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UDK 514.763SOME DEVELOPMENTS OF PETROV'S WORKON CONFORMAL AND PROJECTIVE STRUCTUREG. HallAbstra
tThis paper dis
usses the a
hievements of A.Z. Petrov in the area of 
onformal and proje
tivestru
ture of spa
e-times. In fa
t, it will be mostly 
on
erned with the latter topi
 but points outuses of the former in developing the proje
tive theory of spa
e-times. Some new developmentsin this area of Petrov's resear
h will be given.Key words: proje
tive stru
ture, 
onformal stru
ture, Petrov 
lassi�
ation, 
urvaturemap. Introdu
tionPetrov's work on the algebrai
 
lassi�
ation of the Weyl tensor of the gravitational�eld in Einstein's general theory of relativity was a major breakthrough in a
hievinga fuller understanding of this theory through its appli
ations to the generation of mu
h-needed exa
t solutions of Einstein's �eld equations. The �nal form of Petrov's work�rst appeared in [1℄ (and in English translation in [2℄) and also in his book [3℄. Theessen
e of this 
lassi�
ation, for Petrov, was an algebrai
 
lassi�
ation of the Riemanntensor at a point of a spa
e-time whi
h was itself an Einstein spa
e. However, in theimportant spe
ial 
ase when the spa
e-time is a va
uum spa
e-time, the asso
iatedRiemann tensor has identi
al algebrai
 properties to the Weyl tensor of any spa
e-timeand so Petrov's algebrai
 
lassi�
ation is usually taken to apply, quite generally, to theWeyl tensor. Petrov showed that there were essentially three distin
t algebrai
 types forsu
h a Riemann tensor (and hen
e for the Weyl tensor of any spa
e-time) at a parti
ularspa
e-time point. Within a de
ade of his original paper, many other workers had realisedits usefulness and extended his ideas to a 
omprehensive theory of what is now referredto as the Petrov Classi�
ation. Two of Petrov's types have been divided by eigenvaluedegenera
y, and so one now speaks of the Petrov types I , D , II , N and III , with type
O reserved for the trivial 
ase when the Weyl tensor vanishes at the point in question.Further details 
an be found in the above mentioned works of Petrov and also in manyother pla
es, for example, [4�6℄.In his book [3℄, Petrov also dis
ussed the idea of �geodesi
 mappings� of gravita-tional �elds, that is, roughly speaking, �when two gravitational �elds have the same(unparametrised) geodesi
s�. This problem has been revived re
ently [7�13℄ and has in-terested both geometers (for obvious reasons) and relativists (be
ause of the appli
ationto the Newton-Einstein prin
iple of equivalen
e in general relativity theory). The mainpart of this paper will be 
on
erned with this problem. In fa
t, Petrov's 
lassi�
ation ofthe Weyl tensor is rather useful in some of the ways of atta
king it. In addition, Petrov'salgebrai
 ideas suggested to the present author the idea of the 
urvature map [6℄ andthis also turns out to be useful in the study of proje
tive stru
ture.



176 G. HALL1. The Petrov 
lassi�
ationLet M be a smooth, 
onne
ted, Hausdor� 4-dimensional manifold with smoothLorentz metri
 g of signature (−,+,+,+) so that (M, g) is a spa
e- time. Let ∇denote the Levi �Civita 
onne
tion arising from g and Riem the asso
iated 
urvaturetensor. The 
omponents of Riem are Ra
bcd ; the asso
iated Ri

i tensor, Ricc , has
omponents Rab ≡ Rc

acb and the Ri

i s
alar is R ≡ Rab g
ab . The Weyl tensor isdenoted by C and has 
omponents Ca

bcd . Using the usual algebrai
 symmetries of theRiemann tensor 
omponents Rabcd at some point m ∈M , Petrov [1�3℄ introdu
ed thewell-known 6×6 notation for this tensor to turn it into a 6×6 symmetri
 matrix, Rαβat m where Greek letters take the values 1,. . . ,6 and represent a skew-symmetri
 pair ofindi
es a

ording to Petrov's s
heme 1 ↔ (14), 2 ↔ (24), 3 ↔ (34), 4 ↔ (23), 5 ↔ (31),and 6 ↔ (12) . Thus, R1234 → R(12)(34) = R63 , et
. Petrov also noti
ed that thesymmetri
 matrix Rαβ possessed 
ertain other 
onvenient symmetries be
ause of thefa
t that (M, g) was assumed to be an Einstein spa
e (Ricc =
R

4
g ). Nowadays, theseare usually expressed, using the duality operator ∗ , in terms of the left and right �duals�of Riem . Sin
e Petrov's ideas apply to the Weyl tensor of any spa
e-time, the remainderof the argument will be given in terms of it. The dual relation referred to above is thengiven by

∗Cabcd = C∗

abcd (1)One then 
onsiders the matrix Cαβ and studies its possible Jordan 
anoni
al formswith respe
t to the (6×6) form of the bive
tor metri
 Gabcd = gacgbd−gadgbc (whi
h ispermitted by the algebrai
 symmetries of Gabcd ) and is non-degenerate with signature
(−,−,−,+,+,+) . This Petrov did by �rst transferring attention to what is essentiallythe 
omplex tensor +

C derived from C and with 
omponents +

Cabcd = Cabcd + i
∗

Cabcdwhere ∗

Cabcd denotes either the left or right dual of C , these being equal, by (1), andthen showing how this led to a study of a 
ertain 3 × 3 tra
e-free 
omplex matrixderived from and 
ontaining all the information in the original one. (It is remarked thatthe tra
e-free 
ondition arises from the 
ondition Cab
ab = 0 and is stronger that the
orresponding 
ondition on Riem (in an Einstein spa
e) whi
h is Rab

ab = R .)Thus the possible Segre types (over C) of the original (6 × 6 Weyl) matrix Cαβare those of a 
omplex 3× 3 matrix and are {111} , {21} and {3} . These are Petrov'sthree types of gravitational �eld at m ∈ M . By re�ning the 
lassi�
ation on the basisof eigenvalue degenera
y, they are usually given in six types as {111} (type I), {(11)1}(type D), {21} (type II) {(21)} (type N) and {3} (type III) together with type Oif C(m) = 0 . The symbol D here refers to the term �degenerate� whilst N stands for�null� (this latter term arising from 
ertain algebrai
 similarities between this type andthe Maxwell-Minkowski tensor in �pure radiation� ele
tromagneti
 �elds). The tra
e-free 
ondition referred to earlier shows that all the eigenvalues of the original 6 × 6matrix (or the 3 × 3 one derived from it) in the types N , III (and O) 
ases are zero.If the Petrov type at m ∈ M is D , II , N , III or O , the Weyl tensor is said to bealgebrai
ally spe
ial at m and if it is I it is said to be algebrai
ally general at m .It is remarked that Petrov's 
lassi�
ation is pointwise and 
an vary from pointto point over M subje
t to 
ontinuity requirements. In fa
t, one may de
ompose Mdisjointly in the forms M = I ∪ D ∪ II ∪ N ∪ III ∪ O = I ∪ intD ∪ int II ∪ intN ∪
int III ∪ intO ∪ F where a Petrov symbol now refers to all those points of M whi
hare of that Petrov type, int denotes the interior operator in the manifold topology of
M and the subset F is determined by the disjointness of the de
omposition and is thus
losed and 
an be shown to have empty interior [6℄.



SOME DEVELOPMENTS OF PETROV'S WORK. . . 177Of the main developments of Petrov's work sin
e its announ
ement in Kazan oneshould mention the algebrai
 work of Bel [14℄, Geheniau [15℄, and Debever [16℄, whodis
overed the beautiful reformulation of Petrov's 
lassi�
ation using the idea of prin
i-pal (or repeated prin
ipal) null dire
tions (the Bel 
riteria) and the resultant 
anoni
alforms for C based on them (see also Sa
hs [17℄ and Ehlers and Kundt [5℄ for a ratherelegant treatment of this problem). A 
omprehensive spinor treatment of similar mat-ters was also given by Penrose [18℄ and a dis
ussion of the physi
al interpretation of thePetrov 
lassi�
ation was given by Pirani [19℄.2. Proje
tive relatednessNow let M be a manifold of dimension n ≥ 2 and g a smooth metri
 on M of anysignature with Levi �Civita 
onne
tion ∇ and with 
urvature and Ri

i tensors, et
.denoted as before. Suppose g′ is another smooth metri
 on M of arbitrary signaturewhose asso
iated stru
tures are denoted by adding a prime to the 
orresponding onesfor g . Call ∇ and ∇′ (or g and g′ , or (M, g) and (M, g′)) proje
tively related if theunparamatrised geodesi
s of ∇ and ∇′ 
oin
ide. If su
h is the 
ase then M admitsan exa
t global 1-form ψ su
h that, in any 
oordinate domain of M , the Christo�elsymbols from ∇ and ∇′ satisfy
Γ′a

bc − Γa
bc = δa

bψc + δa
cψb (2)and, 
onversely, if (2) holds in any 
oordinate domain, (M, g) and (M, g′) are pro-je
tively related. Equation (2) 
an, by using the identity ∇′g′ = 0 , be written in theequivalent form

g′ab;c = 2g′abψc + g′acψb + g′bcψa (3)where a semi-
olon denotes a 
ovariant derivative with respe
t to ∇ . Equation (2)reveals a relation between the type (1, 3) 
urvature tensors Riem and Riem′ of ∇ and
∇′ , respe
tively, given by

R′a
bcd = Ra

bcd + δa
dψbc − δa

cψbd (⇒ R′

ab = Rab − 3ψab) (4)where ψab ≡ ψa;b −ψaψb . Sin
e ψ is exa
t, ψ = dχ for some smooth fun
tion χ on Mand then ψab = ψba . The problem thus be
omes that of solving (3) for g′ and ψ .Petrov studied this problem in some detail (see [3℄). He approa
hed it as a problemregarding two quadrati
 forms g and g′ and 
onsidered the asso
iated Jordan forms of
g′ with respe
t to g . In Petrov's work, (M, g) was a spa
e-time and g′ also had Lorentzsignature. In this 
ase the only possible Segre types for g′ are {1, 111} , {211} {31} and
{zz̄11} together with their degenera
ies. Here, {1, 111} means that g′ is diagonalisableover R (with a 
omma separating the �timelike eigenvalue� from the �spa
elike� ones),and {zz̄11} ne
essarily o

urs when g′ is diagonalisable over C but not R . Petrovthen pro
eeds to solve (an equivalent form of) (3) for ea
h of these Segre types usinga method based on the Ri

i rotation 
oe�
ients.An alternative approa
h was suggested by the Russian mathemati
ian Sinjukov [20℄(and for the remainder of this se
tion the manifold M is of any dimension n ≥ 2 andthe metri
s g and g′ are of arbitrary signature). His idea is essential to modify theapproa
h 
ontained in (2) and (3) by drawing attention away from the pair (g′, ψ) tothe pair (a, λ) where a is a (ne
essarily) non-degenerate, smooth, type (0, 2) symmetri
tensor and λ a smooth (ne
essarily) exa
t 1-form, on M given by

aab = e2χg′cdgac gbd, λa = −e2χψbg
′bcgac (⇒ λa = −aabψ

b) (5)



178 G. HALL(where g′ab are the 
ontravariant 
omponents of g′ and not g′ab with indi
es raisedusing g ). Then (5) 
an be inverted to give
g′ab = e−2χacd g

ac gbd, ψa = −e−2χλb g
bc g′ac. (6)The 
ondition (3) for proje
tive relatedness is now, from (5) and (6), equivalent to themore 
onvenient (Sinjukov) equation for the (Sinjukov) tensor a [20℄:

aab;c = gac λb + gbc λa. (7)The idea then is to solve (7) for a and λ and 
onvert ba
k, using (6), to �nd g′ and
ψ . With a and λ thus found, one �rst de�nes a type (2, 0) tensor a−1 on M whi
h is,at ea
h m ∈ M , the inverse matrix of a (aac a

−1cb = δb
a ). Then one de�nes a relatedtype (0, 2) tensor on M by a−1

ab = gac gbd a
−1cd . Finally, one de�nes a global fun
tion

χ =
1

2
log

∣

∣

∣

∣

(

det g

det a

)
∣

∣

∣

∣

and a global exa
t 1-form ψ ≡ dχ on M . Then g′ab = e2χa−1
ab ,whi
h is a global metri
 on M , and ψ , together satisfy (3) and 
onstitute the requiredsolution on M (see, e.g., [13, 21℄; the expression here for g′ab 
orre
ts a typographi
alerror in [13℄).It is remarked at this point that one may asso
iate with (M, g) its type (1, 3) Weylproje
tive tensor W with 
omponents given by

W a
bcd = Ra

bcd −
1

n− 1
(δa

cRbd − δa
dRbc). (8)This tensor was dis
overed by Weyl [22℄ and has the property that if (M, g) and (M, g′)are proje
tively related, the Weyl proje
tive tensors asso
iated with g and g′ are equalon M .In the remaining se
tions, the aim is to survey and extend some of Petrov's resultson proje
tive relatedness using the Sinjukov transformation, Petrov's 
lassi�
ation ofthe Weyl 
onformal tensor C , the 
urvature map [6℄ and holonomy theory.3. First order systems, 
urvature maps and holonomyFor the remainder of this paper, let (M, g) be a spa
e-time and let g′ be any other(not ne
essarily Lorentz) metri
 on M so that (M, g) and (M, g′) are proje
tivelyrelated. Then (2)�(7) hold (and n = 4 in (8)). On applying the Ri

i identity to theSinjukov tensor a and using (7) one �nds

(aab;cd − aab:dc =)aaeR
e
bcd + abeR

e
acd = gac λbd + gbc λad − gad λbc − gbd λac, (9)where λab ≡ λa;b(= λba) . On applying 
ertain standard pro
edures to this equationand with repeated use of (7) one 
an show [12, 21℄ that if Φ is any of the 
omponentsof a , the 
omponents of λ or the s
alar λa

;a , then, in any 
oordinate domain of M , Φsatis�es a �rst-order di�erential equation of the form Φ,a = Fa where a 
omma denotesa partial derivative and the quantities Fa depend only on the various quantities that
Φ 
an represent and those des
ribing the geometry of M . Thus, any global solution for
a and λ of (7) is uniquely determined by giving the quantities a , λ and λa

;a at anypoint m ∈M . From this it follows [21℄ that if the pairs (a, λ), (b, µ) are global solutionpairs of (7) and if there exists a non-empty open subset U ⊂ M su
h that b = a+ αg

(α ∈ R) on U then b = a+ αg and λ = µ , on M . In parti
ular, if a = b on U , then
a = b and λ = µ on M and so (a, λ) = (b, µ) . Thus, if M admits a non-empty, opensubset U su
h that the only solution of (7) on U is λ = 0 and a = αg (0 6= α ∈ R),the only solution of (7) on M is λ = 0 and a = αg (and so ∇ = ∇′ on M ).



SOME DEVELOPMENTS OF PETROV'S WORK. . . 179This last result is useful in getting global solutions for (7) from lo
al ones. Toatta
k the lo
al problem, the following 
onstru
tion is helpful. Let Λm denote the setof all tensor type (2, 0) 2-forms (bive
tors) at m ∈ M and 
onsider the linear map
f : Λm → Λm 
onstru
ted from the 
urvature tensor Riem of (M, g) where

f : F ab → Rab
cdF

cd (F ab = −F ba). (10)(The similarity with Petrov's 6 × 6 matrix and its asso
iated linear map is 
lear.) Letkerf and rgf denote the kernel and range spa
e of f . The rank of f (the dimensionof rgf ) at m is 
alled the 
urvature rank (of (M, g)) at m [6℄ and this 
urvature ranktogether with the nature of rgf 
ontain mu
h useful information. Clearly, if F ∈kerfand G ∈rgf , F abGab = 0 and so F and G are orthogonal with respe
t to the bive
tormetri
 and dim(kerf) + dim(rgf) = 6 . However, (kerf)∩(rgf ) need not 
onsist onlyof the zero bive
tor (as it would if the bive
tor metri
 were positive de�nite). In fa
t,for va
uum metri
s of Petrov type I , D , II , N , III and O , one has, for the pair(dim(rgf) , dim(kerf)), the respe
tive values (6, 0) (or (4, 2)), (6, 0) , (6, 0) , (2, 4) ,
(4, 2) and (0, 6) and for the types N and III , (rgf)∩(kerf ) is 2-dimensional (and0-dimensional for all other types). It is remarked that the evenness of dim(rgf ) follows,sin
e g has Lorentz signature, from (1) be
ause in this 
ase Riem = C . For the 
aseof va
uum metri
s, the Petrov 
anoni
al types trivially give a 
omplete 
lassi�
ationof the map f but for general spa
e-times, a more detailed 
lassi�
ation is required.To a
hieve this, it is 
onvenient to introdu
e �ve 
urvature 
lasses in the following way.In these de�nitions if F ∈ Λm is of matrix rank 2 it is 
alled simple. In this 
ase it maybe written as F ab = paqb − qapb = p∧ q for tangent ve
tors p , q at m and the 2-spa
espanned by p and q is 
alled the blade of F . Otherwise F is non-simple and gives riseto a 
anoni
al pair of blades at m whi
h are orthogonal [6, 17℄.Class AThis 
overs all possibilities not 
overed by 
lasses B , C , D and O below. For this
lass, the 
urvature rank at m is 2, 3, 4, 5 or 6.Class BThis o

urs when dim(rgf) = 2 and when rgf is spanned by a timelike-spa
elikepair of simple bive
tors with orthogonal blades (
hosen so that one is the dual of theother). In this 
ase, one 
an 
hoose a null tetrad l, n, x, y ∈ TmM su
h that thesebive
tors are F = l ∧ n and ∗

F = x ∧ y , so that F is timelike and ∗

F is spa
elike andthen (using the algebrai
 identity Ra[bcd] = 0 to remove 
ross terms) one has, at m ,
Rabcd = αFabFcd + β

∗

F ab

∗

F cd (11)for α, β ∈ R , α 6= 0 6= β .Class CIn this 
ase dim(rgf) = 2 or 3 and rgf may be spanned by independent simplebive
tors F and G (or F , G and H ) with the property that there exists 0 6= r ∈ TmMsu
h that r lies in the blades of ∗

F and ∗

G (or ∗

F , ∗

G and ∗

H ). Thus, Fabr
b = Gabr

b(=
Habr

b) = 0 and r is then unique up to a multipli
ative non-zero real number.Class DIn this 
ase dim(rgf) = 1 . If rgf is spanned by the bive
tor F then, at m ,
Rabcd = αFabFcd (12)for 0 6= α ∈ R and Ra[bcd] = 0 implies that Fa[bFcd] = 0 from whi
h it may be 
he
kedthat F is ne
essarily simple.



180 G. HALLClass OIn this 
ase Riem vanishes at m .This 
urvature 
lassi�
ation is, like the Petrov 
lassi�
ation, pointwise. One maytopologi
ally de
ompose M into its 
urvature 
lasses in a similar way to that done forPetrov's types [6℄.There is a parti
ularly useful result regarding the 
urvature rank of f . If F isa simple bive
tor in kerf (for (M, g)), then the blade of F is a 2-dimensional eigenspa
eof the symmetri
 type (0, 2) tensor ∇λ , whilst if F is a non-simple bive
tor in kerfthe 
anoni
al blade pair of F give two g -orthogonal 2-dimensional eigenspa
es of ∇λ .It 
an then be shown [7, 13℄ that if kerf is su
h that the tangent spa
e TmM to M at
m ∈M is an eigenspa
e of ∇λ at ea
h point of M then, on M ,

(i) λa;b = cgab; (ii) λdR
d

abc = 0; (iii) aaeR
e
bcd + abeR

e
acd = 0, (13)where c is 
onstant in (i) . Then λ is a homotheti
 (
o)ve
tor �eld on M and if λ van-ishes over some non-empty open subset of M it vanishes on M . Further, the equationsin parts (ii) and (iii) may be solved algebrai
ally for λ and a at any m ∈ M if the
urvature 
lass is known at m [6℄. Part (iii) is also usefully related to the 
urvature
lass at the appropriate point.The �nal te
hnique required in the study of the proje
tive problem is the holonomyalgebra of (M, g) . The details here are a little lengthy and are given in [6, 13, 21, 23℄.Brie�y, the holonomy algebra of (M, g) 
an be shown to be a subalgebra of the Liealgebra of the Lorentz group and 
an be 
lassi�ed 
onveniently into �fteen types [24℄whi
h are labeled R1, . . . , R15 . Of 
ourse, the holonomy group of (M, g) depends notonly on its holonomy algebra but also on the topologi
al properties of M . But theholonomy algebra is all that will be required here. The type R1 is the trivial �at
ase, R5 is impossible for a spa
e-time, R15 is the general 
ase and the holonomytypes R2 − R4 and R6 − R14 re�e
t the number of independent (lo
ally) 
ovariantly
onstant and re
urrent ve
tor �elds admitted by ∇ on M . The holonomy 
lassi�
ationof (M, g) is, unlike the Petrov and 
urvature 
lassi�
ations, a global statement about

(M, g) . Taken together with the in�nitesimal holonomy algebra [6, 23℄, it 
ombineswith the various 
urvature 
lasses over M des
ribed above to provide a powerful toolin solving the proje
tive problem.4. Main resultsFirst 
onsider the 
ase when (M, g) is a spa
e-time whi
h is an Einstein spa
e (andwhi
h in
ludes the spe
ial 
ase when (M, g) is va
uum). For this situation one has,in the notation established above, the following result [7�9, 11�13℄.Theorem 1. Let (M, g) be a spa
e-time whi
h is an Einstein spa
e and let g′ beanother smooth metri
 on M of arbitrary signature, whi
h is proje
tively related to g .Then either ∇ = ∇′ or (M, g) and (M, g′) ea
h have 
onstant 
urvature. If (M, g) isva
uum and not �at, then (M, g′) is also va
uum (and not �at) and, further, g′ = cgfor 
onstant 
 ex
ept possibly when (M, g) is a pp-wave spa
e-time (when the simplerelation between g and g′ 
an easily be found) .Proof. A very brief sket
h of several proofs will be given (Petrov's approa
h hasalready been mentioned). The �rst approa
h, given in [7℄, was a
tually given only forva
uum spa
e-times but is easily extended to Einstein spa
es. This approa
h relieson (3) and (8) and makes no use of the Sinjukov transformation. First, one disjointlyde
omposes M into its regions of 
onstant Petrov type, as des
ribed in Se
tion 1.A relationship between the 
urvature map f and the Petrov types of Riem is then
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anoni
al forms for ea
h Petrov type are written down for ea
h regionin the above de
omposition with use being made of the equality of the tensors W in (8)for g and g′ . In an improved proof given in [8℄, use is made of the Sinjukov equations(5)�(7). Here, one is able to show that either ∇′ = ∇ or the Weyl tensor and anysolution pair (a, λ) of (7) satisfy
aaeC

e
bcd + abeC

e
acd = 0, Cabcd λ

d = 0 (14)on M . One then de
omposes M as M = A ∪B where A = {m ∈M : C(m) 6= 0} and
B = {m ∈M : C(m) = 0} so that A is open and B is 
losed in M . (In [8℄ this argumentwas given rather 
lumsily and will be 
lari�ed here). It was then shown that λa wasa proje
tive ve
tor �eld on M and so if it vanishes on some non-empty open subset of
M it vanishes on M (and then from (6) and (2) ψ = 0 and so ∇ = ∇′ , on M ). (In fa
t,this result is essentially a 
onsequen
e of the �rst order system des
ribed in Se
tion 3.)If m ∈ A and λ(m) 6= 0 , it follows from the se
ond equation in (14) together with theBel 
riteria (Se
tion 1) that, at m and in some open neighbourhood W of m , the Petrovtype of (M, g) is N and λ spans a (repeated) prin
ipal null dire
tion at m . Then onederives the 
ontradi
tion that λ vanishes on W and so λ vanishes on A . Sin
e A isopen it follows that, if A 6= ∅ , λ again vanishes on M . Finally, if A = ∅ , M = B andso (M, g) is of 
onstant 
urvature (and so also is (M, g) [25℄). It 
an also be shown thatif g and g′ are not of 
onstant 
urvature they have the same signatures (somethingwhi
h was assumed by Petrov) but that (M, g′) may not be an Einstein spa
e. Otherproofs have also been given, but the pp-wave possibility des
ribed in the statementof the theorem only seems to have been pointed out 
learly in [7℄. (In theorem 1, if
g is of signature (+,+,+,+) or (+,+,−,−) again one gets the result that either ea
hof (M, g) and (M, g′) is of 
onstant 
urvature or ∇ = ∇′ , that g′ need not representan Einstein spa
e nor have the same signature as g but that (ex
luding the 
onstant
urvature 
ase) Ri

i �atness is preserved [8, 9℄).For a general spa
e-time, it is 
onvenient to pro
eed by 
onsidering the holonomytype of (M, g) . All types ex
ept the most general one 
an be solved and the followingtheorem summarizes part of the situation.Theorem 2. Let (M, g) and (M, g′) be proje
tively related spa
e-times.

(i) If g and g′ are (lo
ally) 
onformally related on M , then they are globally 
on-formally related on M and further ∇ = ∇′ and g′ = cg on M for c 
onstant.
(ii) If (M, g) has holonomy type R2 , R3 , R4 , R6 , R7 , R8 or R12 , then ∇ = ∇′and the relation between g and g′ 
an be 
al
ulated easily using holonomy theory.
(iii) If (M, g) has holonomy type R10 , R11 or R13 and with 
urvature rank > 1at some m ∈ M , then ∇ = ∇′ and the relation between g and g′ 
an be 
al
ulatedeasily using holonomy theory.Proof. Again a brief sket
h only will be given. The result in part (i) was partlynoti
ed by Thomas [26℄. The full result is proved by 
hoosing m ∈M and a 
onne
tedopen neighbourhood U of M on whi
h g′ = φg for φ : U → R and substituting into(3), 
ontra
ting with gab and then substituting ba
k and 
ontra
ting with gac to get

ψ = 0 and χ = const on U . The result follows from a topologi
al argument using the
onne
tedness of M . For parts (ii) and (iii) , one �rst uses a result mentioned justbefore (13) regarding the kernel, kerf , of the 
urvature map f and shows that for ea
hof the holonomy types in parts (ii) and (iii) TmM is an eigenspa
e of ∇λ and hen
ethat λ is a homotheti
 ve
tor �eld on M . Then (13) 
an be used in 
onjun
tion with theremarks following it to 
hoose m ∈M and an open 
onne
ted neighbourhood U of mand to write a 
anoni
al form for the tensor a in U , whi
h is determined by part (iii)
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hosen to ��t� the holonomy invariant distributionsand/or ve
tor �elds. One then substitutes into (7) and performs 
ertain 
ontra
tionsto see that λ vanishes on U and hen
e, sin
e it is homotheti
, on M .This solves the problem for all holonomy types ex
ept types R10 , R11 or R13 (andwith 
urvature rank ≤ 1 at ea
h point of M ), and for types R9 , R14 and R15 . Thesolution in these 
ases is more 
ompli
ated and 
an be found in [13, 21℄ (and furtherholonomy details are available in [27℄). For these 
ases, one does not ne
essarily a
hieve
∇ = ∇′ but the relationship between g and g′ 
an still be found. The general 
ase R15is not 
ompletely solved (although some progress 
an be made [21℄). In parti
ular, in theimportant 
ase for relativisti
 
osmology when (M, g) is a �generi
� FRWL 
osmologi
almodel (ne
essarily of type R15 ), it has been 
ompletely solved [10℄ and (M, g′) mustalso be an FRWL metri
.Another problem whi
h has been essentially solved is the following one [21℄. If (M, g)and (M, g′) are proje
tively related, how are their holonomy groups related? Clearly,from the above results, there is a 
lose link between su
h holonomy groups (often equal-ity), as Theorem 2 shows, but it does not follow that they are the same and examplesof non-equality have been given. Further, the Petrov type and the 
urvature 
lass at
m ∈ M and the holonomy type of (M, g) are, as may be expe
ted, 
losely related.In fa
t, it 
an be shown [6℄ that if the holonomy type of (M, g) is R2 or R4 , the Petrovtype at any point is either O or D and similarly for holonomy type R3 it is O or N ,for R7 it is O or D , for R13 it is O , I or D and for all other holonomy types ex
ept
R10 and R15 it is algebrai
ally spe
ial. In addition, for the Petrov types R2 , R3 and
R4 , it is Petrov type O at m if and only if Riem(m) = 0 . Similarly, if the holonomytype is R2 , R3 or R4 , the 
urvature 
lass at any m ∈ M is O or D , for holonomytypes R6 , R8 , R10 , R11 and R13 it is O , C or D , for R7 it is O , B or D , for R9 and
R12 , it is O , C , D or A and for R14 or R15 , it 
ould be any 
urvature 
lass (but, if
R14 , it 
annot be 
urvature 
lass B everywhere). Another question, perhaps less inter-esting for physi
ists, is the problem when the original (M, g) satis�es dimM = 4 andwith g positive de�nite. Te
hniques similar to those above also lead to a solution forthis problem in all but the most general holonomy 
ase [28℄. Similarly, the 
ase when
dimM = 4 and g has neutral signature (+,+,−,−) has been 
onsidered1. Furtherdetails for spa
e-times 
an be found in [29℄.The author wishes to thank David Lonie for many illuminating dis
ussions and
ollaborations. �åçþìå�. Õîëë. �àçâèòèå èññëåäîâàíèé À.Ç. Ïåòðîâà ïî êîí�îðìíîé è ïðîåêòèâíîé ñòðóê-òóðàì.Â ñòàòüå îáñóæäàþòñÿ äîñòèæåíèÿ À.Ç. Ïåòðîâà â îáëàñòè èññëåäîâàíèÿ êîí�îðìíîéè ïðîåêòèâíîé ñòðóêòóð ïðîñòðàíñòâà-âðåìåíè. Îñíîâíîå âíèìàíèå óäåëåíî ïîñëåäíåé,îäíàêî ïîêàçàíî è çíà÷åíèå ïåðâîé â ðàçâèòèè ïðîåêòèâíîé òåîðèè ïðîñòðàíñòâà-âðåìåíè.Ïðèâåäåíû íåêîòîðûå íîâûå ðåçóëüòàòû â äàííîé îáëàñòè èññëåäîâàíèÿ À.Ç. Ïåòðîâà.Êëþ÷åâûå ñëîâà: ïðîåêòèâíàÿ ñòðóêòóðà, êîí�îðìíàÿ ñòðóêòóðà, êëàññè�è-êàöèÿ À.Ç. Ïåòðîâà, êàðòà êðèâèçíû.

1Wang Z., Hall G.S. Proje
tive Stru
ture in 4-Dimensional Manifolds with Metri
 of Signature
(+, +,−,−) . � Submitted.
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