают относительное пребывание человека в ограниченном движении. Это в свою очередь не может не оказывать влияния на системы метаболизма клеток [94; 95; 70; 71], опорнодвигательного аппарата [61; 69; 72; 89] и сердечно-сосудистой системы [40; 41; 78; 79; 80; 118; 119]. Поэтому исследования, направленные на изучение роли ограничения двигательной активности на системы органов животных представляют большой интерес.

Проведение экспериментальных исследований дает возможность не только детально исследовать патофизиологические процессы в миокарде, находящегося в неблагоприятных условиях, но также установить фундаментальные механизмы, лежащие в их основе.

Представляют большой интерес в кругах исследователей эксперименты на изолированных органах. Системы изолированных органов поддерживают свою функцию на уровне саморегуляции, в том числе малоисследованного звена метасимпатической нервной системы и активных веществ, выделяемых самим органом, и оказывающих влияние на его функционирование.

С конца прошлого века очень активно исследуется система оксида азота (NO) и ее роль в жизни клетки сердечной мышцы и ее регуляции. Основным эффектом оксида азота, оказываемым на сердечно-сосудистую систему, считалось вазодилятирующее влияние [60; 88], то есть, изменение кровоснабжения. Однако, многими авторами отмечается уникальное неоднозначное влияние NO на адаптацию организма [19; 36; 38; 83; 98], в первую очередь к гипоксии, ишемии, ведущие к изменению гомеостаза и окислительно-восстановительного метаболизма [22; 30; 47; 87; 93; 105].

Н.Г. Мальцевой [78, 80], Т.Г. Кузнецовой [79], С.Л. Попелем [94, 95], В.П. Акопяном [42], Е.А. Коваленко [69], Р.А. Абзаловым [40, 41], А.С Чинкиным [118, 119] и др. установлены некоторые механизмы работы органов, подверженных влиянию гипокинезии. В современной литературе отсутствуют данные по исследованию работы изолированного органа, который претерпел изменения В ходе ограничения двигательных возможностей МОГУТ организма. Результаты исследования служить источником информации для последующих работ в сфере изучения функционирования органа, изолированного влияния otгуморальной регуляции. Результаты работы позволят понять, как сердце на уровне саморегуляции адаптировано к неестественным условиям физической нагрузки, претерпевает влияние развитой гипокинезии.

Цель.

Оценка влияния ограничения двигательной активности на инотропию, хронотропию и коронарный проток изолированного по Лангендорфу сердца 51-суточных гипокинезированных крыс.

Задачи:

- 1. Определение влияния ограничения двигательной активности в течение 30 суток на давление, развиваемое левым желудочком, как показателя инотропии изолированного сердца крысы;
- 2. Определение влияния ограничения двигательной активности в течение 30 суток на ЧСС изолированного сердца крысы;

3. Определение влияния ограничения двигательной активности в течение 30 суток на коронарный проток изолированного сердца крысы.

выводы

- 1. Гипокинезия, возникшая в результате ограничения двигательной активности в течение 30 суток, снижает давление, развиваемое левым желудочком изолированного сердца.
- 2. Гипокинезия, возникшая в результате ограничения двигательной активности в течение 30 суток, вызывает тенденцию к повышению ЧСС изолированного сердца.
- 3. Гипокинезия, возникшая в результате ограничения двигательной активности в течение 30 суток, снижает коронарный проток изолированного сердца.

ЗАКЛЮЧЕНИЕ

Исследование влияния ограничения двигательной активности на функции изолированного сердца

Как говорилось в Главе 1, хроническое ограничение двигательной активности, приводящее к формированию гипокинезии, приводит к дегенерации клеточных структур [42, 55, 89, 92, 94, 116]. Гипокинезия изменяет метаболизм клеток: активируется перекисное окисление липидов [71, 81, 104] и белков, это в свою очередь говорит об увеличении активных форм кислорода и азота и о снижении работы антиоксидантных систем. В результате ПОЛ и ПОБ, приводящих к активации липаз, происходят нарушения структуры мембран клеток и его органелл, митохондрий и ядра [48, 74, 82]. Нарушается ферментная система клеток: в первую очередь, меняется транспорт кальция (Са-АТФаза) — его внутриклеточная концентрация увеличивается [48].

Ограничение двигательной активности значительно сказывается на функционировании митохондрий. Митохондриальная дисфункция приводит к нарушению обмена в клетках, нарушению дыхания, ослаблению всех биохимических процессов дыхания: метаболизм миокарда ослабляется, снижается его обеспечение кислородом, он претерпевает влияние гипоксии [62, 65, 80]. К тем же эффектам приводит ослабленное кровоснабжение скелетных мышц, которое в свою очередь влияет на коронарное кровоснабжение [53, 54]. Эти данные говорят о низкой обеспеченности кардиомиоцитов энергией и питанием во время ограничения двигательной активности.

Гипокинезия, стимулируя апоптоз клеток [56], приводит к уменьшению числа кардиомиоцитов, уменьшению количества органелл в них, в том числе миофибрилл, что напрямую способствует уменьшению их сократительной способности и растяжимости [15, 32, 61, 92]. Одновременно отмечено, что при гипокинезии размер сердца меньше, чем у животных, выросших в нормальных

условиях [46, 79]. Соответственно этому, показатели ударного объема крови и силы сокращения у гипокинезированных животных ниже [41, 97, 119].

Миокард без патологий реагирует на увеличение частоты ритма увеличением силы сокращений, в этом прослеживается положительная зависимость сила—частота. При патологии, например, при сердечной недостаточности увеличение ритма сокращений приводит к снижению сократимости — прослеживается отрицательная зависимость сила—частота. Существует предположение, что ЧСС мелких млекопитающих в состоянии покоя имеют высокий ритм из-за особенностей обмена кальция и его циркуляции [59]. Возможно, в силу отсутствия физиологически необходимого режима двигательной активности, у животных с развитой гипокинезией наблюдаются признаки сердечной недостаточности.

Давление, развиваемое левым желудочком гипокинезированной крысы, по данным [120] составило 8±2 мм рт. ст. в опытах іп vivo. Это значение в 3 раза меньше, чем у животных, выращенных в нормальных условиях. наши данные согласуются с данными этих исследователей.

Ими же показано, что при резком увеличении давления в аорте ни адренерегическая регуляция, ни интракардиальная регуляция не способны компенсировать инотропную функцию в ответ на такую стимуляцию у гипокинезированных животных. Таким образом, можно предположить в целом слабое влияние нервной системы экстракардиального и интракардиального уровня у животных с гипокинезией; невыясненным остается влияние гуморального фактора и активных веществ на физиологию гипокинезированного сердца.

В изолированном сердце на уровне саморегуляции с повышением давления в аорте должно следовать увеличение силы сокращения, с увеличением ЧСС – так же увеличение силы сокращения. Однако, в наших исследованиях мы этого не наблюдаем, так как сердце животных при ограничении двигательной активности претерпевает функциональные изменения описанные раннее.

Ввиду гипокинезии сердечной мышцы высокие показатели ЧСС (195 уд/мин по сравнению с контрольными 200 уд/мин) при малых значениях напряженности (давления в левом желудочке: 23,08 и 42,80 мм рт. ст. соответственно) выступают как компенсаторный механизм малой сократительной способности гипокинезированного миокарда.

Важным в работе миокарда является обмен внутриклеточного кальция. Как говорят данные литературы, гипокинезированных y животных увеличивается содержание внутриклеточного кальция [82, 91]. Увеличение концентрации кальция внутри клетки обычно приводит к усилению сокращения в систоле. Показано, что оксид азота снижает сократительную способность миокарда [75]. Известно, что оксид азота также регулирует концентрацию кальция внутри клетки посредством увеличения цГМФ и активации протеинкиназы G [36, 102]. Повышение оксида азота в клетке приводит к уменьшению свободного кальция и расслаблению миоцитов, вазодилятации [36]. Данные показывают, что у гипокинезированных крыс (30) суток) в три раза повышается концентрация оксида азота в тканях сердца [67, 123]. Возможно, в этом случае оксид азота выступает как защитный механизм клетки от неестественно высоких концентраций кальция.

Ранее отмечалось, что оксид азота способен связываться с белками клетки, образуя депо, и при этом не оказывая цитотоксический эффект, а наоборот, способствуя жизнедеятельности клетки в неблагоприятных условиях. высокое содержание оксида азота приводит к активации АФК и пероксинитрита, повреждающих структуры клеток. Главными депо оксида азота в тканях называют S-нитрозотиолы и динитрозильные комплексы железа, гемоглобин [60]. Депонирование NO подразумевает избавление тканей от токсического влияния высоких значений оксида азота.

Острый стресс приводит к соответствующему повышению уровня оксида азота, синтезируемого индуцибельной NOS [2; 12]. Если же последовательно адаптировать организм к новым условиям, как это было сделано в экспериментах с тепловым шоком [52; 96], уровень NO в организме

не будет отличаться от контрольных значений. Возможно, в этом случае индуцибельная форма синтазы не активируется. Однако есть исследования, подтверждающие, что именно синтазный механизм образования NO у гипокинезированных крыс (30 суток) активен [51; 68; 123] и полностью генерирует весь NO клеток организма, а есть исследования, которые говорят, что в условиях гипоксии (она же возникает при ограничении двигательной активности) синтазный механизм образования NO не активен [98]. В наших экспериментах гипокинезия создавалась так же в нарастающей прогрессии, однако, известно, уровень NO у 30-ти суточных гипокинезированных крыс выше в три раза, чем в контроле. Вероятно, повышенное значение NO достигается все же синтазным механизмом, и принцип ограничения синтеза по механизму обратной связи здесь не актуален, даже учитывая условия постепенного, нарастающего формирования гипокинезии. К тому же, обнаружено, что при умеренной гипоксии недостаток формирования оксида азота достигается высоким содержанием кальция внутри клетки, который активирует синтазы eNOS и nNOS [60].

Авторы отмечают как положительное влияние NO, так и деструктивное влияние на жизнедеятельность клетки. К негативным последствиям относят нарушение окислительно-восстановительных реакций в клетке, образование активных форм азота и кислорода [30; 47; 87], способствующих перекисному окислению клеток, нарушению целостности мембран и ДНК [105]; нарушение работы митохондрий, в том числе инактивация их ферментного компонента [93] и способность NO стимулировать образование митохондриальных пор [122]. Во многом негативные эффекты NO схожи с эффектами гипокинезии. Отсюда следует предположение о взаимосвязи: гипокинетические деструктивные явления связаны с повышенным уровнем NO.

Суммируя вышеизложенную информацию, можно заключить, что оксид азота в метаболизме сердца гипокинезированных животных играет важную роль, но не ясно имеет ли он негативное, усиливающее последствия

ограничения двигательной активности эффекты, или протекторное влияние, компенсирующее эффекты ОДА.

Коронарный проток имеет особенность – он прерывист: во время систолы лавление внутри миокарда левого желудочка достигает артериального давления, что перекрывает коронарные артерии и левый желудочек снабжается кровью практически только во время диастолы [103]. Кровоснабжение правого желудочка происходит как во время систолы, так и диастолы. В норме объем коронарного кровотока соответствует метаболическим потребностям миокарда, которые зависят от количества поступаемого кислорода [103]. Величина коронарного кровотока зависит от напряжения миокарда, то есть напряжения стенки желудочка по время систолы, или другими словами от артериального давления, тонуса (сопротивления) коронарных артерий. Потребность миокарда в кислороде зависит от напряжения миокарда во время систолы, от ЧСС, от сократимости сердца. Повышение внутримиокардиального напряжения (давления) приводит к росту общего сопротивления коронарной системы и ограничению кровотока. метаболизм Когда снижается сердца, увеличивается коронарное сопротивление, снижается коронарный кровоток [103].

В регуляции кровотока участвуют такие вещества, как оксид азота, аденозин, брадикинин и др. Помимо этого, определенную роль играют парциальное давление кислорода и углекислого газа крови [84].

Известно, что оксид азота расслабляет стенки сосудов и усиливает кровоток. Гипоксия вызывает вазодилатацию коронарных сосудов. Симпатическая стимуляция обычно усиливает коронарный кровоток вследствие роста метаболических потребностей и преобладания активации адренорецепторов [84].

В изолированном сердце отсутствует влияние центральной нервной системы, но присутствуют адренорецепторы. Отмечается, что в кардиомиоцитах eNOS и рецепторы вегетативной нервной системы расположены рядом друг с другом, что говорит об их взаимовлиянии [44].

NOS3 хронотропный ингибирует положительный эффект при адренергической стимуляции [14]. Таким образом, две системы адренергическая и система NO имеют некую взаимосвязь. Действительно, отмечается в частности, что NO поддерживает влияние парасимпатического отдела нервной системы и ослабляет влияние симпатического отдела [75].

Поэтому, актуальными остаются дальнейшие исследования по изучению влияния ограничения двигательной активности на адренергическую регуляцию сердца и NO-систему в тканях гипокинезированных животных.