VUEHBIE 3ATIMCKN KASAHCKOI'O VHUBEPCUTETA.
CEPUSA OPUBNKO-MATEMATNYECKUE HAYKI

2018, T. 160, ku. 2 ISSN 2541-7746 (Print)
C. 266-274 ISSN 2500-2198 (Online)
UDK 519.21

ON THE ESTIMATION OF THE CONVERGENCE RATE
IN THE MULTIDIMENTIONAL LIMIT THEOREM
FOR THE SUM OF WEAKLY DEPENDENT RANDOM
VARIABLES FUNCTIONS

F.G. Gabbasov®, V.T. Dubrovin®, M.S. Fadeeva®
*Kazan State University of Architecture and Engineering, Kazan, 420043 Russia

®Kazan Federal University, Kazan, 420008 Russia

Abstract

A refinement of estimates of the convergence rate obtained earlier in the multidimensional
central limit theorem for the sums of vectors generated by the sequences of random variables
with mixing is close to optimal. This has been achieved by imposing an additional condition on
the characteristic functions of these sums, more accurate estimates of the semi-invariants, and
using asymptotic expansions for the characteristic functions of the sums of independent random
vectors. The result has been obtained using the summation methods for weakly dependent
random variables based on S.N. Bernstein’s idea of partition of the sums of weakly dependent
random variables into long and short partial sums, as a result of which the long sums are
almost independent, and the contribution of short sums to the total distribution is small.
To estimate the differences between the sum distributions, we have used the S.M. Sadikova’s
inequality connecting the difference between the characteristic functions of random vectors
with the difference between the corresponding distributions. To estimate the contribution of
short sums, Markov and Bernstein’s inequalities have been used.

Keywords: limit theorem, strong mixing, semi-invariants, asymptotic expansion, conver-
gence rate

Random fields arise in the description of continuum mechanics processes for con-
structing physical relationships between various characteristics of the processes [1-5],
plasma physics processes in calculating the velocity of plasma-chemical reactions [6-8],
etc. In the statistical simulation of phenomena, limit theorems underlie the proba-
bilistic criteria. The present paper is devoted to the use of asymptotic expansions of
characteristic functions and estimates of the semi-invariants of sums of random vari-
ables to obtain estimates of the convergence rate in the limit theorem for the vector
sequences generated by the sequences of random variables with mixing. We note that
in [9] a new condition for the weak dependence of a sequence of random variables was
introduced. In this case, the estimate of the rate of convergence in the central limit theo-
rem for weakly dependent quantities is the same as for independent random variables.
In [10, 11], the one-dimensional limit theorems (central and with large deviation) were
proved and almost optimal estimates of the convergence rate were obtained. In [12-14],
the multidimensional limit theorems for endomorphisms of Euclidean space were proved.
In [15], the question of large deviations in the multidimensional limit theorem for tra-
jectories generated by endomorphisms of the Euclidean space was investigated.

Let aq,as, ... be stationary sequence of random variables satisfying the strong mix-
ing condition (introduced by M. Rozenblatt) in the narrow sense, with the coefficient
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a(k) < cexp(—ak), where ¢ > 0, a > 0 are the constants. We define random variables

§ij = filag,aj41,...), &5 = E{&ijlaj,...,aj1s-1}, where f; are the measurable space
maps of numerical sequences into a number line, E{{;;|H} is a conditional mathema-
tical expectation with respect to a set of quantities H, i = 1,2,...,m, j = 1,2,...,
s=1,2,...

We form vectors &; = (£15,82j,---,&mg), & = (§77,€555 -+ -+ &m ). We denote by P,

a distribution of the sum ij /v/n, ®r —m is the dimensional normal distribution
j=1
with covariance matrix R and the zero vector of mathematical expectations. Besides,
w denotes an arbitrarily large fixed positive number. We assume that s = s(n), 1 <
s(n) <wlnn.
We consider the following conditions:
1) E&1 =0, [&1] < B, where | - | denotes the vector length, B > 0 is a constant;

2) the matrix R with elements rij = hm E(Z@k) (ijk)/n is non-degene-

=1 k=1
rate;

3) El¢1 — E{&aa, ..., a.}]? < Dexp(—dr), where d > 0 is a constant

4) lim sup Eexp((,zn:ﬁj)/\/ﬁ)’ < 1, where (t,¢;) thzm =
j=1

|[t] =00 n

(t1,t2, - tm)-
Obviously, these conditions will be valid for £7;.

Theorem 1. Let us suppose that conditions 1) —4) are satisfied. Then,
sup | Py (M) — ®x(M)| = O(In™ " n/\/n),
M

where M are the conver measurable sets from an m-dimensional Euclidean space !

Proof. Let us prove the theorem for the sequence &; - We present the estimates that
are used in proving of the theorem.

Let us aj; = E(iﬁ;}) (ifﬁ)/l
k=1 k=1

Lemma 1. If s=wlnn, then aj; =r;; + O(1/1).

Proof. First of all, let us consider how E(§;1§;,+1) and E(£7&;5,. 1) behave as 7
increases. We write

E(€n&jri1) = B{(&1 — €52 0} + BERPT¢ 00).

Applying Holder’s inequality and the strong mixing property, we obtain that

|E(€1&jr1)| < EV21E) o |[EY2 (€00 — €772+ 4B2a([r/2)),

where B is a constant.

Now, from the conditions of the theorems, we obtain that |E&1&; 41| < Cir_e.
Here and below, C; > 0 are the constants. It is clear that this inequality is also satisfied
for |EH &5 41l

ITheorem 1 for m = 1 was proved in [16]. The asymptotic equality from theorem 1 will also hold
for the stationary sequence 5; .
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Through the stationarity of the sequences £, §;, we have

!
aj; = E§H & + Z(l —r/DE{&HES 1 + &8 ) < 00,
r=1

rij = E&inéi + ZE{fﬂﬁj,rH +&1&iry1} < 00

r=1
Hence,

-1 -1

lag; —7i5] < Z Bl 1 — 165 | + ZE|§ZI€j r+1 = E1& [+

+2 Z El§in&jr+1 + Enéirta| + Z |E{EHES i1 + €& ria ] = O(1/1),

r=Il+1

Using Minkowski and Holder’s inequalities, we have

ZE|§ilfj,r+1 - & i1l < Cal (B4 B¢y — &, 1)V? < A

r=0
The lemma is proved. O

We introduce the random variable 7; = (¢/[t[, ;). Let x,(n) be a semi-invariant
n dV n
of the v-order of the sum Z T, 1e, xu(n) = e In F exp (z ZTj) -

j=1 j=1

Lemma 2. There is a constant H independent of v, such that the estimate
Ix,(n)| < H'(#)?ns" ' 1<s<wlnn
holds.

The proof of the lemma is carried out in the same way as in [16].

2v
< C(Ink) k" (2v)!.

k
Lemma 3. If v < Cor/k/Ink, then E‘ Y&
j=1

The lemma is proved similarly to lemma 2 in [17].

In the proof of the theorem, we shall use the summation method for weakly de-
pendent random variables. It is based on breaking up the sum of weakly dependent
random variables into long and short partial sums. As a result, long sums are almost
independent, and the contribution of short sums to the total distribution is small. Later,
instead of £;, we use &;; and, without any loss of generality, assume that the matrix

R* is a unit matrix.
n

The sum, the distribution of which we study, is S,, = Z & -
j=1
Let @ and N be natural numbers that grow together with n and satisfy the con-
dition |n —p(Q + N)| < p.
The sum 5, is divided as follows

p+1

Q
Zyj +V/0 Zy] VR +2), yj = (1/VQ) D &G-1)@sn)tr
r=1
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N n
Yy = (/VQ) Y _&igrt-vn+r Yps1 = D Ep(@+N)+r
r=1

r=1

We denote by 95, j =1,2,...,p, the independent random vectors distributed in the
p

same way as y; and let £, = Z ;. Let A be the covariance matrix of the vector y;. By
j=1

lemma 1, the elements of A differ from the elements of the identity matrix by the value

O(1/Q). We denote by A a matrix, such that A’A = A=1, where A’ is the transpose

of the matrix A. Obviously, the vector AZ,/,/p has a unitary covariance matrix.

Let G, be the distribution of z, /\/p, G2 be the distribution Az, /\/B, f,(t), f»(t)
be the characteristic functions Az, /\/p, Az, /\/p, respectively.
If N=2wilnn], 1 <s<w;lnn, then

fo(t) = Fo(®)] < Cap /n”. (1)

This inequality follows from the relations (7), (8) of [16].
We denote

9un(t) = exp(—[21/2)(14+ 3 P/ V)" ).

where P.(it) depends on the semi-invariants of (Ayi,it) of order at most r + 2 :

r—1r—1 7;—1 js—1

Pr(it) = xrp2 (i) /(r +2) > > > Y X

=1 ji=lji_1=l-1  ja=2

jo—1 Nge . . . )

y ]ZZ (r =30 G = Jie1) - - G2 = J)xr—gi+2() Xy s +2 - - Xja+2(it)
= (r =g+ 21 — g1 +2)1 .. (2 — j1 +2)!(j1 + 2)!

For the characteristic function of the sum AZ,/,/p, the following asymptotic expansion

holds: for [t| < \/p/(8(E|Ay:1["+3)1 V) =T, takes place

Fo(t) = gup(t) + OB T2t exp(—[t]* /4) /T, ), (2)
(see [18], relations (7) and (8)). It follows from lemma 2 that

e (i) = O((r)?HT st |7 /QU2/2),

\P.(it)| = O(iHr+2lr2r+2l|t|r+2l8r+2171/Q(l+r71)/2). (3)
=1

We use Sadikova’s inequality [19], which relates the difference between the characteristic
functions with the difference between the corresponding distributions

IGH(M) — ®(M)| < ™ V2L + 2v20, + 4V215 /T)+
+ 3wy (8) + 2P{|n| > r} + 4P{[c| > &},

where 7 is the normal random vector with distribution ®, ¢ is a vector with charac-
teristic function g(t) = exp(—o?|t|?/2) and density (2m0?)~"/2 exp(—|z|?/20?),

ﬁ:/wﬂh@*mwMWM% @:/mwmeWWma

/<1 1<[t|<T
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2= / h(O)2dt, e = (27)"™ /3 S(OY).
[t|>T

Here, O; is the ball of unit radius with the center at the origin, S(O;) is the surface of

- -1

the sphere, A\, = (27)™! [ s / sin™ ada , wn(0) is the least upper bound over all

convex sets M of the probabiﬁty of hit of a random vector 7 in the §-neighborhood of
a boundary M .

The technique of using Sadikova’s inequality is described in [18].In our case, it is
necessary to choose

2
T= C’4\/§Tup, r= ImlnT, oc=+vm(m+1)InT/T, §=or
e
From lemma 3, we obtain that
2 < B| Ay | < 05w+ 3)1(n Q)+,

(4)
ny <T,, < Cry/p, (77;/1122 <T < Cy/pQ.

In the same way as in [20], we obtain

Cs

I3 =0(1/T), cpr™ /2 =0((InT)m=1/4),
wy(0) = O0(InT/T)), P{ln| >r}=P{s| >0} =0(1/T).
The integrand in I; and I is estimated as follows
| fp(t) — exp(=[t2/2)] < [£,(t) = Fo(®)] + | Fp (1)~
— 9up ()| + |gup(t) — exp(—[t]*/2)| = Fi(t) + Fa(t) + f3(t).

The integrals I; and I> are estimated by the sums of three integrals

1/2
3 3 )
no< ) / R/ dt | =D 17,
=1 [t[<1 =1
1/2
3 3 )
L < Y /Ff(t)/m?dt =S
=1 \a<il<r =t

Using (1), we get I{l) = O0(n~¥“{/p/Q). According to relations (2) and (4),
LY = 0(3"72/T}, ) = 03" v " Q/p!" V7).

From relations (3), we obtain

v

1 =o(( [ (Swerwara)a)”) =ouvia

FES T

Thus, we estimated I .
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Similarly to the estimates of I{l) and Ifs), we obtain

Y =o(pT™\/p/Q/n*), IY = 0(1/\/pQ).

The estimate of the integral 12(2) is somewhat more complicated. We divide the do-
main of its integration into two sub-domains: 1 < |¢t| < T,,, and T, < |t| < T. By virtue
of relation (2), the integral 12(21) of the first sub-domain is estimated as

O(Cg*? /1) = O(Cr vt Q/pT172).
The integral 1522) of the second sub-domain is also divided into two integrals and we
estimate each of them separately

1/2 1/2

= [ihoral | [ o] =

T, p<|t|<T Ty p<|t|<T
1/2
_ / PUFADPAE |+ Olexp(~T,,/4).
Ty VB W<T/ VB

According to condition 4) of the theorem, there exists a positive constant a, such that
|f(At)] < exp(—a). Therefore, we get that

1% = O((pQ)™"? exp(—ap) + exp(~Caly/p/ In” Q).
The obtained estimates make it possible to write down that
sup |G, (M) = ®(M)| = O™ (pQ)((p Q)" V/? In+
+ p(m+3)/2Q(m*1)/2/nw + C1V1+2VV In? Q/p(l”rl)/%r
+ (P Q)" exp(—ap) + exp(Criy/p/v/ Q) +1/V/pQ) + vIn*(pQ)/vP Q). (6)
Since the distance sup |G (M) — ®(M)] is invariant under non-degenerate linear
transformations, then tIA;Ie same estimate holds for s]1\1/1p|Gp(M) — ®p(M)|. The ele-

ments of the matrix A differ from the elements of the identity matrix by O(1/Q).
Therefore, the estimate sup|G,(M) — ®(M)| differs from the previous estimate
M

of (6) by O(1/Q). Following this, we proceed from the estimate of the distribu-
tion Gp(M) = P(z,/\/p € M) to the estimate of the distribution P((z, + z,)/

VP € M) = P(1/v/pQ > & € M) in the same way as in [18, p. 94|, but using
j=1
lemma 3. We obtain a difference of order O(y/NIn N/Q +1/n*). We proceed similarly

to the estimate of the distribution P(1/ \/HZ@- € M) and obtain the difference of
j=1
order O((N +1)//Q+ 2 In” n(2v)!n* /(Q*p”)). Choosing p = O(wsIn®n), v = Inn,
Q = O(n/In” n) we obtain a statement of the theorem for the sequence &
To complete the proof, we need to show that the error from the replacement of ¢;
by &; goes to the remainder term.
From Minkowski’s inequality and condition 3) of the theorem it follows that

E| Z&J — ZGJF = O(1/n”). Then, using the Markov’s inequality operating in
j=1 j=1

the same way as in [18], we obtain the assertion of the theorem. [J
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O06 o1eHKe CKOPOCTH CXOQUMOCTA B MHOTOMEPHOIi IIpesiesibHOII Teopeme
s cymm (PYyHKHIUM OT ¢j1abo 3aBUCUMBIX CJIYYaWHBIX BEJIAYNH

@.T". Tabbacos', B.T. Tybposun?, M.E. Dadeecsa®

L Kasanckuti zocydapcmeenmniti aprumermypro-cmpoumesboll YHueepcumen,
2. Kasanwv, 420043, Poccus

2 Kasancruti (I[Tpusossicerut) dedeparvhoii ynueepcumem, 2. Kaszanw, 420008, Poccus

AnanoTanus

HpOBe,H\eHO OJiM3K0e K OIITUMaJIbHOMY YTOYHEHHE IIOJIYYEHHBIX paHee€ OII€EHOK CKOPOCTHU
CXOOUMOCTH B I\JHOFOMepHOﬁ HeHTpaHLHOﬁ HpeﬂeJILHOﬁ TeopeMe Ijyid CyMM BEKTOPOB, IIO-
POXKIACHHBIX IIOC/IEAOBATEIBHOCTAMN CJ'Iy‘IafIHI:IX BEJIMYIHH C II€pEMEITNBAHUEM. Droro YAaJI0Ch
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JOCTUYh 32 CUYET HAJIOXKEHUs JTOMOJHUTEIBHOTO YCIOBUS HA XapaKTEPUCTUUECKHe (DYHKIIUN
9TUX CyMM, 0OJIee TOYHBIX OIEHOK MX CEMUMHBAPUAHTOB M KCIIOJIb30BAHUS ACUMIITOTUYECKIX
Pa3JIOKEHUN JJIsI XapaKTEePUCTUIECKUX (DYHKIUNA CyMM HE3ABUCHUMBIX CJIYUYANHBIX BEKTOPOB.
Pezynbprar momyden ¢ mcmosp3oBaHHEM METOIOB CYMMHUPOBAHWS CJIa00 3aBUCHMBIX CJIydaii-
HBIX BeJu4uH, ocHoBaHHbIX Ha muee C.H. Bepumrreiina pasbuBarb cyMMbl ¢j1ab0 3aBUCUMBIX
CIIyJaHBbIX BEJIMYWH Ha JIITHHHBIE U KOPOTKHUE YACTUYHBIE CYMMbI, B PE3yJIbTATE YEro JJIUH-
HBIE CyMMBI TOYTH HE3ABUCHUMBI, & BKJIaJ KOPOTKUX CyMM B o0Iree pacrpejesienne mait. [lms
OIIEHKHU Pa3HOCTEN MEXK/ly PacIpeleJIeHUsIMA CyMM ucoJib3yercs: nepaseracrso C.M. Caauko-
BOI, CBSI3BIBAIOIIEE PA3HOCTD MEXKJTY XaPaKTEPUCTHIECKUMU (PYHKIMAME CJIyIaiiHBIX BEKTOPOB
C Pa3HOCTBIO MEXK/Iy COOTBETCTBYIOIIMMH DPACHPEICTCHUSIMHA, & JJIsI OIEHKW BKJIAJ KOPOTKUX
cyMM -HepaBeHcTBa MapkoBa u Bepninreiina.

KuroueBble ciioBa: mpejiesibHasi TeOpeMa, CHIbHOE IePeMEIINBAHNEe, CEMUUHBAPUAHTEI,
ACHMIITOTHYECKOE Pa3JI0zKEHUE,CKOPOCTh CXOIUMOCTH
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