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Abstract

Many tasks of data analysis deal with high-dimensional data, and curse of dimensionality is
an obstacle to the use of many methods for their solving. In many applications, real-world data
occupy only a very small part of high-dimensional observation space, the intrinsic dimension
of which is essentially lower than the dimension of this space. A popular model for such data
is a manifold model in accordance with which data lie on or near an unknown low-dimensional
data manifold (DM) embedded in an ambient high-dimensional space. Data analysis tasks
studied under this assumption are referred to as the manifold learning ones. Their general
goal is to discover a low-dimensional structure of high-dimensional manifold valued data from
the given dataset. If dataset points are sampled according to an unknown probability measure
on the DM, we face statistical problems on manifold valued data. The paper gives a short review
of statistical problems regarding high-dimensional manifold valued data and the methods for
solving them.
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Introduction

For many centuries, the data analysis has been used for processing the results of
observations (measurements) over real objects or of performed large-scale or compu-
tational experiments. Mathematical statistics develops mathematical methods for data
analysis tasks when there is a mathematical (probabilistic) model of the processed data.

In recent decades, advances in information, computer, and telecommunications tech-
nologies have given the possibility of storage, fast searching, and processing of massive
amounts of data, as well as rapid transmission of data through the communication chan-
nels and remote access to them. This phenomenon gave rise to the ‘BigData’ paradigm,
which focuses on new technological possibilities of processing large data volumes and
diversity. These new capabilities allowed formulating and solving fundamentally new
scientific and applied data analysis problems and also gave rise to the new university
and academic discipline called data science [1]. In data science, many mathematical
and statistical tools are required to find fundamental principles behind the data, but
data science has a different approach than that of classical mathematics, which uses
mathematical models to fit data and to extract information [2].

The BigData phenomenon means usually not only big amounts of data, but also
their high dimensionality [3]. For example, in image analysis/machine vision tasks [4],
gray-scale image described with a resolution of N × N pixels is represented as N2 -
dimensional vectors with components specifying light intensities at image pixels, and
N varies from tens to thousands. Similar huge dimensionalities arise also in many other
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applied areas ‘with intensive use of data’ (speech recognition, text mining, web search,
etc.).

When the dimensionality of data is large, many theoretical and applied data analysis
algorithms perform poorly due to a statistical and computational ‘curse of dimensional-
ity’ (e.g., a collinearity or ‘near-collinearity’ of high-dimensional data causes difficulties
when doing regression), ‘empty space phenomenon’, and other reasons [5].

For example, the minimax error in regression problem, in which at least s times
differentiable unknown function depending on p -dimensional input is estimated from
n -independent observations, cannot achieve a convergence rate faster than n−s/(2s+p)

[6, 7] when nonparametric estimators are used [8]. In the density estimation problem,
standard estimators (e.g., multidimensional version [9] of Parzen–Rosenblatt kernel es-
timators [10, 11]) in the p -dimensional case have mean squared errors of the order
O(n−4/(p+4)) [9].

Fortunately, in many applications, especially in imaging and medical ones, ‘real-
world’ high-dimensional data obtained from ‘natural’ sources occupy only a very small
part of the ‘observation’ space; in other words, an intrinsic dimension of the ‘data
support’ is essentially lower than a dimension of the ambient high-dimensional space.
This phenomenon results in that original high-dimensional data can be transformed into
their lower-dimensional representations (features), which then are used in reduced data
analysis procedures. The problem of finding such representations is usually referred to
as the dimensionality reduction (DR) problem: given an input dataset

Xn = {X1, X2, . . . , Xn} ⊂ X (1)

sampled from an unknown data space (DS) X ⊂ Rp , find an ‘n -point’ embedding
mapping

h(n) : Xn ⊂ Rp → Yn = h(n)(Xn) = {y1, y2, . . . , yn} ⊂ Rq (2)

of the sample Xn to a q -dimensional dataset Yn (feature sample), q < p , which ‘faith-
fully represents’ the sample Xn . The dimensionality q is either assumed to be known or
estimated from the same sample (1). The term ‘faithfully represents’ is not formalized in
general, and it is different in various DR methods due to choosing some optimized cost
function L(n)(Yn | Xn) , which defines an ‘evaluation measure’ for the DR and reflects
the desired properties of the mapping h(n) (2). As is pointed out in [12], a general view
on the DR can be based on the ‘concept of cost functions’.

If the DS X is an unknown q -dimensional affine linear space L in Rp , princi-
pal component analysis (PCA) [13] estimates L by q -dimensional linear space LPCA

that minimizes over L a residual
n∑

i=1

|Xi − PrL (Xi)|2 , where PrL is a linear projector

onto L .
The LPCA passes through the sample mean X̄ and is spanned by q eigenvectors of

sample covariance matrix
n∑

i=1

(Xi − X̄)× (Xi − X̄)T corresponding to q -largest eigen-

values. Then, coordinates y ∈ Rq of projection PrL(X) on q -dimensional subspace
LPCA are taken as a low-dimensional representation of vector X .

However, if the DS X is a nonlinear one, only various heuristic nonlinear techniques,
such as multidimensional scaling [14], auto-encoder neural networks [15–18], kernel PCA
[19], and others, were proposed in the last century for the DR solution. Note that these
methods are not based on any mathematical model of processed data.

For the first time, a model for high-dimensional data, called the manifold model
[20], which occupies a small part of the observation space Rp , appeared only in 2000
and became the most popular model for such data. This model assumes that data lie
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on or near an unknown manifold (data manifold, DM) M of the lower dimension q < p
embedded in an ambient high-dimensional input space Rp . Typically, this manifold
assumption is satisfied for real-world high-dimensional data obtained from ‘natural’
sources.

Various data analysis tasks studied under a manifold assumption on processed data,
which are called manifold valued data, are usually referred to as the manifold learning
problems [21–24], the general goal of which is to discover a low-dimensional structure
of the high-dimensional DM from the given training dataset Xn (1) sampled from
the DM. If the dataset points are selected from the DM M independently of each other
according to some unknown probability measure µ , we face statistical problems on
manifold valued data.

The paper gives a short review of statistical analysis tasks on manifold valued data.

1. Assumptions on processed data

1.1. Assumptions on data manifold Let M be an unknown ‘well-behaved’
q -dimensional data manifold embedded in an ambient p -dimensional space Rp , q ≤ p ;
an intrinsic dimension q is assumed to be known. Let us assume that the DM is
a Riemann compact manifold with positive condition number [25]; thus, neither self-
intersections, nor ‘short-circuit’ are observed. For simplicity, we assume that the DM is
covered by a single coordinate chart ϕ and, hence, has the form

M = {X = ϕ(b) ∈ Rp : b ∈ B ⊂ Rq} (3)

where chart ϕ is one-to-one mapping from the open bounded coordinate space
B ⊂ Rq to the manifold M = ϕ(B) with inverse mapping ψ = ϕ−1 : M → B .
Inverse mapping ψ determines low dimensional parameterization on the DM M (q -di-
mensional coordinates, or features, ψ(X) of manifold points X ), and chart ϕ recovers
points X = ϕ(b) from their features b = ψ(X) .

Note that pair (ϕ,B) in (3) is determined up to arbitrary one-to-one mapping χ
from the space Rq into itself – another pair (ϕ∗,B∗) , in which ϕ∗(b∗) = ϕ(χ−1(b∗))
and B∗ = χ(B) , gives another representation M = ϕ∗(B∗) of the manifold M (3) and
another low-dimensional features b∗ = ψ∗(X) = χ(ψ(X)) of manifold points.

If the mappings ψ(X) and ϕ(b) are differentiable (the covariant differentiation is
used in ψ(X) , X ∈ M), and Jψ(X) and Jϕ(b) are their q × p and p × q Jacobian
matrices, respectively, than the q -dimensional linear space

L(X) = Span(Jϕ(ψ(X))) (4)

in Rp is a tangent space to the DM M at point X ∈ M ; hereinafter, Span(H) is linear
space spanned by columns of the arbitrary matrix H , which, in turn, form a basis in
L(X) . These tangent spaces are considered as elements of the Grassmann manifold
Grass(p, q) consisting of all q -dimensional linear subspaces in Rp [26].

Let Z = Jϕ(ψ(X)) × z and Z ′ = Jϕ(ψ(X)) × z′ be two vectors from tangent
space L(X) with coefficients z ∈ Rq and z′ ∈ Rq of their expansions in the columns
of Jacobian matrix Jϕ(ψ(X)) . An inner product (Z, Z ′) = zT ×∆ϕ(X) × z′ induced
by the inner product in ambient space Rp is determined by q × q matrix ∆(X) =
(Jϕ(ψ(X)))T ×Jϕ(ψ(X)) called metric tensor on the DM M in manifold point X ∈ M
smoothly varying from point to point [27, 28]. This tensor ∆(X) induces an infinitesimal
volume element on tangent space L(X) , and, thus, a Riemann measure on the manifold

m(dX) =
√
|det∆(X)| ×mes(dX) (5)

where mes(dX) is a Lebesgue measure on the DM M [29–31].
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1.2. Assumptions on probability measure of data. Let σ(M) be a Borel
σ -algebra of M (the smallest σ -algebra containing all the open subsets of M) and µ
be a probability measure on the measurable space (M, σ(M)) , the support of which
coincides with the DM M . Let us assume that µ is absolutely continuous with respect
to the measure m(dx) (5) on M , and

f(X) =
µ(dX)
m(dX)

(6)

is its density that separates from zero and infinity uniformly in the M .

2. Statistical analysis of manifold valued data

2.1. General. Let dataset (1) be a random sample from unknown probability
measure µ , the support Supp(µ) of which is an unknown data manifold M (3) with
an unknown intrinsic dimensionality q embedded in the ambient space Rp , q < p .
In the statistical framework, the goal of manifold learning is to make statistical infe-
rences about the DM from the sample Xn . We present below some typical examples of
such statistical problems:

• intrinsic dimension estimation;
• low-dimensional parameterization of the data manifold;
• estimation of the data manifold;
• estimation of tangent spaces to the data manifold;
• estimation of density on the data manifold;
• regression on the manifold, and others,

the solutions of which are described shortly below.

2.2. Preliminaries and notations. Let us introduce some general concepts
and notations, which are used in most manifold learning methods. For referent point
X ∈ M , let us denote Xk(X) ∈ Xn as a k -th nearest neighbor of the point X (i.e.,
|X1(X)−X| ≤ |X2(X)−X| ≤ · · · ≤ |Xn(X)−X|).

Let KE,ε(X,X ′) = I{X ′ ∈ U(X, ε)} be the Euclidean kernel. Here, I is the indicator
function and U(X, ε) = {X ′ ∈ Xn : |X ′ −X| < ε} . If the sample size n is sufficiently
large, then for small ε and for not very large values k , the points X ′ ∈ U(X, ε) and
nearest neighbors {Xk(X)} lie near the q -dimensional tangent space L(X) (4).

Let us introduce a weighted undirected sample graph Γ(Xn) consisting of sample
points {Xi} as nodes. For the given ε (or k ), edges in Γ(Xn) connect the points Xi

and Xj only when |Xi−Xj | < ε (or when these points are among k -nearest neighbors
relative to each other).

2.3. Estimating an intrinsic dimensionality of the data manifold. Roughly
speaking, the intrinsic dimension (ID) of a subset set X ⊂ Rp is the minimum num-
ber q = ID(X) of parameters needed to generate the subset description so that the
information loss is minimized [32]. There are various strong definitions of intrinsic di-
mension (topological ID, Hausdorff ID, Kolmogorov capacity ID, Correlation ID, and
others [33]), which give the same values for ‘non-exotic’ subsets.

For example, the Hausdorff–Besicovitch ID is defined as follows. Let a set Er consist
of ‘half-open’ cubes {Q = [k×r, k×r+r)p, k = 0,±1,±2, . . . } with edge r , and denote
N(X, r) = #{Q ∈ Er : X ∩ Q 6= ∅} . Let there exist numbers q = qHB(X) and
V = VHB(X) called the Hausdorff–Besicovitch ID and the volume of the subset X ,
respectively, such that N(X, r)/(V × r−q) → 1 as r → 0 meaning also that X is
measurable with respect to Jordan.
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The statistical problem is to estimate the ID(X) from the dataset (1) randomly
sampled from the DS X . Note that ID(Xn) = 0 for the above ID definitions.

Various procedures are proposed for this problem [34–39]. In some of them [34–36],
the ID(M) is estimated under manifold assumption X = DM M (3). For example,
the maximum likelihood estimator

q̂(M) =
1
n

n∑

i=1


 1

k − 1

k−1∑

j=1

ln
|Xk (Xi)−Xi|
|Xj (Xi)−Xi|



−1

(7)

is proposed with the use of k nearest neighbors {Xj(Xi)} of the sample points [34].

2.4. Low-dimensional parameterization of the data manifold. Given an in-
trinsic dimension q and sample Xn , the statistical problem is to construct an embedding
mapping h : M ⊂ Rp → Y = h(M) ⊂ Rq from the DM M to the feature space (FS) Y
by preserving the local data geometry, proximity relations, geodesic distances, angles,
etc., of the DM. Most of the solutions to this problem [21–24] start from constructing
the ‘n -point’ mapping Xn → Yn = {y1, y2, . . . , yn} (2) by minimizing the selected
cost function L(n)(Yn | Xn) . Following that, values hn(X) for out-of-sample points
X ∈ M / Xn are computed using some interpolation procedures.

For example, ISOmetric MAPping (ISOMAP) [40] preserves the data manifold geo-
metry by capturing geodesic distances {Dij} between all pairs {(Xi, Xj)} of sample
points. Firstly, the geodesic distances Dij are estimated by the lengths of shortest paths
{dij} between the nodes Xi and Xj in the graph Γ(Xn) , a good quality of these estima-
tors is proven [41]. Then, the feature sample Yn is constructed using multidimensional
scaling [14] by minimizing the cost function

LMDS(Yn | Xn) =
n∑

i,j=1

(
d2

ij − |yi − yj |2
)2

. (8)

In Laplacian eigenmaps [42], feature sample Yn minimizes the cost function

LLE(Yn | Xn) =
n∑

i,j=1

KE,ε (Xi, Xj)× ‖yi − yj‖2 (9)

under the normalizing condition
∑n

i,j=1 KE,ε(Xi, Xj)× (yi × yT
i ) = Iq required to

avoid a degenerate solution; this approach preserves the intrinsic geometric structure of
the DM.

In statistical framework, under an asymptotically small ε , the cost function (9) is
a sampling analog of a quantity

F (h) =
∫

M

|∇Mh(X)|2 µ(dX) =
∫

M

(h×∆Mh)(X)µ(dX) (10)

called a Laplacian of the graph Γ(Xn) , where h(x) is some component of the continuous
interpolated embedding mapping y = hn(X) ∈ Rq defined on the DM M , ∇Mh is its
covariant gradient and ∆Mh is the Laplace–Beltrami operator on the DM. It was proven
[43–45] that the components h1,n(X), h2,n(X), . . . , hq,n(X) of the mapping hn(X) con-
verge to the eigenfunctions h1(X), h2(X), . . . , hq(X) of the Laplace-Beltrami operator
∆M corresponding to its smallest nonzero eigenvalues λ1 ≤ · · · ≤ λq .

Other examples of manifold parameterization algorithms are locally linear embed-
ding [46], Hessian eigenmaps [47], Maximum variance unfolding [48], Manifold charting
[49], etc.
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2.5. Information preserving in low-dimensional parameterization. In ap-
plications, manifold parameterization is usually the first step in various data analysis
tasks, where reduced q -dimensional features y = h(X) are used in the reduced proce-
dures instead of initial p -dimensional vectors X . If the embedding mapping h preserves
only specific properties of high-dimensional data, then substantial data losses are pos-
sible when using a reduced vector y = h(X) instead of the initial vector X . To prevent
these losses, the mapping h must preserve as much available information contained
in the high-dimensional data as possible [50, 51].

This means the possibility to recover high-dimensional points X from their low-
dimensional representations y = h(X) using some recovering mapping g(y) : Y → Rp

with small recovery error δh,g(X) = |X − g(h(X))| .
The mappings (h, g) determine the q -dimensional recovered data manifold (RDM)

Mh,g = {X = g(y) ∈ Rp : y ∈ Y ⊂ Rq} (11)

which is embedded in an ambient space Rp and covered by a single chart g . A small
recovery error implies proximity Mh,g ≈ M between the manifolds meaning a small
Hausdorff distance dH(Mh,g,M) due inequality dH(Mh,g,M) ≤ sup

X∈M
δh,g(X) .

Let Jg(y) be a p×q Jacobian matrix of the recovery mapping g , then q -dimensional
linear space Lh,g(X) = Span(Jg(h(X))) in Rp is a tangent space to the RDM Mh,g at
the point g(h(X)) ∈ Mh,g .

There are some (though a limited number of) methods for recovery DM M from the
Y = h(M) . For linear manifolds, the recovery can be easily found using the PCA [13].
For nonlinear manifolds, the sample-based auto-encoder neural networks [15–18] de-
termine both the embedding and recovering mappings. The general method, which
constructs a recovering mapping in the same manner as locally linear embedding
[46] constructs an embedding mapping, has been introduced in [52]. An interpolation-
like nonparametric regression reconstruction method for manifold recovery is used in
the manifold learning procedure called local tangent space alignment [53]. The Grass-
man&Stiefel eigenmaps algorithm [54, 55] also solves the manifold recovery problem.

2.6. Estimation of the data manifold. The problem is to construct q -dimen-
sional manifold Mn which estimates (or approximates, recovers) the DM M from
the sample Xn .

In the papers, related to computational geometry, this problem is formulated as fol-
lows: given the finite dataset Xn , to construct some set M∗ ⊂ Rp that approximates
M in a suitable sense [56]. The solutions to this problem are usually based on decom-
position of the DM M in small regions (using, for example, Voronoi decomposition or
Delaunay triangulation on M) and each region is piecewise approximated by some ge-
ometrical structure such as simplicial complex [56], tangential Delaunay complex [57],
finitely many affine subspaces called ‘flats’ [58], k -means and k -flats [59], etc. However,
such methods have a common drawback: they do not find a low-dimensional parame-
terization on the data manifold; such parameterization is usually required in the data
analysis tasks which deal with high-dimensional data.

In the statistical framework, when the DM M (3) covered by a single chart is
estimated, the solution Mn should be also a q -dimensional manifold covered by a single
chart and, therefore, have the form (11).

The recovery error δh,g(X) can be directly computed at sample points X ∈ Xn ; for
the out-of-sample point, X it describes the generalization ability of the solution (h, g)
at a specific point X . The local lower and upper bounds are obtained for the maximum
reconstruction error in a small neighborhood of an arbitrary point X ∈ M [55]. These
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bounds are defined in terms of the distance between the tangent spaces L(X) and
Lh,g(X) to the DM M and RDM Mh,g at the points X and g(h(X)) , respectively,
in some selected metric on the Grassmann manifold Grass(p, q) .

It follows from the bounds that the greater the distances between these tangent
spaces are, the lower the local generalization ability of the solution (h, g) becomes. Thus,
it is natural to require that the solution (h, g) ensures not only the manifold proximity
Mh,g ≈ M , but also the tangent proximity Lh,g(X) ≈ L(X) for all points X ∈ M .
In the manifold theory [27, 28], the set composed of manifold points equipped by tangent
spaces at these points is called the tangent bundle of the manifold. Thus, the problem
of manifold recovery, which includes recovery of its tangent spaces too, is referred to
as the tangent bundle manifold learning problem. The Grassman&Stiefel eigenmaps
algorithm [54, 55] gives the solution to this problem and, under the asymptotic n →∞
and appropriate choice of algorithm parameters (for example, when ball radius ε =
εn in the kernel KE,ε(X, X ′) has the order of O(n−1/(q+2))) , the following rates of
convergence

|X − g(h(X))| = O(n−2/(q+2)), dP,2(L(X), Lh,g(X)) = O(n−1/(q+2)) (12)

hold true with high probability uniformly in points X ∈ M [60]. Here, dP,2 is the
projection 2-norm metric on the Grassmann manifold [61, 62] called the min correlation
metric in statistics [63]. The term ‘an event occurs with high probability’ means that its
probability exceeds the value (1− Cα/nα) for any n and α > 0 , and the constant Cα

depends only on α . The first rate in (12) coincides with the asymptotically minimax
lower bound for the Hausdorff distance between the DM and RDM, which was set out
in [64].

2.7. Estimation of tangent spaces to the data manifold. The simplest esti-
mator for the tangent space L(X) to the DM M is the linear space LPCA(X) , which
is a result of applying the PCA [13] to the local dataset U(X, ε) when the threshold
ε is small enough. Asymptotic properties of this estimator were studied in [44, 65–69].
Nonasymptotic analysis of the LPCA(X) of tangent spaces was performed in [70].

Eigenvectors of the local sample covariance matrix

Σ(X) =
n∑

i=1

KE,ε(X, Xi)× (Xi −X)× (Xi −X)T (13)

which correspond to q -largest eigenvalues, form basis in the LPCA(X) . However, these
bases are not agreed by with each other and can be very different, even in close points.
In various papers [53–55], the ‘aligned’ bases {H1(X),H2(X), . . . , Hq(X)} are con-
structed in the LPCA(X) . To provide locally isometric and conformal properties of
manifold parameterization, orthogonal aligned bases were constructed in [71].

2.8. Estimation of density on the data manifold. The problem of estimating
the unknown density f(X) (6) on the DM M was studied in a few papers [30, 31, 72–78].
A new geometrically motivated nonstationary kernel density estimator for the unknown
density based on the Grassman&Stiefel eigenmaps algorithm [54, 55] is proposed in [79].

2.9. Regression on the data manifold. Let Z = Φ(X) be an unknown smooth
mapping from its domain of the definition M lying in the input space Rp to the m-
dimensional output space Rm ; the domain of definition M is also assumed to be un-
known. Given the input-output sample {(Xi, Zi = Φ(Xi), i = 1, 2, . . . , n} , a common
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regression problem is to estimate an unknown mapping Φ . When the domain of defini-
tion M is q -dimensional input manifold, q < p , we are talking about a regression on
the manifold estimation problem.

When the input manifold M is known, i.e., its low-dimensional parameterization ψ
in (3) is known, regression on the manifolds problems can be reduced to the classical mul-
tivariate regression problem (multi-output one if m > 1) [80–82]. Under unknown input
manifold, various particular solutions to this problem were obtained [83–96]. A com-
mon regression problem consisting in estimation of an unknown mapping Φ , its Jacobian
matrix, and unknown input manifold M is studied in the paper [97].

Conclusions

The paper describes various statistical problems regarding high-dimensional man-
ifold valued data, such as estimating the data manifold (including estimation of its
intrinsic dimension and tangent spaces, construction of low-dimensional parameteri-
zation of the manifold), estimating the density on the data manifold, regression on
manifold tasks, etc. A short review of the possible solutions to these tasks is given.
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УДК 519.23

Статистические задачи моделирования многообразий

А.В. Бернштейн
Сколковский институт науки и технологий, г. Москва, 143026, Россия

Институт проблем передачи информации Харкевича РАН, г. Москва, 127051, Россия

Аннотация

Многие задачи анализа данных имеют дело с высокоразмерными данными, и фено-
мен проклятия размерности является препятствием для использования многих методов
для их решения. Во многих приложениях многомерные данные занимают лишь очень ма-
лую часть высокоразмерного пространства наблюдений, имеющую существенно меньшую
размерность по сравнению с размерностью этого пространства. Модель многообразия для
таких данных, в соответствие которой данные лежат на (или вблизи) неизвестного низ-
коразмерного многообразия данных, вложенного в охватывающее высокоразмерное про-
странство, является популярной моделью для таких данных. Задачи анализа данных,
изучаемые в рамках этой модели, принято называть задачами моделирования многооб-
разий, общая цель которых состоит в выявлении низкоразмерной структуры в лежащих
на многообразии данных по имеющейся конечной выборке. Если точки выборки извлече-
ны из многообразия в соответствии с неизвестной вероятностной мерой на многообразии
данных, мы имеем дело со статистическими задачами на многообразии данных. Статья
содержит обзор таких статистических задач и методов их решения.

Ключевые слова: анализ данных, математическая статистика, моделирование мно-
гообразий, оценка плотности на многообразиях, регрессия на многообразиях
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