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UDK 530.12 NOTES ON CLASSICAL ANALOGSOF QUANTUM BLACK HOLESV. BerezinAbstratThe model is built in whih the main global properties of lassial and quasi-lassial blakholes beome loal (the event horizon, �no-hair,� temperature and entropy). Our onstrutionis based on the features of a quantum ollapse, disovered when studying some quantum blakhole models. But our model is purely lassial, and this allows to use self-onsistently theEinstein equations and lassial (loal) thermodynamis and explain in this way the � log 3�-puzzle.Key words: lassial and quasi-lassial blak holes.IntrodutionMore than 80 years ago the famous soviet poet Vladimir Mayakovsky advised ev-erybody (even the elderly blak people) to study Russian only beause Vladimir Leninspoke this language (Vladimir Mayakovsky �To Our Youth,� 1927). I met many oldblak men in my life but nobody an speak Russian, may be they never heard aboutMayakovsky, and this very verse was not translated into English. The advie remainedjust a dream.But, I indeed met one (now) elderly woman Luette Carter, the wife to the famousrelativist Brandon Carter, who was studying Russian when being a PhD student, onlybeause she beame aware of the book �Einstein Spaes� by Alexey Zinovievih Petrovpublished at that time only in Russian (A.Z. Petrov, �Prostranstva Einshteina,� M.:Fizmatgiz, 1961), and deided to read it. And this is a reality.About 65 years ago (1946), Alexey Zinovievih Petrov started his seminal investiga-tions of the algebrai struture of the spae-times � solutions to the vauum Einsteinequations. The result of the enormous e�orts lasted for at least 15 years is known atpresent as the Petrov Classi�ation of Gravitational Fields, Petrov types I, D, II, N andIII in modern notations.Of these, we are interested here in the degenerate Petrov type D. This is beauseall the blak hole solutions belong to it. The appearane of blak holes is a strikingphenomenon, the origin of whih lies in the relativisti harater of the spae-time, i.e.,in the fundamental role played by the speed of light de�ning the ausal struture, andin the equivalene between mass and energy. The latter feature tells us that in anyself-onsistent relativisti theory of gravity all the energy should gravitate, inludingthe gravitational energy itself. In the most onentrated form these two e�ets revealthemselves in blak holes. The blak hole spae-times have a rather unusual (from thepoint of view of our experiene, or ommon sense) geometri and ausal struture. Theirphysial properties are also impressive and, in fat, marginal. In the next setion someof them will be brie�y desribed. But now we would like to emphasize that all the un-usual features of the blak holes are that of the spae-times themselves. Moreover, the



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 95quantized matter �elds aquire, in the presene of blak holes, some unexpeted prop-erties. This an be onsidered as the �rst step to the semi-lassial quantization of theblak holes spae-times, and any future quantum theory of gravity, or �of everything,�should reprodue all these results. It is in this sense that blak holes beome a bridgebetween the lassial General Relativity (or any other relativisti gravitational theory)and the overall quantum realm. 1. PreliminariesClassial de�nition of a blak hole is based on the existene of the event horizon [1℄� the boundary of a spae-time region from whih the light annot esape to in�nity.The very notion of the event horizon is global and requires the knowledge of the wholehistory, both past and future.Classial "blak hole has no hair" [2℄ and is desribed by only few parameters:mass, Coulomb-like harge and angular momentum. The Shwarzshild blak hole hasonly mass, the Reissner-Nordstrom one has mass and harge, the Kerr blak hole hasmass and angular momentum. The most general type � Kerr �Newman blak hole - hasall three parameters. This resembles the body in thermal equilibrium. The proess ofbeoming bold is also global; its duration, formally, is in�nite, like the proess of om-ing to thermal equilibrium. It goes through radiating of all possible perturbations andgoverned by Shroedinger-like wave equation, �rst derived in [3℄. The results of manynumerial studies for a long period (two deades) were summarized in [4℄. It appearedthat suh perturbation modes have disrete spetra with omplex frequenies w . Theyreeived the name �quasi-normal frequenies.� The imaginary parts are equidistant in-diating that the deaying modes are radiating away in a manner reminisent of thelast pure dying tones of a ringing bell, and the higher the overtone, the shorter itslifetime. The real part of quasi-normal frequenies tends to some onstant value whihdepends on the blak hole type. For Shwarzshild blak holes we are interested in here
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+ O[(n + 1)−1/2], n → ∞ , where m is the mass,and G is the Newton's onstant. All that shows that blak holes have some inherentfrequeny. Therefore, they are not �dead� but have some �private life,� enoded in somefeatures of their horizons. Evidently, this is also a global property beause it does notdepend on what is going on inside.Investigation of the proesses near an event horizon showed that they an be re-versible and irreversible like in thermodynamis [5, 6℄. The assimilation of a point(lassial) partile by a non-extremal (if a blak hole has more than one parameter,then, for a �xed value of parameters other than mass, there exists the minimal value ofmass � ritial, or extreme � below whih the event horizon does not exist) blak holereversible if it is injeted at the event horizon from a radial turning point of its motion.In this ase, the blak hole (horizon) area remains unhanged, and the hange in otherparameters (mass, harge, and angular momentum) an be undone by another suitable(reversible) proess. In all other ases, the horizon area A inreases. Thus, for lassialblak holes dA ≥ 0 .The new area in blak hole physis started with the seminal paper by J.D. Beken-stein [7�9℄, where he presented serious physial arguments that the Shwarzshild blakhole should be desribed by a ertain amount of entropy whih is proportional to thearea of event horizon. Suh a strit proportionality ould appear to be playing gameswith symbols with only one parameter, blak hole mass, but it was then on�rmed byJ.M. Bardeen, B. Carter and S.W. Hawking [10℄, who proved the four laws of thermo-dynamis for the general lass of Kerr �Newman blak holes. Moreover, it was shownthat the role of temperature is played by the surfae gravity κ at the event horizon



96 V. BEREZIN(up to some numerial fator), whih is onstant there. And only after disovering byS.W. Hawking the blak hole evaporation [11, 12℄, this thermodynamial analogy be-ame the real physial phenomenon. He onsidered the quantum theory of masslesssalar �eld on the Shwarzshild stati spae-time bakground and found that the spe-i� boundary onditions (only infalling waves in the viinity of the horizon) result ina thermal behavior of the wave funtions and nonvanishing energy �ow to the in�nity.It appeared that the spetrum of suh a radiation is Plankian with the temperature
TH =

κH

2π
, (1)where κ is the surfae gravity at the event horizon. It follows, then, that the blak holeentropy is exatly one-fourth of dimensionless horizon area
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∼ 10−33 m is the Plank length (~ is the Plank onstant, c isthe speed of light, and G is the Newton's gravitational onstant). We will use the units
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G ∼ 10−5 g.The nature of Hawking radiation and its blak body spetrum lies in the nontrivialausal struture of the spae-times ontaining blak holes. The ruial point is theexistene of the event horizons. The same takes plae in the Rindler spae-time. Thisspae-time is obtained by transforming the two-dimensional Minkowski �at spae-timefrom the �ordinary� oordinates (t, x) and metri ds2 = dt2 − dx2 related to the setof inertial observers, to the so-alled Rindler oordinates (η, ξ) (t =
1

a
eaξ sinh aη, x =

±
1

a
eaξ coshaη, −∞ < η < ∞, −∞ < ξ < ∞) and metri ds2 = e2aξ(dη2−dη2) . Thus,the Rindler spae-time is stati and loally �at but di�ers from the two-dimensionalMinkowski spae-time globally, beause it overs only one half of the latter and, inaddition, possesses the event horizon at t = ± x (η = ±∞ , ξ = const). The Rindlerobservers at ξ = const are uniformly aelerated. The norm of the aeleration vetor

aµ equals α =
√−aµ aµ = ae−aξ . Considering a quantum salar �eld in the Rindlerspae-time, W.G. Unruh found [13℄, in fat, the �nite temperature quantum �eld theorywith the temperature

TU =
a

2π
. (3)We see that this temperature is proportional to the aeleration of the Rindler observersitting a ξ = 0 with g00 = 1 . But, all of them are equivalent (we an always shift thespatial oordinate ξ → ξ − ξ0 ). The temperature is not an invariant, but it is a tem-poral omponent of a heat vetor. This means that eah observer measures the Unruhtemperature when using its proper time τ (ds = dτ ). If the same observer uses theloal loks that show the loal time t (ds =

√
g00 dt), the loal temperature measuredby him equals Tloc =
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g00

=
a
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, whih is proportional to the loal a-eleration α . The very fat that the uniformly aelerated observer (= detetor) willdetet the real partiles in the vauum, was known to people doing quantum eletrody-namis long ago. It was understood as a hange of a vauum state due to the externalfores that ause suh an aeleration. The same happens in the spae-time with eventhorizons. But that the spetrum is thermal appeared to be new and purely relativistifeature. We know from the university ourse of thermodynamis that the ondition for



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 97thermal equilibrium in stati spae-times is Tloc
√

g00 = const. Thus, all the Rindlerobservers are in thermal equilibrium with eah other. Is the Rindler spae-time uniquein this sense? To answer, let us onsider some general two-dimensional stati spae-timewith a metri
ds2 = eν dt2 − dρ2 = eν dt2 − eλ dq2. (4)In the Rindler ase ρ =
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eaξ , eν = a2ρ2 = g00 . The stati observer undergoes a on-stant aeleration with the invariant α =
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ν/2. (5)The thermal equilibrium requires κ = const , therefore, g00 = Cρ2 , and this proves thatthe Rindler spae-time is the only one where stati observers are in thermal equilibrium.By the Einstein equivalene priniple, we an extend all we learned studying Rindlerspae-times, to the stati gravitational �elds, espeially to the spherially symmetriones, beause after �xing spherial angles θ and ϕ the latter beome, in fat, thetwo-dimensional pseudo-surfaes. Of ourse, in general these surfaes are urved, theequivalene priniple holds only loally, and the stati observers will not be in thermalequilibrium with eah other. Suh a temperature is observer-dependent and annot beonsidered as an intrinsi property of a given spae-time. But for the blak hole spae-times, the position of the event horizon is absolute and does not depend on the observer.So, its temperature does serve an important harateristi of spae-time itself. To knowthe temperature, we just need to ompute the surfae gravity value at the event horizon

κH . For the Shwarzshild blak hole with the famous metri
ds2 = F dt2 −
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dr2 − r2(dθ2 + sin2 θ dϕ2), F = 1 −
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r
, (6)where m is the blak hole mass, and r is the radius of a sphere (in that sense that itsarea is 4πr2 ), the horizon is loated at the radius rg = 2Gm , and the surfae gravityis
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. (7)Therefore, the Hawking temperature is just the Unruh temperature at the event horizonmeasured by distant observers (at in�nity). The same is true also for Kerr �Newmanblak holes. Note that outside the event horizon r > rg the Shwarzshild observers arenot in thermal equilibrium with eah other, and this is a thermodynamial explanationof the Hawking radiation and, thus, evaporation of blak holes. It should be stressedthat both the blak hole temperature and entropy are global features beause their veryappearane is due to the existene of the event horizon.Evaporating, blak holes beome smaller and smaller and will reah eventuallya Plank size where the still unknown quantum gravity should play an importantrole. Sine the radiation is quantized, the blak hole mass have to be quantized aswell. Of ourse, the relation is not diret beause a blak hole is not neessarily trans-formed into blak hole again, but the new blak hole will eventually be formed only dueto radiation. Not only the rest masses and kineti energy of partiles, inluding the totalangular momentum, may ontribute to the blak hole mass, but also Coulomb and mag-neti energies of their eletri and gauge harges and all kinds of other physial �eldson�ned under the event horizon. But the ommon feature for all types of blak holes



98 V. BEREZINis their entropy with its universal relation (2) to the horizon area. Thus, the blak holequantization means the quantization of its entropy. Moreover, the thermodynamialdesription is possible only if the jump in the temperature due to quantization of mass,harge and angular momentum during blak hole evaporation is negligible omparedto its absolute value, while the notion of the entropy as a measure of the information,hidden or ignored, is still valid. This latter feature gives rise to ommon believe that theblak hole quasi-lassial quantization an shed light on the struture of the future fullquantum gravity, or, at least, will provide us with some seletion rules in the attemptsto onstrut suh a theory. The quantization of a blak hole as a whole was proposedlong ago by J. Bekenstein [14℄. The idea was based on the remarkable observation thatthe horizon area of non-extremal blak holes behaves as a lassial adiabati invari-ant. The Bohr � Sommerfeld quantization rule then predits the equidistant spetrumfor the horizon area and thus, for the blak hole entropy. The gedanken experimentsshow that, due to the quantum e�ets, the minimal inrease in the horizon area in theproesses of apturing a neutral or eletrially harged partile approximately equals
∆ Amin ≈ 4 ℓ2

pℓ
. This suggests for the blak hole entropy

SBH = γ0 N, N = 1, 2, . . . , (8)where γ0 is of order of unity. In their famous work on the blak hole spetrosopy,J.D. Bekenstein and V.F. Mukhanov [15℄ related the blak hole entropy to the number
gn of mirostates that orresponds to the partiular external marostate through thewell-known formula in statistial physis gn = exp[SBH(n)] ; i.e., gn is the degenerayof the n-th area eigenvalue. Sine gn should be integer, they dedued that

γ0 = log k, k = 2, 3, . . . (9)In the spirit of the information theory and the famous laim by J.A. Wheeler �It fromBit,� the value of log 2 seems most suitable one.The logarithmi behavior of the spaing oe�ient γ0 omes also from the LoopQuantum Gravity. It was shown in [16, 17℄ that the entropy of the Shwarzshild blakhole is proportional to the horizon area as well as a numerial onstant alled the Bar-bero � Immirzi parameter. To �t the Bekenstein �Hawking relation (2) and the possiblevalue for γ0 (9) this parameter should equal log 2/(π
√

3) if the fundamental group inLQG is SU(2) , and log 3/(2π
√

2) if it is SU(3) . The hoie of the value for γ0 leadsto minimal possible hange in the blak hole mass. S. Hod [18℄, using Bohr's orrespon-dene priniple, dedued that γ0 should be proportional to log 3 beause he notiedthat
Gm Re w = 0.0437123 =

log 3

8π
. (10)The value of γ0 as well as that of Barbero � Immirzi parameter and, thus, the hoie ofthe fundamental group in LQG must be universal. Therefore, it is not surprising thatpeople tried to �nd some analytial methods for evaluating the quasi-normal frequeniesfor di�erent types of blak holes. By using rather sophistiated tools from the generaltheory of ordinary di�erential equations, L. Molt and A. Neitzke showed [19, 20℄ that forthe salar and tensor perturbations around Shwarzshild blak holes the value log 3is exat. For more general types of blak holes, the orresponding alulations wereful�lled in [21℄. It appeared that the simple value log 3 for the spaing oe�ient γ0 isby no means universal, but exeptional. That is why we use the expression �the mysteryof log 3 .�Below, we onstrut a model whih is not really a blak hole, but possesses itsmain features. It has an event horizon � but loal, the temperature � but loal. Then,



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 99we develop the loal thermodynamis for suh a model and show how the mystery of
log 3 an be solved. There is a hope that our model will be helpful in understanding theunderlining physis of many other interesting features of quasi-lassial blak holes.2. The �Standard model�2.1. Quantum shells. We start the onstrution of our model with a brief de-sription of a partiular model of quantum Shwarzshild blak hole. Namely, this isa theory of quantized spherially symmetri self-gravitating thin dust shells [22, 23℄ �the simplest generalization of a point partile. In this ase, there is only one dynami-al degree of freedom, the shell radius (real gravitons are absent due to the spherialsymmetry = Birkho� theorem), and the Wheeler �DeWitt equation is redued to thestationary one-dimensional Shroedinger-like equation in �nite di�erenes. Most impor-tant is the fat that the model is self-onsistent, it takes into aount the bak reationof the gravitating soure (thin shell) on the geodesially omplete Shwarzshild man-ifold whih has a nontrivial ausal struture. The geodesially omplete Shwarzshildspae-time has a geometry of non-transversable wormhole (it is also alled an eternalblak hole). There are two asymptotially �at regions with spatial in�nities onnetedby the Einstein �Rosen bridge (the throat). Two sides of the bridge are ausally dison-neted and separated by (past and future) event horizons. Inside the shell we have somepart of Shwarzshild metri with the mass parameter min , while outside the shell, theShwarzshild mass is mout .In quantum mehanis, there are no trajetories, and the shell wave funtion �feels�the existene of the event horizons and both in�nities. The result is the neessity ofimposing an additional boundary ondition and the appearane of two quantum num-bers for two quantities desribing the quantum states (for �xed min ) � the bare mass
∆M of the shell (the sum of masses of the onstituents) and its total mass (energy)
∆m = mout − min whih inludes the gravitational mass defet. The disrete massspetrum for bound sates looks as follows (n and p are integers):

2 (∆m)2 − M2

√
M2 − (∆m)2

=
2 m2

pℓ

∆m + 2min
n,

M2 − (∆m)2 = 2 (1 + 2p)m2
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. (11)For given bare mass M , the hange of a quantum state auses the hange in the massinside the shell min and in the total mass of the system mout . Therefore, during thegravitational ollapse the total mass dereases, while the inner mass inreases. Whenould suh a proess be stopped? The natural limit is the rossing of the Einstein �Rosenbridge, sine suh a transition requires (at least in a quasi-lassial regime) insertionof in�nitely large volume, with, of ourse, zero probability. Computer simulations showthat the proess of quantum ollapse for our shells stops when the prinipal quantumnumber beomes zero, n = 0 .The point n = 0 in our spetrum is very speial. In this ase the shell does not�feel� not only the outer region (what is natural for the spherial on�guration), butit does not know anything about what is going on inside. It �feels� only itself. Suh asituation reminds the �no hair� property of a lassial blak hole. Finally, when all theshells (both the primary one and newly born) are in the orresponding states ni = 0 ,the whole system does not �remember� its own history. Then it is this �no-memory�state that an be alled �the quantum blak hole.� Note that the total masses of all theshells obey the relation ∆ mi =
1√
2

Mi .



100 V. BEREZIN2.2. Classial analog of quantum Shwarzshild blak hole. The �nal stateof quantum gravitational ollapse an be viewed as some stationary matter distribution.Therefore, we may hope that for massive enough quantum blak hole suh a distributionis desribed approximately by a lassial stati spherially symmetri perfet �uid withenergy density ε and (e�etive) pressure p obeying lassial Einstein equations. This iswhat we all a lassial analog of a quantum blak hole. Of ourse, suh a distributionhas to be very spei�. To study its main features, let us onsider the situation in moredetails.Any stati spherially symmetri metri an be written in the form
ds2 = eν dt2 − eλ dr2 − r2(dθ2 + sin2 θ dϕ2). (12)Here r is the radius of a sphere with the area A = 4πr2 , ν = ν(r) , λ = λ(r) . There areonly three (stati spherially symmetri) Einstein equations. The onstraint equationan be written in the integral form. For this, let us integrate the �rst of Eqs. (11):

e−λ = 1 −
2 Gm(r)

r
, (13)where

m(r) = 4π

r∫

0

ε r̃ 2 dr̃ (14)is the mass funtion that should be identi�ed with min . Now, the �no-memory� prinipleis readily formulated as the requirement that m(r) = ar , i.e.,
e−λ = 1 − 2Ga = const, ε =

a

4πr2
. (15)We an also introdue a bare mass funtion M(r) (the mass of the system inside a sphereof radius r without gravitational mass defet):
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ar√

1 − 2Ga
. (16)The remaining two equations an now be solved for p(r) and eν(r) . The general solutionis rather omplex, but the orret non-relativisti limit for the pressure p(r) (we areto reprodue the famous equation for hydrostati equilibrium) is given by only thefollowing one-parameter family:
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. (17)We see that the solution exists only for a ≤

1

4G
, then b ≤ a . The physial meaning ofthese inequalities is that the speed of sound annot exeed the speed of light, v2

sound =
b

a
≤ 1 = c2 , the equality being reahed just for a = b =

1

4G
. Finally, for the temporalmetri oe�ient g00 = eν we get

eν = C2
0 r4b/(a+b) = C2

0 r2G(a+b)/(1−2Ga).Thus, demanding the �no-memory� feature and the existene of the orret non-relativisti limit, we obtained the two-parameter family of stati solutions. But, weneed a one-parameter family, so we have to ontinue our searh.



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 101Evidently, the point r = 0 is singular both for matter distribution and g00 metrioe�ient. To examine what kind of singularity we are dealing with, one should alulatethe Riemann urvature tensor. It appears that for b < a this tensor is, indeed, divergentat r = 0 . But, if a = b =
1

4G
, we are witnessing a mirale, the (before) divergentomponents beome zero. Thus, demanding, in addition to the previous two very naturalrequirements, the third one (also natural), namely, the absene of the real (urvature)singularity at r = 0 , we arrive at the following one-parameter family of solutions to theEinstein equations (11)

eν = C2
0r2, eλ = 2, ε = p =

1

16πGr2
. (18)So, the equation of state of our perfet �uid is the sti�est possible one. The onstantof integration C0 an be determined by mathing the interior and exterior metris atsome boundary value of radius, r = r0 . Let us suppose that for r > r0 the spae-timeis empty, so, the interior should be mathed to the Shwarzshild metri with the massparameter m . Of ourse, to ompensate the jump in the pressure ∆p (= p(r0) = p0) ,we must inlude in our model a surfae tension Σ ; so, atually, we are dealing withsome sort of liquid. It is easy to hek that
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4G
.Note that the bare mass M =

√
2m , the relation is exatly the same as for the shell�no-memory� state and r0 = 4Gm0 , so, the size of our analog model is twie as that fora lassial blak hole of the same mass.The speial point in our solution r = 0 is not a trivial oordinate singularity, likein a three-dimensional spherially symmetri spae, beause ds2 (r = 0) = 0 . Thislooks like an event horizon. Indeed, the two-dimensional (t − r)-part of our metridesribes a loally �at manifold. Sine the stati observers at r = const are, in fat,uniformly aelerated, this is a Rindler spae-time with the event horizon at r = 0 .The orresponding Rindler parameter whih in more general ase is alled the �surfaegravity,� equals
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. (19)Therefore, the Unruh temperature in our model is TU =

1

4πr0
=
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16πGm
, what istwie less than the Hawking temperature for the Shwarzshild blak hole,

TH =
1

8πGm
= 2TU . (20)Let us resume what we have got by now. We onstruted a purely lassial model thatpossesses some features of (semi)lassial blak holes: event horizon and temperature,but instead of being global, they are loal. Indeed, by de�nition, the surfae r = 0annot be rossed; thus, the event horizon in our model beomes loal. The temperatureis also loal, Tloc = TU/

√
g00 = 1/2

√
2πr , and does not depend on the boundary value

r0 . And, one more important feature: if one removes some outer layer, nothing would behanged inside. This is a re�etion of the fat that all parts of our matter distributionare in thermal equilibrium.



102 V. BEREZINQuantum nature of radiation and the fat that the blak hole entropy has a disreteequidistant spetrum suggest that our distribution onsists, atually, of some numberof Quasi-partiles, �gravitational phonons.� Thus, having at hand loal intensive pa-rameters: e�etive pressure p(r) , temperature Tloc(r) , hemial potential µ(r) , andextensive parameters: bare mass M , volume V , entropy S and �partile� number N ,we are now ready to onstrut the loal thermodynamis.2.3. Thermodynamis. The �rst law of thermodynamis reads
dM = ε dV = Tloc dS − p dV + µ dN. (21)Dividing the above expression by the volume element dV we get the �rst law in itsloal form
ε(r) = Tloc(r) s(r) − p(r) + µ(r)n(r), (22)where s and n are the entropy and partile densities, respetively. In our model

ε = p , but what about s? The loal observer annot alulate it without know-ing the orresponding mirosopi struture, but he an ask his global ounterpartwho is eduated enough (reads proper books) and knows that the total entropy of theblak hole is S =
1

4G
Ahor , what for the Shwarzshild blak hole gives (Ahor = 4πr2

g)

S =
π

G
r2
g =

π r2
0

4G
. Having this information, our loal observer an dedue that

s(r) =
1

8
√

2Gr
, Tloc(r) s(r) =

1

32πGr2
. (23)Remembering now that ε =

1

16πGr2
, we obtain

Tloc(r) s(r) =
1

2
ε, µ(r)n(r) =

3

2
ε.We will need also the expression for the free energy F :

F =

∫
f dV, f = ε − Tloc s =

1

2
ε. (24)It is known that the thermal equilibrium onditions for the systems in stati gravita-tional �eld are

T
√

g00 = const, µ
√

g00 = const. (25)The onstants on the right-hand sides are universal for our model � they do not dependon the boundary value r0 . Therefore, their ratio is also a universal onstant. Thus, wehave
µ

T
= 3

s

n
= 3

S

N
= 3γ0. (26)Hene, the entropy is naturally quantized:

S = γ0 N, N = 1, 2, . . . (27)2.4. Solving the mystery of log 3. In order to alulate the spaing oe�ient
γ0 we have to make some assumption about the mirosopi struture of our model.We assume that the interior matter distribution onsists of N blak hole phonons withthe equidistant spetrum of exitations

εn = ω n, n = 1, 2, . . . (28)



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 103In this ase, the partition funtion for the whole system is the produt of those ones foreah phonon, and
Ztot = (Z1)

N , Z1 =
∑

n

e−εn/T =
∑

n

(
e−ω/T

)n

=
e−ω/T

1 − e−ω/T
. (29)It is natural to suppose that ω is just the blak hole resonane frequeny and its ex-istene follows from the properties of quasi-normal modes (as was already explainedearlier). Of ourse, ω is a temporal omponent of a four-vetor, the same is the tem-perature T , so their ratio does not depend on the hoie of the loks by loal statiobservers. We aept that the observers are using their proper time, so T is just theUnruh temperature TU whih is onstant in the whole interior. The partition funtion isan invariant, and we an alulate it in another way, using thermodynamial relations.Indeed, we an onsider some small volume element dV and the orresponding partitionfuntion Zsmall . Then, using the well-known formula for the free energy F = −T log Z ,and writing it for the volume element

dF = f dV = −Tloc log Zsmall, (30)where, as before, we use the loal intrinsi quantities in thermodynamial relations.From this we have
∫

f

Tloc
dV = −

∑
log Zsmall = − logZtot. (31)The left-hand side is

∫
f

Tloc
dV =

1

2

∫
ε

Tloc
=

π r2
0

4G
=

π r2
g

G
= S. (32)Here rg is the Shwarzshild radius, and S is the total blak hole entropy. Eventually,we obtain the important relation

e−S = Ztot = (Z1)
N , (33)from whih it follows that

e−ω/T

1 − e−ω/T
= e−S/N = e−γ0 , eγ0 = eω/T − 1. (34)To go further, let us onsider the irreversible proess of onverting the mass (energy)of the system into radiation from a thermodynamial point of view. In our model suha proess takes plae just at the boundary r = r0 , and the thin shell with zero surfaeenergy density and surfae tension Σ serves as a onverter supplying the radiation withextra energy and extra entropy, this resembles the �brik wall� model. The nature ofthis radiation is purely quantum beause our system is not radiating lassially. Thejump in the Unruh temperature of the inner and outer near-boundary stati observersis ompensated exatly by the gravitational in�uene of the surfae tension. One animagine that the near-boundary layer of thikness ∆r0 is onverting into radiation, thusdereasing the boundary of the inner region to (r0−∆r0) . Its energy is ∆M = ε∆V . Tothis we should add the energy released from the work done by the surfae tension due toits shift, whih is equal exatly to ∑

d(4πr2
0) = pd∆V = ε∆V = ∆M . Therefore, boththe energy and the temperature in the onverter beomes two times higher than thatfor any inner layer of the same thikness. And this double energy is gained by radiatingquanta. Clearly, they have double frequeny and exhibit double temperature, so

Re w

TH
=

ω

TU
= log 3, (35)



104 V. BEREZINas follows from the spetrum of quasi-normal modes for the Shwarzshild blak holes.Substituting this into Eq. (34) and remembering that
3 − 1 = 2, (36)we obtain
γ0 = log 2. (37)Sine the radiated energy is thermalized, the interpretation of dm as equal to Re w isan improper proedure. This resolves the � log 3 -paradox.�3. Beyond the �Standard model�The model proposed above is very stringent. And the question arises: whih ofthe imposed onditions ould be weakened? Let us remember the steps towards the�nal results. First, we demanded the �no memory� ondition to be ful�lled. This wasneessary to ensure the blak hole mimiry. Seond, we assumed the perfet �uid energy-momentum tensor. Then, the requirement for the absene of a urvature singularity atzero radius has led us both to the appearane of the temperature and to the unique(sti�est possible) equation of state. Surely, the thermal equilibrium is the ruial feature,but how about the isotropy in the �uid pressure?To make this point learer, let us onsider the general form of stati spheriallysymmetri metri with stati observers in mutual thermal equilibrium. As we alreadyknow, the spae-time in suh a ase should be a diret produt of Rindler (loally �at)manifold and 2-dimensional sphere of radius R :

ds2 = a2ρ2 dt2 − dρ2 − R2(ρ)(dθ2 + sin2 θ dϕ2), (38)where a is the aeleration parameter, and R(ρ) is the only unknown funtion of theradial oordinate ρ . The Einstein equations read as follows:
−

2R′′

R
+

1 − R′2

R2
= 8πGε,

− 2
R′

ρ R
+

1 − R′2

R2
= −8πGpr,

−
R′′

R
−

R′

ρ R
= −8πGpt.

(39)Here �prime� denotes ordinary derivatives and we assume that, in general, the radialpressure pr is not equal to the tangential pressure pt . With the �no memory� ondition
R′ = α = const, the above equations beome algebrai; besides, in this ase ε+pr = 2ptand for isotropi pressure pr = pt we reover the previous result. But, let us rememberthat the relation between the bare and total masses M =

√
2m in our model appearedthe same as that of the quantized thin dust shells in the �no memory� states. And thisdoes not point to the fat that our lassial analog onsists solely of massive onstituents.But in reality, lassial blak holes may ontain some radiation (i.e., massless partiles)as well. Consider now the extreme situation when the analog model distribution isrepresented by massless partiles only. Then, ε = pr + 2pt and, hene, pr = 0, ε = 2pt

α = 1/
√

3 . Suh a strange equation of state means that we are dealing not with aondensed matter but rather with a set of thin shells of small (vanishing) energies thatonsist of massless partiles orbiting along the spheres of onstant radii in all possiblediretions [25℄. But suh a distribution is unstable, beause the orbits oinide withthe last irular ones in the outer Shwarzshild metri. In the intermediate ase, there



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 105is a mixture, and these orbits beome stable. Moreover, if one assumes that these twosystems are non-interative (exept gravitationally), what seems quite natural in thespirit of our �no memory� ondition, then it is not di�ult to show, using separateontinuity equations, that R′ = const and the perfet �uid part of the mixture has thesti�est possible equation of state.Suh a generalized model possesses plausible features. First, the value for R′ is nomore unique, instead, 1/3 < α2 ≤ 1/2 . Seond, these orbiting massless partiles anbe understood as remnants of radiated quasi-normal modes and, at the same time,as the origin of the equidistant �phonon� spetrum in the perfet �uid. Third, the�Hawking evaporation� of our analog model an now be onsidered as the induedradiation tunneling trough the potential barrier aused by the surfae tension at theboundary.It is not yet lear how to make use of the thermodynamial relations in this ratheromplex system and. . . but the work is in progress.This work was supported by the grant No. 10-02-00635-a from the Russian Founda-tion of Fundamental Investigations (RFFI).�åçþìåÂ.À. Áåðåçèí. Çàìå÷àíèÿ î êëàññè÷åñêèõ àíàëîãàõ êâàíòîâûõ ÷¼ðíûõ äûð.Ïîñòðîåíà ìîäåëü, â êîòîðîé îñíîâíûå ãëîáàëüíûå ñâîéñòâà êëàññè÷åñêèõ è êâàçè-êëàññè÷åñêèõ ÷åðíûõ äûð ñòàíîâÿòñÿ ëîêàëüíûìè (ãîðèçîíò ñîáûòèé, îòñóòñòâèå ¾âî-ëîñ¿, òåìïåðàòóðà è ýíòðîïèÿ). Íàøà ñõåìà áàçèðóåòñÿ íà îñîáåííîñòÿõ êâàíòîâîãî êîë-ëàïñà, îáíàðóæåííûõ ïðè èçó÷åíèè íåêîòîðûõ êîíêðåòíûõ ìîäåëåé êâàíòîâûõ ÷åðíûõäûð. Îäíàêî íàøà ìîäåëü ÿâëÿåòñÿ ÷èñòî êëàññè÷åñêîé, ÷òî ïîçâîëÿåò èñïîëüçîâàòü ñà-ìîñîãëàñîâàííûì îáðàçîì óðàâíåíèÿ Ýéíøòåéíà è êëàññè÷åñêóþ (ëîêàëüíóþ) òåðìîäè-íàìèêó è òàêèì îáðàçîì îáúÿñíèòü ¾ïðîáëåìó log 3¿.Êëþ÷åâûå ñëîâà: êëàññè÷åñêèå è êâàçèêëàññè÷åñêèå ÷¼ðíûå äûðû.
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