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Abstract

New nonparametric methods were developed for verification and monitoring of quantum
randomness based on the ranged correlation function (RCF) and a sequence of the ranged
amplitudes (SRA). RCF analysis of different topology subsamples from the raw data of the pro-
totype of a quantum random number generator on homodyne detection was carried out. It was
shown that in the real system there are weak local regression relations, for which it is possible
to introduce a robust criterion of significance. Precise SRA identification of the long samples
statistics was carried out. The obtained results extend the traditional entropy methods of
the useful randomness analysis and open the way for creation of new strict quality quantum
standards and defense for physical random number generators.

Keywords: quantum information, ranged correlation functions, RCF defense, quantum
randomness, physical random number generator

Introduction

Quantum randomness, as a phenomenon within modern quantum physics [1] and
mathematical logic [2], has a very special status, allowing to attribute it to the class of
effects in partially deterministic complex systems [3]. In addition, experimental physics
has no ideal measuring technique capable of directly determining the “ideal” quantum
randomness. Therefore, it is necessary to develop stable methods for nonparametric
analysis of quantum time series [4, 5] in order to elaborate the fundamental criteria for
the quantitative parameterization of quantum randomness.

In quantum communications [6] and the problems of generating true random num-
bers [7, 8], the question of the quantitative assessment of the quality of the initial raw
randomness is one of the central ones. Common methods for analyzing the raw random-
ness in quantum systems often come down to identifying the empirical frequencies of
long samples and calculating the autocorrelation function, but poorly predict methods
for local analysis [9]. For this reason, we believe that new precise methods for the corre-
lation analysis of time series [10] expand the possibilities of error correction in quantum
information science at the post-processing stage and will make it possible to enhance
the secrecy and defense of communications at the physical level.

In this paper, we developed new non-parametric methods for verifying and monito-
ring quantum chance based on the ranged correlation functions (RCF) and its analogues
using a sequence of ranged amplitudes (SRA). A RCF analysis of various topology
subsamples from the raw data of the prototype quantum generator of random numbers
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on homodyne detection was performed. The data source in our work is the experimental
prototype of a quantum random number generator based on the homodyne detection
of vacuum fluctuations of laser radiation [8]. For the studied series, a method of precise
SRA identification of the statistics of short samples was proposed, as well as weak local
regression relations were found, for which stable criteria of significance were introduced.
The results obtained contribute significantly to the traditional entropy analysis methods
and promote the development of common quantum standards and defense for physical
randomness.

1. Ranging

Any time series {Xk}, k = 1, 2, . . . , N, consisting of real or complex numbers, can be
ranged according to the chosen measure by decreasing (or increasing) and get a sequence
of ranged amplitudes (SRA) of the form {xn}, n = 1, 2, . . . , N , where n is the index
in SRA [10]. According to this definition, the sequence of SRA {xn} is composed of
exactly the same elements as the original sequence {Xk} ; therefore, SRA is a non-
invasive (without loss of information) statistical quantitative characteristic of a data
sample [10]. SRA is related to the distribution function by the following approximate
relation (where N is the sample size) [4, 5, 11, 12]:

F (xn; N) = (N + 1− n(xn))/N. (1)

Note also that any (even non-smooth and infinite) statistical functions (statistical ave-
rages over the initial sample) of a given sample {Xk} and SRA {xn} strictly coincide.
Mathematically, this can be written as a condition G[{Xk}] =

∑

k

G(Xk) =
∑

n

G(xn) =

G[{xn}] for any function G(x) (for example, G(x) can be some entropy measure).
Hence, any entropic measure and sum-functions of the sample (including the SRA) on
the information capacity are equivalent or superior to the original SRA. In this sense,
SRA analysis significantly expands the possibilities of entropy analysis.

Many of the generalized correlation functions [10] of a pair of samples {Xk} , {Yk}
are in fact the prototype of three SRA: SRA {Xk} , SRA {Yk} , and SRA of the di-
rect product of samples {w2

n = (XkYk)n} . We will consider this triple as the base of
the ranged correlation functions (RCF). In the future, for all samples by default, we
will use the normalized scale – {Xk → (Xk −min(Xk))/(max(Xk)−min(Xk))} . Such
a normalization, the only mapping that does not destroy the structure of linear regres-
sion relations, allows to correctly define the generalized correlation functions [10] on
the domain of complex variables, which is necessary to identify nonlinear regressions
[3, 9, 10, 12]. Normalization makes it possible to select only one sample {wn} among
the three described SRA to verify redundant correlations based on RCF.

2. RCF analysis of subsamples

Quantitative analysis of internal correlations and randomness can be most effectively
implemented on the basis of significantly different topology subsamples of the initial
sample, to which the quality criteria should be presented. For the original sample Xj

of the size 2N, j = 1, 2, . . . , 2N , we selected four subsets of the same size N : X1,k =
Xk , X2,k = Xk+N , X3,k = X2k−1 , X4,k = X2k, k = 1, 2, . . . , N . Note that the
properties of these four subsamples are homogeneous with respect to time, and two
former (1, 2) and latter (3, 4) samples form disjoint covers of the initial sample with
different topology. As a result, it is possible to consider the pairs independently: 1& 2
and 3&4 . The construction of the pair 1&2 is indicative of ultra-long correlations
(typical, for example, for mathematical generators of pseudo-random numbers), while
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the pair 3&4 enables one to “see” local linear regression connections, thereby expanding
the possibilities of autocorrelation function for the initial sample of the length 2N .

The motivation for the in-depth study of this four subsamples was a statistically
significant (by an order of magnitude) experimental observation of the difference in
the Pearson correlation coefficients in the pair 1& 2 (R2

12 = 6.9 · 10−4 ) and pair 3& 4
(R2

34 = 8.4 · 10−3 ) for raw data of the size N = 106 obtained on the prototype of
the quantum random number generator on homodyne detection. We discovered a local
regression to the challenge of sustainable criteria of significance for nonrandomness in
the source sample. The problem may be solved on the basis of the methods of SRA-
identification [3] statistics, which, as we have shown earlier, can be effectively applied
even to the short samples of quantum data [4, 5].

3. W statistics of the product of samples

Traditional methods for analysis of raw quantum randomness are often reduced to
the identification of empirical frequencies or their histograms for long samples [7, 8],
which causes certain identification errors associated with the invasiveness of these me-
thods. For raw data obtained as a result of the homodyne detection of quantum random-
ness [8], it is considered correct to determine normally distributed empirical frequencies.
However, a question immediately arises about the distribution of the cumulative fre-
quency function (discrete integral of empirical frequencies) and, accordingly, the SRA
distribution associated with it (1). The cumulative distribution function can be parame-
terized both by the error function (integral of the normal distribution) and by the sum of
two normal distributions following from the discrete integration of the normal distribu-
tion. This fundamental aspect of ambiguity is related to the discretization of the data,
which leaves the possibility to use empirical frequencies, cumulative frequencies, or
SRA to identify statistics. But the traditional criteria for the significance of theoreti-
cal models in statistics [11] have been proved for SRA, so we hold to the version that
the normality test should be understood for the most correct identification of statistics
as the proximity of the fitting function for the inverse of the SRA function (see (1)) to
the error function n(x) = A + B · erf ((x−x0)/dx) (hereafter, dx is not used to denote
integration). Our calculations show that the accuracy of the normalized SRA fitting
due to the error function n(x) = (1 + erf ((x− x0)/dx))/2 is higher than the accuracy
of the parameterization of the empirical frequency distribution by the Gaussian normal
distribution. Therefore, we will further use the normality conjecture in the sense of
the error function for other ranged data as well.

The main mathematical task of the traditional correlation statistical analysis of
a pair of samples {Xk} , {Xk} is to identify the symmetric relations given by the sum-
functions G[{Xk;Yk}] = G[{Yk; Xk}] (in the spirit of entropy analysis), which can
be written directly on the basis of the symmetric functions G = Gsym[{W 2

k =
XkYk; R2

k = X2
k + Y 2

k }] or the angular symmetric functions (spherical coordinates)
Gangle[{φk = arcsin (2W 2

k /R2
k)/2; R2

k}] . On the basis of symmetric functions, we usu-
ally further consider the variable-split sum-functions, which leads us in the analysis
of Gsym to independent consideration of the series {Wk} and {Rk} and, hence, their
SRA {wn} and {rn} . In this paper, we restrict ourselves to the consideration of SRA
{wn} built on the normalized series {Xk} and {Yk} . It is important to emphasize that
the variance of such W statistics of the product of samples (SRA {wn}) in its con-
struction can be associated with the standard Pearson match criterion R2 expanding
its capabilities to a great extent.

Previously, we found the difference between R2
12 = 6.9 · 10−4 and R2

34 = 8.4 · 10−3

for two different subsamples from the raw data of the prototype of a quantum random
number generator on homodyne detection. To see the difference between the subsamples
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Fig. 1. W statistics of the product of the topologically different subsamples {w12,n; zn = n/N}
(a) and {w34,n; zn = n/N} (b) (dotted line – experiment, solid line – theory)

1&2 and 3&4 at the level of W statistic and to demonstrate the sensitivity of RCF
analysis, we built and parameterized at the expense of the error function z = (1 +
erf((w − w0)/dw))/2 sets {zn = n/N ; w12,n} and {zn = n/N ; w34,n} . For the curves
in Fig. 1, the fitting accuracy was approximately 0.9993 ; the obtained parameters of
fitting {w0 = 0.5144; dw = 0.1566} for 1&2 and {w0 = 0.5304; dw = 0.1524} for 3&4
indicate a statistically significant difference between the two pairs of subsamples.

The criterion for the significance of correlations in this case is not one Pearson
parameter R2 and two parameters {w0; dw} of the model error function. The sensi-
tivity of the RCF analysis technique can also be increased by improving the model
fitting function [3, 10] through introducing an additional degree of freedom θ in
the form of an additional non-extensiveness parameter to the error function of the z =
A + B · erf ((w − w0)θ/dw) type, which corresponds to the availability of effective me-
mory in time series. However, taking into account additional parameters of fitting with
the help of the standard methods of mathematical analysis is a nontrivial task in many
practical situations, and the question of the implementation of algorithms for accounting
non-extensiveness in statistical distributions requires a separate in-depth study [3, 10].

4. Angle analysis of randomness

An additional method for the correlation analysis of randomness on the basis of sym-
metric functions is to consider the distributions of the angles {φk = arcsin (2W 2

k /R2
k)/2}

and the radii {Rk = (X2
k + Y 2

k )1/2} constructed from the centered data
{Xk → Xk − 〈Xk〉} . The SRA {rn; z = n/N} distribution is normal in the sense
of the error function with a fit accuracy of about 0.9999 , and the {ϕn; z = n/N}
angle distribution has the character of a uniform distribution (ϕn

∼= n/N ) with almost
the same degree of accuracy. Therefore, to identify potential regression links, we used
a more subtle criterion based on the SRA analysis of discrete derivatives of the initial
distributions {φ′k = φk+1−φk} and {R′k = Rk+1−Rk} characterizing the heterogeneity
of the angular distributions.

In Fig. 2, we constructed relative dependencies of the velocities of the radius-angle
{r′12,n; ϕ′12,n} and {r′34,n; ϕ′34,n} for two subsamples 1&2 and 3&4 of different topology
(size N = 106 ), for which the structure of the normal distribution was obtained (with
the fitting accuracy of 0.9995) with differing adjustable parameters.

Since the distribution of the angles in both pairs 1& 2 and 3&4 has the structure
of a uniform random variable, it was possible to represent the series {φk; Rk} in a split
form {sign (φ′k); abs (φ′k); R′k} , where randomness analysis can be carried out simulta-
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Fig. 2. The distribution of the inhomogeneity of the angular variables for 1&2 subsamples
{r′12,n; ϕ′12,n} (a) and 3&4 subsamples {r′34,n; ϕ′34,n} (b) (dotted line – experiment, solid
line – theory)
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Fig. 3. Basic NIST tests [13] for split quantum randomness, given by the inhomogeneities of
the angular distributions {sign (φ′12,k)} and {sign (φ′34,k)}

neously for all three components. At the same time, the series {sign (φ′k)} for both 1&2
and 3&4 contains an extremely small fraction of zeros (∼ 2.5 · 10−4 ± 3 · 10−6 ) and
consists of numbers {−1; 1} , which, after replacing −1 → 0 , give us a bit sequence.
For these sequences, the standard set of NIST cryptographic tests [13] can be applied
in two different cases and a p-value criterion of significance is obtained (p -value> 0.01
indicates that the test has passed).

We used subsamples of the length N = 106 and found that a part of quantum
randomness, when split off in such a way, satisfies the cryptographic criteria of true
random bits, which can be immediately used in quantum cryptography applications
[6, 8]. The results of passing the main tests of NIST [13] are shown in Fig. 3.

For the presented NIST tests, the standard notation was used: FREQUENCY – fre-
quency test; BLOCK FREQUENCY – frequency test in Blocks; RUNS – check the
“holes”; LONGEST RUNS – check the “holes” in the subsamples; RANK – check
of matrix ranks; FFT – spectral test; UNIVERSAL – Maurer’s universal statistical
test; CUMULATIVE SUMS – check of cumulative sums. Both sets of binary numbers
{sign (φ′12,k)} for the subsamples 1&2 and {sign (φ′34,k)} for the subsamples 3&4, as
shown by additional studies, successfully pass all randomness tests. Thus, we managed
to present the initial randomness through its subsamples in such a three-component
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form {sign (φ′k); abs(φ′k); R′k} that the first component is a true random variable, as
verified by the NIST tests, and proved that it is possible for the second and third compo-
nents (in parallel with the first component) to apply the criteria based on the SRA and
RCF methods. These circumstances are important for the implementation of an effective
procedure for extracting the final binary randomness from the raw data of a physical
random number generator, which will have a regulated structure with the possibility
of reliable statistical monitoring of internal security parameters and self-protection of
the physical generator of random numbers.

Conclusions

The development of general criteria for the quality of randomness in view of the ab-
sence of regression equations that clearly distinguish non-randomness remains a task
for further investigations. However, now we can present stable multi-parameter inter-
mediate criteria based on the parameterization of the SRA curves, the product of
the samples, and the SRA distributions of the angular variables of the subsamples
of different topology, which extended the traditional methods of analyzing quantum
randomness. A significant advantage of composite angular analysis with splitting of
a species {sign (φ′k); abs (φ′k); R′k} is the possibility for accurately separating high-
quality binary randomness {sign (φ′k)} from the initial data set and verifying it using
the standard set of NIST testing methods [13].

Due to non-invasiveness, the method of SRA and RCF can also be applied in the area
of identification of various signal sources [3, 14, 15] and noise [10, 16, 17]. The demon-
strated advantages of the ranged analysis open up new possibilities for a quantitative
description of the quality of useful quantum randomness and the introduction of uni-
versal quantum standards and defense in the area of security of optical and quantum
communications.
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Корреляционная защита квантовой случайности
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Аннотация

Предложены новые непараметрические методы верификации квантовой случайности
на основе ранжированных корреляционных функций (РКФ) и последовательности ран-
жированных амплитуд (ПРА). Проведен РКФ-анализ различных по топологии подвыбо-
рок из сырых данных прототипа квантового генератора случайных чисел на гомодинном
детектировании. Показано, что в реальной системе существуют слабые локальные регрес-
сионные связи, для которых можно ввести устойчивый критерий значимости, а также вы-
полнена прецизионная ПРА-идентификация статистики длинных выборок. Полученные
результаты расширяют традиционные энтропийные методы анализа полезной случайно-
сти и открывают путь для создания новых строгих квантовых стандартов качества и
защиты для физических генераторов случайных чисел.

Ключевые слова: квантовая информатика, ранжированные корреляционные функ-
ции, РКФ-защита, квантовая случайность, физический генератор случайных чисел
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