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Abstract

When we consider and analyze physical events with the purpose of creating corresponding
models, we often assume that the mathematical apparatus used in modeling is infallible. In par-
ticular, this relates to the use of infinity in various aspects and the use of Newton’s definition of
a limit in analysis. We believe that is where the main problem lies in contemporary study of na-
ture. This work considers mathematical and physical aspects in a setting of arithmetic, algebra,
geometry, and topology provided by Observer’'s Mathematics, see www.mathrelativity.com.
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Introduction

Today, when we see the classical definition of a limit of a sequence (sequence a,,
approaches a limit b if for any arbitrarily small number € > 0 there is an integer N,
such that |a, —b| < € for all n > N), we feel somewhat uneasy: what does “arbitrarily
small” really mean? Also, what does “sufficiently large” mean? This is because the
answer depends on the point of view, depends on an observer, i.e., has relativistic
characteristics.

Consider, for example, geometry. When we speak about lines, planes, or geometrical
bodies, we understand that all these objects exist only in our imagination: even if
we grind a metal plate we would never get an ideal plane because of instrument and
operation. Moreover, we would never reach an ideal plane shape because of the atomic
structure of the metal, i.e., we are not able to approach this shape with an arbitrary
accuracy. In order to avoid the use of infinity, David Hilbert had created geometrical
bases practically without the use of continuity axioms: Archimedes and completeness.

We find similar problems occurring in arithmetic, and in entire mathematics, since
it is “arithmetical” in nature.

Physics encounters such problems as well. It is known fact that the dynamics of
some systems change when we change the scale (distances, energies) at which we probe
it. For example, consider a fluid. At each distance scale, we need a different theory to
describe its behavior:

1. At ~ 1 cm - classical continuum mechanics (Navier — Stokes equations);

At ~ 107 cm — theory of granular structures;

At ~ 1078 cm — theory of atom (nucleus + electronic cloud);
At ~ 10713 cm — nuclear physics (nucleons);

At ~ 10713 — 107® cm — quantum chromodynamics (quarks);
. At ~ 10733 cm - string theory.

The mathematical apparatus that is applied here for physical data processing and
building mathematical models does not contain any barriers, it is universal, omnivorous,
and can manipulate with any numbers. This creates a possibility to produce an incorrect
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output. Observer’s mathematics was created as an attempt to do away with the concept
of infinity.
Proof of all theorems stated below can be found in [1-9].

1. Observer’s mathematics applications to number theory

1.1. Analogy of Fermat’s last problem. This result was presented by authors
at the International Congress of Mathematicians in Madrid in 2006.

To begin, we present a few notes. It is obvious that the classical Fermat’s Last
problem (for any integer m, m > 3, there do not exist positive integers a, b, ¢, such
that a™ + 0™ = ¢™) may be reformulated not just for integers a, b, ¢, but for any real
rational numbers a, b, c.

Note, in observer’s mathematics the power operation is not always associative. For
illustrative purposes, we give a Wy example. Consider 1.49 € W5. Then 1.49 x51.49 =
= 2.14 and 1.49 x5 2.14 = 3.16. On the other hand, 1.49 x5 3.16 = 4.67 and 2.14 X4
2.14 = 4.57, i.e., ((1.49 x5 1.49) x5 1.49) x5 1.49 # (1.49 x5 1.49) x5 (1.49 x5 1.49).

Theorem 1. For any integer n, n > 2, and for any integer m, m > 3, m € W,

there exist positive a, b, ¢ € W,, such that a™ +, b™ = ™. Here x'™ means
m

For example, if n = 2, we can calculate that 13 +5 13 = 1.283.

Note that the main reason of cardinal difference between standard mathematics and
observer’s mathematics results is the following. The negative solution of classical Fer-
mat’s problem requires the Axiom of Choice to be valid. But in observer’s mathematics
this axiom is invalid.

1.2. Analogy of Mersenne’s and Fermat’s numbers problems. Mersenne’s
numbers are defined as M, = 2F — 1, with & = 1,2,... The following question is still
open: is every Mersenne’s number square-free?

Fermat’s numbers are defined as Fj, = 22k+ 1, k=0,1,2,... The following question
is still open: is every Fermat’s number square-free?

We begin with some comments. It is obvious that if some integer number is square-
free in the set of all real integers, then this number is square-free in the set of all real
rational numbers.

Theorem 2. There exist integers n, k > 2, Mersenne’s numbers My, with
{k, My} € W,,, and positive a € W,,, such that My = a®.

Theorem 3. There exist integers n, k > 2, Fermat’s numbers Fy, {k,Fy} € W,,
and positive a € W,,, such that Fy, = a?.

1.3. Analogy of Waring’s problem. It is known (Lagrange) that the minimum
number of squares to express all positive integers is four. What is the minimum number
of k-th powers necessary to express all positive integers? This is a classical Waring’s
problem in standard arithmetic.

Theorem 4. For any integer k, k > 2, there exist integer n, n > 2, (k € W,,)
and some x € W,,, such that any equality of the form x = a¥ +ak + ... + a;“ 8 not
possible for any integer | € W,, and any positive numbers a1, as, ..., a € W, .

Note that for n = 2 and for any = € Wa, x € [0,1], there do not exist more than
four numbers a, b, ¢, d € Wa, such that z = ((a® +2 b?) +2 ¢?) +2 d2.
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Fig. 1. Nadezhda effect

1.4. Tenth Hilbert problem in observer’s mathematics. We provide the
following

Theorem 5. For any positive integers m, n, k € W,,, n € Wy, m > logio(1 +
+ (210%™ — 1)%), from the point of view of the W,,— observer, there is an algorithm
that takes as input a multivariable polynomial f(x1,...,xr) of degree q in W, and
outputs YES or NO according to whether there exist ai,...,ar € W,, such that

f(ala"'7ak):0'

Therefore, Hilbert’s tenth problem in observer’s mathematics has positive solution.
We think that Hilbert expected a positive answer for his tenth problem. Note that
the main reason of cardinal difference between standard mathematics and observer’s
mathematics results is the following. The negative solution of the classical tenth problem
requires the Axiom of Choice to be valid. But in observer’s mathematics this Axiom
is invalid.

2. Observer’s Mathematics application to geometry: Nadezhda effect

In this section we consider an open square @ centered at the origin with sides
of length 2 located on a plane W, x W,,. We will calculate the distance D between
the origin (0,0) and any point of @ as follows. D = p((0,0), (z,y)) = /2% +y* =
= VT Xn & +ny Xny, where y/a = b means b X, b = a, z,y € Q, ie, |z|] < 1,
lyl < 1.

Fig. 1 below contains an illustration of the fact that for some points on W,, x W,,
the concept of distance from the origin does not exist, while for others it does exist. The
illustration below is for n = 3 (Q C W3 x W3). Points with no distance to the origin
are indicated by black, while points where distance from the origin exists are indicated
in white.

This means that the distance D does not always exist, i.e., not every segment on
a plane has a length. This phenomenon occurs for all n. We call the presence of these
“black holes” and “white cross” as the Nadezhda effect (see Fig. 1). This effect gives us
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new possibilities for discovering physical processes and developing their mathematical
models.

3. Observer’s mathematics application to analysis and physics

In classical physics, it has been realized for centuries that the behavior of idealized
vibrating media (such as waves on string, on a water surface, or in air), in the absence
of friction or other dissipative forces, can be modeled by a number of partial differential
equations known collectively as dispersive equations. Model examples of such equations
include the following;:

e The free wave equation uy; — c?Au = 0 where v : R x R — R represents
the amplitude w(t,z) of a wave at a point in spacetime with d spatial dimensions,

d 2

0 5%
A= 52 is the spatial Laplacian on R?, uy; is short for 2 and ¢ > 0 is a fixed
j=10T;
constant.

ﬁ2
e The linear Schrédinger equation ihu; + 2—Au = Vu where u : Rx RY — R is the
m

wave function of a quantum particle, i, m > 0 are physical constants and V : R? — R
is a potential function, which we assume to depend only on the spatial variable z.

The theory of linear dispersive equations predicts that waves should spread out and
disperse over time. However, it is a remarkable phenomenon, observed both in theory
and practice, that once nonlinear effects are taken into account, solitary wave and soliton
solutions can be created, which can be stable enough to persist indefinitely.

From the point of view of W, -observer (we will call such observers “naive”, since
they “think” that they “live” in W and deal with W) a real function y of a real variable
x, y=y(x), is called differentiable at x = x¢ if there is a derivative

y,(xO) — lim y($) - y($0) )
T—x0, TFETQ Tr — X9

What does the above statement mean from the point of view of W, -observer with

m > n? It means that

|(y(@) —n y(z0)) —n (¥ (20) Xy (@ —n 20))] <0.0...01

n

whenever
[y(z) —n y(x0)] = 0.0...001 Y141 Yn
——
l
and
|($ —n IQ)| = 0.0...Oxkxk_,_l...xn
k

for 1 < k, I < n, and x; being non-zero digit. The following theorems have been
proven:

Theorem 6. From the point of view of a W, -observer a derivative calculated by
a W, -observer (m > n) is not defined uniquely.

Theorem 7. From the point of view of a Wy, -observer (with m > n) |y (xo)| <
< CL*, where CL* € W, is a constant defined only by n,l,k and not dependent

on y(x).
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Theorem 8. From the point of view of a Wy, -observer, when a W, -observer (with
m >n > 3) calculates the second derivative

y(xs) —y(@1)  ylza2) — y(xo)
y"(x0) = lim (s = 21) 2o
T1—T0,T1FT0,T2—T0,T2FT0,T3—T1,T3£T1 1 — o

we get the following unequality:

(|x2 —n zo| Xn |23 —n z1|) Xn |21 —n 0] > 0.0...01
n

provided that y"” (xo) # 0.

3.1. Free wave equation. We consider the case when d =1, i.e., u: W, xW,, —
— W, from W,,-observer point of view, with m > n, where W,, x W,, means Cartesian
product of W, with itself. The free wave equation may be written as
Utt —n ((¢ Xy €) Xy Ugs) = 0.
Then we have the following

Theorem 9. Let
C=Cy.C1l...CkC41...Cp

and
rxr rxr rxr, TT rxr
Uy = Fug” ul™ . ou gy Ly
wzth 2k‘<n’ Z<n’ 60201:...:Ck207 Ck_,’_l#o’ u%l:u%lzzu?’lzo

and u < k+1+2, then uy =0.
Next, we have the following

Theorem 10. If dy > 9...9, with 0 <p <n and uf® > 9...9, with 0 < ¢
—— ——

P q
and n < p+ q, then there is no uy, such that uy = ((¢ Xy €) Xy Ugz) -

IN
S

3.2. Schrodinger equation. Consider the following:
—(Axp B) X Wag 40 (2 X,m) X, V) X U =14((2 X5, m) Xy B) Wy,

where U = U(z,t), h is the Planck’s constant, h = 1.054571628(53) - 1034 m?kg/s.
Then we have the following

Theorem 11. Let 36 < n < 68, m = mg.my ... MgMg41 ..My, with m € W,

mg = my = ... = myp = 0, mgpyr # 0, E+35 < n, V = 0, then
U, = OO0l WOl wr and B0 = 0L = 0, WL U7 are free and
in {0,1,...,9}, where | = n —k — 36, i.e., U, is a random variable, with ¥, €
n
——~~
€ {(0.0...0%...%)}, where x € {0,1,...,9}.

l
Corollary 1. Let 36 < n < 68, m = mg.my...mpMi41 ... My, with m € W,

mog = my = ... = my = 0, mper # 0. Also, let V = vg.v1...050541...0p,
. . k+35<n
'thhVEWn, Uo—'Ul—---—'Us—O; US+17é07 wlth{k+s+2>n’
then U, = WO.W! . WWH W and 09 = ... 0 = 0, WL U2 are free
and in {0,1,...,9}, where | = n — k — 36, i.e., U, is a random variable, with

U, € {(0.0...0%...%)}, where x € {0,1,...,9}.
!
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3.3. Two-slit interference. Quantum mechanics treats the motion of an elec-
tron, neutron or atom by writing down the Schrédinger equation:
h? 620 ow
VU =ih—
Tomea? 5t
where m is the particle mass and V is the external potential acting on the particle.
As these particles pass through the two slits of any of the experiments they are moving
freely; we, therefore, set V = 0 in the Schrédinger equation.
Now, consider the following;:

—(hxp h) X Uy +n ((2Xnm) X, V) X U =10((2 X5, m) Xp, h) Py,

where U = U(z,t), h is the Planck’s constant, h = 1.054571628(53) - 1073* m?kg/s.
Then we have the following

Theorem 12. Let 36 < n < 68, m = mg.my...MmEpMp41...My, with m €
Wp, mog = mp = ... = mp = 0, mppr # 0, Ek+35 < n, V = 0, then
U, = Wl \pl\pl“ LU and 9 = 0L = 0, UL WP are free and

in {0,1,...,9}, where Il =n—Fk—236, ie, Yy is a random wvariable, with V; €

——~
{(0.0...0%...%)}, where x € {0,1,...,9}.

l

The wave at the point of combination will be the sum of those from each slit. If ¥y
is the wave from slit 1 and ¥, is the wave from slit 2, then ¥ = ¥y + WU5. The result
gives the predicted interference pattern. Then by Theorem 1, we have

_ g9 1 l I+1 n
Uy =00, 0l wh ettt ey,

Wyp = 09,08, .. W whtt  wn
W, = =0, =0,
where \Illft*l, ..., ¥T, are free and in {0,1,...,9}, and
\IIQt = = \IIth =0,
where W2t . W2, are free and in {0,1,...,9} where [ =n — k — 36.

Now we have the following

Theorem 13. 1. If \IIH'I ‘I/l;t'l > 9, then Ui + Wy is not a wave.
2. If \Ill'|r1 + \Ill'|r1 <9, then Uy + WUy is a wave.
3. If \Illl'l'trl \Ill'|r1 =9, then U1 + ¥y may or may not be a wave.

3.4. Lorentz transform. Let K and K’ be two inertial coordinate systems with
z-axis and x’-axis permanently coinciding. We consider only events which are localized
on the z(x’)-axes. Any such event is represented with respect to the coordinate system
K by the abscissa x and the time ¢, and with respect to the system k' by the abscissa
2’ and the time ' when z and ¢ are given. A light signal, which is proceeding along the
positive x— axis, is transmitted according to the equation x = c¢x,t or x —p ¢ X, t =0
Since the same light signal has to be transmitted relative to k&’ with the velocity ¢, the
propagation relative to the system k' will be represented by the analogous equation

2 —nex,t =0.
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Those space-time points (events) which satisfy the first equation must also satisfy the
second equation. Obviously there will be the case when the relation \; x,, (' —,cx,t") =
= 1 Xy (x —p ¢ X, t) is fulfilled in general, where 1,1 € Wy, |A\],|p1] > 1 are
constants; for, according to the last equation, the disappearance of (x—, ¢x,t) involves
the disappearance of (' —, ¢ x, t').

Note that classical equation ' — ct’ = Az — ct) is not valid since if A < 1, z—ct =
=10.0...01, then A\ x,, (v —p, cxt) =a" —, ¢ x, t' = 0.If we apply quite similar

n—1

considerations to light rays which are being transmitted along the negative z-axis, we
obtain the condition Ao X, (' 4+, ¢ X, t') = po Xp (X 44, ¢ Xy t) with Ao, pe € W,
| A2l 2] = 1.

3.5. Schwarzian derivative. The Schwarzian derivative S(f(z)) is defined as

(@) 3 (f"(=@)
S(fa) = L -2 (L

fr@) 2\ f'(x)
f'(x), f’(x), f"(x) are its derivatives. The Schwarzian derivative is ubiquitous and
tends to appear in seemingly unrelated fields of mathematics including classical complex
analysis, differential equations, and one-dimensional analysis, as well as more recently,
Teichmiiller Theory, integrable systems, and conformal field theory. For example, let’s
consider the Lorentz plane with the metric g = dxdy and a curve y = f(x). If f'(z) > 0,
then its Lorentz curvature can be easily computed via p(z) = f”(z)(f'(x))~3/? and the

(f

2
) Here f(x) is a function in one real variable and

W

Schwarzian enters the game when one computes p’ = . Thus, informally speaking,

3

the Schwarzian derivative is curvature.
Consider now the Schwarzian curvature from observer’s mathematics point of view.
Now we have the following

Theorem 14. If S(f(x)) ezists, then
e S(f(x)) is a random variable;
o [S(f(x)| < 10"FF1 where

(2 %0 (f'(x) X0 f'(x))) =0.0...0a;a111 .. .an
!
with a; # 0 and

(2 %0 (F" () X0 f(@))) =0 (3 xp (f"(x) X f"(x))) = £0.0...0b bpy1 .. .bp
k
with by #0 and 1 <1, k <n.

Pesome

Bb. Xou, /I. Xou. Ilpumenenne MaTeMaTwKu HAOIOIATEs] K TEOPUM UNUCE]I, TEOMETPUH,
aHaIN3y, KJIACCUIEeCKON W KBAHTOBOU MeEXaHHUKe.

IIpn paccmoTpennn u ananmse GU3NIECKUX COOBITHIT € IIE/IHIO CO3TAHMA COOTBETCTBYIOMINX
MOZes el Mbl 9aCTO IPEJIOIaraeM, 9T0 MaTeMaTUIeCKUii alnapatT, HCIOIb3yeMbIi B MO IuPO-
BaHMUM, HemorpemuM. B gacTHOCTH, 9TO KacaeTcs MCIO/Ib30BAHNA OECKOHETHOCTH B PA3/INTHBIX
acreKkTax W MpUMeHeHNs HbIOTOHOBCKOTO OTIpeiesIeHus Tpefesa B aHanan3e. Mbl canraeM, 9TO
MMEHHO B 9TOM 3aKJ/IIOYAeTCd OCHOBHAg NPOOJEMa B COBPEMEHHOM H3y4eHHU npupoibl. B Ha-
cToseil paboTe pacCMAaTPHUBAIOTCA MaTeMaTHdecKue U (HU3NUIECKMe acCIeKThl apudMeTHKH,
anreGpbl, TEOMETPUN U TOIOJIOTUN MaTeMaTuky Haboaress (cM. www.mathrelativity. com).

KuroueBsbie cioBa: ['minbept, conuton, Bosna, [Ipeaunrep, Jlopenm, [1IBapr, Habm01a-
TeJIb.
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