Физико-математические науки

2014

УДК 517.2+517.928.4

НАХОЖДЕНИЕ СПЕЦИАЛЬНЫХ СОБСТВЕННЫХ ВОЛН ПО РЕЗУЛЬТАТАМ ИЗМЕРЕНИЙ АМПЛИТУД

А.В. Головцов, В.С. Мокейчев

Аннотация

В зависимости от значений измеренных амплитуд выписана аналитическая формула для специальной волны, позволяющая вычислить энергию волны, частоту колебаний (в случае колеблющейся волны), установить минимальное количество необходимых измерений. Решены прямая и обратная задачи.

Ключевые слова: волновое уравнение, волны, прямая и обратная задачи.

Введение

В сейсморазведке на шельфах используется активный метод, когда с помощью взрывов создаются искусственные, сейсмические волны. Они фиксируются, обрабатываются и делается вывод о перспективности исследуемого района. Хотя взрывы осуществляются сжатым воздухом, экологический урон от них существенен. С математических позиций активная сейсморазведка означает, что «решаются» линейные неоднородные волновые уравнения [1]. Общая теория сейсмических волн изложена в [2]. Отказ от активной сейсморазведки означает, что необходимо «решать» линейные однородные волновые уравнения, то есть уравнения вида

$$\sum_{|\alpha| \le 2} C_{\alpha} u^{(\alpha)} = 0, \tag{1}$$

в которых $u^{(\alpha)}$ — производная порядка α , C_{α} — вещественные коэффициенты, часть из которых неизвестна, неизвестны и «граничные» условия, которым должна удовлетворять волна U(x) — ненулевое вещественное решение уравнения (1). Предполагается, что известны $U(x_k) = A_k, \ k = 1, \ldots, m_1$, и эта информация будет использована для нахождения неизвестных коэффициентов.

В (1), как и всюду ниже, использованы обозначения $\alpha = (\alpha_1, \dots, \alpha_n)$ – мультииндексы, то есть векторы, в которых каждая координата – целое неотрицательное число, $|\alpha| = \alpha_1 + \dots + \alpha_n$, $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, $x_1 \equiv t$ и $u^{(\alpha)} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n} u$. В приложениях, как правило, $n \leq 4$. В дальнейшем полагаем $x = (t, z) = (t, x_2, \dots, x_n)$.

Постановка задачи. По результатам измерений амплитуд $A_{j,k}$ в моменты t_j в точках z_k необходимо определить волну U(t,z) (прямая задача); вычислить коэффициенты C_{α} либо часть из них (обратная задача); найти энергию E_{ω} волны в области ω ; определить частоту колебаний по каждому аргументу, если волна – колеблющаяся; минимизировать количество измерений, рационально выбрать моменты измерений t_j и точки z_k .

Напомним, что энергией волны U=U(t,z) в области ω называется величина $E_\omega=\int\limits_\omega U^2\,dt\,dz;$ величина $\int\limits_V U^2\,dz$ называется энергией волны на множестве V

в момент t, величина $\int\limits_a^b (U(t,z_0))^2 dt$ есть энергия волны в точке z_0 на промежутке

[a, b]. Вычислив U(t, z), можно найти её энергию. Функция $h(\xi) = \sum_{r=0}^{+\infty} B_r \exp{(r\beta\xi)}$, где β – невещественное число, называется колеблющейся.

В [3] предпринималась попытка решения обратной задачи. Однако полученные в ней результаты – теоретические, они не позволяют практически вычислить хотя бы один неизвестный коэффициент. Поставленная задача неразрешима в практическом смысле, если $A_{j,k}$ – амплитуды для произвольно фиксированной волны. В [4] изучен случай, когда n=4, переменные t и $z=(x_2,x_3,x_4)$ разделяются и $A_{j,0}$ – амплитуды элементарной волны. Если в (1) имеется хотя бы одно слагаемое $Cu^{(1,\gamma)}$, $\gamma \neq 0$, с ненулевым коэффициентом C, то переменные t и z не разделяются, и результаты из [4] неприменимы (к сожалению, в [4] имеется опечатка: в (26) вместо $A_2^3 - A_1 A_2 A_3$ следует использовать $A_2^2 - A_1 A_3$).

Для того чтобы обойти указанную трудность, мы предлагаем рассматривать не произвольно фиксированную волну, а специальную волну вида $U(t,z)=\varphi(\xi)\equiv \varphi(a_1t+a_2x_2+\cdots+a_nx_n)$, где a_1,\ldots,a_n – вещественные. При этом $A_{j,k}$ – значения амплитуд специальной волны. В отличие от [4], будем изучать случай, когда $A_{j,k}$ не являются значениями амплитуд для истинной волны, а лишь близки к ним.

В дальнейшем под волной будем понимать специальную волну.

Очевидно, что $\varphi(\xi)$ – ненулевое вещественное решение уравнения

$$b_2 \varphi^{(2)} + b_1 \varphi^{(1)} + b_0 \varphi = 0, \tag{2}$$

где

$$b_2 = \sum_{|\alpha|=2} C_{\alpha} a^{\alpha}, \quad a^{\alpha} = \prod_{j=1}^n a_j^{\alpha_j}, \quad a_j^0 = 1.$$

Если все a_j – постоянные, то $b_j = \sum\limits_{|\alpha|=j} C_{\alpha} a^{\alpha}, \ j=0,1,2.$

Основная цель работы — определить b_0/b_1 , если $b_2=0$, и b_j/b_2 , j=0,1,2, если $b_2\neq 0$.

Обозначим $\xi_{j,k}=a_1t_j+a_2x_{2,k}+\cdots+a_nx_{n,k}$. Первый шаг для уменьшения числа измерений очевиден: моменты t_j и точки z_k следует выбрать так, чтобы $\xi_{j,k}\neq \xi_{j_1,k_1}$ при $(j,k)\neq (j_1,k_1)$, причём из пары $(j,k)\neq (j_1,k_1)$ следует оставить ту, для которой измерения амплитуд менее затратны. Осуществив эту процедуру, получим

$$\xi_0 < \dots < \xi_{m_1}, \quad \varphi(\xi_0) = A_0, \quad \dots, \quad \varphi(\xi_{m_1}) = A_{m_1}.$$
 (3)

Второй шаг связан с выбором наименьшего m_1 . Будет доказано, что $m_1=1$ в случае $b_2=0;~m_1=2,$ если $A_2\neq 0,~b_2\neq 0;~m_1=3$ при $A_2=0,~A_1\neq 0,~b_2\neq 0;$ $m_1=4,$ если $A_1=A_2=0,~b_2\neq 0.$

Таким образом, обратная задача состоит в нахождении $\varphi(\xi)$, удовлетворяющей (2), (3), и неизвестных b_j в (2). Обратная задача не имеет единственного решения: если (b_2, b_1, b_0) – решение обратной задачи, то (cb_2, cb_1, cb_0) также её решение. Однако, как будет установлено ниже, в случае $b_2 \neq 0$ числа b_1/b_2 , b_0/b_2 находятся однозначно. Учитывая вышесказанное, следует рассмотреть два случая: $b_2 = 0$, $b_2 \neq 0$.

1. Случай точных значений амплитуд A_i истинной волны

Пусть $b_2 = 0$. Если $b_1 = 0$, то $b_0 = 0$. Следовательно, решением уравнения (2) будет каждая функция, удовлетворяющая (3). Изучим случай, когда $b_1 \neq 0$. Тогда $\varphi(\xi) = B \exp\left((-b_0/b_1)\xi\right)$ и неизвестны $B \neq 0$, b_0/b_1 . Чтобы их определить, достаточно сделать два измерения, то есть $m_1 = 2$. Имеем равенства $B = A_0$, $B \exp\left((-b_0/b_1)\xi_1\right) = A_1$. В силу вещественности A_0 , b_0/b_1 равенства (3) выполняются тогда и только тогда, когда $A_0 \neq 0$, $A_1/A_0 > 0$. При этом

$$b_0/b_1 = T^{-1} \ln (A_1/A_0), \quad \varphi(\xi) = A_0 (A_1/A_0)^{\xi/T}.$$
 (4)

Таким образом, доказана

Теорема 1. Если $b_2=0,\ b_1\neq 0,\ mo$ специальная волна $\varphi(\xi),\ y$ довлетворяющая условиям $\varphi(\xi_j)=A_j,\ j=0,1,\ cyществует$ тогда и только тогда, когда $A_0\neq 0,\ A_1/A_0>0;\ в$ случае её существования выполняются равенства (4), причём волна будет затухающей тогда и только тогда, когда $A_1/A_0<1.$

Пусть $b_2 \neq 0$. В этом случае

$$\varphi^{(2)} + b_4 \varphi^{(1)} + b_3 \varphi = 0, \quad b_4 = b_1/b_2, \quad b_3 = b_0/b_2.$$
 (5)

Общее решение этого уравнения определяется корнями μ_1 , μ_2 уравнения

$$\mu^2 + b_4 \mu + b_3 = 0, (6)$$

которые неизвестны. Так как b_j – вещественные числа, то либо $\mu_1 \neq \mu_2$ – вещественные числа, либо $\mu_1 = \mu_2$ – вещественное число, либо $\mu_1 = \alpha + i\beta$, $\mu_2 = \alpha - i\beta$, $\beta \neq 0$ и α – вещественные числа, i – мнимая единица. Поэтому

$$\varphi(\xi) = B_1 \exp(\mu_1 \xi) + B_2 \exp(\mu_2 \xi), \quad \text{если } \mu_1 \neq \mu_2 - \text{вещественные}, \tag{7}$$

$$\varphi(\xi) = (B_3 \xi + B_4) \exp(\mu_1 \xi),$$
 если $\mu_1 = \mu_2$ – вещественное, (8)

$$\varphi(\xi) = (B_5 \cos(\beta \xi) + B_6 \sin(\beta \xi)) \exp(\alpha \xi), \quad \text{если } \mu_1 = \alpha + i\beta, \quad \beta \neq 0.$$
 (9)

Поскольку b_j неизвестны, необходимо определить, при каких A_j выполняется либо (7), либо (8), либо (9).

Для произвольных ξ_j трудно ответить на поставленный вопрос. Поэтому предполагаем, что $\xi_j=\xi_0+jT,\ j=0,1,2,3,$ где число T>0 фиксировано. В дальнейшем будем считать, что $\xi_0=0.$

Исследуем каждый из случаев (7)–(9).

- 1) $\mu_1 \neq \mu_2$ вещественные числа.
- В (7) неизвестными являются B_1 , B_2 , μ_1 , μ_2 , причём $|B_1|+|B_2|\neq 0$. Чтобы их найти, достаточно четырёх амплитуд A_0 , A_1 , A_2 , A_3 . Имеем систему уравнений

$$B_1 \exp(\mu_1 \xi_j) + B_2 \exp(\mu_2 \xi_j) = A_j, \quad j = 0, 1, 2, 3.$$
 (10)

Из (10), обозначив $\exp(\mu_i T) = \tau_i$, получим

$$B_1 + B_2 = A_0$$
, $B_1\tau_1 + B_2\tau_2 = A_1$, $B_1\tau_1^2 + B_2\tau_2^2 = A_2$, $B_1\tau_1^3 + B_2\tau_2^3 = A_3$. (11)

Выясним, при каких A_j система (11) имеет решение $\tau_1>0,\ \tau_2>0,\ \tau_1\neq\tau_2,$ $|B_1|+|B_2|\neq0.$

Предположим, что система (11) разрешима. Исключая из неё B_1 , B_2 , τ_1 , получим, что τ_2 – положительный корень квадратного уравнения

$$(A_1^2 - A_2 A_0)\tau^2 + (A_0 A_3 - A_1 A_2)\tau + (A_2^2 - A_1 A_3) = 0.$$
(12)

В силу симметрии в (11) τ_1 также положительный корень уравнения (12). Из (11) следует, что

$$|B_1| + |B_2| \neq 0$$
 тогда и только тогда, когда $|A_0| + |A_1| \neq 0$. (13)

Следовательно, существование положительных корней уравнения (12) и соотношение $|A_0| + |A_1| \neq 0$ — необходимые условия существования волны (7). Убедимся в их достаточности.

Пусть уравнение (12) имеет положительные корни $\tau_1 \neq \tau_2$ и $|A_0| + |A_1| \neq 0$. Используя первые два равенства в (11), вычислим

$$B_1 = (A_1 - A_0 \tau_2)/(\tau_1 - \tau_2), \quad B_2 = (A_1 - A_0 \tau_1)/(\tau_2 - \tau_1).$$
 (14)

В силу (13) $|B_1|+|B_2|\neq 0$. Нетрудно убедиться в том, что полученные $B_j,\ \tau_j$ есть решение системы уравнений (11), причём $\mu_j=T^{-1}\ln\tau_j$. Так как μ_j – корни уравнения (6), то

$$b_4 = -(\mu_1 + \mu_2) = -T^{-1} \ln(\tau_1 \tau_2), \quad b_3 = \mu_1 \mu_2 = T^{-2} \ln \tau_1 \ln \tau_2,$$
 (15)

$$\varphi(\xi) = B_1 \tau_1^{t/T} + B_2 \tau_2^{t/T},\tag{16}$$

где B_i определены в (14).

Предположим, что при некоторых вещественных $B_j \neq 0$ и положительных $\tau_1 \neq \tau_2$ выполняется (16). Обозначив $\nu_j = T^{-1} \ln \tau_j$, получим, что $B_1 \exp (\nu_1 \xi) + B_2 \exp (\nu_2 \xi)$ – решение уравнения (5). Однако $B_j \neq 0$, поэтому $\exp (\nu_j \xi)$ – решения уравнения (5). Следовательно, $\nu_1 \neq \nu_2$ – корни уравнения (6), то есть $\mu_j = \nu_j$. В этом случае, как доказано выше, $\tau_1 \neq \tau_2$ – корни уравнения (12). Таким образом, установлена

Теорема 2. Для существования специальной волны (7), удовлетворяющей (10), необходимо и достаточно, чтобы уравнение (12) имело положительные корни $\tau_1 \neq \tau_2$ и $|A_0| + |A_1| \neq 0$; волна $\varphi(\xi)$, а также b_3 , b_4 определяются формулами (14) –(16).

В случае, когда все коэффициенты в (12) – нулевые, каждая пара положительных чисел $\tau_1 \neq \tau_2$ является корнями уравнения (12). Поэтому при $|A_0| + |A_1| \neq 0$ в области, где распространяется волна, существует несчётное множество волн (7) с условиями $\varphi(jT) = A_j, j = 0, 1, 2, 3$. Такие области мы будем называть *областями хаоса*. В областях хаоса с вероятностью, близкой к 1, возможны непонятные (а часто, катастрофические) резонансные явления.

2)
$$\mu_1 = \mu_2$$
.

В этом случае μ_1 – вещественное и выполняется (8). Неизвестных в (8) три: B_3 , B_4 , μ_1 . Для их нахождения достаточно знать A_0 , A_1 , A_2 . Однако заданы четыре амплитуды A_0 , A_1 , A_2 , A_3 , то есть $m_1=3$. В силу (3), (8), обозначив $\exp(\mu_1 T)=\tau_3$, получим

$$B_4 = A_0, \quad (B_3T + A_0)\tau_3 = A_1, \quad (2B_3T + A_0)\tau_3^2 = A_2,$$
 (17)

$$(3B_3T + A_0)\tau_3^3 = A_3. (18)$$

После исключения B_3 окажется, что $\tau_3 > 0$ – корень уравнения

$$A_0 \tau^2 - 2A_1 \tau + A_2 = 0, (19)$$

и выполняется (18). Очевидно, что $|B_3| + |B_4| \neq 0$ тогда и только тогда, когда $|A_0| + |A_1| \neq 0$.

Пусть уравнение (19) имеет корень $\tau_3 > 0$, $|A_0| + |A_1| \neq 0$ и выполняется (17). В силу первых двух равенств в (17)

$$B_3 = (A_1/\tau_3 - A_0)/T, \quad B_4 = A_0, \quad \mu_1 = T^{-1} \ln \tau_3.$$
 (20)

Нетрудно проверить, что B_3, B_4, τ_3 – решение системы уравнений (17). Если при этом выполняется (18), то

$$\varphi(\xi) = (B_3 \xi + B_4) \tau_3^{\xi/T}. \tag{21}$$

Предположим, что при некоторых $B_3 \neq 0$, B_4 , $\tau_3 > 0$ выполняется (21). Полагая $\mu = T^{-1} \ln \tau_3$, получим, что $(B_3 \xi + B_4) \exp(\mu \xi)$ – решение уравнения (5). Так как $B_3 \neq 0$, то и $\xi \exp(\mu \xi)$ – решение уравнения (5). После подстановки его в (5) получим, что μ – корень кратности 2 уравнения (6), при этом

$$b_4 = -2\mu = -2T^{-1}\ln\tau_3, \quad b_3 = \mu^2 = (T^{-1}\ln\tau_3)^2.$$
 (22)

Таким образом, доказана

Теорема 3. Специальная волна (8), удовлетворяющая (17), (18) существует тогда и только тогда, когда $\tau_3 > 0$ – корень уравнения (19) и $|A_0| + |A_1| \neq 0$; в случае её существования справедливы соотношения (20) – (22).

Убедимся в том, в случае (8) только для одного из возможных положительных корней $\tau_1 \neq \tau_2$ уравнения (19) выполняется условие (18). Поскольку $B_3T = A_1/\tau - A_0$, в силу (18) имеем $(3A_1\tau^2 - 2A_0)\tau^3 = A_3$ и $3A_1(\tau_1^2 - \tau_2^2) = 2A_0(\tau_1^3 - \tau_2^3)$. Поэтому

$$3A_1(\tau_1 + \tau_2) = 2A_0((\tau_1 + \tau_2)^2 - \tau_1\tau_2). \tag{23}$$

Предположив, что $A_0=0$, получим $A_1=0$, $B_3=0$ (поскольку τ_j положительны), а значит, волна отсутствует. Итак, $A_0\neq 0$. В этом случае $(\tau_1+\tau_2)=2A_1/A_0$, $\tau_1\tau_2=A_2/A_9$ и в силу (23) $2A_1^2/A_0=2A_2$. А это противоречит существованию двух разных корней у уравнения (19).

3) $\mu_1 = \alpha + i\beta; \; \beta \neq 0, \; \alpha$ — вещественные числа. В силу (9), обозначив $\exp{(\alpha T)} = \tau_4$, имеем

$$B_5 = A_0,$$

 $(B_5 \cos(\beta T) + B_6 \sin(\beta T))\tau_4 = A_1,$
 $(B_5 \cos(2\beta T)B_6 \sin(2\beta T))\tau_4^2 = A_2,$ (24)

$$(B_5\cos(3\beta T) + B_6\sin(3\beta T))\tau_4^3 = A_3. \tag{25}$$

Умножив на τ_4^2 второе равенство в (24) и сложив с (25), получим

$$B_5(\cos(3\beta T) + \cos(\beta T)) + B_6(\sin(3\beta T) + \sin(\beta T)) = (A_3 + A_1\tau_4^2)/\tau_4^3,$$

$$2B_5\cos(2\beta T)\cos(\beta T) + 2B_6\sin(2\beta T)\cos(\beta T) = (A_3 + A_1\tau_4^2)/\tau_4^3.$$

Отсюда и из третьего равенства в (24) следует, что

$$2A_2\tau_4\cos(\beta T) = A_3 + A_1\tau_4^2. \tag{26}$$

Следовательно,

$$|A_3 + A_1 \tau_4^2| \le |2A_2 \tau_4|. \tag{27}$$

С учетом известных тригонометрических соотношений для $\cos{(2\beta T)}$ и $\sin{(2\beta T)}$ и равенства $B_5=A_0$ в силу третьего равенства из (24) имеем

$$2A_0(\cos(\beta T))^2 - A_0 + 2B_6\sin(\beta T)\cos(\beta T) = A_2\tau_4^{-2}.$$

Далее, учитывая второе равенство из (24), получим

$$2A_1\tau_4\cos(\beta T) = A_2 + A_0\tau_4^2. \tag{28}$$

Поэтому

$$|A_2 + A_0 \tau_4^2| \le |2A_1 \tau_4|. \tag{29}$$

В силу (26), (28) получаем

$$A_1(A_3 + A_1\tau_4^2) = A_2(A_2 + A_0\tau_4^2),$$

и au_4 – положительный корень уравнения

$$(A_1^2 - A_2 A_0)\tau^2 = A_2^2 - A_1 A_3. (30)$$

Итак, доказано, что для существования волны (9), удовлетворяющей (24), (25), необходимо, чтобы уравнение (30) имело корень $\tau_4 > 0$ и выполнялись соотношения (26)–(29). Убедимся в их достаточности.

Рассмотрим случай, когда

$$\beta \neq \pi k/T, \quad k = \pm 1, \pm 2, \dots \tag{31}$$

Очевидно, что (31) справедливо тогда и только тогда, когда в (27) либо в (29) – строгое неравенство. Тогда $\sin{(\beta T)} \neq 0$, а значит, можно найти B_6 из равенства

$$B_6 \sin(\beta T) = A_1/\tau_4 - A_0 \cos(\beta T). \tag{32}$$

В силу (24), (31) $|B_0| + |B_2| \neq 0$ выполняется тогда и только тогда, когда $|A_1| + |A_2| \neq 0$, что в силу (32) равносильно условию $|A_0| + |A_1| \neq 0$. Проверим справедливость третьего равенства из (24). Имеем

$$\delta = B_5 \cos(2\beta T) + B_6 \sin(2\beta T) = A_0 2(\cos(\beta T))^2 - A_0 + 2B_6 \sin(\beta T) \cos(\beta T).$$

В силу (28), (32) имеем $\delta = 2(A_1/\tau_4)\cos(\beta T) - A_0 = (A_2 + A_0\tau_4^2)/\tau_4^2 - A_0 = A_2/\tau_4^2$. Аналогично проверяется и справедливость (25). Очевидно, $|B_5| + |B_6| \neq 0$, если $|A_0| + |A_1| + |A_2| + |A_3| \neq 0$. Итак, если выполняется (31), то требуемое утверждение установлено.

Исследуем случай, когда $\beta = \pi k/T$ при целом $k \neq 0$. В силу (24), (25) имеем

$$A_1 = (-1)^k A_0 \tau_4, \quad A_2 = A_0 \tau_4^2, \quad A_3 = (-1)^k A_0 \tau_4^3.$$
 (33)

Справедливо и обратное утверждение:

если при некотором $A_0 \neq 0$ и целом k выполняется (33), то $\beta = \pi p/T$ при некотором целом p, причём p-k – чётное число.

Если выполнены (33), то $\varphi(\xi) = (A_0 \cos(\pi p \xi/T) + B_6 \sin(\pi p \xi/T)) \tau_4^{\xi/T}$. Для того чтобы найти B_6 , необходимо знать A_4 , измеренное при $t_4 \in [0, 3T]$, для которого $\sin(\pi p t_4/T) \neq 0$. Оставшаяся возможность $|A_0| + |A_1| + |A_2| + |A_3| = 0$ является частным случаем (33) при $A_0 = 0$.

Таким образом, установлено, если известны β , τ_4 , то легко находятся B_3 , B_4 . Для вычисления β , используем (26), (27), если $A_2 \neq 0$, или (28), (29), если $A_1 \neq 0$. В случае $A_1 = A_2 = 0$ имеем $B_5 \cos{(\beta T)} + B_6 \sin{(\beta T)} = 0$, $B_5 \cos{(2\beta T)} + B_6 \sin{(2\beta T)} = 0$, и, учитывая $|B_3| + |B_4| \neq 0$, получим $\sin{(\beta T)} = 0$, то есть $\beta = \pi k/T$, и $k \neq 0$ – произвольно фиксированное целое число.

Остаётся вычислить b_3, b_4 , используемые в (5). Так как $\exp(\alpha T) = \tau_4$, то $\alpha = T^{-1} \ln \tau_4$. Однако $\mu_1 = \alpha + i\beta$, $\mu_2 = \alpha - i\beta$. Поэтому

$$b_4 = -(\mu_1 + \mu_2) = -2T^{-1} \ln \tau_4, \quad b_3 = \mu_1 \mu_2 = \alpha^2 + \beta^2.$$
 (34)

Напомним, что полученные выше формулы справедливы, если μ_1 – корень уравнения (6).

Рассмотрим иную ситуацию: $\varphi(\xi)$ имеет вид (9) при некоторых α , $\beta \neq 0$. До-кажем, что μ_1 – корень уравнения (6). Согласно формулам Эйлера имеем $\varphi(\xi) = B_7 \exp\left((\alpha + i\beta)\xi\right) + B_8 \exp\left((\alpha - i\beta)\xi\right)$. Поскольку $\varphi(\xi)$ – ненулевое решение уравнения (5), хотя бы одно из чисел B_7 , B_8 отлично от нуля. Пусть $B_7 \neq 0$. В этом случае $\exp\left((\alpha + i\beta)\xi\right)$ – решение уравнения (5), и $\mu_1 = \alpha + i\beta$ – корень уравнения (6). Таким образом, доказана

Теорема 4. Волна (9), удовлетворяющая (24), (25), существует тогда и только тогда, когда уравнение (30) имеет корень $\tau_4 > 0$, и выполняются соотношения (26) –(29); при этом $\alpha = T^{-1} \ln \tau_4$, β вычисляется согласно (26), (27) при $A_2 \neq 0$ и согласно (28), (29) при $A_1 \neq 0$. Если $A_1 = A_2 = 0$, то $\beta = \pi k/T$, где $k \neq 0$ – произвольно фиксированное целое число, при этом выполняются (34).

Отметим, что в теореме 4 определяется счётное множество специальных волн. Для того чтобы выделить одну, из них достаточно, например, задать частоту колебаний (из множества допустимых частот, определяемых числом β).

Если по точным значениям амплитуд не вычисляется ни одна из специальных волн, то хотя бы один из коэффициентов b_3 , b_4 непостоянен, то есть в момент $\widehat{t} \in [0,3T]$ в точке z_0 начали изменяться условия среды, где распространяется волна. Необходимо оценить этот момент. Предварительно оценим $\widehat{\xi} = a_1 \widehat{t} + a_2 x_{2,0} + \cdots + a_n x_{n,0}$. Фиксируем $0 < T_1 < T$, измеряем $A_{j,1} = \varphi(jT_1), \ j = 0,1,2,3$, и выясним: можно ли по ним найти $\varphi(\xi)$. Если окажется, что можно, то $\widehat{\xi} \in [T_1,3T]$. В противоположном случае $\widehat{\xi} \in [0,T_1]$. Пусть $\widehat{\xi} \in [0,T_1]$. Фиксируем $T_2 \in (0,T_1/3]$ и измеряем $A_{j,2} = \varphi(jT_2), \ j = 0,1,2,3$. Если по этим данным можно вычислить специальную волну, то $\widehat{\xi} \in [T_2,T_1]$, в противном случае $\widehat{\xi} \in [0,T_2]$. Повторив этот процесс, получим $\widehat{\xi} \in [T_m,T_{m+1}]$, где $T_{m+1}-T_m$ — малая величина. Поэтому из неравенств $T_m \le a_1 \widehat{t} + a_2 x_{2,0} + \cdots + a_{n,0} x_{n,0} \le T_{m+1}$ оценим \widehat{t} .

Напомним, что в данном параграфе предполагалось, что измеренные амплитуды – точные значения истинной волны.

2. Случай приближённых значений амплитуд A_i истинной волны

По разным причинам имеет место ситуация, когда измерить точные значения амплитуд \widetilde{A}_j истинной волны невозможно, однако известна погрешность измерений, то есть $|A_j - \widetilde{A}_j| < \varepsilon$.

Предположим, что по $A_j,\ j=0,1,2,3,$ найдена единственная волна $\varphi(\xi)=B_1\tau_1^{t/T}+B_2\tau_2^{t/T}$. Как доказано в теореме 2, это возможно при наличии у уравнения (12) положительных корней $\tau_1\neq\tau_2$ и ненулевых коэффициентах уравнения (12). Введём новое уравнение

$$(\widetilde{A}_1^2 - \widetilde{A}_2 \widetilde{A}_0)\tau^2 + (\widetilde{A}_0 \widetilde{A}_3 - \widetilde{A}_1 \widetilde{A}_2)\tau + (\widetilde{A}_2^2 - \widetilde{A}_1 \widetilde{A}_3) = 0. \tag{35}$$

Пусть соответствующие коэффициенты уравнений (12), (35) достаточно близки между собой. Их близость определяется не только погрешностью ε но и коэффициентами A_i . Действительно, например,

$$|(A_1^2 - A_2 A_0) - (\widetilde{A}_1^2 - \widetilde{A}_2 \widetilde{A}_0)| \le (|A_1 + \widetilde{A}_1| + |A_2| + |\widetilde{A}_0|)\varepsilon$$

(аналогично можно оценить близость и других соответствующих коэффициентов). В рассматриваемом случае уравнение (35) имеет положительные корни $\tilde{\tau}_1 \neq \tilde{\tau}_2$ тогда и только тогда, когда уравнение (12) имеет положительные корни $\tau_1 \neq \tau_2$. При существовании таковых получим

$$\widetilde{\varphi}(\xi) = \widetilde{B}_1 \widetilde{\tau}_1^{t/T} + \widetilde{B}_2 \widetilde{\tau}_2^{t/T},$$

и $\delta(\xi)=|\varphi(\xi)-\widetilde{\varphi}(\xi)|$ также мала на $[t_0,\,t_0+3T]$. Очевидно, что в случае, когда

$$\varepsilon$$
 достаточно мало и $\tau_1 \le 1$, $\tau_2 \le 1$, $\widetilde{\tau}_1 \le 1$, $\widetilde{\tau}_2 \le 1$, (36)

функция $\delta(\xi)$ также мала при всех $\xi \geq 0$. Более того, если все неравенства в (36) – строгие, то $\delta(\xi) \to 0$ при $\xi \to +\infty$. Следовательно, при выполнении (36) устойчив процесс вычисления $\widetilde{\varphi}(\xi)$, а в случае строгих неравенств он асимптотически устойчив. Понятно, что при нарушении (36) устойчивость этого процесса при $\xi \to +\infty$ невозможна. Поэтому необходимы корректировки. В силу различных возмущений корректировки нужны и при выполнении (36), однако количество их должно быть значительно меньше, чем при неустойчивости. Корректировка означает, что необходимы новые измерения амплитуд в точке z_0 в моменты $t_0 + kT$, $k \geq 3$ и вычисления $\varphi(\xi)$. В случае хаоса оценка величины $\delta(\xi)$ невозможна.

Аналогичные рассуждения также справедливы, если рассматриваются условия (8), (9).

Summary

 $A.V.\ Golovtsov,\ V.S.\ Mokeichev.$ Determination of Special Eigenwaves as a Result of Amplitude Measurements.

An analytical formula for a special wave, which allows one to calculate wave energy and vibration frequency (in case of a vibrating wave) and to find out a minimum amount of necessary measurements, is written out depending on the measured amplitude values. The direct and inverse problems are solved.

Keywords: wave equation, wave, direct and inverse problems.

Литература

- 1. Шерриф Р., Гелдарт Л. Сейсморазведка: в 2 т. / Пер. с англ. М.: Мир, 1987. Т. 1. 448 с.
- 2. Cаверенский $E.\Phi$. Сейсмические волны. М.: Недра, 1972. 293 с.
- 3. *Мокейчев В.С.* Восстановление коэффициентов в линейных математических моделях и нелинейные граничные задачи // Изв. вузов. Матем. − 1987. − № 7. − С. 20–28.

4. $\ \ \, \Gamma$ оловцов A.B. Нахождение элементарных собственных сейсмических волн по результатам измерений // Исслед. по прикл. матем. и информатике. – Казань: Изд-во Казан. ун-та, 2011. – Вып. 27. – С. 122–131.

Поступила в редакцию 11.12.12

Головцов Антон Владимирович – инженер кафедры геофизики и геоинформационных технологий, Казанский (Приволжский) федеральный университет, г. Казань, Россия.

E-mail: zloy 21@mail.ru

Мокейчев Валерий Степанович – кандидат физико-математических наук, доцент кафедры прикладной математики, Казанский (Приволжский) федеральный университет, г. Казань, Россия.

 $\hbox{E-mail: } Valery. Mokey chev@kpfu.ru$