Том 153, кн. 4

2011

УДК 532.546

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФИЛЬТРАЦИИ НЕНЬЮТОНОВСКОЙ НЕФТИ В ТРЕЩИНОВАТО-ПОРИСТОМ ПЛАСТЕ С ПОДОШВЕННОЙ ВОДОЙ

Р.Н. Дияшев, В.М. Конюхов, В.В. Михайлов, А.Н. Чекалин

Аннотация

Рассматриваются вопросы численного моделирования двухфазной фильтрации при нестационарном воздействии на трещиновато-пористый пласт, содержащий неньютоновскую нефть и подошвенную воду. На основе анализа результатов вычислительных экспериментов изучены особенности процесса фильтрации, обусловленные обратимым характером разрушения структуры нефти в порах и трещинах при нестационарном режиме работы добывающей скважины.

Ключевые слова: численное моделирование, двухфазная фильтрация, трещиновато-пористый пласт, неньютоновская нефть, подошвенная вода.

Введение

В последние десятилетия в общем объеме добываемой нефти увеличивается доля трудноизвлекаемых запасов углеводородного сырья. К этой категории относятся пласты сложного строения (трещиновато-пористые, пористо-трещиноватые, двумодальные, слоисто-неоднородные и т. д.). Разработка таких пластов еще более осложняется, если они содержат высоковязкие нефти с неньютоновскими свойствами и подошвенную воду. В этом случае на выбор дебита скважины оказывают влияние два взаимно противоположных фактора. С одной стороны, чем меньше дебит скважины, тем ниже конус воды, поднимающейся от водоносного слоя, тем медленнее она будет обводняться и, следовательно, тем больше будет нефтеотдача пласта. С другой стороны, чем больше дебит скважины, тем больше область, занятая нефтью с разрушенной структурой, имеющей существенно меньшую вязкость (по сравнению с нефтью с неразрушенной структурой), что положительно влияет на весь процесс фильтрации. Кроме того, для трещиновато-пористых пластов целесообразно использовать периодическое воздействие на пласт с достаточно большой амплитудой [1–4]. Поэтому математическое моделирование и численное исследование процесса фильтрации таких жидкостей имеют большое теоретическое и практическое значение (см., например, работы [5–10]).

1. Математическая модель

При фильтрации двухфазной смеси в трещиновато-пористых пластах, содержащих блоки небольшого размера, давление в блоках и трещинах выравнивается практически мгновенно [6, 7]. Поэтому давление в них можно считать одинаковым, а различие фильтрационно-емкостных параметров блоков и трещин будет приводить к перетокам между ними. Обозначим через Q величину суммарного перетока нефти и воды. Фазовые перетоки Q_i (i = 1 - вода, i = 2 - нефть) зададим в виде $Q_i = \lambda_i Q$, где λ_i – доля фазы в потоке Q. При фильтрации жидкости из трещин в блоки коэффициенты λ_i определяются подвижностями воды и нефти в трещинах, а из блоков в трещины – их подвижностями в блоках.

Математическая модель двухфазной фильтрации в трещиновато-пористом пласте может быть описана системой уравнений [10]:

$$\left(\beta + \overline{\beta}\right)\frac{\partial P}{\partial t} + \operatorname{div}\left(\mathbf{V} + \overline{\mathbf{V}}\right) = 0, \quad \overline{\beta}\frac{\partial P}{\partial t} + \operatorname{div}\overline{\mathbf{V}} = -Q, \tag{1}$$

$$\overline{\mathbf{V}} = -\frac{\overline{K}}{\mu_1} \overline{K}^* \left(\nabla P + \rho \mathbf{g} \right), \quad \mathbf{V} = -\frac{K}{\mu_1} K^* \left(\nabla P + \rho \mathbf{g} \right), \tag{2}$$

$$\operatorname{div} \mathbf{V}_1 + \beta_1^* S \frac{\partial P}{\partial t} + m \frac{\partial S}{\partial t} = \lambda \mathbf{Q}, \quad \operatorname{div} \overline{\mathbf{V}}_1 + \overline{\beta}_1^* \overline{S} \frac{\partial P}{\partial t} + \overline{m} \frac{\partial \overline{S}}{\partial t} = -\lambda \mathbf{Q}, \quad (3)$$

$$\mathbf{V}_{1} = f\mathbf{V} - K\rho_{1-2}\Psi\mathbf{g}, \quad \overline{\mathbf{V}}_{1} = \overline{f} \cdot \overline{\mathbf{V}} - \overline{K}\rho_{1-2}\overline{\Psi}\mathbf{g}, \quad \lambda = \begin{cases} f(S), & Q \le 0\\ \overline{f}(\overline{S}), & Q > 0 \end{cases}, \quad (4)$$

$$\begin{split} \beta &= \beta_1^* S + \beta_2^* (1-S), \quad \overline{\beta} = \overline{\beta}_1^* S + \overline{\beta}_2^* (1-\overline{S}), \quad \beta_i^* = \beta_c + m\beta_i, \quad \overline{\beta}_i^* = \overline{\beta}_c + \overline{m}\overline{\beta}_i, \\ K^* &= K_1^* + \mu K_2^*, \quad \overline{K}^* = \overline{K}_1^* + \mu \overline{K}_2^*, \quad f(S) = K_1^*/K^*, \quad \overline{f}(\overline{S}) = \overline{K}_1^*/\overline{K}^*, \\ \Psi &= f K_2^*/\mu_2, \quad \mu = \mu_1/\mu_2, \quad \rho = \rho_2 + \rho_{1-2}f, \quad \rho_{1-2} = \rho_1 - \rho_2, \end{split}$$

где чертой сверху обозначены параметры блоков, без черты – трещин; t – время; P, S, \mathbf{V} – давление, водонасыщенность, скорость фильтрации суммарного потока; K, m – абсолютная проницаемость и пористость; f(S) – доля воды в суммарном потоке; $\beta_i^*, K_i^*, \rho_i, \mu_i, \mathbf{V_i}$ – упругоемкость среды с *i*-й фазой, относительная фазовая проницаемость, плотность, вязкость и скорость фильтрации *i*-й фазы; $\beta_c, \overline{\beta}_c, \beta_i$ – коэффициенты упругоемкости трещин, поровой среды блоков и *i*-й фазы; **g** – вектор ускорения силы тяжести.

Фазовые проницаемости \overline{K}_{i}^{*} и K_{i}^{*} для блоков и трещин существенно различны. Это связано с тем, что в трещинах снижается роль капиллярных сил и (в силу значительной разницы вязкостей нефти и воды) создаются условия вытеснения нефти водой с развитым языкообразованием, что приводит к линейной зависимости фазовых проницаемостей K_{i}^{*} от насыщенности:

$$K_1^* = \begin{cases} 0, & 0 \le S \le S_*, \\ (S - S_*)/(1 - S_*), & S_* \le S \le 1, \end{cases} \quad K_2^* = \begin{cases} 1 - S/S^*, & 0 \le S \le S^*, \\ 0, & S^* \le S \le 1. \end{cases}$$

Относительные фазовые проницаемости блоков определим обычными кубическими зависимостями

$$\overline{K}_1^* = \begin{cases} 0, & 0 \le \overline{S} \le \overline{S}_*, \\ \left(\overline{S}/\overline{S}_* - 1\right)^3, & \overline{S}_* \le \overline{S} \le 1, \end{cases} \quad \overline{K}_2^* = \begin{cases} \left((\overline{S}^* - \overline{S})/(\overline{S}^* - \overline{S}_*)\right)^3, & 0 \le \overline{S} \le \overline{S}^*, \\ 0, & \overline{S}^* \le \overline{S} \le 1. \end{cases}$$

Характерный вид зависимости [11] обратной величины вязкости $\nu = 1/\mu_2$ нефти от модуля скорости фильтрации $\gamma = |\mathbf{V}|$ для высоковязкой неньютоновской нефти, представленной на рис. 1, может быть описан функцией

$$\nu\left(\gamma\right) = \begin{cases} \nu_2 + a\gamma^b e^{-c\gamma}, & \gamma \in (0, \gamma_A), \\ \nu_1, & \gamma > \gamma_A. \end{cases}$$
(5)

Рис. 1. Зависимость обратной величины ν вязкости нефти от модуля скорости фильтрации γ

Значения параметров $\nu_1 = 1/\mu_2^A$, $\nu_2 = 1/\mu_2^B$, a, b и c определяются из экспериментальных данных по величинам вязкости нефти с разрушенной (μ_2^A) и неразрушенной (μ_2^B) структурами, по координатам γ_D и γ_A точек перегиба и максимума функции $\nu(\gamma)$: $c = \gamma_A/(\gamma_A - \gamma_D)^2$, $b = c\gamma_A$, $a = (\nu_1 - \nu_2)\gamma_A^b \cdot e^{a\gamma_A}$.

В качестве примера рассмотрим двухфазную плоскорадиальную фильтрацию к вертикальной добывающей скважине радиусом R_c в разрезе горизонтального слоистого трещиновато-пористого пласта толщиной H и протяженностью R_n , схематично изображенного на рис. 2. Координатная ось Oz направлена вниз по оси скважины, а ось Or – вдоль кровли пласта, $H = \sum_{k=1}^{N} H_k$, где $H_k = Z_k - Z_{k-1}$ – толщина k-го слоя с границами $z = Z_{k-1}$ и $z = Z_k$. Здесь и в дальнейшем проницаемые участки границ области фильтрации изображаются штриховыми линиями, а непроницаемые – сплошными.

Решение задачи отыскивается в области $D = \{z \in [0, H], r \in [R_c, R_n]\}$ с непроницаемыми кровлей $Z_0 = 0$ и подошвой $Z_N = H$ пласта. На границах Z_k смежных слоев выполняются обычные условия сопряжения – непрерывность давления и нормальной к ней составляющей скорости фильтрации.

В начальный момент времени t = 0 все слои пласта, кроме N-го нижнего пропластка, содержат только подвижную нефть и связанную воду. Нижний слой заполнен водой, то есть $S(r, Z, 0) = \overline{S}(r, Z, 0) = 1$ при $r \in [R_c, R_{\pi}], Z \in [Z_{N-1}, Z_N]$. Во всей области D задается гидростатическое распределение давления.

Добывающая скважина работает в режиме заданного дебита q

$$q(t) = \int_{0}^{H} \left(V_r \mid_{r=R_c} + \overline{V}_r \mid_{r=R_c} \right) \, dz, \tag{6}$$

где V_r – нормальная составляющая скорости фильтрации при $r = R_c$. Для единственности решения на этой границе необходимо задать дополнительное условие для давления. Будем полагать, что поток ортогонален к поверхности скважины. В этом случае давление гидростатически распределено вдоль скважины

$$P|_{r=R_{c}} = P_{c} + g\rho_{1-2} \int_{0}^{\overline{Z}} \frac{KK_{1}^{*} + \overline{KK}_{1}^{*}}{KK^{*} + \overline{KK}^{*}} \bigg|_{r=R_{c}} dz,$$
(7)

Рис. 2. Вертикальный разрез слоисто-неоднородного пласта

где неизвестная величина P_c определяется с помощью (6) в ходе решения задачи по заданному дебиту q. Условия непроницаемости кровли и подошвы при z = 0 и z = H задаются равенствами: $V_{1z} = \overline{V}_{1z} = V_{2z} = \overline{V}_{2z} = 0$.

При моделировании периодического воздействия на пласт зависимость дебита скважины от времени имеет вид:

$$q(t) = \begin{cases} q_0, & 0 < t \le t_0, \\ q_{\pi}, & t_{k-1} < t \le t_{k-1} + \tau_1, \\ 0, & t_{k-1} + \tau_1 < t \le t_k, \end{cases}$$
(8)

где q_0 – начальный постоянный дебит скважины, $q_{\rm n}$ – ее дебит в периодическом режиме работы с полупериодом τ_1 , τ_2 – полупериод простоя скважины. На границе пласта при $r = R_{\rm n}$ граничные условия для давления определяются соотношениями:

$$\frac{\partial P(r, z, t)}{\partial r} |_{r=R_{\pi}} = 0, \quad 0 \le z \le Z_{N-1},$$

$$P(r, z, t) |_{r=R_{\pi}} = P_{\pi} + g\rho_{1-2} \left(Z - Z_{N-1} \right), \quad Z_{N-1} \le z \le Z_N,$$
(9)

где $P_{\rm n}$ – заданное давление на кровле водоносного слоя. В рассматриваемых задачах вода поступает в пласт на внешнем контуре через этот слой, поэтому для насыщенности при $Z_{N-1} \leq z \leq Z_N$ имеют место условия: $S(R_{\rm n}, z, t) = \overline{S}(R_{\rm n}, z, t) = = 1$.

2. Численная модель

Область $D = \{Z \in [0, H], r \in [R_c, R_n]\}$ покроем сеткой D_h с равномерным шагом $h_r = (R_n - R_c)/N_r$ по переменной r и с неравномерным шагом по направлению OZ. При этом в каждом слое толщиной H_k шаг по Z возьмем равномерным: $h_k = H_k/N_k, \ k = 1, \ldots, N_k,$ где N_k – число узлов в слое. С целью улучшения аппроксимации потоков $\mathbf{V}, \overline{\mathbf{V}}$ и $\mathbf{V_i}, \overline{\mathbf{V}_i}$ будем рассматривать сдвинутую на полшага сетку по r и Z. Тогда на границах области D и слоев будут располагаться не узлы сетки D_h , а границы элементарных ячеек $D_{i,k}$. Всего сетка будет содержать $N_r \cdot N_z$ внутренних узлов, где $N_z = \sum_{k=1}^N N_k$. Обозначим через h_τ временной шаг и запишем в области D_h консервативные разностные уравнения, аппроксимирующие уравнения системы (1)–(8) при $i = 1, \ldots, N_r, \ k = 1, \ldots, N_z$:

$$\Lambda V_{i,k}^{t+h_{\tau}} = r_{i-1/2} h_r h_k \left(\beta_{i,k} P_{t,i,k} - Q_{i,k}^{t+h_{\tau}} \right), \tag{10}$$

$$\Lambda \overline{V}_{i,k}^{t+h_{\tau}} = r_{i-1/2} h_r h_k \left(\overline{\beta}_{i,k} (P_{t,i,k} + Q_{i,k}^{t+h_{\tau}}) \right), \tag{11}$$

$$\Lambda V_{1,i,k}^{t+h_{\tau}} = mr_{i-1/2}h_{r}h_{k}\left(J_{t,i,k} + \frac{\beta_{1,i,k}^{*}}{m}J_{i,k}^{t,t+h_{\tau}}P_{t,i,k} - \frac{\lambda_{i,k}}{m}Q_{i,k}^{t+h_{\tau}}\right),$$
(12)

$$\Lambda \overline{V}_{1,i,k}^{t+h_{\tau}} = \overline{m}r_{i-1/2}h_{r}h_{k}\left(\overline{J}_{t,i,k} + \frac{\overline{\beta}_{1,i,k}^{*}}{\overline{m}}\overline{J}_{i,k}^{t,t+h_{\tau}}P_{t,i,k} + \frac{\lambda_{i,k}}{\overline{m}}Q_{i,k}^{t+h_{\tau}}\right), \qquad (13)$$

$$J_{i,k} = \frac{1}{r_{i-1/2}h_r h_k} \int_{D_{i,k}} Sr \, dr \, dz, \quad \overline{J}_{i,k} = \frac{1}{r_{i-1/2}h_r h_k} \int_{D_{i,k}} \overline{S}r \, dr \, dz, \tag{14}$$

$$V_{i+1/2,k}^{t+h_{\tau}} = h_k \zeta_i \left(KK^* \right)_{i+1/2,k} \left(P_{i+1,k}^{t+h_{\tau}} - P_{i,k}^{t+h_{\tau}} \right), \tag{15}$$
$$\overline{V}_{i+1/2,k}^{t+h_{\tau}} = h_k \zeta_i \left(\overline{KK^*} \right)_{i+1/2,k} \left(P_{i+1,k}^{t+h_{\tau}} - P_{i,k}^{t+h_{\tau}} \right),$$

$$V_{i,k+1/2}^{t+h_{\tau}} = A_{i,k+1/2} \left\{ \left(P_{i+1,k}^{t+h_{\tau}} - P_{i,k}^{t+h_{\tau}} \right) - \gamma_{1-2} \left(f_{i,k+1}h_{k+1} + f_{i,k}h_{k} \right) \right\},$$

$$\overline{V}_{i,k+1/2}^{t+h_{\tau}} = \overline{A}_{i,k+1/2} \left\{ \left(P_{i+1,k}^{t+h_{\tau}} - P_{i,k}^{t+h_{\tau}} \right) - \gamma_{1-2} \left(\overline{f}_{i,k+1}h_{k+1} + \overline{f}_{i,k}h_{k} \right) \right\},$$

$$V_{1,i+1/2,k}^{t+h_{\tau}} = f_{i+1/2,k}V_{i+1/2,k}^{t+h_{\tau}}, \quad \overline{V}_{1,i+1/2,k}^{t+h_{\tau}} = \overline{f}_{i+1/2,k}\overline{V}_{i+1/2,k}^{t+h_{\tau}}, \quad (16)$$

$$V_{1,i,k+1/2}^{t+h_{\tau}} = f_{i,k+1/2}V_{i,k+1/2}^{t+h_{\tau}} - r_{i-1/2}\gamma_{1-2}h_{r}K_{i,k}\psi_{i,k+1/2},$$

$$\overline{V}_{1,i,k+1/2}^{t+h_{\tau}} = \overline{f}_{i,k+1/2}\overline{V}_{i,k+1/2}^{t+h_{\tau}} - r_{i-1/2}\gamma_{1-2}h_{r}\overline{K}_{i,k}\overline{\psi}_{i,k+1/2},$$

$$\zeta_{i} = \begin{cases} \ln^{-1} \left(h_{r}/(2R_{C}) \right), & i - 1/2 = 1/2, \\ \ln^{-1} \left((2i+1) / (2i-1) \right), & 1 \le i < i_{0}, \\ i, & i > i_{0}, \end{cases}$$

$$A_{i,k+1/2} = 2r_{i-1/2}h_{r} \left(h_{k} / (K_{i,k}K_{i,k}^{*}) + h_{k+1} / (K_{i,k+1}K_{i,k+1}^{*}) \right)^{-1}.$$

$$A_{i,k+1/2} = 2r_{i-1/2}h_r \left(h_k / (\overline{K}_{i,k}\overline{K}_{i,k}^*) + h_{k+1} / (\overline{K}_{i,k+1}\overline{K}_{i,k+1}^*) \right) ,$$

$$\overline{A}_{i,k+1/2} = 2r_{i-1/2}h_r \left(h_k / (\overline{K}_{i,k}\overline{K}_{i,k}^*) + h_{k+1} / (\overline{K}_{i,k+1}\overline{K}_{i,k+1}^*) \right)^{-1} ,$$

где $y = y^t$ и $y^{t+h_{\tau}}$ – обозначения сеточных функций на временных слоях t и $t+h_{\tau}$, $y_t = (y^{t+h_{\tau}}-y)/h_{\tau}$ и $\Lambda y_{i,k} = y_{i+1/2,k} - y_{i-1/2,k} + y_{i,k+1/2} - y_{i,k-1/2}$ – разностные аналоги производной по времени и оператора дивергенции, ζ_i – поправочные коэффициенты [12], учитывающие логарифмический характер распределения давления в окрестности скважины при аппроксимации потоков $V_{i+1/2,k}^{t+h_{\tau}}$ и $\overline{V}_{i+1/2,k}^{t+h_{\tau}}$. При вычислении величин $K_{i+1/2,k}^*$ и $\overline{K}_{i+1/2,k}^*$ используются соответственно значения $S_{i+1/2,k} = 0.5 (J_{i+1,k} + J_{i,k})$ и $\overline{S}_{i+1/2,k} = 0.5 (\overline{J}_{i+1,k} + \overline{J}_{i,k})$.

Уравнения переноса (12), (13) используются для определения водонасыщенностей S и \overline{S} . При этом вводятся их среднеинтегральные значения (14) в элементарных ячейках. Для нахождения потоков (16) воды через границы элементарных ячеек необходимо вычислить значения функций S, \overline{S} в полуузлах сетки по их среднеинтегральным значениям $J_{i,k}, \overline{J}_{i,k}$. Точность разностных схемы для уравнений переноса существенно зависит от того, как находятся эти значения.

В трещинах насыщенность изменяется значительно быстрее, чем в блоках, в силу меньшей пористости, более высокой проницаемости и линейной зависимости относительных фазовых проницаемостей K_i^* , \overline{K}_i^* от насыщенности. Поэтому методы вычисления насыщенности в блоках и трещинах различны.

Значения водонасыщенности блоков в полуузлах определяются в рамках подхода [13] с учетом конечности скорости фронта вытеснения нефти водой с использованием дробно-линейной интерполяции среднеинтегральных значений $\overline{J}_{i,k}$. Например, при $V_{i+1/2,k} < 0$ для горизонтального потока жидкости на границе $\Gamma_{i+1/2,k}$, направленного из ячейки $D_{i+1,k}$ в ячейку $D_{i,k}$, расчетные формулы для насыщенности имеют вид:

$$\overline{S}_{i+1/2,k} = \begin{cases} \overline{S}^*, & \overline{S}^* - \overline{\varepsilon}^* \leq \overline{J}_{i,k}, \\ \overline{F}, & \overline{F} \in [\overline{J}_{i+1,k}, \overline{J}_{i,k}], & \overline{S}_* + \overline{\varepsilon}_* \leq \overline{J}_{i,k} < \overline{S}^* - \overline{\varepsilon}^*, \\ \overline{J}_{i,k}, & \overline{F} \notin [\overline{J}_{i+1,k}, \overline{J}_{i,k}], & \overline{S}_* + \overline{\varepsilon}_* \leq \overline{J}_{i,k} < \overline{S}^* - \overline{\varepsilon}^*, \\ \overline{S}_*, & \overline{J}_{i,k} \leq \overline{S}^* + \overline{\varepsilon}_*, \end{cases}$$

$$\overline{F} = \begin{cases} 0.5 \left(\overline{J}_{i-1,k} + \overline{J}_{i,k}\right) \overline{J}_{i,k} / \overline{J}_{i-1,k}, & \overline{J}_{i-1,k} \geq \overline{J}_{i,k}, \\ 0.5 \left(1 + \overline{J}_{i,k} - (1 - \overline{J}_{i,k})^2 / (1 - \overline{J}_{i-1,k})\right), & \overline{J}_{i-1,k} < \overline{J}_{i,k}, \end{cases}$$

$$(17)$$

где $\overline{\varepsilon}^*$, $\overline{\varepsilon}_*$ – малые величины, первая из которых не превышает предполагаемой погрешности вычисления $\overline{S}_{i,k}$, а вторая составляет не больше двух третей амплитуды скачка насыщенности. Аналогичным образом записываются соотношения при $V_{i+1/2,k} > 0$.

В вертикальном направлении абсолютная проницаемость имеет разрывы на границах слоев. В этом случае значения $\overline{S}_{i,k+1/2}$ вычисляются по схеме «против потока»:

$$\overline{S}_{i,k+1/2} = \begin{cases} \overline{S}_{i,k+1}, & \overline{V}_{i,k+1/2} > 0, \\ \overline{S}_{i,k}, & \overline{V}_{i,k+1/2} < 0. \end{cases}$$

Для определения значений насыщенности в трещинах по направлению переменой *r* используется формула

$$S_{i+0.5,k} = \begin{cases} S_{*}, & J_{i,k} \leq S_{*} + \varepsilon_{*}, \\ J_{i,k}, & S_{*} + \varepsilon_{*} < J_{i,k} < S^{*} - \varepsilon^{*}, \\ S^{*}, & J_{i,k} \geq S^{*} - \varepsilon^{*}, \end{cases}$$
(18)

в которой ε_* и ε^* – малые величины, характеризующие погрешность вычисления насыщенности в трещинах.

Принципиальным моментом расчета является правильный выбор значений насыщенности, при которых следует вычислять вертикальный поток $V_{1,i,k+1/2}^{t+h_{\tau}}$ воды. Схема с аппроксимацией «против потока» предписывает брать значения насыщенности из той ячейки, из которой вытекает водяная фаза. Однако здесь не только возникает неопределенность в выборе значения насыщенности на границе ячейки, когда $V_{1,i,k+1/2}^{t+h_{\tau}}$ имеет разные знаки при значениях S в соседних ячейках, но и само определение потока $V_{1,i,k+1/2}^{t+h_{\tau}}$ по значениям $J_{1,i,k\mp 1}$ может оказаться ошибочным. Кроме того, необходимо учитывать, что из-за наличия силы тяжести насыщенность S имеет скачок на границах разрыва абсолютной проницаемости. Поэтому для вычисления потока $V_{1,i,k+1/2}^{t+h_{\tau}}$ используются формулы, полученные численно-аналитическим методом [14, 15] с учетом характерных особенностей решения задачи:

$$V_{1,i,k+1/2}^{t+h_{\tau}} = \begin{cases} \min\left(V_{1,i,k}^{t+h_{\tau}}, V_{1}^{(m)}\right) &, & J_{i,k+1} < S^{(m)} &, & J_{i,k} < S^{(m)}, \\ \min\left(V_{1,i,k+1}^{t+h_{\tau}}, V_{1}^{(m)}\right) &, & J_{i,k+1} > S^{(m)} &, & J_{i,k} > S^{(m)}, \\ V_{1}^{(m)} &, & J_{i,k+1} < S^{(m)} &, & J_{i,k} > S^{(m)}, \\ \min\left(V_{1,i,k}^{t+h_{\tau}}, V_{1,i,k+1}^{t+h_{\tau}}\right) &, & J_{i,k+1} > S^{(m)} &, & J_{i,k} < S^{(m)}, \end{cases}$$
(19)

где $S^{(m)} = \max\{S_*; \min\{E, S^*\}\},\$

$$E = S_* + (S^* - S_*) \left[-\mu/(1-\mu) + \sqrt{(\mu/(1-\mu))^2 + \mu/(1-\mu)(1-V_{i,k+1/2}^{t+h_\tau}/A^{(m)})} \right],$$

$$A^{(m)} = r_{i-1/2}\gamma_{1-2}h_r \min\left\{K_{i,k}, K_{i,k+1}\right\}, \ V_1^{(m)} = f\left(S^{(m)}\right)V_{i,k+1/2}^{t+h_\tau} - A^{(m)}\psi\left(S^{(m)}\right).$$

3. Алгоритм решения задачи

Расчет на временном слое $t + h_{\tau}$ начинается с построения матрицы алгебраической системы уравнений для нахождения давления, полученных суммированием уравнений (10) и (11) с учетом соотношений (15). Элементы этой матрицы вычисляются по известным значениям $P_{i,k}$, $S_{i,k}$, $\overline{S}_{i,k}$ в момент времени t. Затем итерационным методом [14] определяется поле давления $P_{i,k}^{t+h_{\tau}}$. По найденным значениям $P_{i,k}^{t+h_{\tau}}$ и $\overline{\nabla}^{t+h_{\tau}}$ (15) двухфазной смеси в трещинах и блоках, а из разностного уравнения (10) – суммарный переток $Q_{i,k}^{t+h_{\tau}}$. Далее по формулам (16)–(19) находятся скорости $V_1^{t+h_{\tau}}$ и $\overline{\nabla}_1^{t+h_{\tau}}$ фильтрации воды в трещинах и блоках через границы элементарных ячеек $D_{i,k}$, а по явным схемам (12), (13) – среднеинтегральные значения водонасыщенностей $J_{i,k}^{t+h_{\tau}}$ в узлах сетки с учетом формулы (5) определяются величины вязкости нефти в трещинах и блоках. После вычисления и водонасыщенности рассчитываются с учетом формулы (5) определяются величины вязкости нефти в трещинах и блоках. После вычисления и водонасыщенности рассчитываются все необходимые характеристики разработки (обводненность скважины, количество добытой нефти, текущая нефтеотдача пласта и т. д.) и производится балансовый контроль по каждой фазе.

На основе построенных алгоритмов разработан пакет программ для расчета процесса двухфазной плоскорадиальной фильтрации неньютоновской нефти в вертикальном разрезе горизонтального слоистого трещиновато-пористого пласта при наличии в нем подошвенной воды. С помощью этого пакета проведены многовариантные вычислительные эксперименты.

4. Результаты исследований

Особенности изучаемого процесса демонстрируются на примере, типичном для условий разработки 303-й залежи Протвинского горизонта Республики Татарстан. Фильтрационно-емкостные характеристики пласта, состоящего из пяти слоев, приведены в табл. 1. Параметры фаз соответствуют данным по вертикальной добывающей скважине №38234, работающей в режиме заданного суммарного дебита q и вскрывающей три верхних пропластка: $\rho_1 = 1000 \text{ кг/м}^3$, $\rho_2 = 800 \text{ кг/м}^3$, $\mu_1 = 1 \text{ мПа·с}$, $\mu_2^A = 20 \text{ мПа·с}$, $\mu_2^B = 100 \text{ мПа·с}$, $\gamma_A = 0.02 \text{ м/сут}$, $\gamma_D = 0.01 \text{ м/сут}$, $\beta_1 = 2.8 \cdot 10^{-4} \text{ МПа}^{-1}$, $\beta_2 = 6 \cdot 10^{-4} \text{ МПа}^{-1}$, $\beta_c = \overline{\beta}_c = 1.5 \cdot 10^{-4} \text{ МПа}^{-1}$. В начальный момент времени t = 0: $S(r, z, 0) = S_{*i}$, $\overline{S}(r, z, 0) = \overline{S}_{*i}$, $i = 1, \ldots, 5$.

Рассмотрим сначала результаты вычислительных экспериментов по изучению режимов работы скважины с постоянным дебитом q. На рис. 3 приведена зависимость объема Q_2 (м³) извлеченной из пласта нефти от величины дебита q (м³/сут) скважины для двух значений суммарного количества Q_{π} (м³) жидкости, добытой из пласта. Нетрудно видеть, что эта зависимость является немонотонной. Как и следовало ожидать, наибольший отбор нефти из пласта имеет место при малых дебитах. Наименьшее значение Q_2 достигается в окрестности $q = 100 \text{ м}^3/\text{сут}$. Рост функции $Q_2(q)$ при $q > 100 \text{ м}^3/\text{сут}$ обусловлен тем, что положительный фактор – увеличение размера области D_p фильтрации с разрушенной структурой нефти –

Табл. 1

№	H_i, \mathbf{M}	m_i	\overline{m}_i	K_i , mkm ²	\overline{K}_i , mkm ²	S_{*i}	\overline{S}_{*i}	S_i^*	\overline{S}_i^*
1	5	0.02	0.10	1.1	0.10	0.1	0.4	0.9	0.8
2	5	0.02	0.16	1.1	0.40	0.1	0.3	0.9	0.8
3	4	0.02	0.11	1.1	0.10	0.1	0.4	0.9	0.8
4	4	0.02	0.10	0.1	0.01	0.1	0.4	0.9	0.8
5	4	0.10	0.10	0.5	0.50	0.0	0.0	1.0	1.0

Параметры слоев пятислойного трещиновато-пористого пласта

Рис. 3. Зависимость количества Q_2 (м³) добытой из пласта нефти от суммарного дебита q (м³/сут) скважины: 1 – $Q_{\pi} = 10^4$ м³, 2 – $Q_{\pi} = 2 \cdot 10^4$ м³

начинает преобладать над отрицательным – высотой поднятия конуса подошвенной воды в окрестности скважины.

При $q = 10 \text{ м}^3/\text{сут}$ область D_p весьма мала и локализована в окрестности скважины. С ростом величины q размер D_p увеличивается (см. рис. 4). Зона перехода, в которой вязкость нефти Изменяется от μ_2^A до μ_2^B , является весьма узкой и локализована вблизи границы области D_p . Эта зона изображена на рисунке зеленовато-коричневой полоской. Как показал анализ результатов расчетов, толщина переходной зоны практически не зависит как от величины дебита q, так и от значений параметров γ_A , γ_D , μ_2^A , μ_2^B .

Интересной особенностью области D_p является ее вытянутость вдоль границы Z_3 слабо- и высокопроницаемого слоев, обусловленная спецификой совместного движения разноплотностных фаз под действием силы тяжести – растеканием водяной фазы по кровле Z_3 слабопроницаемого пропластка. Повышение водосодержания в окрестности границы Z_3 приводит к увеличению скорости фильтрации и формированию вытянутой конфигурации области D_p .

Численные исследования показали также, что качественная картина распределения насыщенности в пласте мало зависит от дебита скважины. Характерный вид карт водонасыщенности в блоках (a) и трещинах (b) на момент отбора из пласта $Q_{\mathbf{x}} = 3 \cdot 10^4$ м³ жидкости иллюстрирует рис. 5. Хорошо видны конусы воды, поднимающиеся из нижнего водоносного пропластка. Различие распределений водонасыщенности \overline{S} и S обусловлено неоднородностью структуры пласта по блокам и трещинам: растекание водяной фазы по границе Z_3 происходит из-за низкой абсолютной проницаемости блоков в четвертом слое. Небольшой подъем воды по блокам и трещинам происходит также в окрестности внешней границы пласта. Он связан с наличием вертикальной составляющей потока, возникающей из-за непроницаемости верхних четырех слоев на внешнем контуре при $0 \le z \le Z_4$.

Весьма интересны зависимости дебитов q_i жидкости из отдельных вскрытых слоев (i = 1, 2, 3) от дебита $q = q_1 + q_2 + q_3$ скважины. На рис. 6 представлены графики $q_i = q_i(q)$ на момент времени, соответствующий отбору из пласта количества жидкости $Q_{\mathbf{x}} = 3 \cdot 10^4 \text{ м}^3$. Дебит q_1 первого слоя составляет около 7% от величины q, и эта доля слабо зависит от q. Вклад второго слоя в дебит q значительно больше: с увеличением q он возрастает от 10% при $q = 10 \text{ м}^3/\text{сут}$ до 40% при $q = 400 \text{ м}^3/\text{сут}$. На третий слой приходится более половины дебита скважины, хотя его толщина H_3 в три раза меньше ее длины, равной $H_1 + H_2 + H_3$. Доля величины q_3 снижается от 82% при $q = 10 \text{ м}^3/\text{сут}$ до 52% при $q = 400 \text{ м}^3/\text{сут}$. Дебиты q_i изменяются со временем в процессе разработки пласта. В рассматриваемом примере $q_1(t)$ слабо зависит от времени t, а $q_2(t)$ и $q_3(t)$ являются монотонно возрастающей и убывающей функциями t соответственно.

Обводненность дебитов q_i скважины по отдельным слоям существенно различается. Так, при $Q_{\mathbf{x}} = 3 \cdot 10^4 \text{ м}^3$ из третьего слоя в скважину поступает практически одна вода, из второго – сильно обводненная смесь, а из первого – только нефть. Это значит, что конус подошвенной воды, образующийся в пласте во время работы скважины, на момент отбора из пласта указанного количества жидкости $Q_{\mathbf{x}}$ не достигает первого слоя (см. рис. 7, a).

Очевидно, что если прекратить отбор жидкости из пласта, то за счет разности удельных весов нефти и воды под действием силы тяжести будет происходить оседание конуса. В результате после завершения полупериода простоя скважины с возобновлением ее работы можно ожидать снижения обводненности дебита q. Безусловно, из-за высокой вязкости нефти полупериод простоя должен быть достаточно продолжительным. Особенности фильтрационного процесса при гравитационном расслоении фаз демонстрирует рис. 7, на котором приведены карты водонасыщенности и поля направлений вектора скорости фильтрации в трещинах на момент остановки t_0 работающей скважины, когда объем добытой из пласта продукции составляет $Q_{\rm ж} = 3 \cdot 10^4 \text{ м}^3$, и на момент $t_n = t_0 + 90$ сут полупериода простоя. Нанесенные на карту стрелки показывают направление движения жидкости в пласте.

Перед остановкой скважины (рис. 7, *a*) верхняя часть границы конуса располагается в первом пропластке. Обводненность $\Theta \mid_{t_0} = 95\%$. После остановки скважины водяной конус начинает опускаться. Вначале снижение происходит относительно быстро с существенным замедлением. Поэтому в дальнейшем процесс растекания конуса становится весьма медленным. Так, например, граница конуса воды покидает второй слой через 90 сут. Как видно на рис. 7, *b*, после остановки скважины формируется «вращательный» характер движения, при котором в середине пласта поток направлен вверх, а по краям – вниз. Такое движение обусловлено гравитационными силами, стремящимися сделать межфазную границу горизонтальной. Отметим, что после повторного ввода скважины при $t = t_n$ в эксплуатацию с тем же дебитом 400 м³/сут его обводненность Θ снизилась до 78%.

Перейдем теперь к некоторым результатам изучения циклического воздействия на трещиновато-пористый пласт, которое, как известно, применяется для повышения эффективности выработки блоков. После остановки скважины во время полупериода простоя τ_2 происходит интенсивный массообмен между блоками и трещинами за счет работы упругих сил, которые достаточно быстро затухают. Для выбора оптимальных параметров воздействия нужно решить вопрос о соотношении полупериодов работы τ_1 и простоя τ_2 .

Рис. 4. Конфигурация области D_p с разрушенной структурой нефти в пласте для двух вариантов работы скважины с постоянным дебитом: a и b – q=50 и $q=400~{\rm m}^3/{\rm cyr}$

Рис. 5. Распределения насыщенности в блоках (a) и трещинах (b) при $q = 50 \text{ м}^3/\text{сут}$

Рис. 6. Зависимость дебитов q_1, q_2, q_3 слоев от величины q при $Q_{\kappa} = 3 \cdot 10^4$ м³

Рис. 7. Распределение насыщенности S и поле направлений скорости V в трещинах при $q=400~{\rm m}^3/{\rm сут}$: a– в один из моментов этапа оседания конуса воды после остановки скважины, b– в момент отбора из пласта количества жидкости $Q_{\rm ж}=3\cdot 10^4~{\rm m}^3$

Рис. 8. Зависимости относительных перетоков П_c и П₂ двухфазной смеси (вода+нефть) (1, 1') и нефтяной фазы (2,2') из блоков в трещины от полупериода τ_1 работы скважины. Кривые 1, frm-e и 1', 2' – варианты I и II соответственно

Гравитационные силы могут оказать определенное влияние на выбор времени простоя τ_2 . Однако в данном случае оседание конуса происходит достаточно медленно из-за высокой вязкости нефти с неразрушенной структурой. Поэтому на выбор соотношения между τ_1 и τ_2 существенно большее влияние оказывает неньютоновское свойство нефти. В самом деле, действие упругих сил, как известно, распространяется в пласте на расстояние, пропорциональное величине $\sqrt{K\tau_1 (K_1^* + \mu K_2^*)/\beta}$. Так как $\mu_2 = \mu_2 (|\mathbf{V}|)$, то во время работы скважины радиус воздействия будет определяться вязкостью нефти с разрушенной структурой μ_2^B , а при остановке скважины – вязкостью μ_2^A с неразрушенной структурой. В рассматриваемом примере эти величины отличаются в 5 раз. Следовательно, для того чтобы радиусы воздействия при пуске и остановке скважин были близки между собой, должно выполняться соотношение $\tau_2 > 2\tau_1$.

На рис. 8 показано влияние полупериода τ_1 работы скважины на суммарный переток Π_c (линии 1, 1') и на переток Π_2 нефти из блоков в трещины (линии 2,2'), нормированные на соответствующие значения перетоков при постоянном дебите скважины. Варианты I и II соответствуют периодическому воздействию на пласт при $\tau_2 = 2\tau_1$ и $\tau_2 = 4\tau_1$.

Замечание. В процессе фильтрации происходит перетекание нефти как из блоков в трещины, так и из трещин в блоки, но в меньшем объёме. За переток нефти из блоков в трещины принимается разность между количеством вытекшей из блоков в трещины и поступившей из трещин в блоки нефти.

Из рисунка видно, что перетоки весьма сильно зависят от частоты циклического режима работы скважины (особенно при $\tau_1 < 2$). Например, в первом варианте суммарные перетоки выросли в 1.11 раза при $\tau_1 = 5$ сут и в 2.82 раза при $\tau_1 = 0.25$ сут, а во втором – в 1.22 и в 3.3 раза соответственно. Перетоки нефти выросли с 1.19 до 1.70 и с 1.32 до 1.77 раз в I и во II вариантах соответственно.

Таким образом, циклический режим работы скважины с коротким периодом интенсифицирует перетоку из блоков в трещины, что приводит к повышению нефтеотдачи пласта. Такое увеличение обусловлено работой упругих сил.

5. Выводы

В рамках модели двухфазной фильтрации дано математическое описание нестационарных процессов в трещиновато-пористом пласте, содержащем неньютоновскую нефть и подошвенную воду. Построены численная и алгоритмическая модели, реализованные в соответствующем программном комплексе, для решения задачи разработки пласта добывающей скважиной при нестационарном эксплуатационном режиме. Программное обеспечение позволяет не только изучать особенности фильтрационного процесса, но и проводить вычислительные эксперименты с целью выбора оптимального режима работы скважины, обеспечивающего наибольшую нефтеотдачу пласта [5]. В частности, показано, что нефтеотдача пласта немонотонно зависит от дебита скважины. Наибольшая эффективность разработки месторождения достигается при таком периодическом режиме работы добывающей скважины, когда отношение периодов ее работы и простоя согласуется с изменением вязкости неньютоновской нефти в пласте.

Summary

R.N. Diyashev, V.M. Konyukhov, V.V. Mikhailov, A.N. Chekalin. Simulation of Two-Phase Filtration in a Fissured and Porous Reservoir with Non-Newtonian Oil and Bottom Water.

Mathematical modeling and numerical simulation of two-phase filtration in a fissuredporous reservoir with non-Newtonian oil and bottom water under non-stationary action are considered. The principal features of the filtration flow associated with a reversible destruction of oil structure in pores and fractures under unsteady operation of a production well are studied based on analysis of computational experiments.

Key words: numerical simulation, two-phase filtration, fissured-porous reservoir, non-Newtonian oil, bottom water.

Литература

- Муслимов Р.Х. Основные итоги и перспективы дальнейшего применения методов увеличения нефтеотдачи пластов на месторождениях республики Татарстан // Материалы семинара-дискуссии «Концепция развития методов увеличения нефтеизвлечения». – Казань, 1997. – С. 9–24.
- Муслимов Р.Х., Десятков В.К., Евтушенко С.П. Дальнейшее развитие теоретических и экспериментальных промысловых исследований по отработке гидродинамических методов повышения нефтеотдачи на месторождениях Татарстана // Материалы семинара-дискуссии «Концепция развития методов увеличения нефтеизвлечения». – Казань, 1997. – С. 99–110.
- Молокович Ю.М., Марков А.И., Давлетшин А.А. и др. Периодическое гидродинамическое воздействие – определяющий элемент технологической схемы выработки трещиновато-пористых коллекторов // Труды науч.-практ. конф. «Приоритетные методы увеличения нефтеотдачи пластов и роль супертехнологий». – Казань: Новое Знание, 1998. – С. 119–122.
- Молокович Ю.М., Чекалин А.Н. Численное моделирование процесса взаимодействия системы блоков и системы трещин карбонатного коллектора при периодическом режиме дренирования // Труды науч.-практ. конф. «Приоритетные методы увеличения нефтеотдачи пластов и роль супертехнологий». – Казань: Новое Знание, 1998. – С. 122–125.
- 5. Дияшев Р.Н., Хисамов Р.С., Чекалин А.Н., Конюхов В.М. Форсированный отбор жидкости из трещиновато-пористого пласта с неньютоновской нефтью и подошвенной водой. // Георесурсы. 2009. № 2(30). С. 37–41.
- 6. *Егоров А.Г., Костерин А.В., Скворцов Э.В.* Консолидация и акустические волны в насыщенных пористых средах. Казань: Изд-во Казан. ун-та, 1990. 102 с.
- 7. Костерин А.В., Егоров А.Г. Упругий режим фильтрации в трещиновато-пористых пластах // Изв. РАЕН. Сер. МММИУ. 1997. Т. 1, № 4. С. 60–74.

- Гарнышев М.Ю., Егоров А.Г., Мазо А.Б. Модель двухфазной фильтрации в пластах с подошвенной водой // Труды Матем. центра им. Н.И. Лобачевского. – Казань: Казан. матем. о-во, 2010. – Т. 42. – С. 91–99.
- Гарнышев М.Ю., Егоров А.Г., Мазо А.Б. Упрощенные модели двухфазной фильтрации в пластах с подошвенной водой // Материалы VIII Всерос. конф. «Сеточные методы для краевых задач и приложения». – Казань: Казан. ун-т, 2010. – С. 157–164.
- Чекалин А.Н., Конюхов В.М., Костерин А.В. Двухфазная многокомпонентная фильтрация в нефтяных пластах сложной структуры. – Казань: Казан. гос. ун-т, 2009. – 180 с.
- Дияшев Р.Н., Зейгман Ю.В., Рахимов Р.Л. Исследование аномалий вязкости пластовых нефтей месторождений республики Татарстан // Георесурсы. – 2009. – № 2(30). – С. 44–48.
- 12. Чекалин А.Н. Численные решения задач фильтрации в водонефтяных пластах. Казань: Изд-во Казан. ун-та, 1982. – 208 с.
- Чекалин А.Н., Кудрявцев Г.В., Михайлов В.В. Исследование двух- и трехкомпонентной фильтрации в нефтяных пластах. – Казань: Изд-во Казан. ун-та, 1990. – 148 с.
- 14. Конюхов В.М., Храмченков М.Г., Чекалин А.Н. Миграция разноплотностных жидкостей в водоносных пластах сложной структуры. – Казань, 2005. – 160 с.
- Конюхов В.М., Чекалин А.Н. Численно-аналитический метод решения задачи переноса рассола в водоносном пласте // Вопр. атом. науки и техники. Сер. Матем. моделирование физ. процессов. – 2006. – Вып. 1. – С. 61–76.

Поступила в редакцию 04.04.11

E-mail: Diyashev@tngf.tatneft.ru

Конюхов Владимир Михайлович – доктор физико-математических наук, профессор кафедры прикладной математики Казанского (Приволжского) федерального университета.

E-mail: Vladimir.Konyukhov@ksu.ru

Михайлов Валерий Владимирович – кандидат физико-математических наук, заместитель начальника Управления научно-исследовательской деятельностью Казанского (Приволжского) федерального университета.

E-mail: Valera.Mikhailov@ksu.ru

Чекалин Анатолий Николаевич – доктор физико-математических наук, ведущий научный сотрудник НИИММ им. Н.Г. Чеботарева Казанского (Приволжского) федерального университета.

E-mail: Anatolii. Chekalin@ksu.ru

Дияшев Расим Нагимович – доктор технических наук, профессор, советник генерального директора ООО «ТНГ-Групп».