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Abstract

We have applied quantum Sinkhorn’s theorem to non-unital qubit channels and derived
lower and upper bounds on the classical capacity of such channels.
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Introduction

Transmission of classical information through quantum channels has been covered
in a number of papers [1-5] and reviews [6, 7]. In brief, if R € [0,1] is an achievable rate
of information transmission, then n qubits effectively allow to transmit 2"F classical
messages.

The encoder assigns an n-qubit density operator ,an) to each message i. The n-qu-
bit density operator is a positive semidefinite operator with unit trace, which acts on 2"
dimensional Hilbert space Han . In the process of information transmission, each qubit
is transmitted through a quantum channel ®, which is a completely positive and trace
preserving map. Therefore, the output state of n qubits reads <I>®”[g§")]. The decoder
is a measurement device described by a positive operator-valued measure, which assigns
a positive-semidefinite operator M ](") (acting on 2"™-dimensional Hilbert space) to each
observed outcome j € {1,...,N}. Let p(j|¢) be the probability of observing outcome
j€{0,1,..., N} if the original message is 4, then by the quantum-mechanical rule

P (31i) = el M)

N N

Condition Y M ;") = I guarantees Y. p(™(j|i) = 1. The maximum confusion proba-
j=1 j=1

bility reads

err N) = (1— (M) (5 )
Pere(n, N) = max (1 —p™(j]7)

R €]0,1] is called an achievable rate of information transmission if

lim perr(na 2nR) =0.
n—oo

By the classical capacity C(®) of quantum channel ® we understand the supremum of
achievable rates:
C(®) = sup {R  lim pege(n, 27F) = 0} .
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The celebrated result in quantum information theory is that
1
— 1 ®n
C(?) = nh—>moo nC’X(<I> ), (1)

where the quantity C,(¥) is expressed through all possible ensembles of density ope-
rators {pg, pr} and the von Neumann entropy S(p) = —tr(plogsp) by formula

Cy(¥) = sup ls (Z}Wc‘ﬂﬂ@]) - ZPkS(‘I’[Pk])
k %

{Pk.pr}

We will refer to C, (¥) as the Holevo capacity of quantum channel ¥.
Calculation of classical capacity C(®) is complicated in general. In this paper, we
find lower and upper bounds on the capacity of general qubit channels.

1. Relation between unital and non-unital qubit channels

Let A and B be two operators acting on Hy. By ®4 we denote a completely
positive map ®4[X] = AX AT, ie., a map with a single Kraus operator A. Analogously,
®p[X] = BXB'. Hereafter, { denotes the Hermitian conjugation.

Suppose that ® is a qubit map, which belongs to the interior of the cone of positivity
preserving maps. Then, [8] states that there exist positive definite operators A and B
acting on Hs, such that the map

T:(I)AO(I)O(I)B (2)

is unital, i.e., Y(I) = I, the identity operator. This result was also anticipated ear-
lier as a quantum Sinkhorn’s theorem [9]. In addition, if ® is completely positive and
trace preserving, then T is completely positive and trace preserving too. For the given
non-unital qubit channel ®, the particular form of operators A and B is derived
in [10, 11]. Since A and B are nondegenerate, formula (2) implies that

(b:q)A—l O’I\O(I)B—l7

i.e., all non-boundary non-unital qubit channels ¢ can be decomposed into a concate-
nation of three completely positive maps ®g-1, T, ® -1, with T being unital.
On the other hand, for any unital qubit channel Y there exist unitary operators V
and W, such that [12]
T = (I)W oAo (I)V;

where the quantum channel A has a so-called diagonal form in the basis of conventional
Pauli operators I,01,092,03:

A[X] = %tr[X}I + % Z Aitr[o; X]o;. (3)

Parameters A, A2, Az in (3) are real and satisfy the constraint 14+ Az > |A; £ A2| as A
is completely positive [12].

Clearly, the classical capacities of channels T and A coincide. Moreover, since the
additivity hypothesis holds true for unital qubit channels [13], the classical capacity
equals the Holevo capacity and reads

1
o) =) = ) = 1= n (5 (1~ max In) ) (1)
where h(z) = —zlog,x — (1 — x)logy(1 — ).
In what follows, we relate the classical capacity of non-unital qubit channel ® with
the classical capacity of unital qubit channel Y, which is given by formula (4).
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2. Bounds on the classical capacity of non-unital qubit channels
Proposition 1. Let us suppose that ® is a non-unital qubit channel, such that the
qubit map T = ®4 0P o ®p is unital. Then, C(P) = C(Y) — 2log, (|| A||||1B]|) -
Proof. Let {gl(-n),Mi(n)}i]\;1 be the optimal code of size N = 2"%r for the com-
posite channel T®" such that lim pe;, v (n,2"%7) = 0.
n—oo

Consider a set of modified iﬁput states

~(n) _ B®”Q§n)(BT)®"
Y (B (BTN

and a modified positive operator-valued measure {j — ]\Aj;")}é\':o with elements

(AT)@ Mj A®

M =1 - ,
’ [|A[J>™

U™ -
M™, M"Y =

N
j=1,...,N,

j=1

where || X|| = || X« = <1:rbl|?b>>< (] XTX 1) is the operator norm. It is not hard to see
: =1
that Mén) is positive semidefinite.
Using the modified code, let each qubit be transmitted through the channel &.
Then, the probability to observe outcome j ## 0 provided input message i equals

tr{ A®np®n | B®n (7l) BT ®Rn AT ®nM(")
PGl = e [ 3" | = i [perdetyer] (ahra }
' tr[BEn ol (B)En]|| Al[2n

J
Since P4 0PodPg =T, we get

@nf, (M) .
ﬁ(n)(]h) — tI‘{T [Qi }M] } — p(n)(.ﬂz)
tr[Beng™ (B Al [ BEn ol (BT ]2

where p(™ (j|i) is the probability to get outcome j € {1,..., N} for the input message
i€ {l,...,N} in the original optimal protocol for channel T®".

Observation of the outcome j = 0 in the modified protocol would be treated as
an unsuccessful event, whereas observation of the outcome j € {1,...,N} leads to
a successful identification of the message because p(™ (j|i) — d;; if n — co.

The probability to observe nonzero outcome j equals

N
1 1
P™ =375 (i) = > .
2 tr[BEn o™ (BT)En]| Al2e (| A]l1B])*"

j=1
Utilizing the modified protocol, one can transmit information only in the case of
successful events j # 0, so the average number of successfully transmitted messages N

equals
N = PM N = pmgnBx > on(Ry—2log;(|A[lIBI))

Therefore, the considered protocol enables one to achieve the rate

R > Ry — 2log, (|| All||B])) (5)

by utilizing the channel ®.
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If Ry < C(Y) and one observes the successful event (j # 0), then the maximum
error probability in the modified protocol

. 5 ()
D = I ARCIANE ( () ) .
perr(n7 N) - j:I{l,.aj}.(,N (1 P(n) ) - j:I?’?j)_(,N 1 p (]|]) —0 if n—oo.

Taking the supremum on both sides of eq. (5) with requirement lim,, ., o Perr (7, N )=
0, we get
C(®) = C(T) — 2logy (|| A]l| BI])-
O
In the proof of proposition 1, we have used only the relation T = &4 0 ® o Op.
Instead, if we use the relation ® = ®4-1 0 T o ®g-1, we immediately get C(T) >

C(®) — 2logy(||A=H|[|BY|). Therefore, we immediately obtain the upper bound on
capacity C(®).

Proposition 2. Let us suppose that ® is non-unital qubit channel and its de-
composition through the unital qubit channel T reads ® = ®4-1 0 o Pg-1. Then,
C(®) < O(T) + 2logy (ATIIBH)-

Combining propositions 1 and 2, we get the following result.

Corollary 1. Let ® be a unital qubit channel belonging to the interior of positive
qubit maps, then there exist positive definite operators A and B acting on Ha, such
that the map T = ®4 0 ® o Op is unital and

C(T) = 2logy ([|AI[1B]]) < C(@) < C(T) + 2logy (AT [IB7H)).

Proof. The statement straightforwardly follows from the decomposition exis-
tence [8] and propositions 1 and 2. O

3. Four-parameter non-unital qubit channels

Consider a non-unital qubit channel of the form

3
1
PX] =5 tr[X](1 +tsos) + Y Ajtrlojoloy |
j=1

where t3 and Ai, A2, A3 are real parameters, which in addition to the condition of
complete positivity also satisfy the inequality that |t3| + |A3] < 1. It guarantees that
® is an interior point of the cone of positive qubit maps. In [11], the explicit form of
decomposition ® = P41 0 YT o b1 is provided:

Ao 2 ( (1+[ts])? — A3 0 )

VO+t)2 =N+ /[0 —t3)2 = N 0 (1—1ta))* = A3
1
0
B: \/1+t3$3+|)\3$3| 1
0

\/1 + t3l‘3 — ‘)\3.133|

1= 34+ X+ [0+ 1:)° — N[~ £)° — N3]
=B+ VI8 - R0t - A

l’ngt
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and the unital qubit map Y = A has the form (3) with parameters

5 2\,
T VO+ )2 -8+ /A=) —12 (6)
X 2

SR (e L RSV (e g
i = - (®)

2
(VIF X7 =8+ T - 27— 8)
We explicitly find the operator norms
2
1Al = ; (9)
L o=l =
(1+1t3]) = A3

HA_1|| — 1 (1 + (1 + ‘t3|)2 — A%) , (10)

> e e
1
1B = ; (11)
V14 tsas — [Aszs]
HB_lH = \/1+t3x3+|)\3x3|. (12)

By substituting these norms in corollary 1, we find the lower and upper bounds on
capacity C(®).

Proposition 3. The classical capacity of non-unital qubit channel
1 1o
BX] = Str[X](I + ts03) + 5 > Ajtr(ojelo;
j=1

with [ts| +|As| < 1 satisfies
1 ~
N o\ =i B ’
c@) > 1-n(5(1- mag %) ) - 2lom (141 15D

1 Y -1 -1
c) < 1-n(5(1- o ) ) + 2lom(la~ 15

=1,

where N\;, i =1,2,3 are given by formulas (6)~(8) and ||A|l, |A~Y, | B, |B~L|| are
given by formulas (9)—(12).

Conclusions

We have obtained new lower and upper bounds on the classical capacities of non-
unital qubit channels. We must emphasize that the obtained result holds true for
the regularized version of the Holevo capacity, formula (1). Our proofs are based on
the seminal relation between unital and non-unital qubit channels, which was develo-
ped in [8] and [11]. This relation can be productive in other research areas as well, for
instance, in the study of divisibility of qubit dynamical maps [14-18| and their tensor
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products [19], in the study of entanglement annihilation [20-24] and absolutely sepa-
rating quantum channels [25], in the study of quantum capacities and other types of
capacities [6, 7]. For practical applications, we have derived lower and upper bounds for
a four-parameter family of non-unital qubit channels. For instance, this family covers
generalized amplitude damping channels, which originate from the processes of emission
and absorption due to interaction of the two-level system (qubit) with a reservoir of
finite temperature [26].
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Ananus HpOl’IyCKHOﬁ CIIOCOOHOCTH HEeYHHUTAJIbHBbIX Ky6I/ITHbIX KaHaJIOB

C.H. Quaunnos

Dusukro-mexnosoeuvweckull uncmumym Poccutickol axademuu wayx, e. Mocksa, 117218, Poccus
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AnaHoTanusa

Ksanrosast TeopeMa CI/IHKXOpHa IpuUMeHsAeTCd K HEeYyHUTaJIbHbIX Ky6I/ITHI)IM kanaJyiam. Ha-
XOOATCA BEPXHAA U HU2KHAA I'PDAHUIBI IJIA KJIaCCUYIECKOMN HpOHyCKHOﬁ CIIOCOOHOCTH TAKUX Ka-
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