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UDK 514.7 THE PETROV CLASSIFICATIONAND VACUUM DARK FLUIDI. DymnikovaAbstratThe Petrov lassi�ation of stress-energy tensors makes it possible to introdue a uni�eddesription of dark energy and dark matter as a vauum dark �uid based on the spae-timesymmetry. In this approah a vauum dark energy is desribed by a variable osmologial termwhose symmetry is redued as ompared with the Einstein osmologial term whih allowsa vauum energy to be evolving and lustering. The relevant lass of solutions to the Einsteinequations implies also the existene of ompat vauum objets generially related to a darkenergy: regular blak holes, their remnants and self-gravitating vauum solitons with de Sittervauum interior � whih an be responsible for observational e�ets typially related to a darkmatter. The mass of objets with de Sitter interior is generially related to vauum dark energyand to breaking of spae-time symmetry.Key words: dark energy, dark matter, regular blak holes and solitons with de Sitter ore.IntrodutionQuantum �eld theory in urved spae-time does not ontain a unique spei�ationfor the quantum state of a system, and the symmetry of a vauum expetation valueof a stress-energy tensor does not always oinide with the symmetry of a bakgroundspae-time [1℄. In the ase of the de Sitter spae the renormalized expetation value of
〈Tµν〉 for a salar �eld with an arbitrary mass m and urvature oupling ξ is provedto have a �xed point attrator behavior at late times ( [1℄ and referenes therein) ap-proahing, dependently on m and ξ , or the Bunh �Davies de Sitter-invariant vauumeither, for the massless minimally oupled ase (m = ξ = 0) the de Sitter invariantAllen �Folai vauum. The last ase is peuliar sine the de Sitter invariant two-pointfuntion is infrared divergent, and the vauum states, free of this divergene, are O(4)-invariant Fok vaua; the vauum energy density in the O(4)-invariant ase is not thesame (larger) than in de Sitter-invariant ase [2℄.The Petrov lassi�ation of stress-energy tensors provides opportunity to onsidervauum in a model-independent way, as a medium spei�ed by the algebrai struture ofits stress-energy tensor [3�5℄. The Einstein osmologial term Λgµν orresponds to thede Sitter vauum presented by the stress-energy tensor of maximal symmetry, with allthree spaelike eigenvalues equal to the timelike eigenvalue. As a result it has an in�niteset of o-moving referene frames, so that an observer annot in priniple measurehis veloity with respet to it [3℄. The maximal symmetry of a vauum stress-energytensor an be redued to the ase when less than three spaelike eigenvalues are equalto the timelike eigenvalue [4, 5℄. This leads inevitably (by the Bianhi identities) todynamial vauum energy represented by anisotropi vauum dark �uid whih an bothbe distributed and form ompat objets [6℄. It generates regular spae-time with thede Sitter interior whose existene follows from requirements of regularity and ertainenergy onditions on a soure term in the Einstein equations [7℄.



THE PETROV CLASSIFICATION AND VACUUM DARK FLUID 155Vauum dark �uid provides a uni�ed desription of dark energy and dark matter.The key point is that astronomial data testify in favor of a osmologial vauum darkenergy desribed by the Einstein osmologial term (see [8℄ and referenes therein). Theproblem is that density of de Sitter vauum must be onstant by the ontrated Bianhiidentities, while the in�ationary paradigm requires its muh bigger value for the earlieststage of the Universe evolution. Vauum dark �uid represents a osmologial vauumby a variable spherially symmetri osmologial term whih onnets smoothly twode Sitter vaua at r → 0 and r → ∞ . Its symmetry is redued as ompared withthe Einstein osmologial term whih allows a vauum energy to be evolving and lus-tering. Time-evolving and spae-inhomogeneous osmologial term [5℄ desribes regularosmologial models dominated by vauum dark energy [9℄.The relevant lass of solutions to the Einstein equations implies the existene ofompat vauum objets generially related to a dark energy through their de Sittervauum interiors: regular blak holes [4, 10℄, their remnants [11, 12℄ and self-gravitatingvauum solitons [7, 11, 13℄, whih an be responsible for observational e�ets typiallyrelated to a dark matter [6℄.The question of the origin of dark matter still remains open [14℄. The most popularhypothesis is that dark matter onsists of neutral weakly interating partiles reated inthe hot early Universe. However, reently gathered results lead to the onlusions thatknown elementary partiles an not aount for a dark matter, at least in the frame ofthe Standard Model [15℄. Dark energy partiles as quanta of the osmologial onstant
λ (onsidered as the fundamental onstant) were proposed in [16℄ for a wide range ofmasses up to 1055 g inluding thus also observable Universe. In models of a uni�eddark �uid with salar �elds, a dark energy is treated as a remnant density of a omplexsalar �eld and dark matter as partiles of this �eld [17℄, although the form of the salar�eld potential an not be diretly derived from high energy theories.Vauum dark �uid provides a model-independent dark energy-dark matter uni�-ation based on the spae-time symmetry. Vauum gravitational solitons alled G-lumps [7℄ (they are bounded by their own gravity balaned at the surfae where thestrong energy ondition is violated) an be responsible for loal e�ets related to a darkmatter in a way similar to λ-partiles of [16℄ and omplex salar �eld partiles of [17℄.Blak holes (espeially primordial) are reognized as good dark matter andidates[18℄. Blak hole remnants (�nal produts of Hawking evaporation) have been onsid-ered as a soure of dark matter for more than two deades [19℄ (for a review see [14℄).The open question disussed in the literature onerns the existene of remnants: In thease of a singular blak hole it would be a Plank size blak hole; however, no evidentsymmetry or quantum number exists whih would prevent omplete evaporation. Char-ater and sale of unertainty onerning an endpoint of the Hawking evaporation ofa singular blak hole are learly evident in the ase of a multihorizon spae-time [20℄.The fate of a regular blak hole is unambiguous: it leaves thermodynamially stabledouble-horizon remnant with the positive spei� heat [11, 12℄.Mass of objets is related to interior de Sitter vauum and breaking of spae-timesymmetry from the de Sitter group at the origin [7℄. This has been tested by evaluatingthe gravito-eletroweak uni�ation sale from the measured mass-squared di�erenesfor solar and atmospheri neutrinos [21℄. Nonlinear eletrodynamis oupled to gravityprovides a non-trivial example of a matter objet with dark energy interior [22, 23℄whih we disuss in Setion 2. In Setion 1 we present the vauum dark �uid in generalsetting, and in Setion 2 we show how it an provide a uni�ed desription of dark energyand dark matter.



156 I. DYMNIKOVA1. Vauum dark �uidThe Einstein osmologial term Λgµν with Λ = const , orresponds to a vauumstress-energy tensor of the maximal symmetry
Λδµν = 8πGT µν

vac. (1)In the Petrov lassi�ation, stress-energy tensors are lassi�ed on the basis of theiralgebrai struture. When eigenvalues of Tµν are real, the eigenvetors of Tµν are non-isotropi and form a omoving referene frame with a timelike eigenvetor representinga veloity.In this lassi�ation an anisotropi �uid is spei�ed by [IIII℄ and [II(II)℄, and anisotropi �uid by [I(III)℄. The �rst symbol denotes the eigenvalue related to the timelikeeigenvetor. Parentheses ombine degenerate eigenvalues. A omoving referene frame isde�ned uniquely if and only if none of spaelike eigenvalues λk(k = 1, 2, 3) oinides witha timelike eigenvalue λ0 . Otherwise there exists an in�nite set of omoving refereneframes.The maximally symmetri de Sitter vauum (1), spei�ed by [(IIII)℄ in the Petrovlassi�ation sheme (all eigenvalues equal, all referene frames omoving), representsthe isotropi vauum �uid. The high symmetry of a vauum stress-energy tensor (1) anbe redued to the ase when one (or two) of the spaelike eigenvalues of Tµν oinideswith its timelike eigenvalue
pk = −ρ. (2)A vauum stress-energy tensor with a redued symmetry is invariant under Lorentzboosts in the k -diretion. This makes impossible to single out a preferred omovingreferene frame and thus �x the veloity with respet to a vauum �uid whih is intrinsiproperty of a vauum [24℄.A vauum de�ned by the symmetry of its stress-energy tensor must be evidentlyanisotropi (exept the maximally symmetri de Sitter vauum (1)). The Petrov las-si�ation sheme suggests three types of anisotropi vauum �uid: [(II)(II)℄, [(II)II℄,[(III)I℄ [6℄.A spherially symmetri vauum �uid orresponds to [(II)(II)℄ and is spei�ed by [4℄
T t

t = T r
r . (3)It satis�es the equation of state (following from T µ

ν;µ = 0) for anisotropi perfet �uid
pr = −ρ; p⊥ = −ρ − r

2

dρ

dr
(4)and generates spae-time with the de Sitter enter whose existene follows from require-ments of regularity and the weak energy ondition on a soure term in the Einsteinequations [7℄.The Einstein equations with a soure term spei�ed by (3) admit the lass of regularsolutions asymptotially de Sitter as r → 0 and r → ∞ [5, 7℄

(8πG)−1Λδµ
ν ⇐= T µ

ν =⇒ (8πG)−1λδµ
ν (5)with λ < Λ . The metri of a spae-time is given by

ds2 = g(r) dt2 − dr2

g(r)
− r2dΩ2 (6)
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Fig. 1. Metri funtion in the ase of three horizonswith the metri funtion [10℄
g(r) = 1 − 2GM(r)

r
− λ

3
r2; M(r) = 4π

r
∫

0

ρ(x)x2 dx, (7)whih evolves from the de Sitter metri funtion g(r) = 1 − (Λ + λ)r2/3 as r → 0 ,to the Kottler �Tre�tz metri funtion g(r) = 1− rg/r − λr2/3, rg = 2GM , for r ≪ r∗where r∗ = (r2
0rg)

1/3 with r2
0 = 3/Λ , is the harateristi length sale in geometry withde Sitter enter ( [4℄ and referenes therein). The mass parameter (gravitational mass)

M =

∞
∫

0

ρ(r)r2dr (8)is related to interior de Sitter vauum and breaking of spae-time symmetry from thede Sitter group at the origin [7℄. Spae-time an have not more than three horizons [9℄,the osmologial horizon rc , the blak bole horizon rb < rc , and the internal horizon
ra < rb (see Fig. 1).The internal horizon r = ra is the osmologial horizon for a stati observer in the
R -region 0 ≤ r < ra . A stati observer in the R -region rb < r < rc observes T−region ra < r < rb as a regular osmologial blak hole. Its mass is limited within
Mcr1 ≤ M ≤ Mcr2 . The value M = Mcr1 orresponds to a double-horizon (ra = rb )state whih appears as an end-point of the Hawking evaporation. For M < Mcr1 themetri (6) desribes a G-lump in asymptotially de Sitter spae (the upper urve inFig. 2). Seond ritial mass Mcr2 orresponds to the double horizon rb = rc andrepresents a regular modi�ation of the Nariai solution.This behavior is generi for the lass of regular solutions spei�ed by (3) and sat-isfying the weak energy ondition [7, 9℄. The pitures are plotted with the densitypro�le [4℄

ρ(r)=ρ0 exp(−r3/r2
0rg); r0 =

√

3/8πGρ0; ρ0 =ρ(r → 0) = (8πG)−1Λ; rg =2GM (9)whih desribes vauum polarization e�ets leading to de Sitter interior in the simplesemi-lassial model for vauum polarization in the gravitational �eld [11℄.2. Regular osmologies with vauum dark energyIn the oordinates of omoving observers, the metri (6) desribes regular vauumdominated osmologies (vauum density evolves smoothly from a big initial value to
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Fig. 2. Metri funtion for double-horizon and one-horizon on�gurations
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Fig. 3. Spherially symmetri vauum spae-time with one horizona small value) of the Lemaitr�e lass and Kantowski � Sahs type whose dynamis dependson the number of horizons.In the vauum osmologies of the Lemaitr�e lass, evolution starts from a nonsingularnon-simultaneous de Sitter bang followed by an anisotropi stage at whih most of themass is produed [25℄. For osmologies of Kantowski � Sahs type, evolution starts witha null bang from a horizon, but information about pre-bang history is available for KSobserves [9℄.Two simplest ases of one-horizon on�gurations are shown in Fig. 3; the globalstruture of spae-time is the same as for de Sitter geometry but with dynamial vauumdark energy.In the Lemaitr�e oordinates this on�guration represents vauum anisotropi modelsof the Lemaitr�e lass, in whih evolution starts with a nonsingular non-simultaneousde Sitter bang from the regular time-like surfae r(R, τ) = 0 for the model with zeroand negative spatial urvature, and from r = ri for the models with the positive spatialurvature [9℄.In the Kantowski � Sahs region it orresponds to the lass of regular homogeneous
T -models with vauum dark energy [26℄. Typial features of homogeneous regular T -models are: the existene of a Killing horizon; beginning of the osmologial evolutionfrom a null bang at the horizon; the existene of a regular stati pre-bang region visibleto osmologial observers; reation of matter from anisotropi vauum, aompaniedby very rapid isotropization. Detailed alulations of the spherially symmetri regular
T -model based on the general exat solution for a mixture of the vauum �uid and dust-like matter, have shown the ability of osmologial T -models to satisfy the observationalonstraints [26℄.



THE PETROV CLASSIFICATION AND VACUUM DARK FLUID 159In quantum osmology it is possible, in frame of the minisuperspae model, to adaptosmologial onstant Λ for desription of a vauum dark energy density jumping fromthe big initial value to the small value suggested by observations [27℄. The gauge-non-invariane of quantum osmology leads to a onnetion between a hoie of the gaugeand quantum spetrum for a ertain physial quantity whih an be spei�ed in theframework of the minisuperspae model. There exists a partiular gauge in whih theosmologial onstant Λ is quantized [27℄, so that making a measurement of Λ todayone an �nd its small value with the biggest probability, while at the beginning of theevolution, the biggest probability orresponds to its biggest value. Transitions betweenquantum levels of dark energy Λ in the ourse of the Universe evolution an be relatedto several sales of symmetry breaking [27℄.3. Dark matter andidates3.1. Regular blak hole remnants. The quantum temperature of a horizon rhdetermined by its surfae gravity κh is given by the Gibbons �Hawking formula:
kTh =

~

2πc
κh =

~

4πc
|g′(rh)|. (10)In spae-time with three horizons, an observer in the R -region rb < r < rc andetet the Hawking radiation from a blak hole horizon rb and from a osmologialhorizon rc , and an observer in the R -region 0 ≤ r < ra an detet radiation from theosmologial horizon ra .Thermodynamis is studied by applying the Padmanabhan approah relevant fora multihorizon spae with non-zero pressure and based on a anonial ensemble ofmetris (6) at the onstant temperature of the horizon determined by the periodiityof the Eulidean time in the Eulidean ontinuation of the Einstein ation [28℄. Withthis approah we �nd temperature Th , thermodynamial energy Eh , entropy Sh , freeenergy Fh , and spei� heat written below in the units c = G = ~ = 1 [12℄:on blak hol horizon

kTb =
1

4π

(

1

rb
− λ

3
rb − 8πρ(rb)rb

)

; Eb =
1

2
rb; (11)on internal and osmologial horizons

kTh =
1

4π

(

8πρ(rh)rh +
λ

3
rh − 1

rh

)

; Eh = −1

2
rh; (12)on any horizon

Sh = 4πr2
h; Fh = Eh − ThSh; (13)

Ch = dEh/dTh; C−1
h = − 1

2π

[

8πρ′(rh)rh + 8πρ(rh) + λ +
1

r2
h

]

. (14)Dependene of temperature on the blak hole horizon radius is shown in Fig. 4.Fig. 4 is plotted with the density pro�le (9), but this urve is generi. Independentof a partiular form of the density pro�le ρ(r) , Tb → 0 as ra → rb , and as rc → rb ,sine surfae gravity vanishes in the extrema of the metri funtion g(r) . Hene thetemperature urve should have a maximum, Tb(rm) = Tb max . It follows that spei�heat on the blak hole horizon Cb is negative for r > rm and positive for r < rm .At the maximum C−1
b = 0 , hene a spei� heat is broken and hanges its sign in theourse of quantum evaporation [11, 12℄. For the ase of the density pro�le (9), maximal
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Fig. 4. Temperature of a regular blak hole in de Sitter spaetemperature orresponding to the phase transition is Tb max = Ttr ≃ 0.2TPl

√

ρ0/ρPl .For ρ0 = ρGUT and MGUT ≃ 1015 GeV it gives Ttr ≃ 0.2 · 1011GeV .The answer to the question what is an endpoint of evaporation, depends on wheremove horizons. For a metri funtion (7) with de Sitter asymptotis at the enter andKottler �Tre�tz asymptotis for r ≫ r∗ = (r2
0rg)

1/3 , a density pro�le involves saling
r/r∗ , and for zeros of a metri funtion (7) we obtain drb/dM > 0 , dra/dM < 0 ,
drc/dM < 0 . In the region 0 ≤ r ≤ ra , whih is the whole manifold for a statiobserver, dra ≥ 0 by the seond law of thermodynamis for horizons. The horizon ramoves outwards and dra/dM < 0 , hene M dereases; sine drb/dM > 0 , a blak holehorizon rb shrinks. Spei� heat Ca is positive near the double horizon, dTa/dEa > 0and dTa/dra < 0 , hene Ta dereases with inreasing ra . With dTa/dM > 0 and
dTa/dra < 0 this leads to monotoni dereasing M and Ta until Ta vanishes on thedouble horizon ra = rb = rd where Cd > 0 [12℄.The spei� heat C−1

h an be written as
C−1

h =
1

2π

(

g′(rh)

rh
+ g′′(rh)

)

. (15)This formula tells unambiguously that an extreme state with a double horizon
(g′ = 0) is thermodynamially stable when it appears in a minimum of the met-ri funtion g(r) , and thermodynamially unstable when it appears in its maxi-mum [12℄. We onlude that a regular blak hole leaves behind a thermodynami-ally stable double-horizon remnant. For the ase of the density pro�le (9), its massis Mremnant ≃ 0.3MPl

√

ρPl/ρ0 .3.2. Vauum gravitational solitons � G-lumps. This name is owing to Cole-man's lumps whih are non-singular non-dissipative solutions of �nite energy holdingthemselves together by their own self-interation [29℄. The idea of lumps an be traedbak to the Einstein idea to desribe an elementary partile by a regular solution ofnonlinear �eld equations as a �bunhed �eld� loated in the on�ned region where �eldand energy are partiularly high [30℄. Vauum soliton G-lump was proposed in 1996in a model-independent way as a regular solution to the Einstein equations with thede Sitter interior without horizons [11℄. In terms of the proposed in 2001 gravastar modelwith de Sitter ore [31℄, a G-lump orresponds to a model-independent gravastar withontinuous density and pressures.The riterion of stability of G-lumps to external polar perturbations given by [6℄
r(p⊥ + ρ)′ ≤ ρ + (p⊥ + ρ) (16)is satis�ed for a wide lass of density pro�les.
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dσ

)2

+ V(p,γ)(r) = E2; Vp(r) = g(r)

(

1 +
L2

r2

)

; Vγ(r) =
L2

r2
g(r), (17)where σ is the a�ne parameter along geodesi, Vp is the potential for time-likegeodesis, and Vγ for the null geodesis. For a G-lump and extreme blak hole thepotential urves di�er essentially from that for a blak hole and evidently depend onthe mass M . Potentials Vp have, in a ertain range of masses, three extrema and, hene,two branhes of stable irular orbits separated by a gap. Potential Vγ shown in Fig. 5reveals the most striking feature of geodesis in the �eld of G-lump: the existene ofstable bound photon orbits inluding irular orbits!3.3. Eletromagneti soliton. Nonlinear eletrodynamis oupled to gravity isdesribed by the ation

S =
1

16π

∫

d4x
√−g(R − L(F )); F = FikF ik (18)with an arbitrary gauge invariant lagrangian L(F ) with the Maxwellian asymptotis inthe weak �eld regime. A stress-energy tensor of a spherially symmetri eletromagneti�eld has the symmetry (3). For a �eld satisfying the weak energy ondition a spher-ially symmetri eletrially harged eletrovauum struture has obligatory de Sitterenter in whih the eletri �eld vanishes while the energy density of eletromagnetivauum ahieves its maximal value [22℄. By the G�urses-G�ursey algorithm based onthe Trautman �Newman tehnique [33℄, spherially symmetri eletrovauum solutionis transformed into a spinning eletrovauum solution asymptotially Kerr �Newmanfor a distant observer. De Sitter enter beomes de Sitter equatorial disk whih hasboth perfet ondutor and ideal diamagneti properties and displays superondut-ing behavior within a single spinning soliton. This behavior is generi for the lass ofregular spinning solutions desribing eletrovauum blak holes and solitons [23℄. De Sit-ter vauum supplies a partile with the �nite positive eletromagneti mass related tobreaking of spae-time symmetry. These results apply to the ases when the energysale is less than the Plank sale. Reently they found a ertain on�rmation in theexistene of minimal length sale (�losest approah� of partiles) in the annihilationreation e+e− → γγ(γ) , whih an be explained by the existene of the harateristi



162 I. DYMNIKOVAsurfae at whih eletromagneti attration is balaned by the gravitational repulsiondue to de Sitter interior [34℄.This work was supported by the Polish Ministry of Siene and Eduation for the re-searh projet �Globally regular on�gurations in General Relativity inluding lassialand quantum osmologial models, blak holes and partile-like strutures (solitons)�in the frame of the �Polish-Russian Agreement for ollaboration in the Field of Sieneand Tehnology.� �åçþìåÈ. Äûìíèêîâà. Êëàññè�èêàöèÿ Ïåòðîâà è òåìíàÿ âàêóóìíàÿ æèäêîñòü.Êëàññè�èêàöèÿ Ïåòðîâà òåíçîðîâ ýíåðãèè-èìïóëüñà ïîçâîëÿåò ââåñòè îáúåäèí¼ííîåîïèñàíèå ò¼ìíîé ýíåðãèè è ò¼ìíîé ìàòåðèè êàê âàêóóìíîé ò¼ìíîé æèäêîñòè íà îñíîâåñèììåòðèè ïðîñòðàíñòâà-âðåìåíè. Ïðè òàêîì ïîäõîäå âàêóóìíàÿ ò¼ìíàÿ ýíåðãèÿ îïèñû-âàåòñÿ ïåðåìåííûì êîñìîëîãè÷åñêèì ÷ëåíîì, ñèììåòðèÿ êîòîðîãî íàðóøåíà ïî ñðàâíå-íèþ ñ êîñìîëîãè÷åñêèì ÷ëåíîì Ýéíøòåéíà. Â ñëó÷àå ñ�åðè÷åñêîé ñèììåòðèè èí�ëÿöè-îííîå óðàâíåíèå ñîñòîÿíèÿ âûïîëíÿåòñÿ òîëüêî äëÿ ðàäèàëüíîãî äàâëåíèÿ, â ðåçóëüòàòåïëîòíîñòü ýíåðãèè è îáà äàâëåíèÿ ñòàíîâÿòñÿ çàâèñÿùèìè îò âðåìåíè è ïðîñòðàíñòâåííûõêîîðäèíàò. Óðàâíåíèÿ Ýéíøòåéíà ñ ïðàâîé ÷àñòüþ, ïðåäñòàâëåííîé òåíçîðîì ýíåðãèè-èìïóëüñà òàêîãî òèïà, äîïóñêàåò òàêæå êëàññ ðåøåíèé, îïèñûâàþùèõ êîìïàêòíûå îáúåê-òû ñ öåíòðîì äå Ñèòòåðà: ðåãóëÿðíûå ÷¼ðíûå äûðû, ïðîäóêòû èõ èñïàðåíèÿ è âàêóóìíûåãðàâèòàöèîííûå ñîëèòîíû, êîòîðûå ìîãóò îòâåòñòâåííûìè çà íàáëþäàòåëüíûå ý��åêòû,ñâèäåòåëüñòâóþùèå î ñóùåñòâîâàíèè ò¼ìíîé ìàòåðèè. Ìàññà îáúåêòîâ ñ äå Ñèòòåðîâ-ñêèì ÿäðîì ñâÿçàíà ñ ò¼ìíîé ýíåðãèåé è íàðóøåíèåì ñèììåòðèè ïðîñòðàíñòâà-âðåìåíèîò ãðóïïû äå Ñèòòåðà â öåíòðå äî ãðóïïû Ïóàíêàðå íà áåñêîíå÷íîñòè äëÿ àñèìïòîòè÷åñêèïëîñêèõ ïðîñòðàíñòâ èëè äî ãðóïïû äå Ñèòòåðà ñ ìåíüøèì çíà÷åíèåì êîñìîëîãè÷åñêîéïîñòîÿííîé äëÿ àñèìïòîòè÷åñêè äå Ñèòòåðîâñêèõ íà áåñêîíå÷íîñòè ïðîñòðàíñòâ.Êëþ÷åâûå ñëîâà: ò¼ìíàÿ ýíåðãèÿ, ò¼ìíàÿ ìàòåðèÿ, ðåãóëÿðíûå îáúåêòû ñ äå Ñèò-òåðîâñêèì ÿäðîì.
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16. Böhmer C.G., Harko T. Does the cosmological constant imply the existence of a minimum

mass? // Phys. Lett. B. – 2005. – V. 630, No 3–4. – P. 73–77.

17. Arbey A. Dark fluid: A complex scalar field to unify dark energy and dark matter //

Phys. Rev. D. – 2006. – V. 74, No 4. – P. 043516-1–043516-7.

18. Ellis J. Dark matter and dark energy: summary and future directions // Phil. Trans. R.

Soc. Lond. A . – 2003. – V. 361. – P. 2607–2627.

19. MacGibbon J.H. Can Planck-mass relics of evaporating black holes close the Universe? //

Nature. – 1987. – V. 329. – P. 308–309.

20. Dymnikova I. Regular Black Hole Remnants // AIP Conf. Proc. – 2010. – V. 1241. –

P. 361-368.

21. Ahluwalia D.V., Dymnikova I. A theoretical case for negative mass-square for sub-eV

particles // Int. J. Mod. Phys. D. – 2003. – V. 12, No 9. – P. 1787–1794.

22. Dymnikova I. Regular electrically charged vacuum structures with de Sitter centre in

nonlinear electrodynamics coupled to general relativity // Class. Quant. Grav. – 2004. –

V. 21, No 18. – P. 4417–4428.

23. Dymnikova I. Spinning superconducting electrovacuum soliton // Phys. Lett. B. – 2006. –

V. 639, No 3–4. – P. 368–372.

24. Landau L.D., Lifshitz E.M. The classical theory of fields. – Oxford: Pergamon Press,

1975. – 402 p.

25. Dymnikova I., Dobosz A., Filchenkov M., Gromov A. Universes inside a black hole //

Phys. Lett. B. – 2001. – V. 506, No 3–4. – P. 351–361.

26. Bronnikov K., Dymnikova I. Regular homogeneous T-models with vacuum dark fluid //

Class. Quant. Grav. – 2007. – V. 24, No 23. – P. 5803–5817.

27. Dymnikova I., M. Fil’chenkov Gauge-noninvariance of quantum cosmology and vacuum

dark energy // Phys. Lett. B. – 2006. – V. 635, No 4. – P. 181–185.

28. Padmanabhan T. Classical and quantum thermodynamics of horizons in spherically sym-

metric spacetimes // Class. Quant. Grav. – 2002. – V. 19, No 21. – P. 5387–5408.

29. Coleman S. Classical Lumps and Their Quantum Descendants // New Phenomena in

Subnuclear Physics / Ed. A. Zichichi. – N. Y.: Plenum Press, 1977. – P. 297–421.

30. Einstein A. On the Generalized Theory of Gravitation // Sci. Amer. – 1952. – V. 182,

No 4. – P. 13–17.

31. Mazur P.O., Mottola E. Gravitational Condensate Stars: An Alternative to Black Holes. –

arXiv:gr-qc/0109035v5. – 2002. – 4 p. – URL: http://arxiv.org/pdf/gr-qc/0109035v5.pdf.



164 I. DYMNIKOVA

32. Dymnikova I., Poszwa A., So ltysek B. Geodesic Portrait of de Sitter – Schwarzschild

Spacetime // Grav. Cosmol. – 2008. – V. 14, No 3. – P. 262–275.
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