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UDK 530.12OBSERVER'S MATHEMATICS APPLICATIONSTO NUMBER THEORY, GEOMETRY, ANALYSIS,CLASSICAL AND QUANTUM MECHANICSB. Khots, D. KhotsAbstratWhen we onsider and analyze physial events with the purpose of reating orrespondingmodels, we often assume that the mathematial apparatus used in modeling is infallible. In par-tiular, this relates to the use of in�nity in various aspets and the use of Newton's de�nition ofa limit in analysis. We believe that is where the main problem lies in ontemporary study of na-ture. This work onsiders mathematial and physial aspets in a setting of arithmeti, algebra,geometry, and topology provided by Observer's Mathematis, see www.mathrelativity.om.Key words: Hilbert, soliton, wave, Shr�odinger, Lorentz, Shwartz, observer.IntrodutionToday, when we see the lassial de�nition of a limit of a sequene (sequene anapproahes a limit b if for any arbitrarily small number ǫ > 0 there is an integer N ,suh that |an − b| < ǫ for all n > N ), we feel somewhat uneasy: what does �arbitrarilysmall� really mean? Also, what does �su�iently large� mean? This is beause theanswer depends on the point of view, depends on an observer, i.e., has relativistiharateristis.Consider, for example, geometry. When we speak about lines, planes, or geometrialbodies, we understand that all these objets exist only in our imagination: even ifwe grind a metal plate we would never get an ideal plane beause of instrument andoperation. Moreover, we would never reah an ideal plane shape beause of the atomistruture of the metal, i.e., we are not able to approah this shape with an arbitraryauray. In order to avoid the use of in�nity, David Hilbert had reated geometrialbases pratially without the use of ontinuity axioms: Arhimedes and ompleteness.We �nd similar problems ourring in arithmeti, and in entire mathematis, sineit is �arithmetial� in nature.Physis enounters suh problems as well. It is known fat that the dynamis ofsome systems hange when we hange the sale (distanes, energies) at whih we probeit. For example, onsider a �uid. At eah distane sale, we need a di�erent theory todesribe its behavior:1. At ∼ 1 m � lassial ontinuum mehanis (Navier � Stokes equations);2. At ∼ 10−5 m � theory of granular strutures;3. At ∼ 10−8 m � theory of atom (nuleus + eletroni loud);4. At ∼ 10−13 m � nulear physis (nuleons);5. At ∼ 10−13 − 10−18 m � quantum hromodynamis (quarks);6. At ∼ 10−33 m � string theory.The mathematial apparatus that is applied here for physial data proessing andbuilding mathematial models does not ontain any barriers, it is universal, omnivorous,and an manipulate with any numbers. This reates a possibility to produe an inorret



OBSERVER'S MATHEMATICS APPLICATIONS. . . 197output. Observer's mathematis was reated as an attempt to do away with the oneptof in�nity.Proof of all theorems stated below an be found in [1�9℄.1. Observer's mathematis appliations to number theory1.1. Analogy of Fermat's last problem. This result was presented by authorsat the International Congress of Mathematiians in Madrid in 2006.To begin, we present a few notes. It is obvious that the lassial Fermat's Lastproblem (for any integer m , m ≥ 3 , there do not exist positive integers a, b, c , suhthat am + bm = cm ) may be reformulated not just for integers a, b, c , but for any realrational numbers a, b, c .Note, in observer's mathematis the power operation is not always assoiative. Forillustrative purposes, we give a W2 example. Consider 1.49 ∈ W2 . Then 1.49×2 1.49 =
= 2.14 and 1.49 ×2 2.14 = 3.16 . On the other hand, 1.49 ×2 3.16 = 4.67 and 2.14 ×2

2.14 = 4.57 , i.e., ((1.49 ×2 1.49)×2 1.49)×2 1.49 6= (1.49 ×2 1.49) ×2 (1.49 ×2 1.49) .Theorem 1. For any integer n , n ≥ 2 , and for any integer m , m ≥ 3 , m ∈ Wnthere exist positive a , b , c ∈ Wn , suh that am +n bm = cm . Here xm means
((. . . (x ×n x) ×n . . .) ×n x))
︸ ︷︷ ︸

m

.For example, if n = 2 , we an alulate that 13 +2 13 = 1.283 .Note that the main reason of ardinal di�erene between standard mathematis andobserver's mathematis results is the following. The negative solution of lassial Fer-mat's problem requires the Axiom of Choie to be valid. But in observer's mathematisthis axiom is invalid.1.2. Analogy of Mersenne's and Fermat's numbers problems. Mersenne'snumbers are de�ned as Mk = 2k − 1 , with k = 1, 2, . . . The following question is stillopen: is every Mersenne's number square-free?Fermat's numbers are de�ned as Fk = 22k
+1 , k = 0, 1, 2, . . . The following questionis still open: is every Fermat's number square-free?We begin with some omments. It is obvious that if some integer number is square-free in the set of all real integers, then this number is square-free in the set of all realrational numbers.Theorem 2. There exist integers n , k ≥ 2 , Mersenne's numbers Mk , with

{k, Mk} ∈ Wn , and positive a ∈ Wn , suh that Mk = a2 .Theorem 3. There exist integers n , k ≥ 2 , Fermat's numbers Fk , {k, Fk} ∈ Wn ,and positive a ∈ Wn , suh that Fk = a2 .1.3. Analogy of Waring's problem. It is known (Lagrange) that the minimumnumber of squares to express all positive integers is four. What is the minimum numberof k -th powers neessary to express all positive integers? This is a lassial Waring'sproblem in standard arithmeti.Theorem 4. For any integer k , k ≥ 2 , there exist integer n , n ≥ 2 , (k ∈ Wn)and some x ∈ Wn , suh that any equality of the form x = ak
1 + ak

2 + . . . + ak
l is notpossible for any integer l ∈ Wn and any positive numbers a1 , a2 , . . . , al ∈ Wn .Note that for n = 2 and for any x ∈ W2 , x ∈ [0, 1] , there do not exist more thanfour numbers a, b, c, d ∈ W2 , suh that x = ((a2 +2 b2) +2 c2) +2 d2 .
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Fig. 1. Nadezhda e�et1.4. Tenth Hilbert problem in observer's mathematis. We provide thefollowingTheorem 5. For any positive integers m, n, k ∈ Wn , n ∈ Wm , m > log10(1 +
+ (2 · 102n − 1)k) , from the point of view of the Wm−observer, there is an algorithmthat takes as input a multivariable polynomial f(x1, . . . , xk) of degree q in Wn andoutputs YES or NO aording to whether there exist a1, . . . , ak ∈ Wn , suh that
f(a1, . . . , ak) = 0 .Therefore, Hilbert's tenth problem in observer's mathematis has positive solution.We think that Hilbert expeted a positive answer for his tenth problem. Note thatthe main reason of ardinal di�erene between standard mathematis and observer'smathematis results is the following. The negative solution of the lassial tenth problemrequires the Axiom of Choie to be valid. But in observer's mathematis this Axiomis invalid.2. Observer's Mathematis appliation to geometry: Nadezhda e�etIn this setion we onsider an open square Q entered at the origin with sidesof length 2 loated on a plane Wn × Wn . We will alulate the distane D betweenthe origin (0, 0) and any point of Q as follows. D = ρ((0, 0), (x, y)) =

√

x2 + y2 =
=

√
x ×n x +n y ×n y , where √

a = b means b ×n b = a , x, y ∈ Q , i.e., |x| < 1 ,
|y| < 1 .Fig. 1 below ontains an illustration of the fat that for some points on Wn × Wnthe onept of distane from the origin does not exist, while for others it does exist. Theillustration below is for n = 3 (Q ⊂ W3 × W3 ). Points with no distane to the originare indiated by blak, while points where distane from the origin exists are indiatedin white.This means that the distane D does not always exist, i.e., not every segment ona plane has a length. This phenomenon ours for all n . We all the presene of these�blak holes� and �white ross� as the Nadezhda e�et (see Fig. 1). This e�et gives us



OBSERVER'S MATHEMATICS APPLICATIONS. . . 199new possibilities for disovering physial proesses and developing their mathematialmodels.3. Observer's mathematis appliation to analysis and physisIn lassial physis, it has been realized for enturies that the behavior of idealizedvibrating media (suh as waves on string, on a water surfae, or in air), in the abseneof frition or other dissipative fores, an be modeled by a number of partial di�erentialequations known olletively as dispersive equations. Model examples of suh equationsinlude the following:
• The free wave equation utt − c2∆u = 0 where u : R × Rd → R representsthe amplitude u(t, x) of a wave at a point in spaetime with d spatial dimensions,

∆ =
d∑

j=1

δ2

δx2
j

is the spatial Laplaian on Rd , utt is short for δ2u

δt2
, and c > 0 is a �xedonstant.

• The linear Shr�odinger equation i~ut+
~

2

2m
∆u = V u where u : R×Rd → R is thewave funtion of a quantum partile, ~, m > 0 are physial onstants and V : Rd → Ris a potential funtion, whih we assume to depend only on the spatial variable x .The theory of linear dispersive equations predits that waves should spread out anddisperse over time. However, it is a remarkable phenomenon, observed both in theoryand pratie, that one nonlinear e�ets are taken into aount, solitary wave and solitonsolutions an be reated, whih an be stable enough to persist inde�nitely.From the point of view of Wn -observer (we will all suh observers �naive�, sinethey �think� that they �live� in W and deal with W ) a real funtion y of a real variable

x , y = y(x) , is alled di�erentiable at x = x0 if there is a derivative
y′(x0) = lim

x→x0, x 6=x0

y(x) − y(x0)

x − x0

.What does the above statement mean from the point of view of Wm -observer with
m > n? It means that

|(y(x) −n y(x0)) −n (y′(x0) ×n (x −n x0))| ≤ 0. 0 . . .01
︸ ︷︷ ︸

nwhenever
|y(x) −n y(x0)| = 0. 0 . . .0yl

︸ ︷︷ ︸

l

yl+1 . . . ynand
|(x −n x0)| = 0. 0 . . . 0xk

︸ ︷︷ ︸

k

xk+1 . . . xnfor 1 ≤ k , l ≤ n , and xk being non-zero digit. The following theorems have beenproven:Theorem 6. From the point of view of a Wm -observer a derivative alulated bya Wn -observer (m > n) is not de�ned uniquely.Theorem 7. From the point of view of a Wm -observer (with m > n ) |y′(x0)| ≤
≤ Cl,k

n , where Cl,k
n ∈ Wn is a onstant de�ned only by n, l, k and not dependenton y(x) .



200 B. KHOTS, D. KHOTSTheorem 8. From the point of view of a Wm -observer, when a Wn -observer (with
m > n ≥ 3) alulates the seond derivative

y′′(x0) = lim
x1→x0,x1 6=x0,x2→x0,x2 6=x0,x3→x1,x3 6=x1

y(x3) − y(x1)

(x3 − x1)
− y(x2) − y(x0)

x2 − x0

x1 − x0

,we get the following unequality:
(|x2 −n x0| ×n |x3 −n x1|) ×n |x1 −n x0| ≥ 0. 0 . . .01

︸ ︷︷ ︸

nprovided that y′′(x0) 6= 0 .3.1. Free wave equation. We onsider the ase when d = 1 , i.e., u : Wn×Wn →
→ Wn , from Wm -observer point of view, with m > n , where Wn×Wn means Cartesianprodut of Wn with itself. The free wave equation may be written as

utt −n ((c ×n c) ×n uxx) = 0.Then we have the followingTheorem 9. Let
c = c0.c1 . . . ckck+1 . . . cnand

uxx = ±uxx
0 .uxx

1 . . . uxx
l uxx

l+1 . . . uxx
nwith 2k < n , l < n , c0 = c1 = . . . = ck = 0 , ck+1 6= 0 , uxx

0 = uxx
1 = . . . = uxx

l = 0and u < k + l + 2 , then utt = 0 .Next, we have the followingTheorem 10. If d0 ≥ 9 . . . 9
︸ ︷︷ ︸

p

, with 0 < p ≤ n and uxx
0 ≥ 9 . . . 9

︸ ︷︷ ︸

q

, with 0 < q ≤ nand n < p + q , then there is no utt , suh that utt = ((c ×n c) ×n uxx) .3.2. Shr�odinger equation. Consider the following:
−(~ ×n ~) ×n Ψxx +n ((2 ×n m) ×n V ) ×n Ψ = i((2 ×n m) ×n ~)Ψt,where Ψ = Ψ(x, t) , ~ is the Plank's onstant, ~ = 1.054571628(53) · 10−34 m2kg/s.Then we have the followingTheorem 11. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . .mn , with m ∈ Wn ,

m0 = m1 = . . . = mk = 0 , mk+1 6= 0 , k + 35 < n , V = 0 , then
Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . . Ψn

t and Ψ0
t = . . .Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are free andin {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with Ψt ∈

∈ {(0.

n
︷ ︸︸ ︷

0 . . .0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .Corollary 1. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . . mn , with m ∈ Wn ,
m0 = m1 = . . . = mk = 0 , mk+1 6= 0 . Also, let V = υ0.υ1 . . . υsυs+1 . . . υn ,with V ∈ Wn , υ0 = υ1 = . . . = υs = 0 , υs+1 6= 0 , with {

k + 35 < n

k + s + 2 > n
,then Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . .Ψn

t and Ψ0
t = . . . Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are freeand in {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with
Ψt ∈ {(0.

n
︷ ︸︸ ︷

0 . . .0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .



OBSERVER'S MATHEMATICS APPLICATIONS. . . 2013.3. Two-slit interferene. Quantum mehanis treats the motion of an ele-tron, neutron or atom by writing down the Shr�odinger equation:
− ~

2

2m

δ2Ψ

δx2
+ V Ψ = i~

δΨ

δt
,where m is the partile mass and V is the external potential ating on the partile.As these partiles pass through the two slits of any of the experiments they are movingfreely; we, therefore, set V = 0 in the Shr�odinger equation.Now, onsider the following:

−(~ ×n ~) ×n Ψxx +n ((2 ×n m) ×n V ) ×n Ψ = i((2 ×n m) ×n ~)Ψt,where Ψ = Ψ(x, t) , ~ is the Plank's onstant, ~ = 1.054571628(53) · 10−34 m2kg/s.Then we have the followingTheorem 12. Let 36 < n < 68 , m = m0.m1 . . .mkmk+1 . . .mn , with m ∈
Wn , m0 = m1 = . . . = mk = 0 , mk+1 6= 0 , k + 35 < n , V = 0 , then
Ψt = Ψ0

t .Ψ
1
t . . . Ψl

tΨ
l+1
t . . . Ψn

t and Ψ0
t = . . .Ψl

t = 0 , Ψl+1
t , . . . , Ψn

t are free andin {0, 1, . . . , 9} , where l = n − k − 36 , i.e., Ψt is a random variable, with Ψt ∈

{(0.

n
︷ ︸︸ ︷

0 . . . 0
︸ ︷︷ ︸

l

∗ . . . ∗)} , where ∗ ∈ {0, 1, . . . , 9} .The wave at the point of ombination will be the sum of those from eah slit. If Ψ1is the wave from slit 1 and Ψ2 is the wave from slit 2, then Ψ = Ψ1 + Ψ2 . The resultgives the predited interferene pattern. Then by Theorem 1, we have
Ψ1t = Ψ0

1t.Ψ
1
1t . . . Ψl

1tΨ
l+1

1t . . .Ψn
1t,

Ψ2t = Ψ0
2t.Ψ

1
2t . . . Ψl

2tΨ
l+1

2t . . .Ψn
2t,

Ψ0
1t = . . . = Ψl

1t = 0,where Ψl1+1

1t , . . . , Ψn
1t are free and in {0, 1, . . . , 9} , and

Ψ0
2t = . . . = Ψl

2t = 0,where Ψl2+1

2t , . . . , Ψn
2t are free and in {0, 1, . . . , 9} where l = n − k − 36 .Now we have the followingTheorem 13. 1. If Ψl+1

1t + Ψl+1

2t > 9 , then Ψ1 + Ψ2 is not a wave.
2. If Ψl+1

1t + Ψl+1

2t < 9 , then Ψ1 + Ψ2 is a wave.
3. If Ψl+1

1t + Ψl+1
2t = 9 , then Ψ1 + Ψ2 may or may not be a wave.3.4. Lorentz transform. Let K and K ′ be two inertial oordinate systems with

x-axis and x′ -axis permanently oiniding. We onsider only events whih are loalizedon the x(x′)-axes. Any suh event is represented with respet to the oordinate system
K by the absissa x and the time t , and with respet to the system k′ by the absissa
x′ and the time t′ when x and t are given. A light signal, whih is proeeding along thepositive x−axis, is transmitted aording to the equation x = c×n t or x−n c×n t = 0Sine the same light signal has to be transmitted relative to k′ with the veloity c , thepropagation relative to the system k′ will be represented by the analogous equation

x′ −n c ×n t′ = 0.



202 B. KHOTS, D. KHOTSThose spae-time points (events) whih satisfy the �rst equation must also satisfy theseond equation. Obviously there will be the ase when the relation λ1×n(x′−nc×nt′) =
= µ1 ×n (x −n c ×n t) is ful�lled in general, where λ1, µ1 ∈ Wn , |λ1|, |µ1| ≥ 1 areonstants; for, aording to the last equation, the disappearane of (x−n c×n t) involvesthe disappearane of (x′ −n c ×n t′) .Note that lassial equation x′ − ct′ = λ(x− ct) is not valid sine if λ < 1 , x− ct =
= 0. 0 . . .0

︸ ︷︷ ︸

n−1

1 , then λ ×n (x −n c × t) = x′ −n c ×n t′ = 0 . If we apply quite similaronsiderations to light rays whih are being transmitted along the negative x-axis, weobtain the ondition λ2 ×n (x′ +n c ×n t′) = µ2 ×n (x +n c ×n t) with λ2, µ2 ∈ Wn ,
|λ2|, |µ2| ≥ 1 .3.5. Shwarzian derivative. The Shwarzian derivative S(f(x)) is de�ned as
S(f(x)) =

f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2 Here f(x) is a funtion in one real variable and
f ′(x), f ′′(x), f ′′′(x) are its derivatives. The Shwarzian derivative is ubiquitous andtends to appear in seemingly unrelated �elds of mathematis inluding lassial omplexanalysis, di�erential equations, and one-dimensional analysis, as well as more reently,Teihm�uller Theory, integrable systems, and onformal �eld theory. For example, let'sonsider the Lorentz plane with the metri g = dxdy and a urve y = f(x) . If f ′(x) > 0 ,then its Lorentz urvature an be easily omputed via ρ(x) = f ′′(x)(f ′(x))−3/2 and theShwarzian enters the game when one omputes ρ′ =

S(f)√
f ′

. Thus, informally speaking,the Shwarzian derivative is urvature.Consider now the Shwarzian urvature from observer's mathematis point of view.Now we have the followingTheorem 14. If S(f(x)) exists, then
• S(f(x)) is a random variable;
• |S(f(x)| ≤ 10l−k+1 , where

(2 ×n (f ′(x) ×n f ′(x))) = 0. 0 . . . 0al
︸ ︷︷ ︸

l

al+1 . . . anwith al 6= 0 and
(2 ×n (f ′′′(x) ×n f ′(x))) −n (3 ×n (f ′′(x) ×n f ′′(x))) = ±0. 0 . . .0bk

︸ ︷︷ ︸

k

bk+1 . . . bnwith bk 6= 0 and 1 < l, k < n . �åçþìåÁ. Õîö, Ä. Õîö. Ïðèìåíåíèå ìàòåìàòèêè íàáëþäàòåëÿ ê òåîðèè ÷èñåë, ãåîìåòðèè,àíàëèçó, êëàññè÷åñêîé è êâàíòîâîé ìåõàíèêå.Ïðè ðàññìîòðåíèè è àíàëèçå �èçè÷åñêèõ ñîáûòèé ñ öåëüþ ñîçäàíèÿ ñîîòâåòñòâóþùèõìîäåëåé ìû ÷àñòî ïðåäïîëàãàåì, ÷òî ìàòåìàòè÷åñêèé àïïàðàò, èñïîëüçóåìûé â ìîäåëèðî-âàíèè, íåïîãðåøèì. Â ÷àñòíîñòè, ýòî êàñàåòñÿ èñïîëüçîâàíèÿ áåñêîíå÷íîñòè â ðàçëè÷íûõàñïåêòàõ è ïðèìåíåíèÿ íüþòîíîâñêîãî îïðåäåëåíèÿ ïðåäåëà â àíàëèçå. Ìû ñ÷èòàåì, ÷òîèìåííî â ýòîì çàêëþ÷àåòñÿ îñíîâíàÿ ïðîáëåìà â ñîâðåìåííîì èçó÷åíèè ïðèðîäû. Â íà-ñòîÿùåé ðàáîòå ðàññìàòðèâàþòñÿ ìàòåìàòè÷åñêèå è �èçè÷åñêèå àñïåêòû àðè�ìåòèêè,àëãåáðû, ãåîìåòðèè è òîïîëîãèè ìàòåìàòèêè íàáëþäàòåëÿ (ñì. www.mathrelativity.om).Êëþ÷åâûå ñëîâà: �èëüáåðò, ñîëèòîí, âîëíà, Øðåäèíãåð, Ëîðåíö, Øâàðö, íàáëþäà-òåëü.
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