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Abstract

A parametric approach to forecasting vectors of macroeconomic indicators, which incor-
porates functional dependencies between them, has been considered in this paper. As it is
possible to functionally bind together most indicators, we believe that this information can
help to substantially decrease their forecast error. In this paper, we have proposed to read-
just the traditionally obtained forecasts given the known analytical form of the relationship
between the considered indicators by the maximum likelihood method. We have also derived
a standard form of the readjusted probability density function for each analyzed indicator by
normalizing its marginal distribution. In order to prove the efficiency of the proposed method,
an empirical out-of-sample investigation has been carried out regarding a simple example for
such macroeconomic indicators as gross domestic product (GDP), GDP deflator, and GDP in
constant prices.
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Introduction

Accurate forecasting of macroeconomic indicators is a crucial task for both govern-
ment or corporations and investors, because it helps to elaborate strategies for effec-
tive development and risk management. To obtain point and interval forecasts of some
macroeconomic time series, most econometricians use regression analysis. In particu-
lar, they apply linear regression models with the optimization method of ordinary least
squares (OLS). Nowadays, time series of macroeconomic processes are forecasted in the
vast majority of cases by modeling separately each indicator under consideration even
through using such advanced techniques as partial least squares, nonlinear regression,
model averaging, etc.; see [1]. However, it is possible to increase the accuracy of such
forecasts by incorporating functional dependencies between modeled macroeconomic
indicators. Ideas that are in some way similar to the one discussed in this paper have
already been published in some statistical journals and are based on regression models
with multiple responses. Such models consist of several equations with the assump-
tion that there is a certain degree of correlation between the modeled target variables.
Several papers have covered the biresponse (involving only two dependent variables)
nonparametric regression, including [2–5] with smoothing the spline approach, as well
as [6] with the local polynomial approach. Basically, the purpose of multi-response mo-
deling is to obtain a better model than the one from single response modeling, given
that such a model does not only consider the predictors’ influence on a response, but
also the relationship between responses. Representation of the relationship between re-
sponses is usually expressed in the form of a variance-covariance matrix, which is used
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as a weighting in the model parameter estimation. The maximum effect from this mod-
eling method is achieved in case of a quite strong correlation between the considered
responses, which is explicitly shown in [7, 8], and [9]. This approach is usually applied to
panel or cross-sectional data in the field of medicine (see, e.g., [2–4, 10, 11]), sociology
(see [4]), and also without any special application as in paper [5]. However, in the field
of economics approaches, sharing the same idea as multi-response regression models
imply can be successfully used as well. The reasoning under this statement lies in the
fact that many macroeconomic indicators are bound by some functional dependency,
the understanding of which makes it possible to use this information to reduce the fore-
cast error. In this paper, we consider a very simple case of this relationship between
macroeconomic processes, which involves inflation, gross domestic product (GDP), and
real gross domestic product (RGDP). However, even constructing this simple model
may help to significantly improve the accuracy of forecasts, which clearly offers a huge
potential of the proposed ideas for predicting time series of economic processes.

1. Readjustment of traditional forecasts

Let {yt,Xt : t = 1, 2, . . . , n} be a considered real-valued sample, where yt is a target
variable and Xt = {1, x1t, x2t, . . . , xmt} is a countable dataset of possible explanatory
variables. Suppose we can compute a linear regression model as follows:

yt = XtB + et or ŷt = XtB,

where et is an observed residual of the model at time t and B is a column vector of
parameters, which is computed straightforward according to the OLS method as below:

B = (XTX)
−1

XTY, (1)

where

X =




X1

X2

...
Xn


 and Y =




y1

y2

...
yn


 .

The model has an unobserved error term εt which is subject to the following assump-
tions:

Proposition 1. Strict exogeneity, i.e., E(εt|X) = 0

Proposition 2. Homoskedasticity, i.e., E(ε2t |X) = σ2

Proposition 3. Normality, i.e., εt ∼ N(0, σ2)

Proposition 4. No perfect multicollinearity, i.e., XTX is a positive-definite matrix

Proposition 5. No autocorrelation, i.e., cov(εi; εi) = 0 ∀ i 6= j

Then, the probability density function (pdf) for one-step-ahead value of the target
variable yn+1 is subject to Student’s location-scale distribution with ν = n − m − 1
degrees of freedom.
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where
ŷn+1 = Xn+1B (3)

is location parameter,

s =

√
eTe

n−m− 1

(
1 + Xn+1(XTX)XT

n+1

)
(4)

is scale parameter and e = (e1, e2, . . . , en)T is a column-vector of residuals observed for
the model. Now suppose we have a set of target variables y

(1)
t , y

(2)
t , . . . , y

(K)
t , each

modeled by a data set X(1),X(2), . . . ,X(K) , respectively. Besides, all the considered
target variables are bound with functional dependency of some form

y
(i)
t = fi

(
y
(1)
t , . . . , y

(i−1)
t , y

(i+1)
t , . . . , y

(K)
t

)
, (5)

where subscript i denotes the function that expresses y
(i)
t in terms of other target

variables.
Then, it is possible to readjust each forecasted value of target variables taking into ac-

count all obtained pdfs and known functional dependency between target variables. It is
proposed that this procedure is performed using the maximum likelihood method, where
we maximize the product of the considered pdfs. Below we present a joint likelihood
computed using f1 .

LH = Ψ1(f1[y
(2)
n+1, y

(3)
n+1, . . . , y

(K)
n+1]) ·Ψ2(y

(2)
n+1)· · ·ΨK(y(K)

n+1)

To simplify the computational process, we shall use log-likelihood as displayed below:

log-LH = ln{Ψ1(f1[y
(2)
n+1, y

(3)
n+1, . . . , y

(K)
n+1])}+ ln{Ψ2(y

(2)
n+1)}+· · ·+ ln{ΨK(y(K)

n+1)} (6)

Thus, the values of the considered target variables that maximize expression (6) ap-
pear to be more precise than the initial ones. It is also possible to obtain readjusted pdf
for all the considered target variables by computing the normalized marginal probability
distribution as shown below:

pdf
(
y
(i)
n+1

)
=

Ω
(
y
(i)
n+1

)
∞∫

−∞
Ω

(
y
(i)
n+1

)
dy

(i)
n+1

, (7)

where

Ω
(
y
(i)
n+1

)
=

∫
· · ·

∞∫

−∞
Ψ1(y

(1)
n+1)· · ·Ψi−1(fi−1[y

(1)
n+1, y

(2)
n+1, . . . , y

(i−2)
n+1 , y

(i)
n+1, . . . , y

(K)
n+1])×

×Ψi(y
(i)
n+1)· · ·ΨK(y(K)

n+1) dy
(1)
n+1· · · dy

(i−1)
n+1 dy

(i+1)
n+1 · · · dy

(K)
n+1. (8)

Hence, we conclude that knowing the functional dependency between the conside-
red macroeconomic indicators can be a helpful source of information and facilitates
improvement of the classical regression models.
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Table 1. Mean squared realized forecast error for GDP deflator, RGDP, and GDP with and
without readjustment

Number of
observations

Without readjustment With readjustment
Price
index

Real GDP
index

GDP
index

Price
index

Real GDP
index

GDP
index

20 0.9705 0.1103 0.9757 0.9123 0.1064 0.9702
30 0.8295 0.0857 0.8598 0.7985 0.0837 0.8362
40 0.7695 0.0775 0.8373 0.7444 0.0769 0.7971
50 0.6878 0.0779 0.7502 0.6592 0.0779 0.7181
60 0.6662 0.0792 0.7364 0.6341 0.0791 0.7009
70 0.6654 0.0837 0.7683 0.6443 0.0828 0.7217
80 0.6562 0.0887 0.7718 0.6481 0.0887 0.7199
90 0.6516 0.0866 0.7941 0.6461 0.0867 0.7388
100 0.5814 0.0776 0.6822 0.5694 0.0792 0.6537
110 0.5294 0.0577 0.6628 0.5247 0.0581 0.6242
120 0.5324 0.0511 0.6626 0.5208 0.0521 0.6256

2. Empirical testing

In order to prove the efficiency of the proposed method, we carried out an empiri-
cal experiment with one-step-ahead out-of-sample forecasting of three macroeconomic
indicators: gross domestic product (GDP), GDP deflator, and real GDP or GDP in
constant prices for the USA. Our data set comprises historical data on these indicators
from Q1.1947 to Q3.2016. From basic principles of macroeconomics we know that

Ipq =
∑

p1q1∑
p0q0

, Ip =
∑

p1q1∑
p0q1

, Iq =
∑

p0q1∑
p0q0

=> Ipq = Ip × Iq,

where Ipq is the GDP index, Ip is the GDP deflator computed by the Paasche index,
and Iq is the RGDP Laspeyres index.

Then, our three target variables will be y(1) = (Ip−1) ·100% , y(2) = (Iq−1) ·100% ,
and y(3) = (Ipq − 1) · 100% = [(1 + y(1) ÷ 100) · (1 + y(2) ÷ 100) − 1] · 100% . Each of
these target variables are forecasted by linear fourth order autoregression as below:

y
(i)
t = b

(i)
0 + b

(i)
1 y

(i)
t−1 + b

(i)
2 y

(i)
t−2 + b

(3)
3 y

(i)
t−3 + b

(i)
4 y

(i)
t−4 + e

(i)
t (9)

In our empirical experiment, we compared the mean squared realized error for
the predicted values with and without readjustment procedure for different number
of observations in a data frame. The results are presented in Table 1. As one can see
from this table, nearly all readjusted forecasts have a smaller mean squared realized
error (highlighted in bold) than those without readjustment. In the cases when the ori-
ginal forecast demonstrated better performance, its mean squared realized forecast error
was insignificantly smaller than that for the proposed method (maximal difference was
around 2%). The fact that the proposed readjustment did not work perfectly for GDP
in constant prices is explained by the significantly smaller forecast error compared to
the deflator and GDP. Similarly, the obtained distributions for more volatile variables
are not able to considerably correct the less volatile variable, because they contain in-
sufficient data for it. In this respect, the proposed method would surely work well for all
variables if they have more or less similar predictability. Nevertheless, the mean squared
realized forecast error for GDP deflator was reduced by 3% on average, as well as by
1% for RGDP and by 5% for GDP, respectively.

In order to demonstrate how the readjusted probability density differs from the origi-
nal one, we also provide a graphical example from our empirical investigation, see Fig. 1.
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Fig. 1. Original and readjusted probability density function (pdf)

From Fig. 1 one can clearly observe that the newly computed pdf not only shifts
an expected value for yn+1 after readjustment, but also shrinks its original pdf, which
ensures better prediction. Thus, we managed to obtain considerable corrections of
the initial forecasted values even with such a simple example and, due to that, to sub-
stantially increase the forecast accuracy of the considered macroeconomic indicators.
Notably, it is possible to bind together many more indicators, such as ultimate con-
sumption, balance of trade, unemployment, money velocity, monetary base, industrial
production, etc. By doing that, one can create a complex macroeconomic forecasting
model that would predict incorporated indicators being in accordance with each other
and having greater efficiency than when forecasting each indicator separately.

Conclusions

In this paper, we discuss the idea that knowing the functional dependency between
forecasted macroeconomic data can help to improve the accuracy of obtained predic-
tions and to avoid any kind of disaccordance in forecasted values. The point is that if
each indicator under consideration is modeled separately by its own regression equa-
tion, the obtained forecasts very often contradict each other, thereby making impossible
the simultaneous occurrence of all predicted values in the modeled vector of indicators.
Therefore, we propose to take into account additional information from the functional
relationship between the data to bring initial forecasts into accordance. This proce-
dure can be implemented by the maximum likelihood method. Furthermore, we derive
a standard form for the readjusted pdf by using the normalized marginal distribution
of the variable with regard to the preliminary obtained distributions of all analyzed
target variables. This readjusted pdf can be used to compute the interval forecast with
a given significance level. Our out-of-sample empirical experiment testifies in favor of
the proposed method, even in case when the simplest macroeconomical relationship be-
tween just three indicators (GDP deflator, GDP, and GDP in constant prices) is taken
into account. Therefore, we conclude that the proposed method can be considered as
promising and useful for forecasting a set of balance macroeconomic indicators, because
it helps to substantially reduce the forecast error.
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УДК 519.248

Повышение точности прогноза временных рядов макроэкономических
процессов путем учета функциональных зависимостей между ними

Н.А. Моисеев

Российский экономический университет им. Г.В. Плеханова, г. Москва, 115093, Россия

Аннотация

В статье рассмотрен параметрический подход к прогнозированию векторов макроэко-
номических показателей, который включает в себя функциональные зависимости между
ними. Поскольку большинство таких индикаторов можно связать функционально, пред-
полагается, что использование этой информации может существенно снизить ошибку про-
гноза. С помощью метода максимального правдоподобия предлагается скорректировать
традиционно полученные прогнозы, учитывая известную аналитическую форму взаимо-
связи между рассматриваемыми индикаторами. В статье представлен также вывод стан-
дартной формы исправленной функции плотности вероятности для каждого анализируе-
мого индикатора путем нормализации ее маргинального распределения. Эффективности
предложенного метода доказана с помощью эмпирического вневыборочного тестирова-
ния согласно тривиальному примеру, который включает такие макроэкономические по-
казатели, как валовой внутренний продукт (ВВП), дефлятор ВВП и ВВП, выраженный
в постоянных ценах.

Ключевые слова: регрессионный анализ, ВВП, инфляция, денежная база, метод
максимального правдоподобия, функция плотности вероятности, функциональные зави-
симости макроэкономических показателей
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