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Abstract

The model is built in which the main global properties of classical and quasi-classical black
holes become local (the event horizon, “no-hair,” temperature and entropy). Our construction
is based on the features of a quantum collapse, discovered when studying some quantum black
hole models. But our model is purely classical, and this allows to use self-consistently the
Einstein equations and classical (local) thermodynamics and explain in this way the “log3"-
puzzle.
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Introduction

More than 80 years ago the famous soviet poet Vladimir Mayakovsky advised ev-
erybody (even the elderly black people) to study Russian only because Vladimir Lenin
spoke this language (Vladimir Mayakovsky “To Our Youth,” 1927). T met many old
black men in my life but nobody can speak Russian, may be they never heard about
Mayakovsky, and this very verse was not translated into English. The advice remained
just a dream.

But, I indeed met one (now) elderly woman Lucette Carter, the wife to the famous
relativist Brandon Carter, who was studying Russian when being a PhD student, only
because she became aware of the book “Einstein Spaces” by Alexey Zinovievich Petrov
published at that time only in Russian (A.Z. Petrov, “Prostranstva Einshteina,” M.:
Fizmatgiz, 1961), and decided to read it. And this is a reality.

About 65 years ago (1946), Alexey Zinovievich Petrov started his seminal investiga-
tions of the algebraic structure of the space-times — solutions to the vacuum Einstein
equations. The result of the enormous efforts lasted for at least 15 years is known at
present as the Petrov Classification of Gravitational Fields, Petrov types I, D, II, N and
ITT in modern notations.

Of these, we are interested here in the degenerate Petrov type D. This is because
all the black hole solutions belong to it. The appearance of black holes is a striking
phenomenon, the origin of which lies in the relativistic character of the space-time, i.e.,
in the fundamental role played by the speed of light defining the causal structure, and
in the equivalence between mass and energy. The latter feature tells us that in any
self-consistent relativistic theory of gravity all the energy should gravitate, including
the gravitational energy itself. In the most concentrated form these two effects reveal
themselves in black holes. The black hole space-times have a rather unusual (from the
point of view of our experience, or common sense) geometric and causal structure. Their
physical properties are also impressive and, in fact, marginal. In the next section some
of them will be briefly described. But now we would like to emphasize that all the un-
usual features of the black holes are that of the space-times themselves. Moreover, the
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quantized matter fields acquire, in the presence of black holes, some unexpected prop-
erties. This can be considered as the first step to the semi-classical quantization of the
black holes space-times, and any future quantum theory of gravity, or “of everything,”
should reproduce all these results. It is in this sense that black holes become a bridge
between the classical General Relativity (or any other relativistic gravitational theory)
and the overall quantum realm.

1. Preliminaries

Classical definition of a black hole is based on the existence of the event horizon [1]
— the boundary of a space-time region from which the light cannot escape to infinity.
The very notion of the event horizon is global and requires the knowledge of the whole
history, both past and future.

Classical "black hole has no hair" [2] and is described by only few parameters:
mass, Coulomb-like charge and angular momentum. The Schwarzschild black hole has
only mass, the Reissner-Nordstrom one has mass and charge, the Kerr black hole has
mass and angular momentum. The most general type — Kerr — Newman black hole - has
all three parameters. This resembles the body in thermal equilibrium. The process of
becoming bold is also global; its duration, formally, is infinite, like the process of com-
ing to thermal equilibrium. It goes through radiating of all possible perturbations and
governed by Schroedinger-like wave equation, first derived in [3]. The results of many
numerical studies for a long period (two decades) were summarized in [4]. It appeared
that such perturbation modes have discrete spectra with complex frequencies w. They
received the name “quasi-normal frequencies.” The imaginary parts are equidistant in-
dicating that the decaying modes are radiating away in a manner reminiscent of the
last pure dying tones of a ringing bell, and the higher the overtone, the shorter its
lifetime. The real part of quasi-normal frequencies tends to some constant value which
depends on the black hole type. For Schwarzschild black holes we are interested in here
Gmw, = 0.0437123 — i n+ %) + O[(n +1)"Y?], n — oo, where m is the mass,
and G is the Newton’s constant. All that shows that black holes have some inherent
frequency. Therefore, they are not “dead” but have some “private life,” encoded in some
features of their horizons. Evidently, this is also a global property because it does not
depend on what is going on inside.

Investigation of the processes near an event horizon showed that they can be re-
versible and irreversible like in thermodynamics [5, 6]. The assimilation of a point
(classical) particle by a non-extremal (if a black hole has more than one parameter,
then, for a fixed value of parameters other than mass, there exists the minimal value of
mass — critical, or extreme — below which the event horizon does not exist) black hole
reversible if it is injected at the event horizon from a radial turning point of its motion.
In this case, the black hole (horizon) area remains unchanged, and the change in other
parameters (mass, charge, and angular momentum) can be undone by another suitable
(reversible) process. In all other cases, the horizon area A increases. Thus, for classical
black holes dA > 0.

The new area in black hole physics started with the seminal paper by J.D. Beken-
stein [7-9], where he presented serious physical arguments that the Schwarzschild black
hole should be described by a certain amount of entropy which is proportional to the
area of event horizon. Such a strict proportionality could appear to be playing games
with symbols with only one parameter, black hole mass, but it was then confirmed by
J.M. Bardeen, B. Carter and S.W. Hawking [10], who proved the four laws of thermo-
dynamics for the general class of Kerr—Newman black holes. Moreover, it was shown
that the role of temperature is played by the surface gravity sc at the event horizon
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(up to some numerical factor), which is constant there. And only after discovering by
S.W. Hawking the black hole evaporation [11, 12], this thermodynamical analogy be-
came the real physical phenomenon. He considered the quantum theory of massless
scalar field on the Schwarzschild static space-time background and found that the spe-
cific boundary conditions (only infalling waves in the vicinity of the horizon) result in
a thermal behavior of the wave functions and nonvanishing energy flow to the infinity.
It appeared that the spectrum of such a radiation is Planckian with the temperature
Ty =21 (1)
27
where ¢ is the surface gravity at the event horizon. It follows, then, that the black hole
entropy is exactly one-fourth of dimensionless horizon area

1 A
S:__a (2)
iz,

I
where /,, = —f ~ 10733 cm is the Planck length (A is the Planck constant, c is
c

the speed of light, and G is the Newton’s gravitational constant). We will use the units

[k
h=c=1,s0{,, = VG and the Planck mass is My, = E(’: = 1/\/@~ 107° g.

The nature of Hawking radiation and its black body spectrum lies in the nontrivial
causal structure of the space-times containing black holes. The crucial point is the
existence of the event horizons. The same takes place in the Rindler space-time. This
space-time is obtained by transforming the two-dimensional Minkowski flat space-time
from the “ordinary” coordinates (t,7) and metric ds?> = dt?> — dx? related to the set

1
of inertial observers, to the so-called Rindler coordinates (1, &) (t = — e sinhan, = =
a

:l:le“E coshan, —oco <1 < oo, —00 < & < o) and metric ds? = 2% (dn?—dn?) . Thus,
thg Rindler space-time is static and locally flat but differs from the two-dimensional
Minkowski space-time globally, because it covers only one half of the latter and, in
addition, possesses the event horizon at ¢t = £ 2 (n = 00, £ = const). The Rindler
observers at £ = const are uniformly accelerated. The norm of the acceleration vector
a’ equals o = \/—aFa, = ae~% . Considering a quantum scalar field in the Rindler
space-time, W.G. Unruh found [13], in fact, the finite temperature quantum field theory

with the temperature
a

=5 (3)
We see that this temperature is proportional to the acceleration of the Rindler observer
sitting a £ = 0 with ggo = 1. But, all of them are equivalent (we can always shift the
spatial coordinate £ — & — &y). The temperature is not an invariant, but it is a tem-
poral component of a heat vector. This means that each observer measures the Unruh
temperature when using its proper time 7 (ds = dr). If the same observer uses the
local clocks that show the local time ¢ (ds = \/goo dt ), the local temperature measured
Ty = & et = i, which is proportional to the local ac-
V900 2w 2w

celeration «. The very fact that the uniformly accelerated observer (= detector) will
detect the real particles in the vacuum, was known to people doing quantum electrody-
namics long ago. It was understood as a change of a vacuum state due to the external
forces that cause such an acceleration. The same happens in the space-time with event
horizons. But that the spectrum is thermal appeared to be new and purely relativistic
feature. We know from the university course of thermodynamics that the condition for

Ty

by him equals Tioc =
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thermal equilibrium in static space-times is Tioc \/goo = const. Thus, all the Rindler
observers are in thermal equilibrium with each other. Is the Rindler space-time unique
in this sense? To answer, let us consider some general two-dimensional static space-time
with a metric

ds® = e¥ dt? — dp® = e¥ dt? — e dg®. (4)

1
In the Rindler case p = — e, ¢¥ = a?p® = goo. The static observer undergoes a con-

1]d 1|d
stant acceleration with the invariant a = = |—| = - |22 e~*? and the (now local)
2 |dp 2 |dq
Rindler parameter a(p), which is called “the surface gravity s,” is
1|d
R L OSSN R S L 7Y (5)
2 |dq 2 |dp

The thermal equilibrium requires » = const, therefore, goo = Cp?, and this proves that
the Rindler space-time is the only one where static observers are in thermal equilibrium.

By the Einstein equivalence principle, we can extend all we learned studying Rindler
space-times, to the static gravitational fields, especially to the spherically symmetric
ones, because after fixing spherical angles # and ¢ the latter become, in fact, the
two-dimensional pseudo-surfaces. Of course, in general these surfaces are curved, the
equivalence principle holds only locally, and the static observers will not be in thermal
equilibrium with each other. Such a temperature is observer-dependent and cannot be
considered as an intrinsic property of a given space-time. But for the black hole space-
times, the position of the event horizon is absolute and does not depend on the observer.
So, its temperature does serve an important characteristic of space-time itself. To know
the temperature, we just need to compute the surface gravity value at the event horizon
s . For the Schwarzschild black hole with the famous metric

2Gm

1
ds* :thtFdrtr?(deusm?ed@?), F=1 — (6)

where m is the black hole mass, and r is the radius of a sphere (in that sense that its
area is 47r?), the horizon is located at the radius r, = 2Gm, and the surface gravity

is
dv

dr

1 Gm 1
(v=X\)/2 _ = g _ -
€ 2 F (TH) T2 v 4Gm (7)

1
ng = —
a=5

Therefore, the Hawking temperature is just the Unruh temperature at the event horizon
measured by distant observers (at infinity). The same is true also for Kerr —Newman
black holes. Note that outside the event horizon r > r, the Schwarzschild observers are
not in thermal equilibrium with each other, and this is a thermodynamical explanation
of the Hawking radiation and, thus, evaporation of black holes. It should be stressed
that both the black hole temperature and entropy are global features because their very
appearance is due to the existence of the event horizon.

Evaporating, black holes become smaller and smaller and will reach eventually
a Planck size where the still unknown quantum gravity should play an important
role. Since the radiation is quantized, the black hole mass have to be quantized as
well. Of course, the relation is not direct because a black hole is not necessarily trans-
formed into black hole again, but the new black hole will eventually be formed only due
to radiation. Not only the rest masses and kinetic energy of particles, including the total
angular momentum, may contribute to the black hole mass, but also Coulomb and mag-
netic energies of their electric and gauge charges and all kinds of other physical fields
confined under the event horizon. But the common feature for all types of black holes
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is their entropy with its universal relation (2) to the horizon area. Thus, the black hole
quantization means the quantization of its entropy. Moreover, the thermodynamical
description is possible only if the jump in the temperature due to quantization of mass,
charge and angular momentum during black hole evaporation is negligible compared
to its absolute value, while the notion of the entropy as a measure of the information,
hidden or ignored, is still valid. This latter feature gives rise to common believe that the
black hole quasi-classical quantization can shed light on the structure of the future full
quantum gravity, or, at least, will provide us with some selection rules in the attempts
to construct such a theory. The quantization of a black hole as a whole was proposed
long ago by J. Bekenstein [14]. The idea was based on the remarkable observation that
the horizon area of non-extremal black holes behaves as a classical adiabatic invari-
ant. The Bohr —Sommerfeld quantization rule then predicts the equidistant spectrum
for the horizon area and thus, for the black hole entropy. The gedanken experiments
show that, due to the quantum effects, the minimal increase in the horizon area in the
processes of capturing a neutral or electrically charged particle approximately equals
A A, ~ 46127[. This suggests for the black hole entropy

SBH:70N7 N:172a"'7 (8)

where 7y is of order of unity. In their famous work on the black hole spectroscopy,
J.D. Bekenstein and V.F. Mukhanov [15] related the black hole entropy to the number
gn of microstates that corresponds to the particular external macrostate through the
well-known formula in statistical physics g, = exp[Spu(n)]; i.e., g, is the degeneracy
of the n-th area eigenvalue. Since g,, should be integer, they deduced that

Yo =logk, k=23,... 9)

In the spirit of the information theory and the famous claim by J.A. Wheeler “It from
Bit,” the value of log2 seems most suitable one.

The logarithmic behavior of the spacing coefficient vy comes also from the Loop
Quantum Gravity. It was shown in [16, 17] that the entropy of the Schwarzschild black
hole is proportional to the horizon area as well as a numerical constant called the Bar-
bero—Immirzi parameter. To fit the Bekenstein — Hawking relation (2) and the possible
value for v (9) this parameter should equal log2/(mv/3) if the fundamental group in
LQG is SU(2), and log3/(27/2) if it is SU(3). The choice of the value for vy leads
to minimal possible change in the black hole mass. S. Hod [18], using Bohr’s correspon-
dence principle, deduced that 7y should be proportional to log3 because he noticed
that

1
GmRew = 0.0437123 = ‘;%T?’. (10)

The value of vy as well as that of Barbero—Immirzi parameter and, thus, the choice of
the fundamental group in LQG must be universal. Therefore, it is not surprising that
people tried to find some analytical methods for evaluating the quasi-normal frequencies
for different types of black holes. By using rather sophisticated tools from the general
theory of ordinary differential equations, L. Molt and A. Neitzke showed [19, 20] that for
the scalar and tensor perturbations around Schwarzschild black holes the value log3
is exact. For more general types of black holes, the corresponding calculations were
fulfilled in [21]. Tt appeared that the simple value log3 for the spacing coefficient 7o is
by no means universal, but exceptional. That is why we use the expression “the mystery
of log3.”

Below, we construct a model which is not really a black hole, but possesses its
main features. It has an event horizon — but local, the temperature — but local. Then,
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we develop the local thermodynamics for such a model and show how the mystery of
log 3 can be solved. There is a hope that our model will be helpful in understanding the
underlining physics of many other interesting features of quasi-classical black holes.

2. The “Standard model”

2.1. Quantum shells. We start the construction of our model with a brief de-
scription of a particular model of quantum Schwarzschild black hole. Namely, this is
a theory of quantized spherically symmetric self-gravitating thin dust shells [22, 23] -
the simplest generalization of a point particle. In this case, there is only one dynami-
cal degree of freedom, the shell radius (real gravitons are absent due to the spherical
symmetry = Birkhoff theorem), and the Wheeler - DeWitt equation is reduced to the
stationary one-dimensional Schroedinger-like equation in finite differences. Most impor-
tant is the fact that the model is self-consistent, it takes into account the back reaction
of the gravitating source (thin shell) on the geodesically complete Schwarzschild man-
ifold which has a nontrivial causal structure. The geodesically complete Schwarzschild
space-time has a geometry of non-transversable wormhole (it is also called an eternal
black hole). There are two asymptotically flat regions with spatial infinities connected
by the Einstein — Rosen bridge (the throat). Two sides of the bridge are causally discon-
nected and separated by (past and future) event horizons. Inside the shell we have some
part of Schwarzschild metric with the mass parameter m;, , while outside the shell, the
Schwarzschild mass is mous -

In quantum mechanics, there are no trajectories, and the shell wave function “feels”
the existence of the event horizons and both infinities. The result is the necessity of
imposing an additional boundary condition and the appearance of two quantum num-
bers for two quantities describing the quantum states (for fixed my, ) — the bare mass
AM of the shell (the sum of masses of the constituents) and its total mass (energy)
Am = mgy — Min which includes the gravitational mass defect. The discrete mass
spectrum for bound sates looks as follows (n and p are integers):

2(Am)? —M?  2m3,
VM2 = (Am)?  Am+2myy, "
M? — (Am)?* = 2(1+2p)m;,. (11)

For given bare mass M , the change of a quantum state causes the change in the mass
inside the shell m;, and in the total mass of the system myy;. Therefore, during the
gravitational collapse the total mass decreases, while the inner mass increases. When
could such a process be stopped? The natural limit is the crossing of the Einstein — Rosen
bridge, since such a transition requires (at least in a quasi-classical regime) insertion
of infinitely large volume, with, of course, zero probability. Computer simulations show
that the process of quantum collapse for our shells stops when the principal quantum
number becomes zero, n = 0.

The point n = 0 in our spectrum is very special. In this case the shell does not
“feel” not only the outer region (what is natural for the spherical configuration), but
it does not know anything about what is going on inside. It “feels” only itself. Such a
situation reminds the “no hair” property of a classical black hole. Finally, when all the
shells (both the primary one and newly born) are in the corresponding states n; = 0,
the whole system does not ‘“remember” its own history. Then it is this “no-memory”

state that can be called “the quantum black hole.” Note that the total masses of all the

1
shells obey the relation Am; = — M,;.

V2
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2.2. Classical analog of quantum Schwarzschild black hole. The final state
of quantum gravitational collapse can be viewed as some stationary matter distribution.
Therefore, we may hope that for massive enough quantum black hole such a distribution
is described approximately by a classical static spherically symmetric perfect fluid with
energy density € and (effective) pressure p obeying classical Einstein equations. This is
what we call a classical analog of a quantum black hole. Of course, such a distribution
has to be very specific. To study its main features, let us consider the situation in more
details.

Any static spherically symmetric metric can be written in the form

ds® = e’ dt? — e dr? — r?(df* + sin” 0 dp?). (12)

Here 7 is the radius of a sphere with the area A = 4772, v = v(r), A = A(r). There are

only three (static spherically symmetric) Einstein equations. The constraint equation

can be written in the integral form. For this, let us integrate the first of Eqs. (11):
2Gm(r)

=1 13
e ) (13)

where
T

m(r) = 4#/5?2 dr (14)
0
is the mass function that should be identified with m;, . Now, the “no-memory” principle
is readily formulated as the requirement that m(r) = ar, i.e.,

a
dmr?’

e =1-2Ga =const, ¢ (15)

We can also introduce a bare mass function M (r) (the mass of the system inside a sphere
of radius r without gravitational mass defect):

T

M(r) /st47ro/se)‘/2F2d7 \/%72&1 (16)

The remaining two equations can now be solved for p(r) and e”(r). The general solution
is rather complex, but the correct non-relativistic limit for the pressure p(r) (we are
to reproduce the famous equation for hydrostatic equilibrium) is given by only the
following one-parameter family:

b 1
P(r) = =5, b= (1-3Ga—vI-2Cavi—1Ca). (17)

1
We see that the solution exists only for a < ek then b < a. The physical meaning of
these inequalities is that the speed of sound cannot exceed the speed of light, v, =
b 1
— <1 =¢?, the equality being reached just for a = b = ek Finally, for the temporal

a
metric coefficient gog = €’ we get

e = 2 p/(ath) — (2 p2G(a+b)/(1-2Ga),
Thus, demanding the “no-memory” feature and the existence of the correct non-

relativistic limit, we obtained the two-parameter family of static solutions. But, we
need a one-parameter family, so we have to continue our search.



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 101

Evidently, the point r = 0 is singular both for matter distribution and g9 metric
coefficient. To examine what kind of singularity we are dealing with, one should calculate
the Riemann curvature tensor. It appears that for b < a this tensor is, indeed, divergent

at r = 0. But, if @ = b = —, we are witnessing a miracle, the (before) divergent

components become zero. Thus, demanding, in addition to the previous two very natural
requirements, the third one (also natural), namely, the absence of the real (curvature)
singularity at r = 0, we arrive at the following one-parameter family of solutions to the
Einstein equations (11)

1

eV =C3r?, =2, E=P= e

(18)
So, the equation of state of our perfect fluid is the stiffest possible one. The constant
of integration Cy can be determined by matching the interior and exterior metrics at
some boundary value of radius, r = ry. Let us suppose that for r» > ry the space-time
is empty, so, the interior should be matched to the Schwarzschild metric with the mass
parameter m. Of course, to compensate the jump in the pressure Ap (= p(ro) = po),
we must include in our model a surface tension ¥; so, actually, we are dealing with
some sort of liquid. It is easy to check that

1 2% 1 2
002:_2; Ap ey_<r)a

22 T V2 2 \ro

1 T0
== ——: = my = —.
Po =<0 167Gr3’ RRPTE

Note that the bare mass M = \/2m, the relation is exactly the same as for the shell
“no-memory” state and rqg = 4Gmy, so, the size of our analog model is twice as that for
a classical black hole of the same mass.

The special point in our solution r = 0 is not a trivial coordinate singularity, like
in a three-dimensional spherically symmetric space, because ds? (r = 0) = 0 . This
looks like an event horizon. Indeed, the two-dimensional (¢ — r)-part of our metric
describes a locally flat manifold. Since the static observers at r = const are, in fact,
uniformly accelerated, this is a Rindler space-time with the event horizon at r = 0.
The corresponding Rindler parameter which in more general case is called the “surface
gravity,” equals

1 |dv C 1
— | w2 20 2 19
=9 ¢ V2 2r (19)
. . 1 1 .
Therefore, the Unruh temperature in our model is Ty = = , what is

471 167G'm
twice less than the Hawking temperature for the Schwarzschild black hole,

1
T 87Gm

Ty = 2Ty (20)

Let us resume what we have got by now. We constructed a purely classical model that
possesses some features of (semi)classical black holes: event horizon and temperature,
but instead of being global, they are local. Indeed, by definition, the surface r = 0
cannot be crossed; thus, the event horizon in our model becomes local. The temperature
is also local, Tioc = Tv/+\/go0 = 1/2v/27r, and does not depend on the boundary value
ro. And, one more important feature: if one removes some outer layer, nothing would be
changed inside. This is a reflection of the fact that all parts of our matter distribution
are in thermal equilibrium.
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Quantum nature of radiation and the fact that the black hole entropy has a discrete
equidistant spectrum suggest that our distribution consists, actually, of some number
of Quasi-particles, “gravitational phonons.” Thus, having at hand local intensive pa-
rameters: effective pressure p(r), temperature Tjoc(r), chemical potential p(r), and
extensive parameters: bare mass M, volume V', entropy S and “particle” number N,
we are now ready to construct the local thermodynamics.

2.3. Thermodynamics. The first law of thermodynamics reads
dM =edV =Tioe dS — pdV + pdN. (21)

Dividing the above expression by the volume element dV we get the first law in its
local form

e(r) = Tioc(r) s(r) — p(r) + p(r) n(r), (22)
where s and n are the entropy and particle densities, respectively. In our model
¢ = p, but what about s? The local observer cannot calculate it without know-

ing the corresponding microscopic structure, but he can ask his global counterpart
who is educated enough (reads proper books) and knows that the total entropy of the

1
black hole is S = el Apor, what for the Schwarzschild black hole gives (Apor = 47r7"§)

2
S = %rﬁ = %. Having this information, our local observer can deduce that
()= —my Tioelr)s(r) = 5, (23)
T svEar Y T sanae
1
Remembering now that € = Toncr2’ we obtain
1 3
Tioo(r) s(r) = 5 &, pulr)n(r) = 5 e
We will need also the expression for the free energy F':
1
Fz/de, f=5—T10Cs=§g. (24)

It is known that the thermal equilibrium conditions for the systems in static gravita-
tional field are

T \/goo = const, 11/gop = const. (25)

The constants on the right-hand sides are universal for our model — they do not depend
on the boundary value ry. Therefore, their ratio is also a universal constant. Thus, we

have g
I s
E_3Z2 3= — . 2
T 3n 3N 370 (26)

Hence, the entropy is naturally quantized:

S=~N, N=1,2,... (27)

2.4. Solving the mystery of log 3. In order to calculate the spacing coefficient
Yo we have to make some assumption about the microscopic structure of our model.
We assume that the interior matter distribution consists of N black hole phonons with
the equidistant spectrum of excitations

ep=wn, n=12... (28)
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In this case, the partition function for the whole system is the product of those ones for
each phonon, and

e—w/T

T = (2)", D=3 e =Y () = 9

n

It is natural to suppose that w is just the black hole resonance frequency and its ex-
istence follows from the properties of quasi-normal modes (as was already explained
earlier). Of course, w is a temporal component of a four-vector, the same is the tem-
perature 1", so their ratio does not depend on the choice of the clocks by local static
observers. We accept that the observers are using their proper time, so T is just the
Unruh temperature Ty which is constant in the whole interior. The partition function is
an invariant, and we can calculate it in another way, using thermodynamical relations.
Indeed, we can consider some small volume element dV and the corresponding partition
function Zgyan . Then, using the well-known formula for the free energy F' = —T'log Z,
and writing it for the volume element

dF = fdV = —Tioc10g Zsmall, (30)

where, as before, we use the local intrinsic quantities in thermodynamical relations.
From this we have

f

dV = — log Zgman = — log Ziot.. 1
Tioe Vv Z 0g 11 0g Zitot (3 )
The left-hand side is
f 1 / € T 7"8 ™ 7”3
dV = = =—=—2=5 32
Thoc 2] Toe 4G~ G (32)

Here r, is the Schwarzschild radius, and S is the total black hole entropy. Eventually,
we obtain the important relation

e = Zior = (Zl)N, (33)
from which it follows that
e /T —S/N -0 Yo w/T
T o=w/T = © =e 0, 0 =¢e¥" —1. (34)

To go further, let us consider the irreversible process of converting the mass (energy)
of the system into radiation from a thermodynamical point of view. In our model such
a process takes place just at the boundary r = rg, and the thin shell with zero surface
energy density and surface tension X serves as a converter supplying the radiation with
extra energy and extra entropy, this resembles the “brick wall” model. The nature of
this radiation is purely quantum because our system is not radiating classically. The
jump in the Unruh temperature of the inner and outer near-boundary static observers
is compensated exactly by the gravitational influence of the surface tension. One can
imagine that the near-boundary layer of thickness Arg is converting into radiation, thus
decreasing the boundary of the inner region to (ro—Arg). Its energy is AM = AV . To
this we should add the energy released from the work done by the surface tension due to
its shift, which is equal exactly to Y. d(47r2) = pdAV = eAV = AM . Therefore, both
the energy and the temperature in the converter becomes two times higher than that
for any inner layer of the same thickness. And this double energy is gained by radiating
quanta. Clearly, they have double frequency and exhibit double temperature, so

Rew w

-
Tn Ty 0g 3, (35)
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as follows from the spectrum of quasi-normal modes for the Schwarzschild black holes.
Substituting this into Eq. (34) and remembering that

3-1=2, (36)

we obtain
Yo = log 2. (37)

Since the radiated energy is thermalized, the interpretation of dm as equal to Rew is
an improper procedure. This resolves the “log 3-paradox.”

3. Beyond the “Standard model”

The model proposed above is very stringent. And the question arises: which of
the imposed conditions could be weakened? Let us remember the steps towards the
final results. First, we demanded the “no memory” condition to be fulfilled. This was
necessary to ensure the black hole mimicry. Second, we assumed the perfect fluid energy-
momentum tensor. Then, the requirement for the absence of a curvature singularity at
zero radius has led us both to the appearance of the temperature and to the unique
(stiffest possible) equation of state. Surely, the thermal equilibrium is the crucial feature,
but how about the isotropy in the fluid pressure?

To make this point clearer, let us consider the general form of static spherically
symmetric metric with static observers in mutual thermal equilibrium. As we already
know, the space-time in such a case should be a direct product of Rindler (locally flat)
manifold and 2-dimensional sphere of radius R:

ds® = a?p* dt* — dp* — R*(p)(d6* + sin® 0 dp?), (38)

where a is the acceleration parameter, and R(p) is the only unknown function of the
radial coordinate p. The Einstein equations read as follows:

2R” 1-R"
— R + T = 87TGE,
R 1—-R?
_ 2p—R + == 87Gp, (39)
R/I R/
T

Here “prime” denotes ordinary derivatives and we assume that, in general, the radial
pressure p, is not equal to the tangential pressure p;. With the “no memory” condition
R’ = a = const, the above equations become algebraic; besides, in this case e +p, = 2p;
and for isotropic pressure p, = p; we recover the previous result. But, let us remember
that the relation between the bare and total masses M = v/2m in our model appeared
the same as that of the quantized thin dust shells in the “no memory” states. And this
does not point to the fact that our classical analog consists solely of massive constituents.
But in reality, classical black holes may contain some radiation (i.e., massless particles)
as well. Consider now the extreme situation when the analog model distribution is
represented by massless particles only. Then, € = p, 4+ 2p, and, hence, p, =0, ¢ = 2p;
a = 1/4/3. Such a strange equation of state means that we are dealing not with a
condensed matter but rather with a set of thin shells of small (vanishing) energies that
consist of massless particles orbiting along the spheres of constant radii in all possible
directions [25]. But such a distribution is unstable, because the orbits coincide with
the last circular ones in the outer Schwarzschild metric. In the intermediate case, there
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is a mixture, and these orbits become stable. Moreover, if one assumes that these two
systems are non-interactive (except gravitationally), what seems quite natural in the
spirit of our “no memory” condition, then it is not difficult to show, using separate
continuity equations, that R’ = const and the perfect fluid part of the mixture has the
stiffest possible equation of state.

Such a generalized model possesses plausible features. First, the value for R’ is no
more unique, instead, 1/3 < a? < 1/2. Second, these orbiting massless particles can
be understood as remnants of radiated quasi-normal modes and, at the same time,
as the origin of the equidistant “phonon” spectrum in the perfect fluid. Third, the
“Hawking evaporation” of our analog model can now be considered as the induced
radiation tunneling trough the potential barrier caused by the surface tension at the
boundary.

It is not yet clear how to make use of the thermodynamical relations in this rather
complex system and... but the work is in progress.

This work was supported by the grant No. 10-02-00635-a from the Russian Founda-
tion of Fundamental Investigations (RFFTI).

Pesome

B.A. Bepesun. 3amedanusa 0 KJIACCUIECKUX AHAIOTAX KBAHTOBBIX YEPHBIX JIBIP.

TlocTpoena Mozenb, B KOTOPOH OCHOBHBIE T100aJIbHbBIE CBOMCTBA KJIACCUYECKUX U KBAa3W-
KJIACCHYECKUX FEPHBIX JBIP CTAHOBATCHA JIOKATHHBIMA (FOPH30HT COOBITHIA, OTCYTCTBUE <«BO-
J10C», Temneparypa m saTponwms). Hama cxema 6asupyercs Ha 0COOEHHOCTAX KBAHTOBOTO KOJI-
Jlarnica, 0OHAPYKEHHBIX [PU U3YYEHUH HEKOTOPHIX KOHKPETHBIX MOJEJeHl KBAHTOBBIX YEPHBIX
neip. OHaKo HAIIa MOIEh SBIISIETCS UCTO KJIACCHYECKOMH, YTO MO3BOJISET HMCIOIH30BAThH Ca-
MOCOTJIACOBAHHBIM 00pa30M ypaBHeHHs DUHmITEHHA M KIACCHIECKYIO (JIOKATBHYIO) T€PMOIHU-
HAMHUKY U TaKuM 06pa3oM 00bscHUTH «mnpobiemy log 3 ».

KuiroueBbie cjioBa: KIaCcCUYECKHEe U KBa3UK/IACCUYECKUe ‘{éprIe JBIPBI.
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