## Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «КАЗАНСКИЙ (ПРИВОЛЖСКИЙ) ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ ФИЗИКИ

## КАФЕДРА ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

Направление: 03.03.02 Физика Профиль: Физика

# ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА ТЕОРЕТИЧЕСКОЕ ИССЛЕДОВАНИЕ ШТАРКОВСКОЙ СТРУКТУРЫ И ЭФФЕКТА ФАРАДЕЯ В ОПТИЧЕСКИХ СПЕКТРАХ ТЕТРАГОНАЛЬНЫХ ЦЕНТРОВ ИОНОВ Nd<sup>3+</sup> В КРИСТАЛЛЕ CaF<sub>2</sub>

| Студент 4 курса группы <u>06-712</u>     |                 |
|------------------------------------------|-----------------|
| «»2021 г                                 | (Хасанова Э.И.) |
|                                          |                 |
| Научный руководитель                     |                 |
| <u>д-р фм. н, профессор</u>              |                 |
| «»2021 г                                 | (Малкин Б.З.)   |
| Заведующий кафедрой теоретической физики |                 |
| д.фм.н., профессор                       |                 |
| «»2021 г.                                | (Прошин Ю.Н.)   |

# Содержание

| Введение                                                                                                                                     | 3         |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Глава 1. Теория эффекта Фарадея                                                                                                              |           |
| §1. Электромагнитные волны в материальной среде                                                                                              | 5         |
| §2. Динамическая магнитная (диэлектрическая) восприимчивость разбавленного парамагнетика во внешних постоянном и переменном магнитных полях. | 7         |
| §3. Эффект Фарадея                                                                                                                           | 8         |
| §4. Расчёт недиагональной компоненты тензора магнитной<br>(диэлектрической) восприимчивости                                                  | 11        |
| Глава 2. Тетрагональный центр редкоземельного иона в кристалле CaF2                                                                          | 2         |
| §1. Локальная структура решётки кристаллов со структурой флюорита, активированных ионами редкоземельных элементов                            | 15        |
| §2. Гамильтониан иона Nd <sup>3+</sup> в кристаллическом поле                                                                                | 19        |
| §3. Параметры кристаллического поля и g-факторы                                                                                              | 21        |
| §4. Расчёт эффективного оператора электрического момента                                                                                     | 23        |
| Глава 3. Зависимость угла поворота плоскости поляризации                                                                                     |           |
| электромагнитного излучения от частоты при магнитных и электрическ дипольных переходах ${}^{4}I_{9/2} - {}^{4}F_{3/2}$ в ионах $Nd^{3+}$     | сих<br>28 |
| Заключение                                                                                                                                   | 33        |
| Список литературы                                                                                                                            | 34        |

#### Введение

В настоящее время интерес для физических исследований представляет регистрация спиновых шумов [1]. Спиновые шумы регистрируются с использованием эффекта Фарадея в оптических спектрах парамагнитных ионов. В связи с этим целью нашей работы является теоретическое описание спектров фарадеевского вращения в кристалле CaF<sub>2</sub>, легированном ионами Nd<sup>3+</sup>.

Соответственно поставленной цели были обозначены следующие задачи для научной исследовательской работы:

- Определение характеристик примесных центров, наблюдаемых в эксперименте:
  - расчёт параметров кристаллического поля в рамках модели обменных зарядов,
  - корректирование результатов вычислений штарковской структуры мультиплетов иона Nd<sup>3+</sup> с использованием экспериментальных данных.
- Построение оператора эффективного электрического дипольного момента 4f электронов.
- Расчет магнитной и диэлектрической проницаемостей во внешнем постоянном магнитном поле в области частот оптических переходов в ионе Nd<sup>3+</sup>.

Методы теоретического исследования, применённые в данной работе:

- Квантовая статистическая физика. Квантовая теория линейного отклика системы на внешнее возмущение.
- > Теория кристаллического поля. Модель обменных зарядов.
- Методы расчёта штарковской структуры спектров парамагнитных ионов.

В первой главе представлено теоретическое описание эффекта Фарадея и обоснована его зависимость от магнитной и диэлектрической

восприимчивостей. Во второй главе рассмотрена изучаемая нами система, приведена структура гамильтониана и построен оператора эффективного электрического дипольного момента. В последней главе работы представлены результаты расчетов спектров фарадеевского вращения.

#### Глава 1. Теория эффекта Фарадея

#### §1. Электромагнитные волны в материальной среде

Электромагнитное поле в среде в отсутствие свободных зарядов и токов описывается уравнениями Максвелла:

$$\vec{\nabla} \times \vec{E} = -\frac{1}{c} \frac{\partial \vec{B}}{\partial t},\tag{1}$$

$$\vec{\nabla} \times \vec{H} = \frac{1}{c} \frac{\partial \vec{D}}{\partial t},\tag{2}$$

$$div\vec{D} = 0, \tag{3}$$

$$div\vec{B} = 0, \tag{4}$$

$$\vec{D} = \varepsilon \vec{E} = \vec{E} + 4\pi \vec{P},\tag{5}$$

$$\vec{B} = \mu \vec{H} = \vec{H} + 4\pi \vec{M},\tag{6}$$

где  $\vec{E}$  и  $\vec{H}$  - векторы электрического и магнитного полей,  $\vec{D}$  и  $\vec{B}$  - векторы электрической и магнитной индукции,  $\varepsilon$  – диэлектрическая и  $\mu$  - магнитная проницаемости.  $\vec{P} = \alpha \vec{E}$  - электрическая поляризация, и  $\vec{M} = \chi \vec{H}$  намагниченность,  $\alpha$  и  $\chi$  - электрическая и магнитная восприимчивости. В анизотропной среде восприимчивости и проницаемости являются тензорами второго ранга.

Из решения уравнений Максвелла мы можем получить уравнение электромагнитной волны:

Домножим уравнение 1, векторно, слева на оператор градиента:

$$\left[\vec{\nabla} \times \left[\vec{\nabla} \times \vec{E}\right]\right] = -\frac{1}{c} \left[\vec{\nabla} \times \frac{\partial \vec{B}}{\partial t}\right].$$
(7)

Двойное векторное произведение раскрываем:

$$\left[\vec{\nabla} \times \left[\vec{\nabla} \times \vec{E}\right]\right] = \vec{\nabla} \left(\vec{\nabla} \vec{E}\right) - \vec{\nabla}^2 \vec{E} .$$
(8)

Из уравнений (3) и (5) следует  $\varepsilon \vec{\nabla} \vec{E} = 0$ ,

$$\left[\vec{\nabla} \times \left[\vec{\nabla} \times \vec{E}\right]\right] = -\vec{\nabla}^2 \vec{E}.$$
(9)

Рассмотрим правую часть. Операторы производных по координатам можем поменять местами с производной по времени. Используя уравнения (2), (5) и (6), получим:

$$\left[\vec{\nabla} \times \frac{\partial \vec{B}}{c \, \partial t}\right] = \frac{\mu \, \partial}{c \, \partial t} \left[\vec{\nabla} \times \vec{H}\right] = \frac{\mu \varepsilon \, \partial^2 \vec{E}}{c^2 \, \partial t^2} \,. \tag{10}$$

Приравняв левую и правую части с соответствующими коэффициентами, получим волновое уравнение:

$$\vec{\nabla}^2 \vec{E} - \frac{1}{\nu^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0 \quad , \tag{11}$$

где

$$\frac{\mu\varepsilon}{c^2} = \frac{1}{\nu^2} \,, \tag{12}$$

v = c/n – скорость волны,  $n = (\epsilon \mu)^{1/2}$  - показатель преломления. Найдём решение данного уравнения:

$$E = E_1(z - vt) + E_2(z + vt),$$
(13)

где  $E_1$  и  $E_2$  – произвольные функции. Аргумент функции  $E_1$  соответствует распространению волны вдоль положительного направления оси z. Таким образом, можем получить уравнение для бегущей волны:

$$E = E_0 \cos(kz - \omega t). \tag{14}$$

Аналогичным способом можно получить уравнение для напряжённости магнитного поля бегущей волны:

$$H = H_0 \cos(kz - \omega t). \tag{15}$$

Здесь  $\omega$  – частота,  $k = \omega / v$  – волновой вектор.

# §2. Динамическая магнитная (диэлектрическая) восприимчивость разбавленного парамагнетика во внешних постоянном и переменном магнитных полях

Рассмотрим образец, находящийся в постоянном магнитном поле [2]. Вдоль оси z, перпендикулярно поверхности образца распространяется электромагнитная волна.

Гамильтониан системы имеет вид:

$$\mathcal{H}_s = \sum_k [\mathcal{H} - B_x(t)M_x], \qquad (16)$$

где суммирование проводится по парамагнитным ионам с магнитным моментом  $\vec{M}$ ,  $B_x(t)$  – магнитное поле волны, распространяющейся вдоль оси z.

$$\mathcal{H} = \mathcal{H}_0 - B_z M_z, \tag{17}$$

где  $\mathcal{H}_0$  – гамильтониан иона в кристаллическом поле,  $B_z$  – постоянное магнитное поле,  $B_x(t) = B_1(\exp(-i\omega t) + \exp(i\omega t))$  – переменное магнитное поле электромагнитной волны с частотой  $\omega$ ,  $B_1$  – амплитуда поля на заданном парамагнитном ионе. Собственные значения и собственные функции Гамильтониана иона  $\mathcal{H}$  обозначим как  $E_p(B_z)$  и  $|p, B_z\rangle$ .

В линейном приближении индуцированный волной магнитный момент иона запишем в виде:

$$\langle M_{\chi}(t) \rangle = \chi_{\chi\chi}(\omega, B_Z) B_1 \exp(-i\omega t) + \kappa. c., \qquad (18)$$

где  $\chi_{xx}(\omega, B_z) = Re\chi_{xx}(\omega, B_z) + iIm\chi_{xx}(\omega, B_z)$ , – динамическая магнитная восприимчивость. Комплексная магнитная проницаемость принимает вид

$$\mu_{xx}(\omega, B_z) = 1 + 4\pi \chi_{xx}(\omega, B_z).$$
(19)

Аналогичным образом можно рассмотреть взаимодействие образца с переменным электрическим полем волны и получить подобное выражение для динамической диэлектрической восприимчивости и комплексной диэлектрической проницаемости:

$$\alpha_{xx}(\omega, B_z) = Re\alpha_{xx}(\omega, B_z) + iIm\alpha_{xx}(\omega, B_z), \qquad (19a)$$

$$\varepsilon_{xx}(\omega, B_z) = 1 + 4\pi\alpha_{xx}(\omega, B_z).$$
(196)

#### §3. Эффект Фарадея

Рассмотрим световую волну, распространяющуюся в положительном направлении оси z, перпендикулярном поверхности прозрачного образца в магнитном поле. Также учтём, что образец намагничен параллельно положительному направлению оси z (т. е.  $\vec{H} \parallel z$ ). Магнитная индукция световой волны в однородной прозрачной материальной среде описывается тензором проницаемости, û. Если магнитной среда изотропна или свет распространяется вдоль осей симметрии третьего или четвертого порядка кубического кристалла, то в отсутствие внешнего постоянного поля три диагональных элемента тензора  $\hat{\mu}$  вырождаются, т. е.  $\mu_{xx} = \mu_{yy} = \mu_{zz}$ . Когда внешнее постоянное магнитное поле приложено (или образец намагничен) в направлении z, тензор  $\hat{\mu}$  содержит отличные от нуля недиагональные элементы  $\mu_{xy} = -\mu_{yx} = i\mu'$ , и вырождение будет снято, т. е.  $\mu_{xx} = \mu_{yy} \neq \mu_{zz}$ . Недиагональный элемент является чисто мнимым, если не учитывать поглощение света (см. ниже). В первом приближении недиагональные элементы пропорциональны внешнему магнитному полю (или спонтанной намагниченности образца) и удовлетворяют следующему неравенству  $|\mu'| \ll$  $|\mu_{xx}|$ ,  $|\mu_{yy}|$ . В результате тензор магнитной проницаемости можно записать в виде [3]:

$$\hat{\mu} = \begin{pmatrix} \mu_{xx} & -i\mu' & 0\\ i\mu' & \mu_{xx} & 0\\ 0 & 0 & \mu_{zz} \end{pmatrix}.$$
(20)

Так же из уравнений (1-6) следует:

$$\vec{k}^2 \vec{H} - \varepsilon \frac{\omega^2}{c^2} \vec{B} = 0.$$
(21)

Мы получаем из уравнения (21):

$$(n^2 \delta_{ij} - \mu \varepsilon) \vec{H} = 0, \qquad (22)$$

где  $i, j = \{x, y, z\}$ . Чтобы получить нетривиальное решение, при подстановке в предыдущее уравнение выражения для тензора магнитной проницаемости

(полагаем диэлектрическую проницаемость равной единице), должно выполняться следующее характеристическое уравнение,

$$det \begin{vmatrix} n^2 - \mu_{xx} & -i\mu' & 0\\ i\mu' & n^2 - \mu_{xx} & 0\\ 0 & 0 & n^2 - \mu_{zz} \end{vmatrix} = 0.$$
(23)

Тогда показатели преломления для двух нормальных мод задаются следующим выражением

$$n_{\pm}^2 = \mu_{xx} \pm \mu', \qquad (24)$$

где знаки плюс и минус соответствуют состояниям световой волны с правой круговой поляризацией (RCP),  $H_+ = H_x + iH_y$ , и левой круговой поляризацией (LCP),  $H_- = H_x - iH_y$ , соответственно. Предыдущее уравнение показывает, что недиагональные компоненты тензора магнитной проницаемости имеют важное значение для магнитооптической активности (MOA), поскольку моды RCP и LCP будут вырождаться при исчезновении  $\mu'$ . Так же из этого уравнения мы можем получить  $(n_+^2 - n_-^2) = (n_+ - n_-)(n_+ + n_-) = 2\mu'$ . Так как разница между показателем преломления для двух циркулярно поляризованных световых мод RCP и LCP обычно невелика, т. е.  $(n_+ - n_-) \ll (n_+ + n_-)$ , мы можем написать:

$$(n_+ - n_-) = \mu'/n$$
, (24a)

где  $n = (n_{+} + n_{-})/2$ . Теперь мы рассмотрим линейно-поляризованный свет, который можно записать как линейную комбинацию света RCP и LCP. Поскольку линейно поляризованный свет попадает в среду от z = 0 до z = l, то суммарная разность фаз  $\Delta$  между двумя противоположно поляризованными модами RCP и LCP задаётся выражением:  $\Delta = (\Psi_{+} - \Psi_{-}) = \frac{2\pi l}{\lambda} (n_{+} - n_{-})$ , где  $\lambda$  – длина волны в вакууме, и  $\Psi_{\pm} = k_{\pm}l$  - фазовые сдвиги световых волн RCP и LCP. Так же мы имеем  $\propto_F = \frac{1}{2} (\Psi_{+} - \Psi_{-})$ , где  $\propto_F$  – это угол Фарадеевского вращения в данном образце. В общем случае, когда все элементы тензора магнитной проницаемости  $\hat{\mu}$  являются комплексными величинами, т. е.  $\mu_{ik} =$  $\mu_{1ik} - i\mu_{2ik}$ , две поляризованные по кругу компоненты ослабляются в разной степени, и распространяющаяся световая волна становится эллиптически поляризованной. В этом случае большая ось эллипса поворачивается за счет эффекта Фарадея на угол  $\propto_F$  относительно направления оси электрического поля падающего света. Угол  $\propto_F$  представлен на рисунке 1.

$$\propto_F = \frac{\omega l}{2c} (n_+ - n_-). \tag{25}$$

Для большинства материалов, которые почти прозрачны и в которых наблюдается эффект Фарадея, значения  $k_{\pm} - k$  очень малы [4]. В этом случае эллиптичность  $\varepsilon_F$ , определяемая как отношение малой оси В к большой оси A светового эллипса, будет равна,

$$\varepsilon_F = \left(\frac{B}{A}\right)_F = -\frac{\omega l}{2c}(m_+ - m_-) =$$
$$= \frac{l}{4}(\beta_+ - \beta_-), \qquad (26)$$

где m-мнимая часть комплексного показателя преломления  $\eta = n - im$ ,  $\mu = \mu_1 - i\mu_2 = \eta^2$ ,  $\beta_{\pm} = \frac{4\pi}{\lambda}m_{\pm}$  являются коэффициентами для оптического поглощения световых волн RCP и LCP,  $\lambda$  – длина световой волны в вакууме.



Рис.1. Распространение линейно-поляризованного света через оптически активную среду.

Таким образом, в общем случае угол поворота в эффекте Фарадея  $\propto_F$  и эллиптичность  $\varepsilon_F$  пропорциональны недиагональным элементам  $\mu'$  тензора магнитной проницаемости:

$$\propto_F - i\varepsilon_F = \frac{\omega l}{2c} \frac{\mu'}{\sqrt{\mu_{xx}}} \,. \tag{27}$$

Подставим в данное выражение формулу (7), чтобы получить зависимость угла поворота от магнитной восприимчивости [5]:

$$\alpha_F - i\varepsilon_F = \frac{\omega li}{2c} \frac{4\pi \chi_{yx}}{\sqrt{1 + 4\pi \chi_{xx}}},$$
(27a)

где учтено, что:

$$\mu' = i\mu_{\nu x}.\tag{28}$$

Рассматривая среду с величиной магнитной проницаемости  $\hat{\mu} = \hat{1}$  и не равной единице диэлектрической проницаемостью, аналогичным образом получим:

$$(n_+ - n_-) = \frac{\varepsilon'}{n},$$
 (246)

где  $\varepsilon' = i\varepsilon_{yx}$ .

Таким образом, угол поворота плоскости поляризации (25) будет зависеть от диэлектрической проницаемости и восприимчивости (19а).

## §4. Недиагональные компоненты тензора динамической магнитной (диэлектрической) восприимчивости во внешнем магнитном поле

Приведём расчёт недиагональной компоненты тензора магнитной восприимчивости для разбавленного парамагнетика в магнитном поле  $\vec{B}(t)$  электромагнитной волны, следуя работе [6]. Запишем гамильтониан парамагнитного иона в виде:

$$H = H_0 + \vec{B}(t)\vec{M} , \qquad (29)$$

где  $H_0$  - гамильтониан иона в кристаллическом поле,  $\vec{M}$  – оператор магнитного момента иона. Среднее значение магнитного момента равно:

$$\langle \vec{M}(t) \rangle = Sp\left(\vec{M}\rho(t)\right),$$
(30)

где *р* - матрица плотности. Запишем уравнение движения для матрицы плотности:

$$i\hbar \frac{\partial \rho(t)}{\partial t} = [H, \rho(t)],$$
 (31)

$$\rho(t) = \rho_0 + \Delta \rho(t), \qquad (32)$$

где  $\rho_0$  – матрица плотности в отсутствие возмущения. Подставим (32) в уравнение (31), так же, учитывая выражение для гамильтониана (29), получаем

$$i\hbar \frac{\partial \rho(t)}{\partial t} = \left[ H_0 + \vec{B}(t)\vec{M}, \rho_0 + \Delta \rho(t) \right], \tag{33}$$

$$\frac{\partial \rho(t)}{\partial t} = \frac{1}{i\hbar} \{ \left[ \vec{B}(t) \vec{M}, \rho_0 \right] + \left[ H_0, \Delta \rho(t) \right] \}.$$
(34)

Колебания вектора магнитного поля совершаются параллельно оси у:

$$\vec{B}(t) = (0, B_y \exp(-i\omega t), 0).$$
(35)

Таким образом, слагаемое, соответствующее возмущению, в матрице плотности будет иметь вид:

$$\Delta \rho(t) = \Delta \rho \exp(-i\omega t). \tag{36}$$

Запишем уравнение (34), рассмотрев матричные элементы в базисе собственных функций оператора *H*<sub>0</sub> для состояний с энергиями *E<sub>k</sub>*:

$$-i\omega\Delta\rho_{kp} = \frac{1}{i\hbar} \{B_y M_{y,kp} (\rho_{0p} - \rho_{0k}) + \Delta\rho_{kp} (E_k - E_p)\},\tag{37}$$

$$\Delta \rho_{kp} = \frac{M_{y,kp} (\rho_{0p} - \rho_{0k})}{\hbar (\omega - \omega_{kp})} B_{y}, \qquad (38)$$

где  $M_i$  – компоненты операторы магнитного момента. Мы имеем следующее выражение для намагниченности вдоль оси х:

$$\langle M_x(t)\rangle = \chi_{xy}B_y(t). \tag{39}$$

С другой стороны, для этой же компоненты находим:

$$\langle M_x(t) \rangle = \sum_{k,p>k} \left[ M_{x,pk} \Delta \rho(t)_{kp} + M_{x,kp} \Delta \rho(t)_{pk} \right]$$

$$= \sum_{k,p>k} \left[ \frac{M_{y,pk} M_{x,kp} (\rho_{0k} - \rho_{0p})}{\hbar (\omega - \omega_{pk})} - \frac{M_{x,pk} M_{y,kp} (\rho_{0k} - \rho_{0p})}{\hbar (\omega + \omega_{pk})} \right] B_y(t).$$

$$(40)$$

Получим выражение для недиагональной компоненты тензора магнитной восприимчивости:

$$\chi_{xy} = \sum_{k,p>k} \frac{1}{\hbar} (\rho_{0p} - \rho_{0k}) \left[ \frac{M_{y,pk} M_{x,kp}}{(\omega - \omega_{pk})} - \frac{M_{x,kp}^* M_{y,pk}^*}{(\omega + \omega_{pk})^*} \right].$$
(41)

Учтём, что компоненты оператора магнитного момента являются комплексными величинами:

$$M_{x,kp} = ReM_{x,kp} + iImM_{x,kp}, \qquad M_{y,pk} = ReM_{y,pk} + iImM_{y,pk}.$$
(42)

После преобразований получим выражения для реальной и мнимой частей недиагональной компоненты тензора магнитной восприимчивости:

$$Re\chi_{xy} = \sum_{k,p>k} \frac{2\omega_{pk}}{\hbar(\omega^2 - \omega_{pk}^2 + \gamma_{pk}^2)} (\rho_{0p} - \rho_{0k}) [ReM_{y,pk}ReM_{x,kp} - ImM_{y,pk}ImM_{x,kp}], \qquad (43)$$
$$Im\chi_{xy} = \sum_{k,p>k} \frac{2\omega}{\hbar(\omega^2 - \omega_{pk}^2 + \gamma_{pk}^2)} (\rho_{0p} - \rho_{0k}) [ReM_{y,pk}ImM_{x,kp} - ImM_{y,pk}ReM_{x,kp}]. \qquad (44)$$

Реальная часть магнитной восприимчивости (43) определяет поглощение электромагнитной волны, а мнимая – поворот плоскости поляризации [7]. Мы рассматриваем среду без поглощения, таким образом, нам необходимо учитывать только мнимую часть. Параметр  $\gamma$  введен в (43) и (44) с целью учета ширины оптического перехода. Так же отметим, что  $Im\chi_{xy} = -Im\chi_{yx}$ , поскольку реальная и мнимая части эрмитовой матрицы компоненты магнитного момента являются соответственно симметричной и антисимметричной матрицами.

Выражение для мнимой части диэлектрической восприимчивости может быть получено аналогичным образом из рассмотрения взаимодействия электрического поля падающей волны  $\vec{E}(t)$  с электрическим дипольным моментом парамагнитного иона:

$$Im\alpha_{xy} = \sum_{k,p>k} \frac{2\omega}{\hbar(\omega^2 - \omega_{pk}^2 + \gamma_{pk}^2)} (\rho_{0p} - \rho_{0k}) [ReD_{y,pk}ImD_{x,kp} - ImD_{y,pk}ReD_{x,kp}],$$
(44a)

где  $\widehat{D}$  оператор электрического дипольного момента электронов иона неодима.

## Глава 2. Тетрагональный центр иона Nd<sup>3+</sup> в кристалле CaF<sub>2</sub>

# §1. Локальная структура решётки кристаллов со структурой флюорита, активированных ионами редкоземельных элементов

Кристаллы фторидов щелочно-земельных металлов со структурой флюорита состоят из трёх гранецентрированных кубических подрешёток с ребром элементарного куба  $2r_0$ . Подрешётки из ионов фтора сдвинуты относительно подрешётки металла вдоль пространственной диагонали элементарного куба соответственно на  $(\sqrt{3}/2)r_0$  и  $(3\sqrt{3}/2)r_0$ . Каждый ион фтора находится в центре тетраэдра из ионов металла, а ионы металла, в свою очередь, находятся в центрах кубов из ионов фтора. Такому расположению соответствуют точечные группы симметрии T<sub>d</sub> для тетраэдра и O<sub>h</sub> для куба. Элементарной ячейкой для данных кристаллов будет являться ромбоэдр с объёмом  $v_0 = 2r_0^{-3}$ , образованный векторами трансляции

$$\overline{a_1} = r_0(1,1,0), \ \overline{a_2} = r_0(1,0,1), \ \overline{a_3} = r_0(0,1,1).$$
 (45a)

Базис кристаллической решётки будет состоять из следующих векторов:

$$\vec{r}(Me) = (0,0,0); \ \vec{r}(F_1) = \frac{r_0}{2}(1,1,1); \ \vec{r}(F_2) = \frac{r_0}{2}(3,3,3).$$
 (45)

Примесные редкоземельные ионы в кристаллах фторидов щелочноземельных металлов изоморфно замещают ионы металла и могут находиться в двух- или трёхвалентном состоянии. Статические и динамические характеристики активированных кристаллов определяются изменениями силовых постоянных, отвечающих взаимодействию замещённого катиона с ионами матрицы. Редкоземельные ионы образуют в ионных кристаллах примесные центры малого радиуса. Электронные оболочки, локализованные на примесном ионе, заметно перекрываются только с электронными оболочками ионов из первой координационной сферы для данного примесного иона (рис.1).



Рис.1. Ближайшее окружение примесных редкоземельных ионов в MeF<sub>2</sub>.

На рисунке 1 изображена первая конфигурационная сфера примесного иона, цифрами обозначены ионы фтора.

Внедрение примесных ионов в решётку обуславливает локальную деформацию и поляризацию, поскольку изменяются силы, действующие на ионы, окружающие примесный ион.

Чтобы компенсировать избыточный заряд трёхвалентных редкоземельных ионов, замещающих катионы  $Me^{2+}$  в кристаллах со структурой флюорита, ионы фтора локализуются в ближайших междоузлиях вдоль кристаллографических осей C<sub>3</sub> или C<sub>4</sub>. Они образуют соответственно тригональные или тетрагональные центры. По мере увеличения разности ионных радиусов катиона и иона  $Ln^{3+}$  энергетически более выгодно образование тригональных центров. Тригональные центры характерны для ионов второй половины ряда лантаноидов в кристаллах SrF<sub>2</sub> и BaF<sub>2</sub>.

Электростатическое притяжение между редкоземельным ионом и ионом-компенсатором приводит к их смещению из узлов регулярной решётки вдоль оси симметрии центра, окружающие ионы смещаются вдоль и перпендикулярно этой оси (рис. 2).



Рис. 2. Фторовый тригональный центр в кристалле MeF<sub>2</sub>:Ln<sup>3+</sup>.

В тетрагональных центрах вследствие существенного сближения ионакомпенсатора и редкоземельного иона, сопровождаемого расталкиванием находящихся между ними четырёх ионов фтора, необходимо включить ионкомпенсатор в первую координационную оболочку трёхвалентного редкоземельного иона. Обозначенные на рисунке 3 основные структурные параметры тетрагональных центров различных редкоземельных ионов от  $Pr^{3+}$ до  $Tm^{3+}$  равны:  $R_i = 2,484 - 2,457$  Å;  $R_1 = 2,485 - 2,336$  Å;  $R_2 = 2,582 - 2,453$  Å;  $\theta_1 = 62,5 - 63,1$  градуса;  $\theta_2 = 50,7 - 51$  градуса [8]. Редкоземельные ионы смещаются из узла регулярной решётки к междоузельному иону на 0,20 – 0,18 Å. Компоненты векторов смещений четырёх ионов фтора  $F_{2',3',5',8'}$  вдоль и перпендикулярно оси симметрии центра соответственно равны 0,10 – 0,08 Å и 0,11 – 0,09 Å.



Рис.3. Структура тетрагонального центра в кристалле MeF<sub>2</sub>:Ln<sup>3+</sup>.

## §2. Гамильтониан иона Nd<sup>3+</sup> в кристаллическом поле

Гамильтониан иона в кристалле имеет вид:

$$H = H_0 + H_{cf} + H_z + H(t).$$
(46)

В формуле (46) приведены слагаемые, отвечающие кинетической энергии и энергии электростатического взаимодействия 4f электронов с ядром и между собой (*H*<sub>0</sub>), спин-орбитальному взаимодействию, Зеемановскому взаимодействию с постоянным магнитным полем и слагаемое, зависящее от времени, является взаимодействием с переменным электромагнитным полем падающей волны.

Дираком было показано, что энергия спин-орбитального взаимодействия, в случае центрально-симметричного потенциала, действующего на электрон, имеет вид:

$$H_{so} = \xi(r)\vec{l}\cdot\vec{s},\tag{47}$$

где

$$\xi(r) = \frac{\hbar^2}{2m^2c^2} \frac{1}{r} \frac{dU(r)}{dr},\tag{48}$$

 $\vec{l}$  и  $\vec{s}$  - операторы орбитального и спинового моментов электрона, U(r) – потенциал, создаваемый остовом атома [9].

Рассмотрим взаимодействие иона с кристаллическим полем, создаваемым соседними атомами.

В модели точечных зарядов (*pc*) каждый лиганд создаёт электрическое поле, действующее на электроны неодима. Заряд лиганда  $eq_L$  и координаты (R,  $\Theta$ ,  $\Phi$ ). Координаты электрона, локализованного на ионе неодима (r,  $\theta$ ,  $\varphi$ ), тогда энергия взаимодействия:

$$H_{cf}^{(pc)} = -\frac{e^2 q_L}{|\vec{R} - \vec{r}|}.$$
(49)

Знаменатель можно разложить по сферическим функциям, если учесть, что электроны неодима находятся намного ближе к ядру, которое является началом координат, чем соседние ионы:

$$H_{cf}^{(pc)} = -e^2 q_L \times \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{4\pi r^l}{(2l+1)R^{l+1}} Y_l^m (\Theta, \Phi) Y_l^{m*}(\Theta, \varphi).$$
(50)

Энергию иона в потенциале, создаваемом лигандами можем представить в виде разложения по операторам Стивенса:

$$H_{cf}^{(pc)} = \sum B_l^{m(pc)} O_l^m.$$
 (51)

Коэффициентами в разложении являются параметры кристаллического поля:

$$B_l^{m(pc)} = -e^2 K_{lm} \langle r^l \rangle \sum_L \frac{q_L}{R^{l+1}} O_l^m (\Theta, \Phi), \ K_{lm} = \frac{a_{lm}^2}{2}, \ m \neq 0, \ K_{l0} = a_{lm}^2.$$
(52)

Помимо влияния на ион неодима за счёт создаваемого лигандами электрического поля, следует учитывать при построении гамильтониана 4f электронов перекрывание их волновых функций ( $\varphi$ ) с волновыми функциями электронов, локализованных на соседних атомах ( $\psi_L$ ). Данный вклад учитывается в модели обменных зарядов [10]. Соответствующая энергия пропорциональна заряду с плотностью  $2eS_L\varphi^*\psi_L$ , который называется обменным. Здесь  $S_L = \langle \psi_L | \varphi \rangle$  – интеграл перекрывания волновых функций. В модели обменных зарядов рассматриваемой энергии сопоставляется оператор:

$$H_{cf}^{(ec)} = \sum B_l^{m(ec)} O_l^m,$$
 (53)

. .

где коэффициенты равны

$$B_{l}^{m(ec)} = e^{2} K_{pq} \frac{2(2p+1)}{[(2l+1)(2l'+1)]^{1/2}} \sum_{L} \frac{S_{p}^{nl,n'l'}(R)}{R} O_{l}^{m}(\Theta, \Phi), \qquad (54)$$

$$S_{p}^{nl,n'l'}(R) = \sum_{n'',l'',m} G_{n'',l'',m}^{nl,n'l'}(-1)^{m} \binom{l}{-m} \binom{l'}{m} \binom{p}{0} \binom{l}{0} \binom{l'}{0} \binom{p}{0}^{-1} \times \langle n,l,m|n'',l'',m\rangle \langle n'',l'',m|n',l',m\rangle. \qquad (55)$$

Таким образом, полный гамильтониан иона в кристаллическом поле имеет вид:

$$H_{cf} = H_{cf}^{(pc)} + H_{cf}^{(ec)} = \sum \left[ B_l^{m(pc)} + B_l^{m(ec)} \right] O_l^m = \sum B_l^m O_l^m.$$
(56)

#### §3. Параметры кристаллического поля и g-факторы

В программе Mathcad были рассчитаны собственные значения и собственные векторы гамильтониана ионов неодима в тетрагональных центрах. С использованием экспериментальных данных [11] для уровней энергии иона Nd<sup>3+</sup> в кристалле CaF<sub>2</sub>, были получены значения для параметров кристаллического поля:

Таблица 1. Параметры кристаллического поля  $B_n^m$  в см<sup>-1</sup> для ионов Се<sup>3+</sup>и Nd<sup>3+</sup> в тетрагональном центре кристалла CaF<sub>2</sub>.

**a** .

**a** .

|             | Nd <sup>3+</sup> | Nd <sup>3+</sup> | Ce <sup>3+</sup> |
|-------------|------------------|------------------|------------------|
| $B_{2}^{0}$ | 313.4            | 415.4            | 392              |
| $B_{4}^{0}$ | -100.4           | -110.4           | -110             |
| $B_4^4$     | -1448.1          | -1410            | -1857            |
| $B_{6}^{0}$ | 90.7             | 92.7             | 101              |
| $B_{6}^{4}$ | -960.7           | -952.7           | -1059            |

В таблице 1 первом столбце представлены В параметры кристаллического поля, полученные при расчёте по формулам (52, 54, 55) в рамках модели обменных зарядов. Во втором столбце приведены параметры кристаллического поля после корректировки при сравнении с экспериментальными значениями уровней энергии. Так же для сравнения

приведены параметры для церия в том же кристалле CaF<sub>2</sub>, взятые из литературы [12].

В таблице 2 представлены уровни энергии и g-факторы подуровней основного и первого возбуждённого мультиплетов иона  $Nd^{3+}$  в тетрагональном центре кристалла  $CaF_2$ . Данные значения рассчитаны при параметрах кристаллического поля из таблицы 1. Так же приведены экспериментальные значения [11].

|                                | Exper.                 | Theory 1 | Theory 2  | ${f g}_{\parallel}$                                 | ${f g}_{ot}$                                        |  |
|--------------------------------|------------------------|----------|-----------|-----------------------------------------------------|-----------------------------------------------------|--|
|                                | 0                      | 0 0      |           | 4.382 - Теория1<br>4.412 –экспер.<br>4.412 –Теория2 | 1.335 - Теория1<br>1.301-экспер.<br>1.3004 –Теория2 |  |
| <sup>4</sup> I <sub>9/2</sub>  | 82                     | 82       | 86        | 2.6634 2.2817                                       |                                                     |  |
|                                | 198                    | 188      | 199       | 1.0785                                              | 2.5114                                              |  |
|                                | -                      | 319      | 320       | 4.2779                                              | 0.9180                                              |  |
|                                | 746                    | 714      | 726       | 1.1722                                              | 3.0407                                              |  |
|                                |                        |          |           |                                                     |                                                     |  |
|                                | 2032                   | 2030     | 2030      | 6.0868-Т2<br>6,9+/- 0.6-эксп.                       | 1.5111–T2<br>-                                      |  |
|                                | 2086 2083 2089 3.0519- |          | 3.0519–T2 | 0.7146–T2                                           |                                                     |  |
| <sup>4</sup> I <sub>11/2</sub> | 2096                   | 2095     | 2100      | 1.2762–Т2<br>0.9+/- 0.6-эксп.                       | 4.2886-Т2<br>2.4+/-0.6-эксп.                        |  |
|                                | 2105                   | 2112     | 2112      | 0.7931–T2<br>-                                      | 4.2917-Т2<br>3.5+/-0.4-эксп.                        |  |

Таблица 2. Уровни энергии и g-факторы.

| 2354 | 2338 | 2345 | 5.0193-T2                     | 1.8342–T2                    |
|------|------|------|-------------------------------|------------------------------|
| 2462 | 2439 | 2454 | 1.3953-Т2<br>1.6+/- 1.1 эксп. | 5.5251–Т2<br>4.8+/-1.1-эксп. |

## §4. Расчёт параметров оператора электрического дипольного момента

Рассмотрим результат влияния на систему внешнего постоянного электрического поля  $\vec{E}$ . Полный гамильтониан редкоземельного иона будет иметь при этом следующий вид:

$$\mathcal{H} = \mathcal{H}_0 + V \,, \tag{57}$$

где  $\mathcal{H}_0$  – гамильтониан иона без учёта эффективного взаимодействия с постоянным электрическим полем. Данное взаимодействие рассматриваем как возмущение *V* [13].

Эффективное взаимодействие V складывается из следующих компонент:

$$V = V' + \mathcal{H}_{\rm Hey} \,, \tag{58}$$

V' - взаимодействие электрического момента иона  $\vec{D}$  с электрическим полем $\vec{E}$ :

$$V' = \sum_{\alpha} -D_{\alpha} E_{\alpha}, \qquad D_{\alpha} = \sum_{\alpha} -e x_{\alpha}, \qquad (59)$$

где сумма по  $\alpha$  – сумма по x, y, z осям.

*H*<sub>неч</sub> – взаимодействие с нечётным кристаллическим полем в случае
локальной симметрии C<sub>4v</sub>:

$$\mathcal{H}_{\rm Hey} = B_{10}O_{10} + B_{30}O_{30} + B_{50}O_{50} + B_{54}O_{54} \,, \tag{60}$$

*O<sub>mn</sub>* – операторы Стивенса, выражающиеся через сферические функции. Параметры кристаллического поля [12]:

$$B_{10} = 4320, \quad B_{30} = 262, \quad B_{50} = 57, \quad B_{54} = -84,$$
 (61)

(cm<sup>-1</sup>), *V<sub>mn</sub>* – компоненты матрицы возмущения, которое содержит координаты электрона, изменяющие знак при инверсии, откуда следует, что в первом приближении возмущение равно нулю. Рассмотрим второй порядок:

$$V_{mn2} = \sum_{k} \frac{V_{mk} \cdot V_{kn}}{E_m - E_k} = -\frac{1}{\Delta} \sum_{k} V_{mk} \cdot V_{kn}, \qquad (62)$$

данные матричные элементы не равны нулю для переходов с 4*f* подуровня на 5*d* состояния, суммирование по 5*d* состояниям (*k*),  $\Delta = 5 \cdot 10^4$  см<sup>-1</sup>.

Для получения эффективного оператора дипольного момента будем учитывать слагаемые в  $V_{mn2}$  линейные по  $\vec{E}$ :

$$V_{mn} = -\frac{1}{\Delta} \sum_{k} (V_{mk}' \mathcal{H}_{kn} + \mathcal{H}_{mk} V_{kn}').$$
(63)

Приведём расчёт для z – компоненты:

$$V_{mn} = -\frac{1}{\Delta} \sum_{k} E_z \cdot e(z_{mk} \mathcal{H}_{kn} + \mathcal{H}_{mk} z_{kn}), \qquad (64)$$

$$z_{mk} = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{3m} * Y_{2k}^{*} \cos\theta \cdot r, \qquad (65)$$

где r =<4f|r|5d> - интеграл на радиальных 4f и 5d волновых функциях иона  $Nd^{3+}$ , равный 0,3953 ангстрем.

$$\mathcal{H}_{nk} = B_{10} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{3k} Y_{2n}^{*} O_{10} + B_{30} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{3k} Y_{2n}^{*} O_{30} + B_{50} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{3k} Y_{2n}^{*} O_{50} + B_{54} \int_{0}^{2\pi} d\varphi \int_{0}^{\pi} \sin\theta d\theta Y_{3k} Y_{2n}^{*} O_{54}.$$
(66)

1. 00 – компонента возмущения:  $V_{00} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot 2 \cdot z_{00} \cdot \mathcal{H}_{00}$ 

$$z_{00} = \frac{3 \cdot r}{\sqrt{35}} \qquad \qquad (O_{10})_{00} = \frac{3}{\sqrt{35}} \qquad \qquad (O_{30})_{00} = \frac{8}{3\sqrt{35}}$$

$$(O_{50})_{00} = \frac{80\sqrt{35}}{231} \qquad \qquad (O_{54})_{00} = 0$$

$$V_{00} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot r \cdot 3,05$$

2. 11 – компонента возмущения:  $V_{11} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot 2 \cdot z_{11} \cdot \mathcal{H}_{11}$ 

$$z_{11} = \frac{4 \cdot r}{\sqrt{70}} \qquad (O_{10})_{11} = \frac{4}{\sqrt{70}} \qquad (O_{30})_{11} = \frac{4}{3\sqrt{70}}$$

$$(O_{50})_{11} = -\frac{400}{33\sqrt{70}} \qquad \qquad (O_{54})_{11} = 0$$

$$V_{11} = \frac{1}{\Delta} \cdot E_z \cdot e \cdot r \cdot 25,6$$
  
3. 22 – компонента возмущения:  $V_{22} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot 2 \cdot z_{22} \cdot \mathcal{H}_{22}$   
 $z_{22} = \frac{r}{\sqrt{7}}$   $(O_{10})_{22} = \frac{1}{\sqrt{7}}$   $(O_{30})_{22} = -\frac{4}{3\sqrt{7}}$ 

$$(O_{50})_{22} = \frac{40}{33\sqrt{7}} \qquad (O_{54})_{22} = 0$$

$$V_{22} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot r \cdot 8,3$$

4. 3-1 – компонента возмущения:  $V_{3-1} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot \mathcal{H}_{3-1} z_{-1-1}$  $(O_{54})_{3-1} = \frac{\sqrt{2}}{3\sqrt{21}}$ 

$$V_{3-1} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot r \cdot 0,05$$

5. 2-2 – компонента возмущения:  $V_{2-2} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot 2 \cdot \mathcal{H}_{2-2} z_{-2-2}$  $(O_{54})_{2-2} = \frac{8\sqrt{7}}{231}$  $V_{2-2} = -\frac{1}{\Delta} \cdot E_z \cdot e \cdot r \cdot 0,07$ 

Таблица 3. Матрица оператора возмущения V.

|     |    | 3                            | 2                            | 1                           | 0                            | -1                           | -2                           | -3 |
|-----|----|------------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|------------------------------|----|
|     | 3  | 0                            | 0                            | 0                           | 0                            | $-\frac{1}{\Delta}$ 0,05 · r | 0                            | 0  |
| V = | 2  | 0                            | $-\frac{1}{\Delta}$ 8,3 · r  | 0                           | 0                            | 0                            | $-\frac{1}{\Delta}$ 0,07 · r | 0  |
|     | 1  | 0                            | 0                            | $\frac{1}{\Delta}$ 25,6 · r | 0                            | 0                            | 0                            | 0  |
|     | 0  | 0                            | 0                            | 0                           | $-\frac{1}{\Delta}$ 3,05 · r | 0                            | 0                            | 0  |
|     | -1 | $-\frac{1}{\Delta}$ 0,05 · r | 0                            | 0                           | 0                            | $\frac{1}{\Delta}$ 25,6 · r  | 0                            | 0  |
|     | -2 | 0                            | $-\frac{1}{\Delta}$ 0,07 · r | 0                           | 0                            | 0                            | $-\frac{1}{\Delta}$ 8,3 · r  | 0  |
|     | -3 | 0                            | 0                            | 0                           | 0                            | 0                            | 0                            | 0  |

Оператор дипольного момента иона вдоль оси z выражается через операторы Стивенса:

$$D_z = x_1 O_{20} + x_2 O_{40} + x_3 O_{60} + x_4 O_{44} + x_5 O_{64}.$$
 (67)

Коэффициенты перед операторами находим из сравнения матриц возмущения (Таблица 3) и дипольного момента (67).

Построим матрицу дипольного момента (67) на 4*f* волновых функциях:

|         |    | 3                                                                                                                        | 2                                                             | 1                                                                  | 0                                                                    | -1                                                                                                                       | -2                                                            | -3                                                                 |
|---------|----|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|
|         | 3  | $x_1 15 \cdot \alpha + x_2 180 \cdot \beta + x_3 180 \cdot \gamma$                                                       | 0                                                             | 0                                                                  | 0                                                                    | $\begin{array}{c} x_4 \cdot 12 \cdot \sqrt{15} \\ \cdot \beta + x_5 \cdot 3 \\ \cdot \sqrt{15} \cdot \gamma \end{array}$ | 0                                                             | 0                                                                  |
| $D_z =$ | 2  | 0                                                                                                                        | $-x_2420 \cdot \beta \\ -x_31080 \\ \cdot \gamma$             | 0                                                                  | 0                                                                    | 0                                                                                                                        | $x_4 \cdot 60 \cdot \beta \\ - x_5 \cdot 360 \\ \cdot \gamma$ | 0                                                                  |
|         | 1  | 0                                                                                                                        | 0                                                             | $-x_1 9 \cdot \alpha + x_2 60 \cdot \beta + x_3 2700 \cdot \gamma$ | 0                                                                    | 0                                                                                                                        | 0                                                             | 0                                                                  |
|         | 0  | 0                                                                                                                        | 0                                                             | 0                                                                  | $-x_1 12 \cdot \alpha + x_2 360 \cdot \beta - x_3 3600 \cdot \gamma$ | 0                                                                                                                        | 0                                                             | 0                                                                  |
|         | -1 | $\begin{array}{c} x_4 \cdot 12 \cdot \sqrt{15} \\ \cdot \beta + x_5 \cdot 3 \\ \cdot \sqrt{15} \cdot \gamma \end{array}$ | 0                                                             | 0                                                                  | 0                                                                    | $-x_1 9 \cdot \alpha + x_2 60 \cdot \beta + x_3 2700 \cdot \gamma$                                                       | 0                                                             | 0                                                                  |
|         | -2 | 0                                                                                                                        | $x_4 \cdot 60 \cdot \beta \\ - x_5 \cdot 360 \\ \cdot \gamma$ | 0                                                                  | 0                                                                    | 0                                                                                                                        | $-x_2 420 \cdot \beta \\ -x_3 1080 \cdot \gamma$              | 0                                                                  |
|         | -3 | 0                                                                                                                        | 0                                                             | 0                                                                  | 0                                                                    | 0                                                                                                                        | 0                                                             | $x_1 15 \cdot \alpha + x_2 180 \cdot \beta + x_3 180 \cdot \gamma$ |

Таблица 4. Матрица оператора дипольного момента.

Сравнивая эту матрицу в Таблице 4 и матрицу в Таблице 3, с учетом условия  $Trace(D_z)=0$ , получим систему линейных уравнений на коэффициенты  $x_1 \dots x_5$ . В результате, оператор эффективного электрического дипольного момента принимает вид

$$D_{z} = 9.4 \cdot 10^{-5} \cdot O_{20} + 1.4 \cdot 10^{-5} \cdot O_{40} - 2.1 \cdot 10^{-5} \cdot O_{60} - 2.1 \cdot 10^{-6} \cdot O_{44} - 1.7 \cdot 10^{-7} \cdot O_{64},$$
(68)

где коэффициенты приведены в зарядовых единицах, умноженных на ангстрем

# Глава 3. Зависимость угла поворота плоскости поляризации электромагнитного излучения от частоты при магнитных и электрических дипольных переходах <sup>4</sup>I<sub>9/2</sub> – <sup>4</sup>F<sub>3/2</sub> в ионах Nd<sup>3+</sup>

Нами рассмотрена следующая теоретическая модель. На образец, представляющий из себя кристалл CaF<sub>2</sub>, легированный ионами Nd<sup>3+</sup>, падает плоская электромагнитная волна, направленная вдоль оси z, перпендикулярно поверхности образца. Мы рассматриваем прохождение электромагнитной волны через тетрагональный центр иона неодима в области оптических переходов с основного состояния на нижний подуровни мультиплета <sup>4</sup>F<sub>3/2</sub>.

Вначале мы рассчитали величину поворота плоскости поляризации в зависимости от частоты падающего света при магнитных дипольных переходах (рис.4а). Зависимость угла поворота плоскости поляризации от показателя преломления приведена в формуле (25), показатель преломления, в данном случае, зависит от магнитной проницаемости (24а). В формулу для мнимой части магнитной восприимчивости (44) входят матричные элементы, рассчитанные на собственных функциях гамильтониана (46) и энергии рассматриваемых состояний парамагнитного иона. Величина угла поворота плоскости поляризации при магнитных дипольных переходах получилась незначительной (максимальный угол порядка 10<sup>-4</sup> радиан), было необходимо рассмотреть электрические дипольные переходы.

В случае электрического дипольного перехода величина угла поворота плоскости поляризации зависит от диэлектрической восприимчивости (44а).



Для нахождения мнимой части тензора диэлектрической восприимчивости в случае электромагнитного излучения, распространяющегося вдоль оси z, нужно найти матричные элементы операторов проекций дипольного момента на оси x и y. Данные расчёты проводятся подобно расчёту электрического дипольного момента вдоль оси z, приведённого в §4 второй главы. Как видно на рисунке 46, величина эффекта при электрическом дипольном переходе имеет существенно большую величину, максимальный угол поворота достигает 0,03 радиан.



На рисунке 4 приведены параметры, использованные в расчетах, где *В* – индукция постоянного магнитного поля, *T* – температура, при которой

находится образец, и γ – постоянная, определяемая временем жизни электронных состояний.

Так же мы выполнили расчеты частотных зависимостей угла поворота при изменении магнитного поля (рис. 5) и при изменении параметра уширения *γ* (рис. 6).





Изменение зависимости угла поворота от частоты падающего света при увеличении постоянного магнитного поля.







Целью нашего теоретического исследования являлось описание спектров фарадеевского вращения для тетрагонального центра иона Nd<sup>3+</sup> в кристалле CaF<sub>2</sub>, наблюдаемого в эксперименте. Эксперимент был проведён В. С. Запасским [1] с сотрудниками в СПБГУ. Полученную нами теоретическую кривую зависимости угла поворота плоскости поляризации от частоты падающего света при электрических дипольных переходах можно сопоставить экспериментальным данным (рис.7).





тетрагональный центр иона Nd<sup>3+</sup> в кристалле CaF<sub>2</sub>.

На данном графике чёрным цветом представлена экспериментальная зависимость, где угол поворота в произвольных единицах. Внешнее магнитное поле направлено вдоль оси третьего порядка и составляет 150 эрстед, концентрация 0,1%. Минимум зависимости приходится на резонансную частоту перехода с основного состояния на подуровни мультиплета <sup>4</sup>F<sub>3/2</sub>, расщепление данных уровней в магнитном поле пренебрежимо, по сравнению с энергией перехода между ними.

Величина эффекта при электрическом дипольном переходе, полученная на эксперименте, меньше экспериментальной примерно в 15 раз. Это допускают приближения, использованных теоретических моделей и так же тем, что количество тетрагональных центров может быть меньше использованной номинальной концентрации ионов неодима.

## Заключение

- □ Получены параметры кристаллического поля в рамках модели обменных зарядов для тетрагональных центров ионов Nd<sup>3+</sup> в кристалле CaF<sub>2</sub>.
- Построен оператор эффективного электрического дипольного момента ионов неодима в тетрагональных центрах.

- Получено аналитическое выражение для компонент тензоров магнитной и диэлектрической проницаемости.
- Разработан алгоритм расчета угла поворота плоскости поляризации электромагнитного излучения тетрагональными центрами ионов неодима в кристалле CaF<sub>2</sub> в области резонансных оптических переходов в зависимости от температуры, напряженности и ориентации внешнего постоянного магнитного поля в пакете Matlab.

## Список литературы

- Giant spin-noise gain enables magnetic resonance spectroscopy of impurity crystals / A. N. Kamenskii, A. Greilich, I. I. Ryzhov, et al. // Phys. Rev. Res.– 2020. – V.2. – P. 023317(1-6).
- 2. Б.З. Малкин. Квантовая теория парамагнетизма/ Казань, 2006. 87 с.

- 3. Ландау, Л.Д. Электродинамика. / Л.Д. Ландау, Е.М. Лифшиц. М.: Наука. 1982. Т. 8. 621 с.
- P. W. Y. Lung. Faraday rotation of rare earth in crystal/ P. W. Y. Lung. // J. Phys. C: Solid. St. Phys. – 1970. – Vol. 4. – P. 820 – 826.
- 5. H. A. Kramers. Theorie generale de la rotation paramagnetique dans les cristaux/ Proc. Acad. Sci. Amsterdam. 1930. Vol. 33. P. 959 972.
- Y. R. Shen. Faraday rotation of rare-earth ions. I. Theory\* / Y. R. Shen. // Phys. Rev. – 1963. – Vol. 133. – №. 2A. – P. A511 – A515.
- Uygun V. Valiev. Magnetooptical Spectroscopy of the Rare-Earth Compounds: Development and Application / U. V. Valiev, J. B. Gruber, G. W. Burdick. – SciRP edition, 2012. – 143 c.
- Малкин, Б. З. Кристаллическое поле и электрон-фононное взаимодействие в редкоземельных парамагнетиках: Дис. ... доктор. физ.-мат. наук: 18.01.85 – дата защиты – Казань, 1984.
- 9. Ландау, Л.Д. Теоретическая физика. Л.Д. Ландау, Е.М. Лифшиц. М.: Наука. 1982. Т. 4. 621 с.
- 10.B. Z. Malkin. Crystal field and Electron-Phonon Interaction in Rare-Earth Ionic Paramagnets / Modern Problems in Condensed Matter Sciences. – 1987. – Vol. 21 – P. 13-50.
- 11.T. P. J. Han. Site-selective spectroscopy of Nd<sup>3+</sup> centers in CaF<sub>2</sub>:Nd<sup>3+</sup> and SrF<sub>2</sub>:Nd<sup>3+</sup>/ T. P. J. Han, G. D. Jones, R. W. G. Syme // Phys. Rev. B. 1992. V.47. №22. P. 14706-14723.
- 12. Архипов, С.М. Структура и спектр тетрагональных центров в кристалле CaF<sub>2</sub>: Ce<sup>3+</sup> в электрическом поле / С.М Архипов, Б.З. Малкин // ФТТ – 1980. – Т. 22. – С. 1471–1477.
- 13.R. W. Schwartz. Magnetic circularly polarized emission and magnetic circular dichroism study of the <sup>7</sup>F<sub>J</sub>↔<sup>5</sup>D<sub>4</sub> transitions in crystalline Cs<sub>2</sub>NaTbCl<sub>6</sub>/ R. W. Schwartz et al. // Mol. Phys., - 1977. – Vol. 34. – P. 361 – 379.