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Abstract

An ultraproduct of any linear spaces with respect of a non-trivial ultrafilter in an index
set is generalization of the non-standard expansion *R of the set of real numbers R. The non-
standard mathematical analysis has the objects and methods of a research, which only to some
extent depend on laws of the standard mathematical analysis.

In this work, non-standard objects — ultraproducts of von Neumann algebras — have been
studied from the point of view of the standard analysis. This approach allows to receive, in par-
ticular, a criterion of contiguity of sequences of normal faithful states in terms of the equivalence
of states on the corresponding ultraproducts.

We note that the classical ultraproduct of von Neumann algebras, generally speaking, is not
a von Neumann algebra. Therefore, in accordance with A. Ocneanu’s work, we have considered
the changed construction of the ultraproduct of von Neumann algebras.

We have introduced the concept of ergodic action with respect to the normal state of
group on an abelian von Neumann algebra. Its properties have been studied. In particular, we
have provided the example showing that the ultraproduct of ergodic states is not, generally
speaking, ergodic.
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Introduction

Definition 1. Given a non-empty set X, a filter on X is a non-empty family U
consisting of subsets of X, such that

1. the empty set is not an element of U;

2. if A and B are subsets of X, A is a subset of B, and A is an element of U,
then B is also an element of U;

3.if A and B are elements of U, then the intersection of A and B is also element
of U.

A filter U on X is a mazimal filter or an ultrafilter on X | if for every filter U on
X that contains U we have U’ = U.

Note that the filter U on X is an ultrafilter if and only if, for any subset A of X,
either A or X \ A belongs to U, but not both.

The family U = {A C X : A contains an element zy € X} is an example of an ul-
trafilter. This ultrafilter is said to be trivial. In what follows, we will use only nontrivial
ultrafilters.

Definition 2. Let us consider a sequence (X,,) of nonempty sets and a nontrivial ul-
trafilter U in the set N of natural numbers. The ultraproduct (X, )y is the factorization

[ee]
of the Cartesian product [[ X, by the equivalence relation:
n=1

(1‘)” ~ (y)n = {n 1Ty = yn} c U.
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The linear structure for an ultraproduct of linear spaces is defined in the natural
way:
(fﬂn)u + (yn)u = (xn + yn)Ua C- (ffn)u = (C : $n)u~
The set-theoretic ultraproduct possesses a number of extraordinary properties, for
which we refer the reader to the articles by D. Mushtari and S. Haliullin [1] and S. Hal-
iullin [2].

Definition 3. Let U be a nontrivial ultrafilter on the set of integers N. Let ()
be a sequence of points in a metric space (X,d). A point = € X is said to be the limit
of the sequence (x,) with respect to the ultrafilter U, denoted x = limy x,,, if for every
e >0 we have {n:d(z,,z) <e} e U.

As is well-known, if K is a compact Hausdorff space and U an arbitrary ultrafilter
on the set N, then every sequence (z,)22,, =, € K, has a unique limit with respect
to the ultrafilter U.

Definition 4 (see, for example, [3]). Let (H,)n,en be a sequence of Banach
spaces and let U be a nontrivial ultrafilter in the set N of natural integers. Let us
put (N, H,) = {(hn),hn € Hy, : sup,, ||hn|| < oo} and Ny = {(hy) € I®(N,H,,) :
limy ||| = 0}. The ultraproduct (Hy, )y of the sequence of Banach spaces is the quo-
tient {°°(N, H,,) /N ; here My is the closed subspace of (N, H,,).

We denote an element of (Hy)y by (hn)u. Then, the formula

defines a norm on (H,)y . In this case, (H,)y is a Banach space.

It is known, (S. Heinrich, [3]), that the class of Banach algebras and the class of
C*-algebras are stable under ultraproducts.

In fact, the multiplicative and involutive structures of the ultraproduts are defined
in the natural way:

(@n)w - (Yn)u = (@n - yn)u, (@n)w)” = ((2n) Ju

Let us consider the notion of the ultraproduct for a sequence of von Neumann
algebras using Ocneanu’s definition (see [4], [5]).

Definition 5. Let (M,,) be a sequence of o-finite von Neumann algebras, and let
@n be a normal faithful state on M,, for each n € N. Let us put

17N, M) = {(2n), zn € My, : sup [lz, || < oo},

Nu(Ma, o) = {(wa) € (N, My) : lim g (20 + 2n2;)'/? = 0},
We let
MU(Mnawn) = {(:L'n) € loo(Nan) :
(xn)Nu(Mm QDn) - Nu(Mm @n)aNu(Mm Spn)(xn) C Nu(Mm @n)}

Then, we define the ultraproduct for the sequence of von Neumann algebras with normal
faithful states as the quotient

(Mrm SDn)u = MU(MTH @n)/Nu(MTH 90”)

Finally, we define a state oy on (M, p,)y as follows:

ou ((Tn)u) = hﬁn Pn(Tn)-



ULTRAPRODUCTS OF VON NEUMANN ALGEBRAS 289

It is known (see [5]) that if the state ¢, is normal and faithful, then (M,,, o)y is
a von Neumann algebra with the normal faithful state oy .

There are various definitions of the absolute continuity of positive linear functionals
on x-algebras (see, for example, the papers by S. Gudder [6] and by E. Chetcutti and
J. Hamhalter [7].

Definition 6. Let M be a von Neumann algebra, and let ¢ and ¢ be normal
states on M. The state ¢ is said to be absolutely continuous with respect to the state
¥ if the equation ¥ (z*x) = 0 implies p(z*z) = 0, x € M. The states ¢ and 1 are
called equivalent if they are mutually absolutely continuous. The states ¢ and i are
called singular if there is an operator € M, such that ¢(z*z) =0 and ¥(z*z) = 1.

Let us notice that it is enough to set an equivalence and singularity of states on
projections in the case of von Neumann algebra. Now, we need the following concept
introduced in [8].

Definition 7. Let (M, ) be a sequence of o-finite von Neumann algebras, let ¢,
and 1, be normal states on M,,, n € N. The sequence (p,) is said to be contigual
with respect to the sequence (¢,,) if

Yn(xhx,) — 0 implies ¢ (zrz,) — 0, x, € My, (n— 00);

If the sequence (p,) is contigual with respect to the sequence (¢,,) and the sequence
(1) is contigual with respect to the sequence (¢,,), then the sequences (p,,) and (¢,)
are said to be mutually contigual; the sequences (¢,) and (,) are said to be entirely
separable if there is a subsequence (n’) and operators x, € M, , such that

on (@) xn) — 0, Ypr(xhze) — 1, (0 — o00).
These notions generalize the concepts of equivalence and singularity of states.

Theorem 1 [8]. Let (M, ) be a sequence of o -finite von Neumann algebras, let p,
and Y, be normal faithful states on M,,, n € N.

i) The sequences (¢n) and (V¥y) are mutually contigual if and only if the states oy
and Y are equivalent for every montrivial ultrafilter U on N.

1) The sequences (¢n) and (¥,) are entirely separable if and only if there is a non-
trivial ultrafilter U on N, such that the states py and iy are singular.

1. Ultraproducts and ergodicity

Let G be a separable locally compact group, and let (€2, u) be a o-finite standard
measure space. By an action of G on (€, ), we mean a Borel map T : (s,w) € GXQ —
T,(w) € Q, such that

1) for each fixed s € G, the map w — Ts(w) is a non-singular bijection of Q;

2) Ty(Ti(w)) =Tt (w), s,t€G, we,

3) Te(w) = w, where e is the unit of G.

We also say that (9, u) is a G-measure space and we will designate (G,Q, u).

Definition 8. ( [9]) The action G on (2, 1) is said to be non-singular (with respect
to the measure p)if E € F u(E) =0 < pu(Ts(E)) =0 for any s € G; The action G on
(Q, 1) is said to be free (with respect to the measure ) if for any compact subset K of
G, such that e ¢ K, and any Borel subset E of Q with u(E) > 0, there exists a Borel
subset F' C E, such that u(F) > 0 and p(F(Ts(F)) =0 for every s € K; The action
G on (Q,pu) is said to be ergodic (with respect to the measure p) if u(EATs(E)) =0
for every s € G implies p(E) =0 or u(2\ E) =0.
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With (G, Q, 1), we consider an action « of G on the abelian von Neumann algebra
A = L>(Q) given by the following:

as(f)w) = fT;'w), s€G, feA weQ

Definition 9. Let ¢ be a normal state on the von Neumann algebra A = L*°(Q).
We claim that an action a of G on A is non-singular with respect to the state ¢ if
o(f) =0« ¢(as(f)) =0, f € A for any s € G; we say that an action « of G on A
is free with respect to the state ¢ if for any compact subset K of G, such that e ¢ K,
and for any projection g € A, g # 0, there exists a non-zero projection f € A, such
that f < g and p(fas(f)) =0 for every s € K ; we say that a non-singular action « of
G on A is ergodic with respect to the state ¢ if for any projection f € A, as(f) = f
for every s € G implies p(f) =0 or p(1 — f) =0.

At the same time, the state ¢ is called quasi-invariant, free, and ergodic with respect
to the action «, respectively.

Theorem 2. Let ¢ and ¢ be normal states on the abelian von Neumann algebra
A = L>*(Q), the action a of G on A is ergodic with respect to the states ¢ and 1.
Then, the states ¢ and v are either equivalent or singular.

Proof. Let p and ¢ be the supports of the states ¢ and 1, respectively. It is clear
that the states ¢ and 1 are equivalent if and only if p = ¢, and the states ¢ and
are singular if and only if p L ¢. Let us assume the opposite, i.e., that the states ¢
and 1 are non-equivalent and non-singular. We put r = pqg. Then, r # p,r # q,7 # 0,
0 < (r) <1 and, at the same time, as(r) = as(pq) = pq(T; 1 (w)) = plq(T; H(w)) =
plas(q)) =pg=r for all s € G. It contradicts to an ergodicity of the state . O

We designate for a projection f: ¢q,(f) = o(as(f)).

We consider the ultraproduct (A,,, ¢, )u of the sequence of the abelian von Neumann
algebras (A, )neny with the actions a4, on A, and normal faithful states ¢, . Let U
be a non-trivial ultrafilter on the set of natural numbers N. Put

o ((fr)u) = (an(fn)u-

Theorem 3. If the transformation (a,)s, is non-singular and free with respect to
the state py,,s, € Gn,n € N, and the sequences of the states (¢n) and ((¥n)(an)., )
are mutually contigual, then the action ay is non-singular and free on (An, pn)u -

Proof. Itis clear that, generally, the action « can not be non-singular on the group
(Gu)u- We put G = {s = (sp)u € (Gn)u : the sequences (¢n) and ((¢n)(a,).,) are
mutually contigual}. Then, non-singularity of the action as, s € G, is provided with
the first statement of theorem 1. The freeness of the action «ay follows from definition
9 and the first statement of theorem 1. So, the action aq is non-singular and free. O

Let the action «,, be ergodic with respect to the normal faithful state ¢,, on the al-
gebra A,,,n € N. Generally, oy in not ergodic with respect to the normal faithful state
ou - It follows from the example given below.

Example 1. Let Q, = R", u, be Gaussian measure N(0,1,), G, is the group
of shifts on the elements of R™, n € N. It is known, (see [1]), that the ultrapro-
duct pq is quasi-invariant with respect to action on the group G = {z = (z,)u :
sup,, ||Znlle, < oo}. In other words, the action on the group G is non-singular with
respect to measure g .

Let us put A, = L®(Qp, ptn) ©n(frn) = [ fa(x)dpy, . It is clear that the state ¢,
on the algebra A, is normal and faithful. We consider the action «,, of the group G,
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on the algebra A,, as in the above. It is obvious that the action «,, is non-singular and
free with respect to the state ¢, .

Now, we show that the measure py is not ergodic with respect to action aq on
the group G. In the paper [1], it is shown that for any element z € G we have
pu(BA(B — z)) = 0, where B = (Bp)u, Bn is the ball on the ©, of the radius
v/n and with the center at zero. It is clear that the measure py(B) = 1/2. Therefore,
the pq( is not ergodic.

Further, we put p = Is. Then, a,(p) = p for all z € G, at the same time we have

¢(p) #0 and p(p) # 1. O

This result can be compared to Ando and Haagerup’s results, see [5].

Conclusions

If to consider the results of this paper and paper [8], we can conclude that the ultra-
products of von Neumann algebras are characterized by unusual properties. We hope
to obtain other interesting results in the our further investigations of the problem.
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VYabTpanpousBenenusi ajiredop ¢doH Helimana m sproagn4dHocTb

C.I Xaruysrrun

Kasancxut (ITpusoaotcekuti) dedepanvrniti ynusepcumem, 2. Kasanwv, 420008, Poccus

Awunorarus

VabTpanpousBeieHne TPON3BOJIBHBIX JIMHEIHBIX TPOCTPAHCTB 110 HEKOTOPOMY HETPUBHAJIb-
HOMY YJIbTPadUIbLTPY B UHIEKCHOM MHOXKECTBE €CTh HU YTO MHOE, KaK 0000IIeHne HeCTaH 1apT-
HOro pacmmmpenusi R MHOXKecTBa JeficTBuTe/bHBbIX dnces R. HecranmapTHbiit MaTemaTude-
CKUIl aHAJIN3 UMEEeT CBOU OOBEKTHI U METOJIbI UCCJIEOBAHNUS, KOTOPDIE JIUIIb B OMPEIeJIEHHON
CTEIIEeHN 3aBHUCAT OT 3aKOHOB CTAHJIAPTHOIO MAaTEMATHIECKOI'O aHAJN3A.

B pabore «HecTammapTHBIE» OOBEKTHI — YIBTPAPOU3BeIeHus aarebp dpou Heitmana — uzy-
YAIOTCHA C TOYKM 3PEHUs CTAHJIAPTHOrO aHajau3a. Takoil MOJX0J MO3BOJISIET, B YACTHOCTH, IO~
JIyYUTHh KPUTEPUN «KOHTUI'YJIBHOCTH» IOCJIEI0BATEIbHOCTEH TOYHBIX HOPMAJILHBIX COCTOSTHUIA
B TEPMUHAX «IKBUBAJEHTHOCTU» COCTOSTHUN HA COOTBETCTBYIOIIUX YIbBTPAIIPOU3BEIECHUSIX.

M3BecTHO, 4TO KIaccuiecKoe yabTpanponssenenne anrebp dou Heiimana, Boobre roBopsi,
He sBJsieTcs anrebpoit pon Heiimana, mosroMy Mbl paccMaTpuBaeM CIEIUAJIBHYIO KOHCTPYK-
WO yJIbTpapon3Benennit aaredp ¢don Heiimana, ciaeayst paboram A. Oxueney. Mbr BBOIMM
[IOHATHE IPTOJIUIECKOTO OTHOCUTEIHLHO HEKOTOPO I'PYIIIBI IPe0OPa30BaHUi COCTOSTHUS HA aJl-
rebpe ¢on Heiimana n u3ydaem ero csoiictBa. PaccMoTpeHO yibrpanpon3BelieHre TaKUX CO-
CTOSIHUIT M TIPUBEJEHBI MX CBONCTBA. B YacTHOCTH, MPUBENEH MPUMED, MOKA3BIBAIOIIUN, UTO
VIIBTPAIIPOU3BEIEHUE IPrOJUIECKUX COCTOSHUN HE SIBJISIETCS, BOODIIE MOBOPS, SPrOJUIECKUM.

KuroueBbie ciioBa: JeiicTBue TPYIIbI, SPrOAMIHOCTD, COCTOsiHUA Ha anarebpe dou Heit-
MaHa
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