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Abstract

This paper discusses the achievements of A.Z. Petrov in the area of conformal and projective
structure of space-times. In fact, it will be mostly concerned with the latter topic but points out
uses of the former in developing the projective theory of space-times. Some new developments
in this area of Petrov’s research will be given.
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Introduction

Petrov’s work on the algebraic classification of the Weyl tensor of the gravitational
field in Einstein’s general theory of relativity was a major breakthrough in achieving
a fuller understanding of this theory through its applications to the generation of much-
needed exact solutions of Einstein’s field equations. The final form of Petrov’s work
first appeared in [1] (and in English translation in [2]) and also in his book [3]. The
essence of this classification, for Petrov, was an algebraic classification of the Riemann
tensor at a point of a space-time which was itself an Einstein space. However, in the
important special case when the space-time is a vacuum space-time, the associated
Riemann tensor has identical algebraic properties to the Weyl tensor of any space-time
and so Petrov’s algebraic classification is usually taken to apply, quite generally, to the
Weyl tensor. Petrov showed that there were essentially three distinct algebraic types for
such a Riemann tensor (and hence for the Weyl tensor of any space-time) at a particular
space-time point. Within a decade of his original paper, many other workers had realised
its usefulness and extended his ideas to a comprehensive theory of what is now referred
to as the Petrov Classification. Two of Petrov’s types have been divided by eigenvalue
degeneracy, and so one now speaks of the Petrov types I, D, IT, N and III, with type
O reserved for the trivial case when the Weyl tensor vanishes at the point in question.
Further details can be found in the above mentioned works of Petrov and also in many
other places, for example, [4-6].

In his book [3], Petrov also discussed the idea of “geodesic mappings” of gravita-
tional fields, that is, roughly speaking, “when two gravitational fields have the same
(unparametrised) geodesics”. This problem has been revived recently [7-13] and has in-
terested both geometers (for obvious reasons) and relativists (because of the application
to the Newton-Einstein principle of equivalence in general relativity theory). The main
part of this paper will be concerned with this problem. In fact, Petrov’s classification of
the Weyl tensor is rather useful in some of the ways of attacking it. In addition, Petrov’s
algebraic ideas suggested to the present author the idea of the curvature map [6] and
this also turns out to be useful in the study of projective structure.
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1. The Petrov classification

Let M be a smooth, connected, Hausdorff 4-dimensional manifold with smooth
Lorentz metric g of signature (—,+,+,+) so that (M,g) is a space- time. Let V
denote the Levi— Civita connection arising from g and Riem the associated curvature
tensor. The components of Riem are R%p.q; the associated Ricci tensor, Ricc, has
components R,, = R and the Ricci scalar is R = Rgp ¢?°. The Weyl tensor is
denoted by C' and has components C%.q. Using the usual algebraic symmetries of the
Riemann tensor components Rgpcq at some point m € M, Petrov [1-3] introduced the
well-known 6 x 6 notation for this tensor to turn it into a 6 X 6 symmetric matrix, Rqg
at m where Greek letters take the values 1,...,6 and represent a skew-symmetric pair of
indices according to Petrov’s scheme 1 < (14),2 < (24),3 < (34),4 < (23),5 < (31),
and 6 < (12). Thus, Rio34 — R(12)y34) = Re3, etc. Petrov also noticed that the
symmetric matrix R,z possessed certain other convenient symmetries because of the

R
fact that (M, g) was assumed to be an Einstein space ( Ricc = 1 g). Nowadays, these

are usually expressed, using the duality operator *, in terms of the left and right “duals”
of Riem. Since Petrov’s ideas apply to the Weyl tensor of any space-time, the remainder
of the argument will be given in terms of it. The dual relation referred to above is then
given by

“Cabed = Cgpea (1)

One then considers the matrix C,g and studies its possible Jordan canonical forms
with respect to the (6 x 6) form of the bivector metric Gaped = GacGbd — Gadgve (Which is
permitted by the algebraic symmetries of Gapeq) and is non-degenerate with signature
(—,—,—,+,+,+). This Petrov did by first transferring attention to what is essentially

+ + *
the complex tensor C' derived from C and with components Cuped = Cabed + 1Cabed
*

where Capeq denotes either the left or right dual of C, these being equal, by (1), and
then showing how this led to a study of a certain 3 x 3 trace-free complex matrix
derived from and containing all the information in the original one. (It is remarked that
the trace-free condition arises from the condition C*,, = 0 and is stronger that the
corresponding condition on Riem (in an Einstein space) which is R%,, = R.)

Thus the possible Segre types (over C) of the original (6 x 6 Weyl) matrix Cag
are those of a complex 3 x 3 matrix and are {111}, {21} and {3}. These are Petrov’s
three types of gravitational field at m € M . By refining the classification on the basis
of eigenvalue degeneracy, they are usually given in six types as {111} (type I), {(11)1}
(type D), {21} (type II) {(21)} (type IN) and {3} (type III) together with type O
if C(m) = 0. The symbol D here refers to the term “degenerate” whilst N stands for
“null” (this latter term arising from certain algebraic similarities between this type and
the Maxwell-Minkowski tensor in “pure radiation” electromagnetic fields). The trace-
free condition referred to earlier shows that all the eigenvalues of the original 6 x 6
matrix (or the 3 x 3 one derived from it) in the types N, III (and O) cases are zero.
If the Petrov type at m € M is D, II, N, IIT or O, the Weyl tensor is said to be
algebraically special at m and if it is I it is said to be algebraically general at m.

It is remarked that Petrov’s classification is pointwise and can vary from point
to point over M subject to continuity requirements. In fact, one may decompose M
disjointly in the forms M =TUDUITUNUIITUO =T U int D U int IT U int N U
int IIT U int O U F where a Petrov symbol now refers to all those points of M which
are of that Petrov type, int denotes the interior operator in the manifold topology of
M and the subset F is determined by the disjointness of the decomposition and is thus
closed and can be shown to have empty interior [6].
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Of the main developments of Petrov’s work since its announcement in Kazan one
should mention the algebraic work of Bel [14], Geheniau [15], and Debever [16], who
discovered the beautiful reformulation of Petrov’s classification using the idea of princi-
pal (or repeated principal) null directions (the Bel criteria) and the resultant canonical
forms for C' based on them (see also Sachs [17] and Ehlers and Kundt [5] for a rather
elegant treatment of this problem). A comprehensive spinor treatment of similar mat-
ters was also given by Penrose [18] and a discussion of the physical interpretation of the
Petrov classification was given by Pirani [19].

2. Projective relatedness

Now let M be a manifold of dimension n > 2 and g a smooth metric on M of any
signature with Levi— Civita connection V and with curvature and Ricci tensors, etc.
denoted as before. Suppose ¢’ is another smooth metric on M of arbitrary signature
whose associated structures are denoted by adding a prime to the corresponding ones
for g. Call V and V'’ (or g and ¢', or (M,g) and (M, g’)) projectively related if the
unparamatrised geodesics of V and V’ coincide. If such is the case then M admits
an exact global 1-form 1 such that, in any coordinate domain of M, the Christoffel
symbols from V and V' satisfy

Fl%c - Fl?c = 5abwc + 5ac¢b (2)

and, conversely, if (2) holds in any coordinate domain, (M,g) and (M,g’) are pro-
jectively related. Equation (2) can, by using the identity V’'g’ = 0, be written in the
equivalent form

avie = 29apte + Goctb + Ghetba (3)

where a semi-colon denotes a covariant derivative with respect to V. Equation (2)
reveals a relation between the type (1,3) curvature tensors Riem and Riem’ of V and
V', respectively, given by

R%eq = R%eq + 0g0bc — 0°hba (= Ry = Rab — 3¢ab) (4)

where 1qp = Yap — Patp . Since 1 is exact, ¢ = dy for some smooth function x on M
and then ¥, = ¥4, . The problem thus becomes that of solving (3) for ¢’ and .

Petrov studied this problem in some detail (see [3]). He approached it as a problem
regarding two quadratic forms ¢ and ¢’ and considered the associated Jordan forms of
¢’ with respect to g. In Petrov’s work, (M, g) was a space-time and ¢’ also had Lorentz
signature. In this case the only possible Segre types for ¢’ are {1,111}, {211} {31} and
{2z11} together with their degeneracies. Here, {1,111} means that ¢’ is diagonalisable
over R (with a comma separating the “timelike eigenvalue” from the “spacelike” ones),
and {zz11} necessarily occurs when ¢’ is diagonalisable over C but not R. Petrov
then proceeds to solve (an equivalent form of) (3) for each of these Segre types using
a method based on the Ricci rotation coefficients.

An alternative approach was suggested by the Russian mathematician Sinjukov [20]
(and for the remainder of this section the manifold M is of any dimension n > 2 and
the metrics ¢ and ¢’ are of arbitrary signature). His idea is essential to modify the
approach contained in (2) and (3) by drawing attention away from the pair (¢’, %) to
the pair (a, A) where a is a (necessarily) non-degenerate, smooth, type (0,2) symmetric
tensor and A a smooth (necessarily) exact 1-form, on M given by

Agp = GQXQICdgac 9bd, Aa = 762waglbcgac (é Ag = *aabwb) (5)
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(where ¢’ are the contravariant components of ¢’ and not g/, with indices raised
using ¢). Then (5) can be inverted to give

g = e Xacq g% g, ha = —e XN, g% gl (6)

The condition (3) for projective relatedness is now, from (5) and (6), equivalent to the
more convenient (Sinjukov) equation for the (Sinjukov) tensor a [20]:

Gab;e = Yac Ap + Gbe Aa- (7)

The idea then is to solve (7) for @ and A and convert back, using (6), to find ¢’ and
t. With a and X thus found, one first defines a type (2,0) tensor a=! on M which is,
at each m € M, the inverse matrix of a (a..a”'®® = §%). Then one defines a related
type (0,2) tensor on M by a_;' = gacgpaa '°?. Finally, one defines a global function

1 det g
= -1
XT3 Og‘(deta)

which is a global metric on M, and 1, together satisfy (3) and constitute the required
solution on M (see, e.g., [13, 21]; the expression here for g/, corrects a typographical
error in [13]).

It is remarked at this point that one may associate with (M, g) its type (1,3) Weyl
projective tensor W with components given by

and a global exact 1-form ¢ = dx on M. Then g/, = e*Xa ',

1
W%eq = R%ca — m(&lcRbd — 64 Rpe). ()

This tensor was discovered by Weyl [22] and has the property that if (M, g) and (M, ¢’)
are projectively related, the Weyl projective tensors associated with g and ¢’ are equal
on M.

In the remaining sections, the aim is to survey and extend some of Petrov’s results
on projective relatedness using the Sinjukov transformation, Petrov’s classification of
the Weyl conformal tensor C', the curvature map [6] and holonomy theory.

3. First order systems, curvature maps and holonomy

For the remainder of this paper, let (M, g) be a space-time and let ¢’ be any other
(not necessarily Lorentz) metric on M so that (M,g) and (M,g’) are projectively
related. Then (2)—(7) hold (and n =4 in (8)). On applying the Ricci identity to the
Sinjukov tensor a and using (7) one finds

(aab;cd — Qgb:de :)aaeRebcd + abeReacd = Gac Abd + Gbe Aad — Yad Abe — 9bd )\ac; (9)

where Agp = Aap(= Apa). On applying certain standard procedures to this equation
and with repeated use of (7) one can show [12, 21] that if ® is any of the components
of a, the components of A or the scalar A7, , then, in any coordinate domain of M, ®
satisfies a first-order differential equation of the form @ , = F|, where a comma denotes
a partial derivative and the quantities F, depend only on the various quantities that
® can represent and those describing the geometry of M . Thus, any global solution for
a and A\ of (7) is uniquely determined by giving the quantities a, A and A7, at any
point m € M . From this it follows [21] that if the pairs (a, A), (b, 1) are global solution
pairs of (7) and if there exists a non-empty open subset U C M such that b =a + ag
(0 ¢ R)on U then b=a+ «ag and A = p, on M. In particular, if a =b on U, then
a="band A=p on M and so (a,\) = (b,u). Thus, if M admits a non-empty, open
subset U such that the only solution of (7) on U is A =0 and a = ag (0 # a € R),
the only solution of (7) on M is A=0 and a = ag (and so V=V’ on M).
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This last result is useful in getting global solutions for (7) from local ones. To
attack the local problem, the following construction is helpful. Let A,, denote the set
of all tensor type (2,0) 2-forms (bivectors) at m € M and consider the linear map
f A — Ay, constructed from the curvature tensor Riem of (M, g) where

f . Fab s RadeFCd (Fab — 7Fba). (10)

(The similarity with Petrov’s 6 x 6 matrix and its associated linear map is clear.) Let
ker f and rgf denote the kernel and range space of f. The rank of f (the dimension
of rg f) at m is called the curvature rank (of (M,g)) at m [6] and this curvature rank
together with the nature of rg f contain much useful information. Clearly, if F' €ker f
and G ergf, F®*G,, =0 and so F and G are orthogonal with respect to the bivector
metric and dim(kerf) + dim(rgf) = 6. However, (ker f)N(rgf) need not consist only
of the zero bivector (as it would if the bivector metric were positive definite). In fact,
for vacuum metrics of Petrov type I, D, II, N, IIT and O, one has, for the pair
(dim(rgf), dim(kerf)), the respective values (6,0) (or (4,2)), (6,0), (6,0), (2,4),
(4,2) and (0,6) and for the types N and III, (rgf)N(ker f) is 2-dimensional (and
0-dimensional for all other types). It is remarked that the evenness of dim(rg f) follows,
since ¢g has Lorentz signature, from (1) because in this case Riem = C'. For the case
of vacuum metrics, the Petrov canonical types trivially give a complete classification
of the map f but for general space-times, a more detailed classification is required.
To achieve this, it is convenient to introduce five curvature classes in the following way.
In these definitions if F' € A,,, is of matrix rank 2 it is called simple. In this case it may
be written as F% = p¢® — ¢*p® = p A ¢ for tangent vectors p, ¢ at m and the 2-space
spanned by p and ¢ is called the blade of F'. Otherwise F' is non-simple and gives rise
to a canonical pair of blades at m which are orthogonal [6, 17].

Class A

This covers all possibilities not covered by classes B, C, D and O below. For this
class, the curvature rank at m is 2, 3, 4, 5 or 6.

Class B

This occurs when dim(rgf) = 2 and when rg f is spanned by a timelike-spacelike
pair of simple bivectors with orthogonal blades (chosen so that one is the dual of the
other). In this case, one can choose a null tetrad I,n,z,y € T,,M such that these

* *
bivectors are F =1 An and F = x Ay, so that F' is timelike and F is spacelike and
then (using the algebraic identity R,ppcq) = 0 to remove cross terms) one has, at m,

Rabcd = aFachd + ﬂFachd (11)

for a, BER, aa#0# (.

Class C

In this case dim(rgf) = 2 or 3 and rgf may be spanned by independent simple
bivectors F' and G (or F', G and H) Wlth the property that there exists 0 # r € T, M

such that  lies in the blades of F and G (or F, G and H) Thus, F,pr° = Gupr®(=
H,,r?) = 0 and 7 is then unique up to a multiplicative non-zero real number.

Class D

In this case dim(rgf) = 1. If rg f is spanned by the bivector F' then, at m,

Raped = aFopFeg (12)

for 0 # a € R and Rgpeq) = 0 implies that F,F.q = 0 from which it may be checked
that F' is necessarily simple.
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Class O

In this case Riem vanishes at m.

This curvature classification is, like the Petrov classification, pointwise. One may
topologically decompose M into its curvature classes in a similar way to that done for
Petrov’s types [6].

There is a particularly useful result regarding the curvature rank of f. If F is
a simple bivector in ker f (for (M, g)), then the blade of F' is a 2-dimensional eigenspace
of the symmetric type (0,2) tensor VA, whilst if F' is a non-simple bivector in ker f
the canonical blade pair of F' give two g-orthogonal 2-dimensional eigenspaces of V.
It can then be shown [7, 13] that if ker f is such that the tangent space T, M to M at
m € M is an eigenspace of V) at each point of M then, on M,

(i) N = cgab; (i) AgR%pe = 0;  (991) GaeR ped + ape RCaca = 0, (13)

where ¢ is constant in (7). Then A is a homothetic (co)vector field on M and if A van-
ishes over some non-empty open subset of M it vanishes on M . Further, the equations
in parts (i¢) and (ii4) may be solved algebraically for A and a at any m € M if the
curvature class is known at m [6]. Part (ii¢) is also usefully related to the curvature
class at the appropriate point.

The final technique required in the study of the projective problem is the holonomy
algebra of (M, g). The details here are a little lengthy and are given in [6, 13, 21, 23].
Briefly, the holonomy algebra of (M,g) can be shown to be a subalgebra of the Lie
algebra of the Lorentz group and can be classified conveniently into fifteen types [24]
which are labeled Ri,..., Ry5. Of course, the holonomy group of (M,g) depends not
only on its holonomy algebra but also on the topological properties of M. But the
holonomy algebra is all that will be required here. The type R; is the trivial flat
case, R5 is impossible for a space-time, Rjs is the general case and the holonomy
types Ro — Ry and Rg — Ry4 reflect the number of independent (locally) covariantly
constant and recurrent vector fields admitted by V on M. The holonomy classification
of (M,g) is, unlike the Petrov and curvature classifications, a global statement about
(M,g). Taken together with the infinitesimal holonomy algebra [6, 23], it combines
with the various curvature classes over M described above to provide a powerful tool
in solving the projective problem.

4. Main results

First consider the case when (M, g) is a space-time which is an Einstein space (and
which includes the special case when (M, g) is vacuum). For this situation one has,
in the notation established above, the following result [7-9, 11-13].

Theorem 1. Let (M,g) be a space-time which is an Einstein space and let g’ be
another smooth metric on M of arbitrary signature, which is projectively related to g .
Then either V =N' or (M,g) and (M,g’) each have constant curvature. If (M,g) is
vacuum and not flat, then (M,q") is also vacuum (and not flat) and, further, g’ = cg
for constant ¢ except possibly when (M, g) is a pp-wave space-time (when the simple
relation between g and g' can easily be found).

Proof. A very brief sketch of several proofs will be given (Petrov’s approach has
already been mentioned). The first approach, given in [7], was actually given only for
vacuum space-times but is easily extended to Einstein spaces. This approach relies
on (3) and (8) and makes no use of the Sinjukov transformation. First, one disjointly
decomposes M into its regions of constant Petrov type, as described in Section 1.
A relationship between the curvature map f and the Petrov types of Riem is then
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established and canonical forms for each Petrov type are written down for each region
in the above decomposition with use being made of the equality of the tensors W in (8)
for g and ¢’. In an improved proof given in [8], use is made of the Sinjukov equations
(5)—(7). Here, one is able to show that either V' = V or the Weyl tensor and any
solution pair (a, \) of (7) satisfy

aaecebcd + abeceacd = 07 Cabcd )\d =0 (14)

on M. One then decomposes M as M = AU B where A= {m € M : C(m) # 0} and
B={me M:C(m)=0} sothat A isopen and B is closed in M. (In [8] this argument
was given rather clumsily and will be clarified here). It was then shown that A* was
a projective vector field on M and so if it vanishes on some non-empty open subset of
M it vanishes on M (and then from (6) and (2) ¢» =0 and so V = V', on M). (In fact,
this result is essentially a consequence of the first order system described in Section 3.)
If m e A and A\(m) # 0, it follows from the second equation in (14) together with the
Bel criteria (Section 1) that, at m and in some open neighbourhood W of m, the Petrov
type of (M,g) is N and A spans a (repeated) principal null direction at m. Then one
derives the contradiction that A vanishes on W and so A vanishes on A. Since A is
open it follows that, if A # (), )\ again vanishes on M. Finally, if A=, M = B and
so (M, g) is of constant curvature (and so also is (M, g) [25]). It can also be shown that
if g and ¢’ are not of constant curvature they have the same signatures (something
which was assumed by Petrov) but that (M, g’) may not be an Einstein space. Other
proofs have also been given, but the pp-wave possibility described in the statement
of the theorem only seems to have been pointed out clearly in [7]. (In theorem 1, if
g is of signature (+,+,+,+) or (+,+, —, —) again one gets the result that either each
of (M,g) and (M, g’) is of constant curvature or V = V', that ¢’ need not represent
an Einstein space nor have the same signature as g but that (excluding the constant
curvature case) Ricci flatness is preserved [8, 9]). O

For a general space-time, it is convenient to proceed by considering the holonomy
type of (M, g). All types except the most general one can be solved and the following
theorem summarizes part of the situation.

Theorem 2. Let (M,g) and (M,g’) be projectively related space-times.

(1) If g and ¢’ are (locally) conformally related on M, then they are globally con-
formally related on M and further V. =V' and ¢’ = cg on M for ¢ constant.

(i1) If (M,g) has holonomy type Ro, Rs, R4, Rs, Ry, Rs or Ry, then V=V’
and the relation between g and g’ can be calculated easily using holonomy theory.

(#it) If (M,g) has holonomy type Rip, Ri1 or Ris and with curvature rank > 1
at some m € M, then V = V' and the relation between g and g’ can be calculated
easily using holonomy theory.

Proof. Again a brief sketch only will be given. The result in part (i) was partly
noticed by Thomas [26]. The full result is proved by choosing m € M and a connected
open neighbourhood U of M on which ¢’ = ¢g for ¢ : U — R and substituting into
(3), contracting with ¢g?® and then substituting back and contracting with g% to get
1 =0 and x = const on U. The result follows from a topological argument using the
connectedness of M. For parts (ii) and (éii), one first uses a result mentioned just
before (13) regarding the kernel, ker f, of the curvature map f and shows that for each
of the holonomy types in parts (ii) and (i7i) T,,M is an eigenspace of V) and hence
that A is a homothetic vector field on M . Then (13) can be used in conjunction with the
remarks following it to choose m € M and an open connected neighbourhood U of m
and to write a canonical form for the tensor a in U, which is determined by part (ii7)
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of (13), in terms of a null tetrad chosen to “fit” the holonomy invariant distributions
and/or vector fields. One then substitutes into (7) and performs certain contractions
to see that A vanishes on U and hence, since it is homothetic, on M .

This solves the problem for all holonomy types except types Rig, R11 or Rz (and
with curvature rank < 1 at each point of M), and for types Rg, Ris and Ry5. The
solution in these cases is more complicated and can be found in [13, 21] (and further
holonomy details are available in [27]). For these cases, one does not necessarily achieve
V = V'’ but the relationship between g and ¢’ can still be found. The general case Ri5
is not completely solved (although some progress can be made [21]). In particular, in the
important case for relativistic cosmology when (M, g) is a “generic” FRWL cosmological
model (necessarily of type Ris), it has been completely solved [10] and (M,¢’) must
also be an FRWL metric.

O

Another problem which has been essentially solved is the following one [21]. If (M, g)
and (M,g’) are projectively related, how are their holonomy groups related? Clearly,
from the above results, there is a close link between such holonomy groups (often equal-
ity), as Theorem 2 shows, but it does not follow that they are the same and examples
of non-equality have been given. Further, the Petrov type and the curvature class at
m € M and the holonomy type of (M,g) are, as may be expected, closely related.
In fact, it can be shown [6] that if the holonomy type of (M, g) is Rs or R4, the Petrov
type at any point is either O or D and similarly for holonomy type Rs it is O or N,
for Ry it is O or D, for Ry3 itis O, I or D and for all other holonomy types except
Ry and Ry5 it is algebraically special. In addition, for the Petrov types Ro, Rz and
Ry, it is Petrov type O at m if and only if Riem(m) = 0. Similarly, if the holonomy
type is Ro, Rs or Ry, the curvature class at any m € M is O or D, for holonomy
types Rg, Rg, Rio, R11 and Ry3 itis O, C or D, for R; itis O, B or D, for Ry and
Ryo,itis O, C, D or A and for Ry4 or Rys, it could be any curvature class (but, if
Ry4, it cannot be curvature class B everywhere). Another question, perhaps less inter-
esting for physicists, is the problem when the original (M, g) satisfies dim M = 4 and
with g positive definite. Techniques similar to those above also lead to a solution for
this problem in all but the most general holonomy case [28]. Similarly, the case when
dimM = 4 and g has neutral signature (+,+,—,—) has been considered®. Further
details for space-times can be found in [29].

The author wishes to thank David Lonie for many illuminating discussions and
collaborations.

Pesome

I'. Xoan. Pazeurtue nccnemosannit A.3. IlerpoBa no KoOHMDOPMHO| W MPOEKTUBHON CTPYK-
Typam.

B crarbe o6cyxmatorca mocruxkenus A.3. ITerposa B o61actu ucciemoBanus KoHGOPMHON
¥ TIPOEKTUBHON CTPYKTYp mnpocrpaHncrBa-spemenn. QCHOBHOE BHUMAaHUE yJIEJIEHO I[OCJIEIHENH,
O/THAKO TIOKA3AHO 1 3HAYEHNE IIEPBOil B PA3BUTHN IPOEKTUBHO T€OPUN ITPOCTPAHCTBA-BPEMEHH.
IIpuBesenbr HEKOTOPBIE HOBBIE Pe3yJbTaThl B JaHHON obiaactu uccaemosanus A.3. ITerposa.

KutoueBsbie cioBa: MpOEKTUBHAS CTPYKTYpPa, KOH(GOPMHAS CTPYKTYPA, Kiraccudu-
kamusa A.3. [Terpora, KapTa KPUBU3HBL.

" Wang 7., Hall G.S. Projective Structure in 4-Dimensional Manifolds with Metric of Signature
(+,+,—,—). — Submitted.
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