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Abstract

Real data are usually characterized by high dimensionality. However, real data obtained
from real sources, due to the presence of various dependencies between data points and limi-
tations on their possible values, form, as a rule, form a small part of the high-dimensional
space of observations. The most common model is based on the hypothesis that data lie on
or near a manifold of a smaller dimension. This assumption is called the manifold hypothesis,
and inference and calculations under it are called manifold learning.

Grassmann&Stiefel eigenmaps is a manifold learning algorithm. One of its subproblems has
been considered in the paper: estimation of smooth vector fields by optimization on the Stiefel
group. A two-step algorithm has been introduced to solve the problem. Numerical experiments
with artificial data have been performed.

Keywords: manifold learning, dimensionality reduction, vector field estimation, optimiza-
tion on Stiefel manifold

Introduction

The concept of Big Data implies not only a large sample size, but also high di-
mensionality. Thus, real data usually have a very high dimensionality, for example,
the dimensionality of digital black and white photos is equal to the number of pixels
(up to 10 000 pixels), while brain images obtained per second with functional magnetic
resonance imaging have a size about 1.5 million. However, many traditional methods and
algorithms become inefficient or simply inoperable for high-dimensional data, and this
phenomenon is called the curse of dimensionality [1]. D. Donoho, a famous statistician,
said in 2000 at the Conference on Mathematical Challenges of the 21st Century: “We can
say with complete confidence that in the coming century high-dimensional data analysis
will be a very significant activity, and completely new methods of high-dimensional data
analysis will be developed; we just do not know what they are yet” [2].

However, real data obtained from real sources, due to the presence of various de-
pendencies between data points and limitations on their possible values, take, as a rule,
a small part of the high-dimensional space of observations. For example, the set of
all black and white portraits of human faces with the original dimension of the order
of hundreds of thousands has an intrinsic dimension of not more than 100. The conse-
quence of the low intrinsic dimension is the possibility of constructing a low-dimensional
parametrization of such data with the minimal loss of information contained in it. There-
fore, many algorithms for high-dimensional data processing begin with the problem of
dimensionality reduction, which results in low-dimensional descriptions of such data.
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The most common model for describing such data is the hypothesis that data lie on
or near a manifold M of a smaller dimension. This assumption is called the manifold
hypothesis [3], and inference and calculations under it are called manifold learning
[4, 5].

At the moment, many manifold learning algorithms have been developed: IsoMap [6],
locally linear embedding [7], local tangent space alignment [8], Laplacian eigenmaps
[9, 10], Hessian eigenmaps [11], Grassmann&Stiefel eigenmaps (GSE) [12, 13], etc. It is
the GSE calculation aspects that are considered in the paper.

1. Manifold learning. Grassman–Stiefel eigenmaps

1.1. Manifold learning. Manifold embedding. Manifold learning problem is
to find the mapping h : M ⊂ Rp → Y ⊂ Rq given X = (X1, . . . , XN ) ∈ M ⊂ Rp ,
such that Y shows the structure of high-dimensional data, where M is a manifold
with dimM = q . The points X1, . . . , XN are assumed to be independent identically
distributed (iid) random variables from a continuous measure µ with suppµ = M .
In addition, there should exist (and it should be estimated) the reverse map g : Y → Rp

and the approximation error ‖X − g(h(x))‖ should be small.
Assuming that the manifold M can be covered by single coordinate chart B , we can

define coordinates (b1, . . . , bq) that represent our manifold. Thus, we can write in Rp :
X = f(b), X ′ = f(b′) and for two close points X, X ′ consider the linear approximation:

X ′ = Jf (b)(b′ − b) + X,

where Jf (b) is the Jacobian matrix. Thus, we reformulate our problem as follows:

E‖(X ′ −X)− Jf (b)(b′ − b)‖2 → min
{b},{Jf}

(1)

for all close points (this notion will be defined further). GSE separates this problem into
two parts: the first task is to estimate the matrix Jf = Jf (f−1(X)) , the second one
is to estimate coordinates b for a given Jf . The latter problem is ordinary regression,
while the former one is of interest.

1.2. Local description. Neighborhoods construction. The Jacobian matrix
Jf (b) = (∂fi/∂bj), i = 1, . . . , p, j = 1, . . . , q , defines a tangent space TX(M) at
point X = f(b) , where TX(M) is a q -dimensional linear subspace. The tangent spaces
can be considered as elements of the Grassmann manifold Grass(p, q) consisting of all
q -dimensional linear subspaces in Rp .

Every neighborhood of each point can be approximated by the tangent space (1)
(linear subspace of Rp ) as M is smooth. So, we should define the “linear” neighbor-
hood. For each sample point Xn ∈ X , local neighborhood U(Xn) = {X1, . . . , Xk(n)}
consisting of k -near sample points is constructed. Typical examples of U(Xn) are
U(Xn, ε) , the neighborhood of Xn consisting of sample points that from ε-ball cen-
tered at Xn , and U(Xn, k) consisting of k -nearest to the Xn sample points; in our
calculations, the latter one is used. These neighborhoods determine “Euclidean” kernels
K(Xi, Xj) = I(Xj ∈ U(Xi)) , where I(A) is the indicator of event A , i.e., I(A) = 1
if A occurred, and I(A) = 0 otherwise.

Then, defining these linear subspaces is the standard manifold learning problem,
which is solved by principal component analysis (PCA). Thus, at each point we search
the directions of maximum variation, defining orthogonal vectors. These vectors are
joined in matrix QPCA ∈ Rp×q , which is considered to be a projector from the q -
dimensional tangent space into Rp . It is worth noting that QPCA are elements of
the Stiefel manifold Stief(p, q) – the set of all q -frames in Rp : QT

PCAQPCA = Iq .



222 E.N. ABRAMOV, YU.A. YANOVICH

1.3. Global description. We construct q -dimensional subspaces at each point
Xi as an approximation of the tangent bundle of a differentiable manifold. However,
our goal is to set a coordinate system on a manifold. Obviously, the PCA algorithm
does not provide coordinated frames. PCA estimation consistency and its rates are
obtained, for example, in [14, 15]. Thus, these frames should be rearranged in some
tanged fields H(Xi) and Span(QPCA(Xi)) = Span(H(Xi)) , where Span(A) is a linear
hull of columns A1, . . . , Am of the matrix A = (A1, . . . , Am). Let v ∈ Rq×q be some
non-degenerate transformation in the tangent. Then, the frame QPCA is transformed
into the vector field QPCA · v from the same tangent space. Generally, for each point
we write:

Hi = QPCA(Xi) · vi (2)

wherevi = v(Xi) is a non-degenerate transformation of q -basis into q -dimensional
subspace, Hi = H(Xi) is a vector field at point Xi .

While defining the distance between two vectors by the Euclidean norm ‖.‖2 , it is
natural to set the distance between two vector fields by the Frobenius matrix norm

‖Hi −Hj‖F =
√
Tr ((Hi −Hj)T (Hi −Hj)). (3)

Then, to measure the closeness between points (and, because of differentiability, also
between tangent spaces), we define the function K(Xi, Xj) = Kij . Finally, we face
the next optimization problem:

∆(Hn) =
n∑

i=1

Kij‖Hi −Hj‖2F → min
{vi}n

i=1

(4)

subject to ∀ i = 1, . . . , n

rank(vi) = q,

SpanHi = SpanQPCA(Xi),

HT
i Hi = Iq.

We have {Hi}n
i=1 ⊂ Stief(p, q) as SpanHi = SpanQPCA(Xi) and HT

i Hi = Iq for
i = 1, . . . , n . The set of {Hi}n

i=1 could be explicitly extended H(X) for all X ∈M [12].
So, the solution of (4) with its extension is a smooth vector fields estimation on manifold
by optimization on the Stiefel manifold (group). The problem (4) was introduced in [16],
but there was only zero-order heuristic solution. Furthermore, our problem was solved
in [17] by the direct iterative procedure. In this paper, we introduce a theoretically
motivated one.

The sample X should be “dense” on M to get a good global vector field estimation.
Such a property is guarantied with high probability for good enough manifolds [15, 18].

2. Algorithm

Orthogonal matrix vi ∈ O(q) rotates the q -frame QPCA in Rp , such that it finally
defines the same subspace. Thus, we get the following variation of functional (4):

∆ =
n∑

i=1

Kij‖Qivi −Qjvj‖2F → min
{vi},i=1...n

(5)

s.t. vT
i vi = Iq,

where Qi = QPCA(Xi) . This is an optimization problem with orthogonal constraints:
optimization on Lie group O(q) . Nevertheless, the implementation of such optimization
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is impossible, because O(q) has two connected components (simply put matrices with
determinant +1 and −1). Thus, optimization is feasible on special orthogonal group,
i.e., proper rotation of q -frame. Yet, such optimization with our PCA-frames is degene-
rate, because for two infinitely close points Xi, Xj the distance ‖Hi−Hj‖F in (4) will be
non-zero. To solve this problem, we must obtain an algorithm defining self-orientation
of bases on manifold and, then, defining the orientation on manifold. Let us remind
here that the manifold is orientable if there exists the set of maps (Uα, φα) , such that
the determinant of the Jacobian matrix φαφ−1

β is positive for each α, β ; Uα

⋂
Uβ 6= ∅ .

Proposition 1. Let the manifold M be orientable. Qi, Qj ∈ Rp×q are the matrices
defining q -orthogonal unit vectors in the p-dimensional space for some close points Xi ,
Xj Then, the condition det(QT

i Qj) > 0 for every close points Xi , Xj sets an oriented
atlas of manifold M .

Condition det(QT
i Qj) > 0 is easy to check for constructed frames (matrices QT

i Qj

are Rq×q , q no more than 10). Via this fact, we can make an inductive algorithm
defining the orientation on the manifold. Let Ak = {Xi1 , . . . , Xik

} be the set of k
points, where the right orientation is defined. In the first step, we take random point
Xi1 and set the right orientation at this point Qi1 ; A1 = {Xi1} . In the k-th step, we get
the set of points Ak = {Xi1 , . . . , Xik

} . Then, we find the closest point among X\Ak to
this set (Xik+1 = arg min

Z∈X\Ak
‖Z−Y ‖2); Y ∈ Ak . Following that, we check the condition

QT
ik+1

Qj > 0 , where Xj ∈ Ak is the closest point to Xik+1 . If det(QT
ik+1

Qj) < 0 , then
two columns in Qik+1 should be reversed, otherwise Qik+1 gives the right orientation, in
both cases Ak+1 = Ak

⋃{Xik+1} . Finally, we get the whole set of points (X1, . . . , XN )
and the set of oriented frames (Q1, . . . , QN ) .

By transforming functional (5), consider QT
i Qi = Iq , we get the following optimiza-

tion problem:

∆ = −
n∑

ij

Kij · Tr
(
vT

i (QT
i Qj)vj

) → min
{vi}

(6)

A brief scheme of the algorithm can be presented as follows:

A. constructing graph Kij ; Kij = 1 if Xj is among k -closest points of Xi , otherwise
Kij = 0 ;

B. constructing frames QPCA by PCA at each point of sample;

C. initialization of frames QPCA – defining orientation of manifold;

D. solving optimization problem (6) by Trust Region Method [19].

3. Numerical experiments

The half of two- and four-dimensional spheres S2
x1>0 ⊂ R3 , S4

x1>0 ⊂ R5 and cylinder
S1 × [0, 1] are considered as manifold M . All samples are iid uniformly distributed.

One can see that, as a result of optimization, initialization converges to the ideal
value of −2 fast and vector fields are visually smooth. The ∆̃ values without optimiza-
tion are higher and the vector fields are not smooth.

Sample generation and steps 1–3 of the algorithm are implemented in R with the
standard packages. Step 4 of optimization is performed in Matlab using the Manopt
package for optimization on manifolds [20]. The derivatives and the Hessian matrix
were theoretically calculated for the functional (6) and were used as a part of input
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Fig. 1. ∆̃ as a function of log10(n/100) for the 2D sphere

Fig. 2. ∆̃ as a function of log10(n/100) for the 4D sphere

Fig. 3. ∆̃ as a function of log10(n/100) for the cylinder

for manopt. The functional (6) was scaled to present results for different sample sizes,
dimensions and neighbor numbers k : ∆̃ = 2(Nqk)−1∆ . For two close points Xi, Xj ,
the function is q−1Tr

(
HT

i Hj

) → 1 . Therefore, functional ∆̃ should be close to −2 .
The value of functional ∆̃ as a function of log10(N/100) is calculated for sample
sizes N = 100 · 2m, m = 0, . . . , 4 for the cylinder and two-dimensional sphere and
m = 0, . . . , 3 for the four-dimensional sphere. For each sample size, 10 samples were
calculated. In Figs. 1, 2 and 3, the mean value of functional (6) and its mean +/–
standard deviation are shown.

In Figs. 4 and 5, the optimized vector fields (a and c) and vector fields without
optimization (b and d) for the 2D sphere and cylinder are indicated.
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c) d)
Fig. 4. Vector fields on sphere

a) b)

Fig. 5. Vector fields on cylinder

Conclusions

The optimization aspects of vector field alignment on an unknown manifold were
considered. It is an important part of the Grassmann&Stiefel eigenmaps algorithm for
the manifold learning problem.

The algorithm for vector field alignment was introduced. The algorithm consists of
two steps: bases initialization at the same oriented atlas and Stiefel group optimization.
The numerical experiments with artificial data were performed. The proposed algorithm
shows good results.
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Оценивание гладких векторных полей на многообразии с помощью
оптимизации на специальной ортогональной группе
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Аннотация

Зачастую данные, полученные из реальных источников, имеют высокую размерность.
Однако часто, в силу возможного наличия зависимости между параметрами, данные за-
нимают лишь малую часть высокоразмерного пространства. Самая общая модель опи-
сания таких закономерностей – предположение о том, что данные лежат на или около
многообразия меньшей размерности. Такое предположение называется гипотезой много-
образия, область применения такой гипотезы – обучение на многообразии.

Вложения Грассмана –Штифеля – один из алгоритмов обучения на многообразии,
вариация которого представлена в работе: оценивание гладких векторных полей на мно-
гообразии с помощью оптимизации на специальной ортогональной группе. Представлен
алгоритм для решения задачи, проведены численные эксперименты на искусственных
данных.

Ключевые слова: обучение на многообразии, снижение размерности, оценивание
векторных полей, оптимизация на ортогональной группе
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