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UDK 530.12OBSERVER'S MATHEMATICS APPLICATIONSTO NUMBER THEORY, GEOMETRY, ANALYSIS,CLASSICAL AND QUANTUM MECHANICSB. Khots, D. KhotsAbstra
tWhen we 
onsider and analyze physi
al events with the purpose of 
reating 
orrespondingmodels, we often assume that the mathemati
al apparatus used in modeling is infallible. In par-ti
ular, this relates to the use of in�nity in various aspe
ts and the use of Newton's de�nition ofa limit in analysis. We believe that is where the main problem lies in 
ontemporary study of na-ture. This work 
onsiders mathemati
al and physi
al aspe
ts in a setting of arithmeti
, algebra,geometry, and topology provided by Observer's Mathemati
s, see www.mathrelativity.
om.Key words: Hilbert, soliton, wave, S
hr�odinger, Lorentz, S
hwartz, observer.Introdu
tionToday, when we see the 
lassi
al de�nition of a limit of a sequen
e (sequen
e anapproa
hes a limit b if for any arbitrarily small number ǫ > 0 there is an integer N ,su
h that |an − b| < ǫ for all n > N ), we feel somewhat uneasy: what does �arbitrarilysmall� really mean? Also, what does �su�
iently large� mean? This is be
ause theanswer depends on the point of view, depends on an observer, i.e., has relativisti

hara
teristi
s.Consider, for example, geometry. When we speak about lines, planes, or geometri
albodies, we understand that all these obje
ts exist only in our imagination: even ifwe grind a metal plate we would never get an ideal plane be
ause of instrument andoperation. Moreover, we would never rea
h an ideal plane shape be
ause of the atomi
stru
ture of the metal, i.e., we are not able to approa
h this shape with an arbitrarya

ura
y. In order to avoid the use of in�nity, David Hilbert had 
reated geometri
albases pra
ti
ally without the use of 
ontinuity axioms: Ar
himedes and 
ompleteness.We �nd similar problems o

urring in arithmeti
, and in entire mathemati
s, sin
eit is �arithmeti
al� in nature.Physi
s en
ounters su
h problems as well. It is known fa
t that the dynami
s ofsome systems 
hange when we 
hange the s
ale (distan
es, energies) at whi
h we probeit. For example, 
onsider a �uid. At ea
h distan
e s
ale, we need a di�erent theory todes
ribe its behavior:1. At ∼ 1 
m � 
lassi
al 
ontinuum me
hani
s (Navier � Stokes equations);2. At ∼ 10−5 
m � theory of granular stru
tures;3. At ∼ 10−8 
m � theory of atom (nu
leus + ele
troni
 
loud);4. At ∼ 10−13 
m � nu
lear physi
s (nu
leons);5. At ∼ 10−13 − 10−18 
m � quantum 
hromodynami
s (quarks);6. At ∼ 10−33 
m � string theory.The mathemati
al apparatus that is applied here for physi
al data pro
essing andbuilding mathemati
al models does not 
ontain any barriers, it is universal, omnivorous,and 
an manipulate with any numbers. This 
reates a possibility to produ
e an in
orre
t
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s was 
reated as an attempt to do away with the 
on
eptof in�nity.Proof of all theorems stated below 
an be found in [1�9℄.1. Observer's mathemati
s appli
ations to number theory1.1. Analogy of Fermat's last problem. This result was presented by authorsat the International Congress of Mathemati
ians in Madrid in 2006.To begin, we present a few notes. It is obvious that the 
lassi
al Fermat's Lastproblem (for any integer m , m ≥ 3 , there do not exist positive integers a, b, c , su
hthat am + bm = cm ) may be reformulated not just for integers a, b, c , but for any realrational numbers a, b, c .Note, in observer's mathemati
s the power operation is not always asso
iative. Forillustrative purposes, we give a W2 example. Consider 1.49 ∈ W2 . Then 1.49×2 1.49 =
= 2.14 and 1.49 ×2 2.14 = 3.16 . On the other hand, 1.49 ×2 3.16 = 4.67 and 2.14 ×2

2.14 = 4.57 , i.e., ((1.49 ×2 1.49)×2 1.49)×2 1.49 6= (1.49 ×2 1.49) ×2 (1.49 ×2 1.49) .Theorem 1. For any integer n , n ≥ 2 , and for any integer m , m ≥ 3 , m ∈ Wnthere exist positive a , b , c ∈ Wn , su
h that am +n bm = cm . Here xm means
((. . . (x ×n x) ×n . . .) ×n x))
︸ ︷︷ ︸

m

.For example, if n = 2 , we 
an 
al
ulate that 13 +2 13 = 1.283 .Note that the main reason of 
ardinal di�eren
e between standard mathemati
s andobserver's mathemati
s results is the following. The negative solution of 
lassi
al Fer-mat's problem requires the Axiom of Choi
e to be valid. But in observer's mathemati
sthis axiom is invalid.1.2. Analogy of Mersenne's and Fermat's numbers problems. Mersenne'snumbers are de�ned as Mk = 2k − 1 , with k = 1, 2, . . . The following question is stillopen: is every Mersenne's number square-free?Fermat's numbers are de�ned as Fk = 22k
+1 , k = 0, 1, 2, . . . The following questionis still open: is every Fermat's number square-free?We begin with some 
omments. It is obvious that if some integer number is square-free in the set of all real integers, then this number is square-free in the set of all realrational numbers.Theorem 2. There exist integers n , k ≥ 2 , Mersenne's numbers Mk , with

{k, Mk} ∈ Wn , and positive a ∈ Wn , su
h that Mk = a2 .Theorem 3. There exist integers n , k ≥ 2 , Fermat's numbers Fk , {k, Fk} ∈ Wn ,and positive a ∈ Wn , su
h that Fk = a2 .1.3. Analogy of Waring's problem. It is known (Lagrange) that the minimumnumber of squares to express all positive integers is four. What is the minimum numberof k -th powers ne
essary to express all positive integers? This is a 
lassi
al Waring'sproblem in standard arithmeti
.Theorem 4. For any integer k , k ≥ 2 , there exist integer n , n ≥ 2 , (k ∈ Wn)and some x ∈ Wn , su
h that any equality of the form x = ak
1 + ak

2 + . . . + ak
l is notpossible for any integer l ∈ Wn and any positive numbers a1 , a2 , . . . , al ∈ Wn .Note that for n = 2 and for any x ∈ W2 , x ∈ [0, 1] , there do not exist more thanfour numbers a, b, c, d ∈ W2 , su
h that x = ((a2 +2 b2) +2 c2) +2 d2 .
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Fig. 1. Nadezhda e�e
t1.4. Tenth Hilbert problem in observer's mathemati
s. We provide thefollowingTheorem 5. For any positive integers m, n, k ∈ Wn , n ∈ Wm , m > log10(1 +
+ (2 · 102n − 1)k) , from the point of view of the Wm−observer, there is an algorithmthat takes as input a multivariable polynomial f(x1, . . . , xk) of degree q in Wn andoutputs YES or NO a

ording to whether there exist a1, . . . , ak ∈ Wn , su
h that
f(a1, . . . , ak) = 0 .Therefore, Hilbert's tenth problem in observer's mathemati
s has positive solution.We think that Hilbert expe
ted a positive answer for his tenth problem. Note thatthe main reason of 
ardinal di�eren
e between standard mathemati
s and observer'smathemati
s results is the following. The negative solution of the 
lassi
al tenth problemrequires the Axiom of Choi
e to be valid. But in observer's mathemati
s this Axiomis invalid.2. Observer's Mathemati
s appli
ation to geometry: Nadezhda e�e
tIn this se
tion we 
onsider an open square Q 
entered at the origin with sidesof length 2 lo
ated on a plane Wn × Wn . We will 
al
ulate the distan
e D betweenthe origin (0, 0) and any point of Q as follows. D = ρ((0, 0), (x, y)) =

√

x2 + y2 =
=

√
x ×n x +n y ×n y , where √

a = b means b ×n b = a , x, y ∈ Q , i.e., |x| < 1 ,
|y| < 1 .Fig. 1 below 
ontains an illustration of the fa
t that for some points on Wn × Wnthe 
on
ept of distan
e from the origin does not exist, while for others it does exist. Theillustration below is for n = 3 (Q ⊂ W3 × W3 ). Points with no distan
e to the originare indi
ated by bla
k, while points where distan
e from the origin exists are indi
atedin white.This means that the distan
e D does not always exist, i.e., not every segment ona plane has a length. This phenomenon o

urs for all n . We 
all the presen
e of these�bla
k holes� and �white 
ross� as the Nadezhda e�e
t (see Fig. 1). This e�e
t gives us
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overing physi
al pro
esses and developing their mathemati
almodels.3. Observer's mathemati
s appli
ation to analysis and physi
sIn 
lassi
al physi
s, it has been realized for 
enturies that the behavior of idealizedvibrating media (su
h as waves on string, on a water surfa
e, or in air), in the absen
eof fri
tion or other dissipative for
es, 
an be modeled by a number of partial di�erentialequations known 
olle
tively as dispersive equations. Model examples of su
h equationsin
lude the following:
• The free wave equation utt − c2∆u = 0 where u : R × Rd → R representsthe amplitude u(t, x) of a wave at a point in spa
etime with d spatial dimensions,

∆ =
d∑

j=1

δ2

δx2
j

is the spatial Lapla
ian on Rd , utt is short for δ2u

δt2
, and c > 0 is a �xed
onstant.

• The linear S
hr�odinger equation i~ut+
~

2

2m
∆u = V u where u : R×Rd → R is thewave fun
tion of a quantum parti
le, ~, m > 0 are physi
al 
onstants and V : Rd → Ris a potential fun
tion, whi
h we assume to depend only on the spatial variable x .The theory of linear dispersive equations predi
ts that waves should spread out anddisperse over time. However, it is a remarkable phenomenon, observed both in theoryand pra
ti
e, that on
e nonlinear e�e
ts are taken into a

ount, solitary wave and solitonsolutions 
an be 
reated, whi
h 
an be stable enough to persist inde�nitely.From the point of view of Wn -observer (we will 
all su
h observers �naive�, sin
ethey �think� that they �live� in W and deal with W ) a real fun
tion y of a real variable

x , y = y(x) , is 
alled di�erentiable at x = x0 if there is a derivative
y′(x0) = lim

x→x0, x 6=x0

y(x) − y(x0)

x − x0

.What does the above statement mean from the point of view of Wm -observer with
m > n? It means that

|(y(x) −n y(x0)) −n (y′(x0) ×n (x −n x0))| ≤ 0. 0 . . .01
︸ ︷︷ ︸

nwhenever
|y(x) −n y(x0)| = 0. 0 . . .0yl

︸ ︷︷ ︸

l

yl+1 . . . ynand
|(x −n x0)| = 0. 0 . . . 0xk

︸ ︷︷ ︸

k

xk+1 . . . xnfor 1 ≤ k , l ≤ n , and xk being non-zero digit. The following theorems have beenproven:Theorem 6. From the point of view of a Wm -observer a derivative 
al
ulated bya Wn -observer (m > n) is not de�ned uniquely.Theorem 7. From the point of view of a Wm -observer (with m > n ) |y′(x0)| ≤
≤ Cl,k

n , where Cl,k
n ∈ Wn is a 
onstant de�ned only by n, l, k and not dependenton y(x) .



200 B. KHOTS, D. KHOTSTheorem 8. From the point of view of a Wm -observer, when a Wn -observer (with
m > n ≥ 3) 
al
ulates the se
ond derivative

y′′(x0) = lim
x1→x0,x1 6=x0,x2→x0,x2 6=x0,x3→x1,x3 6=x1

y(x3) − y(x1)

(x3 − x1)
− y(x2) − y(x0)

x2 − x0

x1 − x0

,we get the following unequality:
(|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥ 0. 0 . . .01

︸ ︷︷ ︸

nprovided that y′′(x0) 6= 0 .3.1. Free wave equation. We 
onsider the 
ase when d = 1 , i.e., u : Wn×Wn →
→ Wn , from Wm -observer point of view, with m > n , where Wn×Wn means Cartesianprodu
t of Wn with itself. The free wave equation may be written as

utt −n ((c ×n c) ×n uxx) = 0.Then we have the followingTheorem 9. Let
c = c0.c1 . . . ckck+1 . . . cnand

uxx = ±uxx
0 .uxx

1 . . . uxx
l uxx

l+1 . . . uxx
nwith 2k < n , l < n , c0 = c1 = . . . = ck = 0 , ck+1 6= 0 , uxx

0 = uxx
1 = . . . = uxx

l = 0and u < k + l + 2 , then utt = 0 .Next, we have the followingTheorem 10. If d0 ≥ 9 . . . 9
︸ ︷︷ ︸

p

, with 0 < p ≤ n and uxx
0 ≥ 9 . . . 9

︸ ︷︷ ︸

q

, with 0 < q ≤ nand n < p + q , then there is no utt , su
h that utt = ((c ×n c) ×n uxx) .3.2. S
hr�odinger equation. Consider the following:
−(~ ×n ~) ×n Ψxx +n ((2 ×n m) ×n V ) ×n Ψ = i((2 ×n m) ×n ~)Ψt,where Ψ = Ψ(x, t) , ~ is the Plan
k's 
onstant, ~ = 1.054571628(53) · 10−34 m2kg/s.Then we have the followingTheorem 11. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . .mn , with m ∈ Wn ,

m0 = m1 = . . . = mk = 0 , mk+1 6= 0 , k + 35 < n , V = 0 , then
Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . . Ψn

t and Ψ0
t = . . .Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are free andin {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with Ψt ∈

∈ {(0.

n
︷ ︸︸ ︷

0 . . .0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .Corollary 1. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . . mn , with m ∈ Wn ,
m0 = m1 = . . . = mk = 0 , mk+1 6= 0 . Also, let V = υ0.υ1 . . . υsυs+1 . . . υn ,with V ∈ Wn , υ0 = υ1 = . . . = υs = 0 , υs+1 6= 0 , with {

k + 35 < n

k + s + 2 > n
,then Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . .Ψn

t and Ψ0
t = . . . Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are freeand in {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with
Ψt ∈ {(0.

n
︷ ︸︸ ︷

0 . . .0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .
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e. Quantum me
hani
s treats the motion of an ele
-tron, neutron or atom by writing down the S
hr�odinger equation:
− ~

2

2m

δ2Ψ

δx2
+ V Ψ = i~

δΨ

δt
,where m is the parti
le mass and V is the external potential a
ting on the parti
le.As these parti
les pass through the two slits of any of the experiments they are movingfreely; we, therefore, set V = 0 in the S
hr�odinger equation.Now, 
onsider the following:

−(~ ×n ~) ×n Ψxx +n ((2 ×n m) ×n V ) ×n Ψ = i((2 ×n m) ×n ~)Ψt,where Ψ = Ψ(x, t) , ~ is the Plan
k's 
onstant, ~ = 1.054571628(53) · 10−34 m2kg/s.Then we have the followingTheorem 12. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . .mn , with m ∈
Wn , m0 = m1 = . . . = mk = 0 , mk+1 6= 0 , k + 35 < n , V = 0 , then
Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . . Ψn

t and Ψ0
t = . . .Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are free andin {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with Ψt ∈

{(0.

n
︷ ︸︸ ︷

0 . . . 0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .The wave at the point of 
ombination will be the sum of those from ea
h slit. If Ψ1is the wave from slit 1 and Ψ2 is the wave from slit 2, then Ψ = Ψ1 + Ψ2 . The resultgives the predi
ted interferen
e pattern. Then by Theorem 1, we have
Ψ1t = Ψ0

1t.Ψ
1
1t . . . Ψl

1tΨ
l+1

1t . . .Ψn
1t,

Ψ2t = Ψ0
2t.Ψ

1
2t . . . Ψl

2tΨ
l+1

2t . . .Ψn
2t,

Ψ0
1t = . . . = Ψl

1t = 0,where Ψl1+1

1t , . . . , Ψn
1t are free and in {0, 1, . . . , 9} , and

Ψ0
2t = . . . = Ψl

2t = 0,where Ψl2+1

2t , . . . , Ψn
2t are free and in {0, 1, . . . , 9} where l = n − k − 36 .Now we have the followingTheorem 13. 1. If Ψl+1

1t + Ψl+1

2t > 9 , then Ψ1 + Ψ2 is not a wave.
2. If Ψl+1

1t + Ψl+1

2t < 9 , then Ψ1 + Ψ2 is a wave.
3. If Ψl+1

1t + Ψl+1
2t = 9 , then Ψ1 + Ψ2 may or may not be a wave.3.4. Lorentz transform. Let K and K ′ be two inertial 
oordinate systems with

x-axis and x′ -axis permanently 
oin
iding. We 
onsider only events whi
h are lo
alizedon the x(x′)-axes. Any su
h event is represented with respe
t to the 
oordinate system
K by the abs
issa x and the time t , and with respe
t to the system k′ by the abs
issa
x′ and the time t′ when x and t are given. A light signal, whi
h is pro
eeding along thepositive x−axis, is transmitted a

ording to the equation x = c×n t or x−n c×n t = 0Sin
e the same light signal has to be transmitted relative to k′ with the velo
ity c , thepropagation relative to the system k′ will be represented by the analogous equation

x′ −n c ×n t′ = 0.
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e-time points (events) whi
h satisfy the �rst equation must also satisfy these
ond equation. Obviously there will be the 
ase when the relation λ1×n(x′−nc×nt′) =
= µ1 ×n (x −n c ×n t) is ful�lled in general, where λ1, µ1 ∈ Wn , |λ1|, |µ1| ≥ 1 are
onstants; for, a

ording to the last equation, the disappearan
e of (x−n c×n t) involvesthe disappearan
e of (x′ −n c ×n t′) .Note that 
lassi
al equation x′ − ct′ = λ(x− ct) is not valid sin
e if λ < 1 , x− ct =
= 0. 0 . . .0

︸ ︷︷ ︸

n−1

1 , then λ ×n (x −n c × t) = x′ −n c ×n t′ = 0 . If we apply quite similar
onsiderations to light rays whi
h are being transmitted along the negative x-axis, weobtain the 
ondition λ2 ×n (x′ +n c ×n t′) = µ2 ×n (x +n c ×n t) with λ2, µ2 ∈ Wn ,
|λ2|, |µ2| ≥ 1 .3.5. S
hwarzian derivative. The S
hwarzian derivative S(f(x)) is de�ned as
S(f(x)) =

f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2 Here f(x) is a fun
tion in one real variable and
f ′(x), f ′′(x), f ′′′(x) are its derivatives. The S
hwarzian derivative is ubiquitous andtends to appear in seemingly unrelated �elds of mathemati
s in
luding 
lassi
al 
omplexanalysis, di�erential equations, and one-dimensional analysis, as well as more re
ently,Tei
hm�uller Theory, integrable systems, and 
onformal �eld theory. For example, let's
onsider the Lorentz plane with the metri
 g = dxdy and a 
urve y = f(x) . If f ′(x) > 0 ,then its Lorentz 
urvature 
an be easily 
omputed via ρ(x) = f ′′(x)(f ′(x))−3/2 and theS
hwarzian enters the game when one 
omputes ρ′ =

S(f)√
f ′

. Thus, informally speaking,the S
hwarzian derivative is 
urvature.Consider now the S
hwarzian 
urvature from observer's mathemati
s point of view.Now we have the followingTheorem 14. If S(f(x)) exists, then
• S(f(x)) is a random variable;
• |S(f(x)| ≤ 10l−k+1 , where

(2 ×n (f ′(x) ×n f ′(x))) = 0. 0 . . . 0al
︸ ︷︷ ︸

l

al+1 . . . anwith al 6= 0 and
(2 ×n (f ′′′(x) ×n f ′(x))) −n (3 ×n (f ′′(x) ×n f ′′(x))) = ±0. 0 . . .0bk

︸ ︷︷ ︸

k

bk+1 . . . bnwith bk 6= 0 and 1 < l, k < n . �åçþìåÁ. Õîö, Ä. Õîö. Ïðèìåíåíèå ìàòåìàòèêè íàáëþäàòåëÿ ê òåîðèè ÷èñåë, ãåîìåòðèè,àíàëèçó, êëàññè÷åñêîé è êâàíòîâîé ìåõàíèêå.Ïðè ðàññìîòðåíèè è àíàëèçå �èçè÷åñêèõ ñîáûòèé ñ öåëüþ ñîçäàíèÿ ñîîòâåòñòâóþùèõìîäåëåé ìû ÷àñòî ïðåäïîëàãàåì, ÷òî ìàòåìàòè÷åñêèé àïïàðàò, èñïîëüçóåìûé â ìîäåëèðî-âàíèè, íåïîãðåøèì. Â ÷àñòíîñòè, ýòî êàñàåòñÿ èñïîëüçîâàíèÿ áåñêîíå÷íîñòè â ðàçëè÷íûõàñïåêòàõ è ïðèìåíåíèÿ íüþòîíîâñêîãî îïðåäåëåíèÿ ïðåäåëà â àíàëèçå. Ìû ñ÷èòàåì, ÷òîèìåííî â ýòîì çàêëþ÷àåòñÿ îñíîâíàÿ ïðîáëåìà â ñîâðåìåííîì èçó÷åíèè ïðèðîäû. Â íà-ñòîÿùåé ðàáîòå ðàññìàòðèâàþòñÿ ìàòåìàòè÷åñêèå è �èçè÷åñêèå àñïåêòû àðè�ìåòèêè,àëãåáðû, ãåîìåòðèè è òîïîëîãèè ìàòåìàòèêè íàáëþäàòåëÿ (ñì. www.mathrelativity.
om).Êëþ÷åâûå ñëîâà: �èëüáåðò, ñîëèòîí, âîëíà, Øðåäèíãåð, Ëîðåíö, Øâàðö, íàáëþäà-òåëü.
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