Том 149, кн. 4

Естественные науки

2007

УДК 541.49+546.723

СПЕКТРОФОТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ КОМПЛЕКСООБРАЗОВАНИЯ ЖЕЛЕЗА(III) С ТИРОНОМ В ВОДНЫХ РАСТВОРАХ СОЛЕЙ ЩЕЛОЧНЫХ И ЩЕЛОЧНОЗЕМЕЛЬНЫХ МЕТАЛЛОВ

Р.Р. Амиров, С.А. Мирсайзянова, А.А. Петрова, З.А. Сапрыкова

Аннотация

Методом спектрофотометрии и компьютерного моделирования равновесий изучено влияние солей щелочных и щелочноземельных металлов на образование комплексов железа(III) с динатриевой солью 4,5-диоксибензол-1,3-дисульфокислоты (тироном, Na₂H₂L) в воде. Установлено, что наблюдаемое в солевых растворах кажущееся упрочнение бис- и трис-тиронатных комплексов железа описывается моделями, включающими реакции образования соединений MFeL₂, MFeL₃ (M = Mg, Ca, Sr, Ba), M_nFeL₃ (n = 3, 4, M = Li, Na, K, Rb, Cs).

Введение

Одной из важнейших задач координационной химии является выявление закономерностей образования ионных ассоциатов с участием металлокомплексов в водных растворах [1]. Внешнесферная ассоциация координационно насыщенных комплексов металлов с противоионами (как правило, простыми анионами типа NO_3^- , SO_4^{2-} , CI^- , $S_2O_3^{2-}$ и др. или объемистыми четвертичными аммонийными катионами) изучалась достаточно подробно [2]. В то же время имеется крайне мало количественной информации об ассоциации катионов щелочных и щелочноземельных металлов с комплексными противоионами в водных растворах. Изучение взаимодействия комплексов с противоионами ПАВ имеет большое значение для углубления понимания процессов ассоциации ионов в растворе. Кроме того, работы в данном направлении перспективны в плане подбора условий для целенаправленного получения соединений, имеющих упорядоченную структуру, а на их основе – новые материалы (мезопористые структуры, прекурсоры в термическом синтезе материалов для оптики и электроники и т. д.).

1. Комплексообразующие свойства тирона

В данной статье изложены результаты исследования особенностей образования комплексов железа(III) с динатриевой солью 4,5-диоксибензол-1,3-дисульфокислоты – известным аналитическим реагентом тироном (*Tiron*, Na₂H₂L) – в водных растворах электролитов, содержащих ионы щелочных и щелочноземельных металлов. Констан-

ты кислотной диссоциации тирона были определены в ряде работ [3–11], и

Тирон									Пирокатехин		
pK_{a1}	7.70	7.4	7.66	7.63	7.56	7.66	7.60	9.22	9.28	9.33	
pK _{a2}	12.63	12.1	12.6	12.52	12.26	12.55	12.60	13.0 0	13.0 0	13.0 0	
Усло- вия (µ, t °C)	0.1*, 27.1	**	0.1 (KCl), 20	**	0.2 (KCl), 25	0.1 (NaClO ₄), 25	0.1 (KNO ₃), 25	0.1*, 27.1	1, 25	**	
Источ- ник	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[3]	[10]	[11]	

Величины констант кислотной лиссоциации тирона и пирокатехина

* Приведено авторами [3] расчетным путем к значению $\mu = 0.1$.

** Сведения отсутствуют.

приведены в табл. 1 (для сравнения даны значения констант кислотности пирокатехина).

Широкое применение в анализе тирон получил благодаря образованию прочных растворимых комплексов с катионами многих металлов, такими как Fe(III) [12, 13], Ti(IV) [14, 15], V(V) [16], Mo(VI) [17], U(VI) [18], ионы P3Э [19] и др. Как правило, с 2–3-зарядными катионами тирон образует хелатные моно, бис- и трис-лигандные комплексы, и лишь с высокозарядными катионами, такими как UO_2^{2+} , Th⁴⁺, зафиксированы полиядерные соединения [18]. Интерес к подобным исследованиям вызван возможностью использования тирона или полимерных лигандов с подобными хелатирующими фрагментами для извлечения радиоактивных изотопов из сточных и загрязненных природных вод [20].

Многие биологически важные соединения, участвующие в связывании железа(III), содержат 1,2-диоксибензойные фрагменты [21]. Например, энтеробактин (1), обеспечивающий железом клетки некоторых видов бактерий, содержит три катехолатных остатка, посредством которых происходит образование очень прочного ($\lg \beta \sim 50-52$) комплекса железа(III) (2):

Исследование кинетики и термодинамики комплексообразования, анализ спектров поглощения комплексов железа(III) с пирокатехином, тироном и другими молекулами, содержащими 1,2-диоксибензойные фрагменты, описаны в ряде работ [3–6, 22–25]. Как и в случае салициловых кислот, для тирона установлено последовательное образование моно-, бис- и трис-лигандных комплек-

	lg <i>K</i> *	$\lg \beta_{\rm ctyn}$ $\lg \beta$		Условия (µ, t, °С)	Источник
Fe	eL				
пирока-	-2.21	20.01	20.01		[22]
техин					[]
	-0.27	20.07	20.07		[22]
	0.5			1 (NaClO ₄), 25	[23]
тироц	0.3			1 (NaClO ₄), 25	[25]
проп	0.25	19.75	19.75		[4]
		20.7	20.7		****
		20.4	20.4	0.1 (KCl), 20	[5]
FeI	-2				
пирока-	7 53	14.60	317	0.08*** 27.1	[2]
техин	-7.55	14.09	54.7	0.08***, 27.1	[5]
	-5.45 (a)**	14.89 (a)**	34.96	0.1** 27.1	[2]
	-5.22 (b)**	15.12 (b)**	35.19	$0.1^{11}, 27.1$	[5]
	-3.6			1 (NaClO ₄), 25	[25]
тирон	-3.8	15.7	35.45		[4]
		15.2	35.9		****
		15.1	35.5	0.1 (KCl), 20	[5]
FeI	-3				
пирока-	_13.16	9.06	43.7	0.08*** 27.1	[3]
техин	-15.10	9.00	ч <i>э</i> .7	0.00 , 27.1	[3]
	-10.89 (a)**	9.45 (a)**	44.4	0.1** 27.1	[2]
	-10.24 (b)**	10.10 (b)**	45.3	$0.1^{11}, 27.1$	[3]
	-7.6			1 (NaClO ₄), 25	[25]
тирон	-7.5	12.0	47.45		[4]
		11.0	46.9		****
		10.8	46.3	0.1 (KCl), 20	[5]

Значения констант равновесия и устойчивости комплексов железа(III) с пирокатехином и тироном

* K_{n} относится к процессу: $ML_{n-1} + H_{2}L = ML_{n} + 2H$.

** Получено в условиях: (a) L/M = 6.5, μ = 0.1-0.26, (b) L/M = 2.8, μ = 0.15-0.25.

*** Приведено авторами [3] расчетным путем к данному значению µ.

**** Усредненная оценка данных, полученных разными авторами, приведенная в работе [6].

сов, несущих отрицательный заряд. Однотипность тиронатных и катехолатных комплексов железа(III), близость их устойчивости (табл. 2) и спектров поглощения (табл. 3) объясняют хелатной координацией иона Fe^{3+} через ароматические оксигруппы, что обеспечивает его прочное связывание. Как было отмечено еще в первых работах [4, 12], области рН существования тиронатных комплексов могут быть легко идентифицированы по различной окраске растворов, что позволяет использовать метод спектрофотометрии для их изучения.

Наличие двух сульфогрупп в составе молекулы тирона приводит к наличию высокого отрицательного заряда у всех его комплексов с ионом Fe³⁺. Таким образом, можно ожидать влияния катионных частиц в растворе на их образование и свойства, в особенности это относится к трис-лигандному комплексу.

	Тирон		Пирокатехин	
-	$λ_{\text{макс}}$, нм ($ε_{\lambda}$, M^{-1} cm ⁻¹)	Источник	$λ_{\text{макс}}$, нм ($ε_{\lambda}$, M^{-1} cm ⁻¹)	Источник
FeL	356 (1500), 417 (1100), 670 (1900)	[24]	714 (2100)	[27]
	670 (1800)	[5]	429 (880), 700 (1000)	[24]
FeL ₂	355 (3300), 561 (4700)	[24]	573 (3530)	[27]
	560 (4800)	[5]	374 (1950), 576 (2900)	[24]
	555 (3800)	[25]	570 (3300)	[23]
	476 (3700)	[24]	483 (3700)	[24]
FeL ₃	480 (5800)	[26]	490 (4190)	[23]
	480 (6200)	[5]	473 (4320)	[27]
	480 (5700)	[25]		

Спектральные характеристики комплексов железа(III) с тироном и пирокатехином

Образование в воде тройного комплекса диспрозий(III)-кальций(II)-тирон, обнаруженное в работе [28], предложено использовать в качестве основы чувствительного спектрофлуориметрического метода определения диспрозия. Стехиометрический состав комплекса определен как Dy : Ca : Tiron = 1 : 3 : 6. Предполагаемое строение его представлено схемой (3).

Между тем, для гетеробиметаллического комплекса [Ba(OCH₃)₅][Ti(Cat)₃], запатентованного в качестве прекурсора при получении титаната бария путем термического разложения [29], предложена структура (4), где ион бария, помимо пяти сольватных молекул метанола, связан с тремя атомами кислорода катехолатных анионов, находящихся в первой сфере титана(IV).

Таким образом, несмотря на давнюю известность тиронатных комплексов железа(III) и достаточную простоту схем комплексообразования, невыясненным остается ряд вопросов, связанных с возможностью образования ионных ассоциатов или гетерометаллических комплексов с участием катионов щелочных и щелочноземельных металлов. Для решения поставленных задач были использованы методы электронной спектроскопии и компьютерного моделирования равновесий.

2. Экспериментальная часть

В работе использовали хлорид железа(III) марки «ч.д.а.», динатриевую соль 4,5-диоксибензол-1,3-дисульфокислоты, C₆H₄O₈S₂Na₂·H₂O (98%, Acros Organics), соли – хлориды лития, натрия, калия, рубидия, цезия, магния, кальция, стронция, бария, аммония, нитрат калия, гидроксид натрия, аммиак (все – марки не ниже «ч.д.а.»).

Эксперименты и измерения проводили при 298 К. Кислотность растворов измеряли на pH-метре Orion 420A+ с комбинированным электродом. Титрование 5 мМ раствора тирона проводили раствором КОН, свободным от карбонатов. Из полученных данных была рассчитана константа диссоциации лиганда по первой оксигруппе $pK_{a1} = 7.80 \pm 0.05$, использованная затем при расчетах констант устойчивости.

Спектры поглощения снимали на приборе Lambda EZ210 (Perkin-Elmer) в диапазоне длин волн 350–900 нм с использованием кварцевых кювет толщиной 1 см (раствор сравнения – вода).

Величины констант равновесия комплексообразования получали путем построения математических моделей изучаемых систем, включающих схемы равновесий (со стехиометрическими коэффициентами при реагентах), значения констант равновесия образования комплексов и их коэффициентов экстинкции, є. Оптимизацию численных параметров проводили по компьютерной программе CPESSP [30] с оценкой достоверности по критерию Фишера.

3. Обсуждение результатов

3.1. Состояние тиронатных комплексов железа(III) в водных растворах. На рис. 1 представлены спектры растворов систем Fe(III)-Tiron в области pH 0.3–10 при соотношении C_{Tir} : C_{Fe} , равном 33.3 : 1.

Области pH существования комплексов FeL, FeL $_2$ и FeL $_3$ указаны на рис. 1, их спектральные параметры – в табл. 4.

Между тем, при понижении отношения концентраций L : М до 3.3 : 1 трискомплекс образуется лишь при pH > 8.5 (рис. 2).

Таким образом, полученные нами результаты подтверждают отмеченный в [26] факт относительно невысокой устойчивости трис-комплекса в отсутствие фонового электролита. В связи с тем, что известные из литературы значения констант образования (K_n) получены в присутствии значительных количеств добавленных солей (0.1–1 М), величины K_n были определены в условиях эксперимента, т. е. без добавления дополнительных электролитов.

Для расчетов по программе CPESSP была составлена матрица «А», включающая следующие равновесия:

$$Fe^{3+} + H_2L^{2-} \leftrightarrows FeL^- + 2H^+ \qquad (1)$$

$$H_2L^{2-} \leftrightarrows HL^- + H^+ \qquad pK_{a1} = 7.8$$
 (2)

$$Fe^{3+} \leftrightarrows Fe(OH)^{2+} + H^+$$
 $lgK_{-H} = 2.78 [23]$ (3)

Рис. 1. Спектры растворов в системе Fe(III) – Tiron. $C_{\text{Fe}} = 0.15 \text{ MM}, C_{\text{Tir}} = 5.0 \text{ MM}$

Рис. 2. Изменение поглощения є при разных длинах вол
н в растворах Fe(III) и тирона. $C_{\rm Fe} = 0.15$ мM, $C_{\rm Tir} = 0.50$ мM

Спектральные параметры, константы образования и устойчивости комплексов железа(III) с тироном

Комплекс	$\lambda_{\text{make}},$ HM	$\epsilon_{\lambda},M^{-1}cm^{-1}$	lg <i>K</i> _n	lg $β_{\rm ctyπ}$	$lgeta_{ m oбщ}*$
FeL	660	1900	0.5 ± 0.1	20.8	20.8
FeL ₂	550	4700	-6.2 ± 0.1	13.6	34.4
FeL ₃	480	6200	-19.1 ± 0.2	8.2	42.6

*Здесь и далее для расчета констант устойчивости использовали определенное нами значение $pK_{al} = 7.8$ и усредненное из литературных данных (табл. 1) $pK_{a2} = 12.5$.

Обработкой зависимости ε_{660} от pH (рис. 2) рассчитали величину lg K_1 (табл. 4). Как оказалось, определение констант бис- и трис-комплексов требует одновременного приближения значений K_2 и K_3 . Поскольку присоединение третьего

Рис. 3. Влияние добавок 1 : 1 электролитов на спектры растворов в системе Fe(III) – Tiron. $C_{\text{Fe}} = 0.15 \text{ MM}, C_{\text{Tir}} = 0.50 \text{ MM}$

лиганда к бис-комплексу сопровождается малым изменением поглощения при 550 нм (рис. 2), константы равновесия их образования определяли по кривой ϵ_{480} – pH (рис. 2). Использованную выше матрицу «А» дополнили уравнениями (4) и (5) (матрица «В»):

$$Fe^{3+} + 2H_2L^{2-} \leftrightarrows FeL_2^{5-} + 4H^+$$
 (4)

$$Fe^{3+} + 3H_2L^{2-} \leftrightarrows FeL_3^{9-} + 6H^+$$
 (5)

Результаты расчетов приведены в табл. 4. Для бис-комплекса величина ε_{480} составила 2900 М⁻¹см⁻¹.

Из сравнения данных табл. 2 и 4 очевидно, что полученное нами значение константы образования монотиронатного комплекса хорошо согласуется с известными, тогда как для бис- и, особенно, трис-лигандного комплексов получены более низкие значения величин $\lg\beta$.

Затем было исследовано влияние солей щелочных и щелочноземельных металлов на образование тиронатных комплексов железа(III).

3.2. Влияние солей щелочных металлов и аммония. Эксперименты проводили с добавками разных количеств (в основном 50 и 200 мМ) хлоридов щелочных металлов и, для сравнения, хлорида аммония. Предварительно было установлено, что введение до 200 мМ хлоридов однозарядных катионов не влияет на образование монолигандного комплекса. В связи с этим дальнейшие эксперименты проводили в области накопления бис- и трис-лигандных комплексов (рН 3–9). Как видно из рис. 3, эффект добавки соли во всех случаях проявляется в виде смещения кривых поглощения в кислую область, что при взаимодействии с лигандами – слабыми кислотами – можно интерпретировать как кажущееся упрочнение комплекса. При этом сами спектры комплексов FeL₂ и FeL₃ не изменились, что свидетельствует о полном сохранении состава координационной сферы железа(III) в солевых растворах.

Значения кажущихся констант образования комплексов FeL_n, констант образования и устойчивости, спектральные и магнитно-релаксационные параметры их ассоциатов с катионами щелочных металлов и аммония

	FeL ₂				FeL ₃							
M	$\mathrm{lg}K^{\mathrm{app}}$	lgK (MFeL ₂)	$lg\beta$ (ε)	lgK^{add} (MFeL ₂)	$\lg K^{\mathrm{app}}$	lgK (M ₃ FeL ₃)	$\lg \beta$ (E)	$\frac{1 \mathrm{g} K^{\mathrm{add}}}{(\mathrm{M}_3 \mathrm{FeL}_3)}$	lgK (M4FeL3)	$\lg \beta$ (c)	${}^{ m lgK^{ m add}}_{ m 4FeL_3)}$	
Li ⁺	-5.2	-4.0	36.6 (3016)	2.2	-16.7	-13.4	47.5 (6636)	5.7	-12.0	48.9 (5668)	7.1	
Na ⁺	-5.2	-3.9	36.7 (3077)	2.3	-16.3	-12.5	48.4 (6192)	6.6	-11.6	49.3 (6103)	7.5	
K^+	-4.9	-3.5	37.1 (3043)	2.7	-14.9	-11.1	49.8 (6061)	8.0	-10.2	50.7 (6281)	8.9	
Rb^+	-4.9	-3.6	37.0 (3126)	2.6	-14.6	-10.8	50.1 (6174)	8.3				
Cs^+	-4.7	-3.4	37.2 (3021)	2.8	-14.5	-10.7	50.2 (5943)	8.4	-10.2	50.7 (6506)	8.9	
$\mathrm{NH_4}^+$	-4.7	-3.5	37.1 (3046)	2.7	-14.3	-10.6	50.3 (6172)	8.5				
вода	-6.2		34.4 (2900)		-19.1		41.8 (6200)			41.8 (6200)		
	r	р	1 7	ann				50 M	п			

Примечание. Величины lgK^{арр} рассчитаны для содержания солей 50 мМ. Погрешность в определении констант равновесия не превышала 0.1 лог. ед. в случае FeL₂ и 0.2 лог. ед. – в случае FeL₃.

Путем расчетов с использованием матрицы «В» получены значения констант кажущихся констант образования (K^{app}) комплексов FeL₂⁵⁻ и FeL₃⁹⁻ (для $C_{MX} = 50$ мМ) по уравнениям (4) и (5), константы образования и устойчивости ассоциатов, а также их коэффициенты экстинкции (табл. 5).

Как видно из приведенных результатов, прочность возрастает при переходе от Li⁺ к K⁺, а затем практически не меняется. С ростом содержания соли (на примере KCl, табл. 6) эффект проявляется сильнее. Используя нитрат калия, проверили роль аниона. Как оказалось (табл. 6), замена хлорида на нитрат в соли калия не повлияла на его эффект в образовании ассоциатов. Это подтверждает отмеченное в [26] отсутствие влияния анионов на образование комплексов железа(III) с такими ароматическими лигандами, как салициловая и сульфосалициловая кислоты.

Учитывая все полученные результаты, мы предположили, что причиной влияния солей щелочных металлов на реакции образования тиронатных комплексов железа(III) является ассоциация последних с катионами М⁺ по следующим уравнениям:

$$\operatorname{FeL}_{2}^{5-} + n\operatorname{M}^{+} \leftrightarrows \operatorname{M}_{n}\operatorname{FeL}_{2}^{(5-n)-}$$
(6)

$$\operatorname{FeL}_{3}^{9-} + m\mathrm{M}^{+} \leftrightarrows \mathrm{M}_{m}\operatorname{FeL}_{3}^{(9-m)-}$$

$$\tag{7}$$

1						
Creana	FeL	2	FeL ₃			
Среда	$\lg K^{app} \pm 0.1$	ϵ_{480}	$\lg K^{app} \pm 0.2$	ϵ_{480}		
50 мМ	-4.7	3068	-14.6	6201		
KNO3						
50 мM KCl	-4.9	3020	-14.9	6170		
100 мM KCl	-4.6	3093	-14.0	6189		
200 мМ KCl	-4.1	3016	-12.7	6217		
вода	(-6.2)	2900	(-19.1)	6200		

Влияние концентрации соли и типа аниона на кажущиеся константы образования тиронатных комплексов железа

Компьютерное моделирование по программе CPESSP в предположении n = 1-5 и m = 1-9 показало, что для описания экспериментальных данных модель «В» достаточно дополнить следующими уравнениями (матрица «С»):

$$M^{+} + Fe^{3+} + 2H_{2}L^{2-} \leftrightarrows MFeL^{4-}_{2} + 4H^{+}$$
(8)

Табл. 6

$$3M^{+} + Fe^{3+} + 3H_2L^{2-} \leftrightarrows M_3FeL_3^{6-} + 6H^{+}$$
 (9)

$$4M^{+} + Fe^{3+} + 3H_{2}L^{2-} \leftrightarrows M_{4}FeL_{3}^{5-} + 6H^{+}$$
(10)

причем в случае Rb⁺ и NH₄⁺ последняя форма не зафиксирована. Константы равновесий (8)–(10) и устойчивости образующихся ассоциированных комплексов, рассчитанные с использованием $pK_{a1} = 7.8$ и $pK_{a2} = 12.5$ приведены в табл. 5. Здесь же даны рассчитанные с использованием полученных данных величины констант связывания, K^{add} , ионов щелочных металлов и аммония с тиронатными комплексами железа (по уравнениям (6) и (7) с учетом найденных значений *n* и *m*).

3.3. Роль солей щелочноземельных металлов. Стимулирование ионами бария образования трис-салицилатного комплекса железа(III) было недавно обнаружено в работе [31]. В связи с этим нами было исследовано комплексообразование железа(III) с тироном в присутствии ионов бария, а также, для сравнения, ионов Mg^{2+} , Ca^{2+} , и Sr^{2+} . На рис. 4 показаны зависимости молярной оптической плотности растворов тиронатных комплексов железа(III) в присутствии хлоридов щелочноземельных металлов.

Как видно, присутствие солей щелочноземельных металлов оказывает значительный эффект на образование комплексов FeL_2 и FeL_3 . При этом спектры растворов в новых областях накопления комплексных форм по положению максимума поглощения и величинам є практически совпадают со спектральными параметрами частиц FeL_2 и FeL_3 , приведенными в табл. 4. Таким образом, можно однозначно считать, что при добавлении солей MCl_2 соотношение L : Fe в комплексах не изменилось. На это же указывают результаты проверки состава тиронатного комплекса железа, образующегося в присутствии хлорида бария в растворах с pH 7.

Как видно из рис. 5, это также трис-лигандный комплекс.

Как и в предыдущем пункте, солевой эффект в системе Fe(III) – Tiron был охарактеризован кажущимися константами равновесия образования бис- и

Рис. 4. Влияние добавок хлоридов щелочноземельных металлов на спектры растворов в системе Fe(III) – Tiron. $C_{\text{Fe}} = 0.15 \text{ MM}, C_{\text{Tir}} = 0.50 \text{ MM}$

Рис. 5. Кривая насыщения оптической плотности в системе Fe(III) – Tiron – BaCl₂. $C_{\text{Fe}} = 0.15 \text{ MM}, C_{\text{BaCl2}} = 50 \text{ MM}, \text{pH 7.0}$

трис-лигандных комплексов с использованием модели «В». Полученные значения констант приведены в табл. 7.

В ряду однозарядных катионов действие трех самых больших (а также аммония) оказалось примерно равным. Хотя эффекты для кальция и стронция очень близки, влияние бария оказалось самым сильным в ряду двухзарядных ионов. Анализ состава комплекса по барию показал (рис. 6), что в этих же условиях происходит количественное присоединение двух ионов Ba²⁺ и вплоть до 30-кратного избытка соли бария никаких спектральных изменений не происходит.

Табл. 7

		F	eL ₂		FeL ₃				
M ^{II}	$\lg K^{\operatorname{app}}$	lgK (MFeL ₂)	$\lg \beta$ (E)	$\lg K^{\mathrm{add}}$ (MFeL ₂)	$\lg K^{\operatorname{app}}$	lgK (M ₂ FeL ₃)	$\lg \beta$ (c)	${ m lg}K^{ m add}$ (M2FeL3)	
Mg	-4.4	-3.1	37.5 (3301)	3.1	-13.3	-10.7	50.2 (5575)	8.4	
Ca	-3.3	-2.0	38.6 (3052)	4.2	-9.6	-6.9	54.0 (5658)	12.2	
Sr	-3.5	-2.2	38.4 (2868)	4.0	-9.9	-7.3	53.6 (5668)	11.8	
Ba	-2.8	-1.4	39.4 (2866)	5.0	-8.4	-5.9	55.0 (5627)	13.2	
вода	-6.2		34.4 (2900)		-19.1		41.8 (6200)		

Значения кажущихся констант образования комплексов FeL_n, констант образования и устойчивости, спектральные и магнитно-релаксационные параметры их ассоциатов с катионами щелочноземельных металлов.

Примечание. Величины lg*K*^{арр} рассчитаны для содержания солей 50 мМ. Погрешность в определении констант равновесия не превышала 0.1 лог. ед. в случае FeL₂ и 0.2 лог. ед. – в случае FeL₃.

Рис. 6. Кривая насыщения оптической плотности в системе Fe(III) – Tiron – BaCl₂. $C_{\text{Fe}} = 0.15 \text{ мM}, C_{\text{Tir}} = 0.50 \text{ мM}, \text{ pH 7.0}$

Учитывая, что катионы щелочноземельных металлов образуют собственные комплексы с тироном ($K_1 \sim 10^{10}-10^4$ в ряду Mg²⁺ – Ba²⁺ [32]), можно было ожидать возможного их конкурирования с ионами железа(III), и соответственно, кажущегося ослабления комплексов FeL_n. Между тем, как мы видели, добавление солей к растворам тиронатов Fe(III) приводило к упрочнению комплексов.

Рис. 7. Изменение ϵ_{480} от pH в растворах системы Fe(III) – Tiron – BaCl₂ с разным содержанием соли. $C_{\text{Fe}} = 0.15 \text{ MM}$, $C_{\text{Tir}} = 0.50 \text{ MM}$, $C_{\text{BaCl2}} = 5.0, 50 \text{ MM}$

Были проанализированы различные варианты образования ассоциатов:

$$\operatorname{FeL}_{2}^{5-} + n\operatorname{M}^{2+} \leftrightarrows \operatorname{M}_{n}\operatorname{FeL}_{2}^{(5-2n)-}$$
(11)

$$\operatorname{FeL}_{3}^{9-} + m\operatorname{M}^{2+} \leftrightarrows \operatorname{M}_{m}\operatorname{FeL}_{3}^{(9-2m)-}$$
(12)

при *n* = 1–3 и *m* = 1–5.

На примере ионов Ba^{2+} было установлено, что зависимости ε_{480} от pH при разных концентрациях компонентов (5 и 50 мМ, рис. 7) описываются матрицей «D», включающей модель «B» и уравнения

$$M^{2+} + Fe^{3+} + 2H_2L^{2-} \leftrightarrows MFeL_2^{3-} + 4H^+$$
 (13)

$$2M^{2+} + Fe^{3+} + 3H_2L^{2-} \leftrightarrows M_2FeL_3^{5-} + 6H^+$$
(14)

т. е. *n* = 1 и *m* = 2.

Численные значения констант образования и устойчивости комплексов, а также их коэффициентов экстинкции даны в табл. 7. Здесь же приведены рассчитанные с использованием полученных данных величины констант связывания, K^{add} , ионов щелочноземельных металлов и аммония с тиронатными комплексами железа (по уравнениям (11) и (12)).

Как известно [34], изменение констант равновесия комплексообразования при варьировании содержания так называемого фонового электролита (который считается индифферентным к компонентам реакции) обычно объясняют изменением коэффициентов активности ионов вследствие изменения ионной силы μ . Для проверки роли ионности среды на выявленные равновесия была проанализирована зависимость ϵ_{480} от pH в системе Fe(III) – Tiron – NaCl –BaCl₂. Из рис. 8 очевидно, что добавление 200 мМ хлорида натрия не изменяет того эффекта, который производит присутствие 5 мМ ионов Ba²⁺ на образование тиронатных комплексов железа(III).

Рис. 8. Влияние добавки 200 мМ NaCl на зависимость ε_{480} от pH в растворах системы Fe(III) – Tiron – BaCl₂. $C_{Fe} = 0.15$ мМ, $C_{Tir} = 0.50$ мМ, $C_{BaCl2} = 5.0$ мМ

Компьютерное моделирование с учетом всех выявленных в данной работе равновесий показало, что даже 40-кратный избыток ионов натрия над ионами бария не перекрывает эффект последних в связывании с анионными тиронатными комплексами железа. Таким образом, значительное изменение ионной силы (например, добавление 200 мМ NaCl) не оказывает сколько-нибудь заметного влияния на равновесия в обсуждаемой системе.

Хотя одна из очевидных движущих сил ассоциации ионов M⁺ и M²⁺ с биси трис-тиронатами железа(III) состоит в их сильном кулоновском притяжении, увеличение прочности связывания с ростом радиуса катиона Mⁿ⁺ свидетельствует, что электростатический фактор не является определяющим. Среди прочих причин наблюдаемых явлений следует также рассмотреть:

 прочность гидратной оболочки ионов щелочных и щелочноземельных металлов;

 возможность образования гетерометаллических комплексов с мостиковой связью атомов кислорода лиганда между атомами Fe и M как в структуре комплекса BaFe(Cat)₃;

 – формирование агрегатов олигомерного характера за счет связывания через сульфогруппы лиганда.

Окончательный вывод о причинах аномально высокой прочности найденных соединений требует дополнительных исследований и анализа.

Выводы

Методами электронной спектроскопии и компьютерного моделирования равновесий по впервые обнаруженному эффекту стимулированного образования анионных бис- и трис-лигандных комплексов железа(III) с 4,5-диоксибензол-1,2-дисульфонат-ионами (Тироном, H_2L^{2-}) установлено образование ассоциатов указанных комплексов (FeL₂⁵⁻ и FeL₃⁹⁻) с противоионами в солевых растворах. Показано, что ионы щелочных металлов и аммония ассоциируют с биси трис-тиронатными комплексами железа(III) с образованием частиц $MFeL_2^{4-}$, $M_3FeL_3^{6-}$ и $M_4FeL_3^{5-}$ ($M = Li^+$, Na^+ , K^+ , Rb^+ , Cs^+ , NH_4 . С ростом размера катиона в ряду щелочных металлов эффект возрастает и становится примерно одинаковым для ионов K^+ , Rb^+ , Cs^+ .

Для щелочноземельных катионов (M = Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺) также установлено образование ассоциатов MFeL₂³⁻ и M₂FeL₃⁵⁻, прочность которых возрастает в перечисленном ряду катионов (с примерно равным эффектом для Ca²⁺ и Sr²⁺). Полученные результаты по модификации устойчивости тиронатных комплексов железа(III) могут быть полезны для улучшения селективности и чувствительности аналитических методик определения железа, основанных на использовании тирона.

Summary

R.R. Amirov, S.A. Mirsaizyanova, A.A. Petrova, Z.A. Saprykova. Spectrophotometric investigation of iron(III) – tiron complexes in solutions of alkaline and alkaline-earth metal salts.

Alkaline and alkaline-earth metal salts influence on complex formation between iron(III) and disodium 4,5-dihydrobenzene-1,3-disulfonate (tiron, Na₂H₂L) in water was investigated spectrophotometrically and using computer modeling of equilibriums. Apparent strengthening of iron bis- and tris-tironate complexes found in saline solutions was described by models including formation reactions of next compounds: MFeL₂, MFeL₃ (M = Mg, Ca, Sr, Ba), M_nFeL_3 (*n* = 3, 4, M = Li, Na, K, Rb, Cs).

Литература

- 1. Marcus Y., Hefter G. Ion pairing // Chem. Rev. 2006. V. 106, No 11. P. 4585-4621.
- 2. *Миронов В.Е., Исаев И.Д.* Введение в химию внешнесферных комплексных соединений металлов в растворах. Красноярск: Изд-во Краснояр. ун-та, 1986. 312 с.
- Avdeef A., Sofen S.R., Bregante T.L., Raymond K.N. Coordination chemistry of microbial iron transport compounds. 9. Stability constants for catechol models of enterobactin // J. Am. Chem. Soc. – 1978. – V. 100, No 17. – P. 5362–5370.
- McBryde W.A.E. A spectrophotometric reexamination of the spectra and stabilities of the iron(III) – tiron complexes // Can. J. Chem. – 1964. – V. 42, No 8. – P. 1917–1927.
- Shriadah M.M.A., Ohzeki K. Effect of anion-exchange resin on the formation of iron(III) tiron complexes // Analyst. – 1986. – V. 111. – P. 197–200.
- Van Horn J.D., Gramer C., O'Sullivan B., Jurchen K.M.C., Doble D.M.J., Raymond K.N. Iron(III) 2,3-dihydroxyterephthalamides revisited. Charge effects on highly stable ferric complexes // Compt. Rend. Chim. – 2002. – V. 5. – P. 395–404.
- Kiss T., Sovago I., Martin B.R. Complexes of 3,4-dihydroxyphenyl derivatives. 9. A1³⁺ binding to catecholamines and tiron // J. Am. Chem. Soc. 1989. V. 111, No 10. P. 3611–3614.
- Sigel H., Huber P.R., Griesser R., Prijs B. Ternary complexes in solution. XV. Mixedligand copper(II) complexes with 2,2'-bipyridyl or 1,10-phenanthroline and pyrocatecholate or derivatives thereof // Inorg. Chem. – 1973. – V. 12, No 5. – P. 1198–1200.
- Mont G.E., Martell A.E. Equilibria involving the formation, hydrolysis, and olation of oxovanadium (IV) chelates in aqueous solution // J. Am. Chem. Soc. – 1966. – V. 88, No 7. – P. 1387–1393.
- Gergely A., Kiss T. Complexes of 3,4-dihydroxyphenyl derivatives. I. Copper(II) complexes of DL-3,4-dihydroxyphenylalanine // Inorg. Chim. Acta. 1976. V. 16. P. 51–59.

- Griesser R., Sigel H. Ternary complexes in solution. VIII. Complex formation between the copper(II)-2,2'-bipyridyl 1:1 complex and ligands containing oxygen and/or nitrogen donor atoms // Inorg. Chem. – 1970. – V. 9, No 5. – P. 1238–1243.
- 12. Yoe J.H., Jones A.L. Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulfonate // Ind. Eng. Chem., Anal. Ed. – 1944. – V. 16, No 2. – P. 111–115.
- Endo M., Abe S. Sequential flow-injection spectrophotometric determination of iron(II) and iron(III) by copper(II)-catalyzed reaction with tiron // Fresenius J. Anal. Chem. – 1997. – V. 358, No 4. – P. 546–547.
- Shida J., Tsujikawa Y. Spectrophotometric determination of trace amounts of titanium(IV) in environmental samples after preconcentration on a membrane filter // Analyt. Sci. – 1994. – V. 10, No 5. – P. 775–777.
- 15. Yoe J.H. Armstrong A.R. Colorimetric determination of titanium with disodium-1,2dihydroxybenzene-3,5-disulfonate // Anal. Chem. – 1947. – V. 19, No 2. – P. 100–102.
- Ferguson J.H., Kustin K. Interactions between vanadate and 1,2-aromatic diols. Complex formation and oxidation-reduction // Inorg. Chem. – 1979. – V. 18, No 12. – P. 3349–3358.
- Tsai S.J.J., Yan H.T. Determination of zirconium and molybdenum with 4,5-dihydroxybenzene-1,3-disulfonic acid disodium salt by ion-pair reversed-phase high-performance liquid chromatography // Analyst. – 1993. – V. 118, No 5. – P. 521–527.
- Sylwester E.R., Allen P.G., Dharmawardana U.R., Sutton M. Structural studies of uranium and thorium complexes with 4,5-dihydroxy-3,5-benzenesdisulfonate (tiron) at low and neutral pH by X-ray absorption spectroscopy // Inorg. Chem. – 2001. – V. 40, No 12. – P. 2835–2841.
- Ramkumar J. Fluorescence studies of ternary complexes of Europium and Terbium and their application to analytical determinations // Spectrochim. Acta, Pt A. – 2006. – V. 65, No 3–4. – P. 993–996.
- Zhao P., Romanovski V.V., Whisenhunt D.W. Jr., Hoffman D.C., Mohs T.R., Xu J., Raymond K.N. Extraction of Plutonium by chelating hydroxypyridone and catecholamide resins // Solv. Extr. Ion Exch. – 1999. – V. 17. – P. 1327–1353.
- Неорганическая биохимия / Ред. А. Эйхгорн / Пер. с англ. под ред. М.Е. Вольпина, К.Б. Яцимирского. – М.: Мир, 1978. – Т. 1. – 712 с.
- Mentasti E., Pelizzetti E., Saini G. Interactions of Fe(III) with adrenaline, L-dopa and other catechol derivatives: Equilibria and kinetics of complex formation in acidic perchlorate media // J. Inorg. Nucl. Chem. – 1976. – V. 38, No 4. – P. 785–788.
- Jordan R.B., Xu J.-H. Substitution and oxidation kinetics in substituted catechol-iron(III) systems // Pure & Appl. Chem. – 1988. – V. 60, No 8. – P. 1205–1208.
- 24. Sever M.J., Wilker J.J. Visible absorption spectra of metal-catecholate and metal-tironate complexes // Dalton Trans. 2004. P. 1061–1072.
- 25. Zhang Z.S., Jordan R.B. Kinetics of dissociation of iron(III) complexes of tiron in aqueous acid // Inorg. Chem. 1996. V. 35, No 6. P. 1571–1576.
- Harvey A.E. Jr., Manning D.L. Spectrophotometric methods of establishing empirical formulas of colored complexes in solution // J. Am. Chem. Soc. – 1950. – V. 72, No 10. – P. 4488–4493.
- Powel H.K.J., Taylor M.C. Interactions of iron(II) and iron(III) with gallic acid and its homologues: a potentiometric and spectrophotometric study // Aust. J. Chem. – 1982. – V. 35, No 4. – P. 739–756.
- Ci Y.-X., Lan Z.-H., Liu W. Fluorescence reactions of the dysprosium tiron calcium(II) mixed-metal complex // Analyst. – 1988. – V. 113. – P. 933–935.

- 29. Пат. 4880758 США, МКИ⁴ C01F 17/00. Preparation of ABO₃ compounds from mixed metal aromatic coordination complexes / R.H. Heistand, II, L.G. Duquette (США); The Dow Chemical Company (США). N 88460; Заяв. 24.08.1987; Опубл. 14.11.1989; НКИ 423/211.
- Сальников Ю.И., Глебов А.Н., Девятов Ф.В. Полиядерные комплексы в растворах. Казань: Изд. Казан. ун-та, 1989. – 288 с.
- 31. Мирсайзянова С.А., Ибрагимова З.З., Сапрыкова З.А., Амиров Р.Р. Влияние поверхностно-активных веществ на равновесия образования комплексов Fe(III) с салициловыми кислотами // Всерос. симп. «Эффекты среды и процессы комплексообразования в растворах», Красноярск, 29 мая 2 июня 2006 г.: Тез. докл. Красноярск: РИЦ СибГТУ, 2006. С. 14.
- Martell A.E., Smith R.M. Critical Stability Constants. N. Y.: Plenum Press, 1974–1982. V. 1–5.
- Бек М., Надьпал И. Исследование комплексообразования новейшими методами / Пер. с англ. С.Л. Давыдовой. – М.: Мир, 1989. – 413 с.

Поступила в редакцию 26.06.07

Амиров Рустэм Рафаэльевич – кандидат химических наук, доцент Химического института им. А.М. Бутлерова Казанского государственного университета. E-mail: *ramirov@ksu.ru*

Мирсайзянова Светлана Анатольевна – аспирант Химического института им. А.М. Бутлерова Казанского государственного университета.

Петрова Анна Александровна – студент Химического института им. А.М. Бутлерова Казанского государственного университета.

Сапрыкова Зоя Афанасьевна – кандидат химических наук, доцент Химического института им. А.М. Бутлерова Казанского государственного университета.