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Abstract

The Petrov classification of stress-energy tensors makes it possible to introduce a unified
description of dark energy and dark matter as a vacuum dark fluid based on the space-time
symmetry. In this approach a vacuum dark energy is described by a variable cosmological term
whose symmetry is reduced as compared with the Einstein cosmological term which allows
a vacuum energy to be evolving and clustering. The relevant class of solutions to the Einstein
equations implies also the existence of compact vacuum objects generically related to a dark
energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter
vacuum interior — which can be responsible for observational effects typically related to a dark
matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy
and to breaking of space-time symmetry.

Key words: dark energy, dark matter, regular black holes and solitons with de Sitter core.

Introduction

Quantum field theory in curved space-time does not contain a unique specification
for the quantum state of a system, and the symmetry of a vacuum expectation value
of a stress-energy tensor does not always coincide with the symmetry of a background
space-time [1]. In the case of the de Sitter space the renormalized expectation value of
(T,.,) for a scalar field with an arbitrary mass m and curvature coupling § is proved
to have a fixed point attractor behavior at late times ([1] and references therein) ap-
proaching, dependently on m and &£, or the Bunch —Davies de Sitter-invariant vacuum
either, for the massless minimally coupled case (m = £ = 0) the de Sitter invariant
Allen — Folacci vacuum. The last case is peculiar since the de Sitter invariant two-point
function is infrared divergent, and the vacuum states, free of this divergence, are O(4)-
invariant Fock vacua; the vacuum energy density in the O(4)-invariant case is not the
same (larger) than in de Sitter-invariant case [2].

The Petrov classification of stress-energy tensors provides opportunity to consider
vacuum in a model-independent way, as a medium specified by the algebraic structure of
its stress-energy tensor [3—5]. The Einstein cosmological term Ag,, corresponds to the
de Sitter vacuum presented by the stress-energy tensor of maximal symmetry, with all
three spacelike eigenvalues equal to the timelike eigenvalue. As a result it has an infinite
set of co-moving reference frames, so that an observer cannot in principle measure
his velocity with respect to it [3]. The maximal symmetry of a vacuum stress-energy
tensor can be reduced to the case when less than three spacelike eigenvalues are equal
to the timelike eigenvalue [4, 5]. This leads inevitably (by the Bianchi identities) to
dynamical vacuum energy represented by anisotropic vacuum dark fluid which can both
be distributed and form compact objects [6]. It generates regular space-time with the
de Sitter interior whose existence follows from requirements of regularity and certain
energy conditions on a source term in the Einstein equations [7].
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Vacuum dark fluid provides a unified description of dark energy and dark matter.
The key point is that astronomical data testify in favor of a cosmological vacuum dark
energy described by the Einstein cosmological term (see [8] and references therein). The
problem is that density of de Sitter vacuum must be constant by the contracted Bianchi
identities, while the inflationary paradigm requires its much bigger value for the earliest
stage of the Universe evolution. Vacuum dark fluid represents a cosmological vacuum
by a variable spherically symmetric cosmological term which connects smoothly two
de Sitter vacua at r — 0 and r — oo. Its symmetry is reduced as compared with
the Einstein cosmological term which allows a vacuum energy to be evolving and clus-
tering. Time-evolving and space-inhomogeneous cosmological term [5] describes regular
cosmological models dominated by vacuum dark energy [9].

The relevant class of solutions to the Einstein equations implies the existence of
compact vacuum objects generically related to a dark energy through their de Sitter
vacuum interiors: regular black holes [4, 10], their remnants [11, 12] and self-gravitating
vacuum solitons [7, 11, 13], which can be responsible for observational effects typically
related to a dark matter [6].

The question of the origin of dark matter still remains open [14]. The most popular
hypothesis is that dark matter consists of neutral weakly interacting particles created in
the hot early Universe. However, recently gathered results lead to the conclusions that
known elementary particles can not account for a dark matter, at least in the frame of
the Standard Model [15]. Dark energy particles as quanta of the cosmological constant
A (considered as the fundamental constant) were proposed in [16] for a wide range of
masses up to 10°° g including thus also observable Universe. In models of a unified
dark fluid with scalar fields, a dark energy is treated as a remnant density of a complex
scalar field and dark matter as particles of this field [17], although the form of the scalar
field potential can not be directly derived from high energy theories.

Vacuum dark fluid provides a model-independent dark energy-dark matter unifi-
cation based on the space-time symmetry. Vacuum gravitational solitons called G-
lumps [7] (they are bounded by their own gravity balanced at the surface where the
strong energy condition is violated) can be responsible for local effects related to a dark
matter in a way similar to A-particles of [16] and complex scalar field particles of [17].

Black holes (especially primordial) are recognized as good dark matter candidates
[18]. Black hole remnants (final products of Hawking evaporation) have been consid-
ered as a source of dark matter for more than two decades [19] (for a review see [14]).
The open question discussed in the literature concerns the existence of remnants: In the
case of a singular black hole it would be a Planck size black hole; however, no evident
symmetry or quantum number exists which would prevent complete evaporation. Char-
acter and scale of uncertainty concerning an endpoint of the Hawking evaporation of
a singular black hole are clearly evident in the case of a multihorizon space-time [20].
The fate of a regular black hole is unambiguous: it leaves thermodynamically stable
double-horizon remnant with the positive specific heat [11, 12].

Mass of objects is related to interior de Sitter vacuum and breaking of space-time
symmetry from the de Sitter group at the origin [7]. This has been tested by evaluating
the gravito-electroweak unification scale from the measured mass-squared differences
for solar and atmospheric neutrinos [21]. Nonlinear electrodynamics coupled to gravity
provides a non-trivial example of a matter object with dark energy interior [22, 23]
which we discuss in Section 2. In Section 1 we present the vacuum dark fluid in general
setting, and in Section 2 we show how it can provide a unified description of dark energy
and dark matter.
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1. Vacuum dark fluid

The Einstein cosmological term Ag,, with A = const, corresponds to a vacuum

stress-energy tensor of the maximal symmetry
Ao* =8rGTHY. (1)

In the Petrov classification, stress-energy tensors are classified on the basis of their
algebraic structure. When eigenvalues of T}, are real, the eigenvectors of 1), are non-
isotropic and form a comoving reference frame with a timelike eigenvector representing
a velocity.

In this classification an anisotropic fluid is specified by [IIIT] and [II(IT)], and an
isotropic fluid by [I(IIT)]. The first symbol denotes the eigenvalue related to the timelike
eigenvector. Parentheses combine degenerate eigenvalues. A comoving reference frame is
defined uniquely if and only if none of spacelike eigenvalues A\, (k = 1,2, 3) coincides with
a timelike eigenvalue \g. Otherwise there exists an infinite set of comoving reference
frames.

The maximally symmetric de Sitter vacuum (1), specified by [(IIII)] in the Petrov
classification scheme (all eigenvalues equal, all reference frames comoving), represents
the isotropic vacuum fluid. The high symmetry of a vacuum stress-energy tensor (1) can
be reduced to the case when one (or two) of the spacelike eigenvalues of T}, coincides
with its timelike eigenvalue

Pk = —p- (2)
A vacuum stress-energy tensor with a reduced symmetry is invariant under Lorentz
boosts in the k-direction. This makes impossible to single out a preferred comoving
reference frame and thus fix the velocity with respect to a vacuum fluid which is intrinsic
property of a vacuum [24].

A vacuum defined by the symmetry of its stress-energy tensor must be evidently
anisotropic (except the maximally symmetric de Sitter vacuum (1)). The Petrov clas-
sification scheme suggests three types of anisotropic vacuum fluid: [(II)(II)], [(ID)II],
[(IID)T] [6].

A spherically symmetric vacuum fluid corresponds to [(IT)(IT)] and is specified by [4]

T =T. (3)
It satisfies the equation of state (following from T}., = 0) for anisotropic perfect fluid

rdp
Pr=—p; PL=—p 5o (4)
and generates space-time with the de Sitter center whose existence follows from require-
ments of regularity and the weak energy condition on a source term in the Einstein
equations [7].
The Einstein equations with a source term specified by (3) admit the class of regular
solutions asymptotically de Sitter as » — 0 and r — oo [5, 7]

(87G)TIASY = TV = (87G) ' \H (5)
with A < A. The metric of a space-time is given by

dr?

2 = g(r)dt? — —
ds® = g(r)dt )

—r2dQ? (6)
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Fig. 1. Metric function in the case of three horizons

with the metric function [10]

2GM(r)

g(r)y=1- — %7"2; M(r) = 47r/p(:£):c2 dz, (7)
0

which evolves from the de Sitter metric function g(r) = 1 — (A + A\)r?/3 as r — 0,
to the Kottler - Trefftz metric function g(r) =1—ry/r — A2 /3,7, = 2GM , for r < 7.
where r, = (rgr,)"/3 with 72 = 3/A, is the characteristic length scale in geometry with
de Sitter center ([4] and references therein). The mass parameter (gravitational mass)

M = 7p(r)r2dr (8)

is related to interior de Sitter vacuum and breaking of space-time symmetry from the
de Sitter group at the origin [7]. Space-time can have not more than three horizons [9],
the cosmological horizon r., the black bole horizon r, < 7., and the internal horizon
re <1p (see Fig. 1).

The internal horizon r = r, is the cosmological horizon for a static observer in the
R-region 0 < r < r,. A static observer in the R-region r, < r < r. observes T_
region r, < r < 7, as a regular cosmological black hole. Its mass is limited within
M1 < M < M. The value M = M, corresponds to a double-horizon (7, = ry)
state which appears as an end-point of the Hawking evaporation. For M < M1 the
metric (6) describes a G-lump in asymptotically de Sitter space (the upper curve in
Fig. 2). Second critical mass M.,,2 corresponds to the double horizon r, = r. and
represents a regular modification of the Nariai solution.

This behavior is generic for the class of regular solutions specified by (3) and sat-
isfying the weak energy condition [7, 9]. The pictures are plotted with the density
profile [4]

p(r)=po exp(—r®/r2ry); ro=1/3/87CGpo; po=p(r — 0) = (87G) "' A; r,=2GM (9)
which describes vacuum polarization effects leading to de Sitter interior in the simple

semi-classical model for vacuum polarization in the gravitational field [11].

2. Regular cosmologies with vacuum dark energy

In the coordinates of comoving observers, the metric (6) describes regular vacuum
dominated cosmologies (vacuum density evolves smoothly from a big initial value to
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Fig. 2. Metric function for double-horizon and one-horizon configurations
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Fig. 3. Spherically symmetric vacuum space-time with one horizon

a small value) of the Lemaitré class and Kantowski—Sachs type whose dynamics depends
on the number of horizons.

In the vacuum cosmologies of the Lemaitré class, evolution starts from a nonsingular
non-simultaneous de Sitter bang followed by an anisotropic stage at which most of the
mass is produced [25]. For cosmologies of Kantowski—Sachs type, evolution starts with
a null bang from a horizon, but information about pre-bang history is available for KS
observes [9].

Two simplest cases of one-horizon configurations are shown in Fig. 3; the global
structure of space-time is the same as for de Sitter geometry but with dynamical vacuum
dark energy.

In the Lemaitré coordinates this configuration represents vacuum anisotropic models
of the Lemaitré class, in which evolution starts with a nonsingular non-simultaneous
de Sitter bang from the regular time-like surface 7(R,7) = 0 for the model with zero
and negative spatial curvature, and from r = r; for the models with the positive spatial
curvature [9].

In the Kantowski— Sachs region it corresponds to the class of regular homogeneous
T-models with vacuum dark energy [26]. Typical features of homogeneous regular T'-
models are: the existence of a Killing horizon; beginning of the cosmological evolution
from a null bang at the horizon; the existence of a regular static pre-bang region visible
to cosmological observers; creation of matter from anisotropic vacuum, accompanied
by very rapid isotropization. Detailed calculations of the spherically symmetric regular
T'-model based on the general exact solution for a mixture of the vacuum fluid and dust-
like matter, have shown the ability of cosmological T'-models to satisfy the observational
constraints [26].
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In quantum cosmology it is possible, in frame of the minisuperspace model, to adapt
cosmological constant A for description of a vacuum dark energy density jumping from
the big initial value to the small value suggested by observations [27]. The gauge-non-
invariance of quantum cosmology leads to a connection between a choice of the gauge
and quantum spectrum for a certain physical quantity which can be specified in the
framework of the minisuperspace model. There exists a particular gauge in which the
cosmological constant A is quantized [27], so that making a measurement of A today
one can find its small value with the biggest probability, while at the beginning of the
evolution, the biggest probability corresponds to its biggest value. Transitions between
quantum levels of dark energy A in the course of the Universe evolution can be related
to several scales of symmetry breaking [27].

3. Dark matter candidates

3.1. Regular black hole remnants. The quantum temperature of a horizon r,
determined by its surface gravity s is given by the Gibbons - Hawking formula:

h h
k’Th = —Rp = —
4mc

a el (10)

In space-time with three horizons, an observer in the R-region r, < r < r. can
detect the Hawking radiation from a black hole horizon r;, and from a cosmological
horizon r., and an observer in the R-region 0 < r < r, can detect radiation from the
cosmological horizon r, .

Thermodynamics is studied by applying the Padmanabhan approach relevant for
a multihorizon space with non-zero pressure and based on a canonical ensemble of
metrics (6) at the constant temperature of the horizon determined by the periodicity
of the Euclidean time in the Euclidean continuation of the Einstein action [28]. With
this approach we find temperature T}, thermodynamical energy FEj, , entropy S}, free
energy Fj,, and specific heat written below in the units c=G =h =1 [12]:

on black hol horizon

1 1 A 1
Ty=—|——=rp— i By = —rp; 11
kT I <7“b 37 877P(¢b)%>7 b= 57T (11)

on internal and cosmological horizons

1 A 1 1
KTy = — Srh—— )5 BEn=—57n; 12
n= (87Tp(7’h)7’h + 37 Th) S '8 57h (12)
on any horizon

Sy = 4w, F, = By — T),Sh; (13)

1 1
Ch = dEy /dTh; Ch_1 =5 [Swp'(rh)rh + 8mp(rn) + A+ il (14)

h

Dependence of temperature on the black hole horizon radius is shown in Fig. 4.

Fig. 4 is plotted with the density profile (9), but this curve is generic. Independent
of a particular form of the density profile p(r), T, — 0 as r, — 7, and as r. — ryp,
since surface gravity vanishes in the extrema of the metric function ¢(r). Hence the
temperature curve should have a maximum, Ty(ry,) = Tp max. It follows that specific
heat on the black hole horizon C} is negative for r > r,, and positive for r < 7,,.
At the maximum C’b_1 = 0, hence a specific heat is broken and changes its sign in the
course of quantum evaporation [11, 12]. For the case of the density profile (9), maximal
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Fig. 4. Temperature of a regular black hole in de Sitter space

temperature corresponding to the phase transition is Ty max = T3 =~ 0.2Tpi+/po/ppi-
For py = peur and Mgyr ~ 10 GeV it gives Ty, ~ 0.2 101 GeV.

The answer to the question what is an endpoint of evaporation, depends on where
move horizons. For a metric function (7) with de Sitter asymptotics at the center and
Kottler — Trefftz asymptotics for r» > r, = (r8r9)1/3, a density profile involves scaling
r/r*, and for zeros of a metric function (7) we obtain dry/dM > 0, dr,/dM < 0,
dr./dM < 0. In the region 0 < r < r,, which is the whole manifold for a static
observer, dr, > 0 by the second law of thermodynamics for horizons. The horizon r,
moves outwards and dr,/dM < 0, hence M decreases; since dr,/dM > 0, a black hole
horizon r, shrinks. Specific heat C, is positive near the double horizon, dT,/dE, > 0
and dT,/dr, < 0, hence T, decreases with increasing r,. With dT,/dM > 0 and
dT,/dr, < 0 this leads to monotonic decreasing M and T, until T, vanishes on the
double horizon r, = r, = rq where Cy > 0 [12].

The specific heat C,jl can be written as

Gyt = L <M + g”(m)) : (15)

2 Th

This formula tells unambiguously that an extreme state with a double horizon
(¢ =0) is thermodynamically stable when it appears in a minimum of the met-
ric function g¢(r), and thermodynamically unstable when it appears in its maxi-
mum [12]. We conclude that a regular black hole leaves behind a thermodynami-
cally stable double-horizon remnant. For the case of the density profile (9), its mass

is Mremnant =~ O-SMPI \V PPl/PO .

3.2. Vacuum gravitational solitons — G-lumps. This name is owing to Cole-
man’s lumps which are non-singular non-dissipative solutions of finite energy holding
themselves together by their own self-interaction [29]. The idea of lumps can be traced
back to the Einstein idea to describe an elementary particle by a regular solution of
nonlinear field equations as a “bunched field” located in the confined region where field
and energy are particularly high [30]. Vacuum soliton G-lump was proposed in 1996
in a model-independent way as a regular solution to the Einstein equations with the
de Sitter interior without horizons [11]. In terms of the proposed in 2001 gravastar model
with de Sitter core [31], a G-lump corresponds to a model-independent gravastar with
continuous density and pressures.

The criterion of stability of G-lumps to external polar perturbations given by [6]

r(pL+p) <p+(pL+p) (16)

is satisfied for a wide class of density profiles.
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Fig. 5. Potential V,(r) for G-lump with r,/ro = 1.5 (L =4)

In the field of G-lump and of the double-horizon remnant, there exist nontrivial
geodesic orbits [32] which can be used in search for their observational signatures as
dark matter candidates. Geodesics are described by

(j—a) o) = B% )=o) (145 ) i =) an)

where o is the affine parameter along geodesic, V), is the potential for time-like
geodesics, and V,, for the null geodesics. For a G-lump and extreme black hole the
potential curves differ essentially from that for a black hole and evidently depend on
the mass M . Potentials V}, have, in a certain range of masses, three extrema and, hence,
two branches of stable circular orbits separated by a gap. Potential V, shown in Fig. 5
reveals the most striking feature of geodesics in the field of G-lump: the existence of
stable bound photon orbits including circular orbits!

3.3. Electromagnetic soliton. Nonlinear electrodynamics coupled to gravity is
described by the action

S = 16% /d4x\/—_g(R — L(F)); F = Fy,F* (18)

with an arbitrary gauge invariant lagrangian L(F') with the Maxwellian asymptotics in
the weak field regime. A stress-energy tensor of a spherically symmetric electromagnetic
field has the symmetry (3). For a field satisfying the weak energy condition a spher-
ically symmetric electrically charged electrovacuum structure has obligatory de Sitter
center in which the electric field vanishes while the energy density of electromagnetic
vacuum achieves its maximal value [22]. By the Giirses-Giirsey algorithm based on
the Trautman—Newman technique [33], spherically symmetric electrovacuum solution
is transformed into a spinning electrovacuum solution asymptotically Kerr—Newman
for a distant observer. De Sitter center becomes de Sitter equatorial disk which has
both perfect conductor and ideal diamagnetic properties and displays superconduct-
ing behavior within a single spinning soliton. This behavior is generic for the class of
regular spinning solutions describing electrovacuum black holes and solitons [23]. De Sit-
ter vacuum supplies a particle with the finite positive electromagnetic mass related to
breaking of space-time symmetry. These results apply to the cases when the energy
scale is less than the Planck scale. Recently they found a certain confirmation in the
existence of minimal length scale (“closest approach” of particles) in the annihilation
reaction eTe™ — yv(v), which can be explained by the existence of the characteristic
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surface at which electromagnetic attraction is balanced by the gravitational repulsion
due to de Sitter interior [34].

This work was supported by the Polish Ministry of Science and Education for the re-
search project “Globally regular configurations in General Relativity including classical
and quantum cosmological models, black holes and particle-like structures (solitons)”
in the frame of the “Polish-Russian Agreement for collaboration in the Field of Science
and Technology.”

Pezrome
. Jlemnurosa. Knacendukarms ITerposa n TeMHast BaKyyMHAs KUIKOCTD.

Knaccudukamnus IlerpoBa T€H30pOB 3HEPIUU-UMITYIHCA TTO3BOJISIET BBECTH 00bLEIMHEHHOE
OTIMCaHNe TEMHOI SHepruM M TEMHOM MaTepnH KaK BaKyyMHOII TEMHOH JKMIKOCTU HA OCHOBE
CHMMeTpUN IPOCTpaHCcTBa-BpeMenu. [Ipu TakoMm moaxoze BaKyyMHAs TEMHAsS SHEPIUsl OMUCHI-
BAaETCA MEPEMEHHBIM KOCMOJIOTHYECKUM HYJIE€HOM, CUMMETPHUsA KOTOPOTO HapyIllieHa 10 CpaBHe-
HUIO C KOCMOJIOTMYECKNM WjeHOM Diinmreiina. B ciay4aae chepudeckoit cnvmerpun nabIsSIN-
OHHOE ypaBHEHHE COCTOAHMSA BBINOJIHAETCA TOJIbKO A4 PaJuabHOrO JaB/IeHUd, B pe3y/bTaTe
IJIOTHOCTH SHEPTHH U 002 JABJIEHUS CTAHOBATCS 3aBUCSINNMN OT BDEMEHH U IIPOCTPAHCTBEHHBIX
KOOpIMHAT. YpaBHEHUs DUHIITEHA ¢ TIPABOM YaCThIO, MPEICTABIEHHON TEH30POM JHEPrUH-
HMMILY/IbCA TAKOIO THIIA, JOIyCKAeT TAK?Ke KJIACC PeIIeHni], OMUCHIBAIOIINX KOMIAKTHbIE 00beK-
T ¢ IleHTpoM e CuTTepa: peryaspHble Y8pHbBIE ABIPHI, TPOAYKTHI UX UCIIAPEHUS U BAKYYMHBIE
TPAaBUTAIMOHHBIE COJIMTOHBI, KOTOPHIE MOTYT OTBETCTBEHHBIMU 32 HaOI0maTeabHbIe 3hdEKTH,
CBUJIETE/IbCTBYIOIINE O CyliecTBOBaHMM TEMHOI Marepun. Macca o0bekToB ¢ ge Currepos-
CKHMM SIIPOM CBA3aHA C TEMHON dHeprueil 1 HapylleHNeM CUMMETPUM IMPOCTPAHCTBA-BPEMeHNU
or rpymust ge Currepa B neHTpe 10 rpynns! [lyankape Ha 6eCKOHEYHOCTH 71 aCUMITOTHYECKI
IJIOCKUX IPOCTPAHCTB win 70 rpyunsl ge Currepa ¢ MEHBIINM 3HAYEHHEeM KOCMOJIOTHYECKOM
TIOCTOSTHHOMN 1151 acuMIrToTndeckn e CUTTEepOBCKUX HA DECKOHETHOCTHU MPOCTPAHCTE.

KoiroueBblie ciioBa: TéMHAs SHEPrust, TEMHAs MaTepus, peryysipabie 00bekTol ¢ ge Cur-
TEPOBCKUM FIPOM.
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