Том 152, кн. 4

2010

УДК 539.3

ИССЛЕДОВАНИЕ ДЕФОРМИРОВАНИЯ ФЛЮИДОНАСЫЩЕННЫХ СРЕД НА ОСНОВЕ ПРОИЗВОЛЬНОГО ЛАГРАНЖЕВО-ЭЙЛЕРОВА ПОДХОДА К ОПИСАНИЮ ДВИЖЕНИЯ. I. КИНЕМАТИКА ДВИЖЕНИЯ, ОСНОВНАЯ СИСТЕМА РАЗРЕШАЮЩИХ УРАВНЕНИЙ

Д.В. Бережной, А.И. Голованов, С.А. Малкин, Л.У. Султанов

Аннотация

Настоящая работа открывает цикл статей, посвященных построению вычислительного алгоритма исследования неизотермического деформирования флюидонасыщенных пористых сред. В первой части цикла работ излагаются основные положения кинематики двухфазных сред с учетом произвольного лагранжево-эйлерова подхода к описанию движения. Приводится основная система разрешающих и определяющих уравнений.

Ключевые слова: произвольный лагранжево-эйлеров подход, неизотермическое деформирование, флюидонасыщенные пористые среды, вязкопластическое деформирование.

Введение

В механике континуума широкое распространение получили два основных подхода к описанию движения. Это разделение в подходах было перенесено и на численные приложения, которые появились в последние годы. Однако подходы Лагранжа и Эйлера при численном исследовании поведения континуума имеют определенные ограничения. Например, для лагранжевого подхода любая точка, в которой определяют характеристики механического процесса, непосредственно связана с материальной частицей. Поэтому чрезмерная деформация расчетной области неизменно ведет к чрезмерной деформации сетки. С другой стороны, эйлеровы сетки определяются непосредственными точками в пространстве, поэтому значительное движение континуума на границе не может быть объяснено точно. Кроме того, большие трудности возникают, когда при описании деформирования флюидонасыщенной пористой матрицы полагают, что движение жидкости описывается по Эйлеру, а движение скелета – по Лагранжу. Чтобы объединить преимущества этих подходов и преодолеть ограничения, налагаемые ими, был предложен произвольный лагранжево-эйлеров подход (ALE). Подобный подход хорошо представлен в доступных источниках, в частности, можно отметить работы [1–6] или более поздние [7–13].

Настоящая статья посвящена выводу уравнений, описывающих процесс неизотермического деформирования флюидонасыщенной пористой матрицы. Рассмотрен случай квазистатического деформирования, когда инерционными слагаемыми можно пренебречь.

Для описания процесса деформирования используется произвольная лагранжево-эйлерова постановка. Поведение материальной точки пористой матрицы (элементарного объема) отслеживается в соответствии с лагранжевым методом описания среды, а процесс фильтрации описывается на основе подхода Эйлера.

Рис. 1

1. Кинематика среды

Рассмотрим точку M_1 , положение которой определяется радиус-вектором ${}_t\mathbf{R}$ в текущей конфигурации ${}_t\Omega$ (рис. 1).

Пусть в этой точке в момент времени t находилась материальная частица скелета грунта и материальная частица жидкой фракции. Через бесконечно малый промежуток времени Δt материальная частица скелета грунта переместится в точку M_2 , положение которой определит радиус-вектор $_{t+\Delta t}\mathbf{R}^s$ в конфигурации $_{t+\Delta t}\Omega$. А материальная частица жидкости переместится в точку M_3 , положение которой определит радиус-вектор $_{t+\Delta t}\mathbf{R}^f$ в конфигурации $_{t+\Delta t}\Omega$. Движение материальной частицы будем считать базовым, поэтому для упрощения записи обозначим $_{t+\Delta t}\mathbf{R}^s = _{t+\Delta t}\mathbf{R}$. Положение точек M_2 и M_3 с точностью до бесконечно малых можно определить из соотношений

$$_{t+\Delta t}\mathbf{R} = {}_{t}\mathbf{R} + \Delta t {}_{t}\upsilon^{s}$$

И

$$_{t+\Delta t}\mathbf{R}^{f} = {}_{t}\mathbf{R} + \Delta t {}_{t}\boldsymbol{\upsilon}^{f},$$

где tv^s и tv^f – скорости материальных частиц скелета грунта и жидкости, находящихся в момент времени t в положении M_1 текущей конфигурации $t\Omega$. Различие положений материальных точек скелета грунта и фильтрующейся жидкости можно выразить в виде

$$\Delta_{t+\Delta t} \mathbf{R}^f = {}_{t+\Delta t} \mathbf{R}^f - {}_{t+\Delta t} \mathbf{R} = \Delta t \, ({}_t \boldsymbol{\upsilon}^f - {}_t \boldsymbol{\upsilon}^s).$$

В дифференциалах это соотношение примет вид

$$d_{t+\Delta t}\mathbf{R}^f = dt \left({}_t \upsilon^f - {}_t \upsilon^s\right).$$

Радиус-вектор ${}_{t}\mathbf{R}$ представим в виде разложения по ортам базиса \mathbf{e}_{i} :

$$_{t}\mathbf{R}=x_{i}(t)\,\mathbf{e}_{i}.$$

В этом случае скорость материальной частицы скелета в момент времени t определится как

$$_t v^s = _t \mathbf{R}.$$

2. Разрешающие уравнения

Напряженное состояние описывается тотальными напряжениями $\sigma_{ij}^{\mathrm{tot}}$, причем согласно принципу напряжений Терцаги тотальные напряжения в грунте принимаются равными

$$\sigma_{ij}^{\text{tot}} = \sigma_{ij}^{\text{ef}} - \delta_{ij} P,$$

где P – давление в жидкой фазе, $\sigma_{ij}^{\rm ef}$ – эффективные напряжения в грунте. Уравнение равновесия для грунта в целом имеет вид

$$\frac{\partial \sigma_{ij}^{\text{tot}}}{\partial x_j} + \rho \, g \, \delta_{i3} = 0, \tag{1}$$

где $\rho = m \rho^f + (1-m) \rho^s$ – осредненная плотность породы коллектора, $\mathbf{g} = g \mathbf{e}_3$ – ускорение свободного падения, x_i – глобальные декартовы координаты текущего (актуального) состояния, \mathbf{e}_i – орты глобальной декартовой системы координат, индексы s и f соответствуют параметрам скелета грунта и жидкости, через mобозначается пористость.

Запишем вариационную форму уравнения равновесия (1) в следующем виде:

$$\int_{\Omega} \sigma_{ij}^{\text{tot}} \delta \, d_{ij} \, d\Omega = \int_{S_{\sigma}} \sigma_i^* \delta \upsilon_i^s \, dS + \int_{\Omega} \delta_{i3} g\rho \, \delta \upsilon_i^s \, d\Omega, \tag{2}$$

где $d_{ij} = \frac{1}{2} \left(\frac{\partial v_i^s}{\partial x_j} + \frac{\partial v_j^s}{\partial x_i} \right)$ – деформации скорости частиц скелета грунта, σ_i^* – заданные величины тотальных напряжений на S_{σ} .

Линеаризовав уравнение (2), можно получить вариационное уравнение равновесия в скоростях напряжений

$$\int_{\Omega} \left[\dot{\sigma}_{ij}^{\text{tot}} \,\delta d_{ij} + \sigma_{ij}^{\text{tot}} \,\delta \dot{d}_{ij} + \sigma_{ij}^{\text{tot}} \,\operatorname{div} \,\upsilon^s \,\delta \upsilon_i^s \right] \,d\Omega - \int_{\Omega} \rho \delta_{i3}g \,\operatorname{div} \,\upsilon^s \,\delta \upsilon_i^s \,d\Omega - \int_{S^{\sigma}} \left[\dot{\sigma}_i^* + \sigma_i^* \,\operatorname{div} \,\upsilon^s \right] \,\delta \upsilon_i^s \,dS = 0.$$
(3)

Уравнения баланса масс запишем отдельно для каждой фазы грунта [14]. Для скелета грунта уравнение баланса масс примет вид

$$\frac{\partial}{\partial t} \{ (1-m) \rho^s \} + (1-m) \rho^s \operatorname{div} \mathfrak{v}^s = 0.$$
(4)

Уравнения баланса масс для жидкой фазы примет вид

$$\frac{\partial}{\partial t} \{m \rho^f\} + m \rho^f \operatorname{div} \boldsymbol{v}^s + \operatorname{div} \{m \rho^f (\boldsymbol{v}^f - \boldsymbol{v}^s)\} = 0.$$
(5)

Разделив уравнение баланса массы твердой фазы на ρ^s , преобразуем уравнение (4) к виду

$$\frac{\partial}{\partial t}(1-m) + (1-m)\frac{1}{\rho^s}\frac{\partial\rho^s}{\partial t} + (1-m)\operatorname{div}\upsilon^s = 0.$$
(6)

Аналогичные преобразования уравнения (5) приведут к уравнению

$$\frac{\partial m}{\partial t} + m \frac{1}{\rho^f} \frac{\partial \rho^f}{\partial t} + m \operatorname{div} \upsilon^s + \operatorname{grad} m(\upsilon^f - \upsilon^s) + m \operatorname{div} (\upsilon^f - \upsilon^s) + m \operatorname{div} (\upsilon^f - \upsilon^s) = 0.$$
(7)

Складываем соотношения (6) и (7) и после некоторых преобразований получаем

$$(1-m)\frac{1}{\rho^s}\frac{\partial\rho^s}{\partial t} + m\frac{1}{\rho^f}\frac{\partial\rho^f}{\partial t} + m\frac{\operatorname{grad}\rho^f}{\rho^f}\left(\upsilon^f - \upsilon^s\right) + \operatorname{div}\upsilon^s + \operatorname{div}\left\{m(\upsilon^f - \upsilon^s)\right\} = 0.$$
(8)

Уравнение состояния для материала твердой фазы имеет вид

$$\rho^s = \rho_0^s \left(1 - \frac{1}{3} \beta^s \sigma_{ij} \delta_{ij} - \alpha^s T \right), \tag{9}$$

где β^s и α^s – упругоемкость и коэффициент температурного расширения минеральных частиц скелета грунта, T – отклонение температуры. Истинные напряжения в минеральных частицах грунта σ_{ij} определяются через поровое давление и эффективные напряжения из соотношения

$$\sigma_{ij}^{\text{ef}} = (1 - m)(\sigma_{ij} + \delta_{ij}P). \tag{10}$$

Уравнение состояния для жидкой фазы имеет подобный вид

$$\rho^f = \rho_0^f (1 + \beta^f P - \alpha^f T), \tag{11}$$

где β^f и α^f – упругоемкость и коэффициент температурного расширения жидкой фазы.

Запишем в скоростях определяющий закон для деформаций и эффективных напряжений

$$\dot{\sigma}_{ij}^{\text{ef}} = \left(K - \frac{2}{3}G\right) d_0 \delta_{ij} + 2G d_{ij} + \beta^s K \dot{P} \delta_{ij} - \alpha^s K \dot{T},\tag{12}$$

который аналогичен закону термоупругости, и включает дополнительно линейный пороупругий эффект, где G – модуль сдвига грунта, K – модуль объемного расширения.

Уравнения (9)-(12) позволяют переписать уравнение (8) в виде

$$\left\{ (1-m)\beta^{s} - K(\beta^{s})^{2} \right\} \frac{\partial P}{\partial t} + m\beta^{f} \frac{\partial P}{\partial t} + m \frac{\operatorname{grad} \rho^{f}}{\rho^{f}} \left(\upsilon^{f} - \upsilon^{s} \right) + (1 - K\beta^{s}) \operatorname{div} \upsilon^{s} + \operatorname{div} \left\{ m(\upsilon^{f} - \upsilon^{s}) \right\} - \alpha^{s} (1-m) \frac{\partial T}{\partial t} \left(1 + \frac{\beta^{s} K}{3(1-m)} \right) - \alpha^{f} m \frac{\partial T}{\partial t} = 0.$$
(13)

Грунты определяются условием малости отношения сжимаемостей

$$\beta^s K \ll 1,$$

вследствие чего уравнение (13) упростится

$$\{(1-m)\beta^{s} + m\beta^{f}\}\frac{\partial P}{\partial t} + m\frac{\operatorname{grad}\rho^{f}}{\rho^{f}}(\upsilon^{f} - \upsilon^{s}) + \operatorname{div}\upsilon^{s} + \operatorname{div}\{m(\upsilon^{f} - \upsilon^{s})\} - \{(1-m)\alpha^{s} + m\alpha^{f}\}\frac{\partial T}{\partial t} = 0.$$
(14)

Вводя осредненную упругоемкость

$$m\beta^{sf} = (1-m)\beta^s + m\beta^f$$

и коэффициент теплового расширения

$$m\alpha^{sf} = (1-m)\alpha^s + m\alpha^f,$$

уравнение (14) можно упростить до вида

$$m\beta^{sf}\frac{\partial P}{\partial t} + m\frac{\operatorname{grad}\rho^f}{\rho^f}\left(\mathfrak{v}^f - \mathfrak{v}^s\right) + \operatorname{div}\mathfrak{v}^s + \operatorname{div}\left\{m(\mathfrak{v}^f - \mathfrak{v}^s)\right\} - m\alpha^{sf}\frac{\partial T}{\partial t} = 0.$$

Закон фильтрации записывается по отношению к разности приведенных скоростей жидкости и скелета грунта в форме Дарси–Герсеванова:

$$m\left(\mathbf{v}^{f}-\mathbf{v}^{s}\right)=-\frac{k}{\mu}(\operatorname{grad}P-\rho^{f}\mathbf{g}).$$
(15)

Подставляя (15) в (14), получим уравнение пьезопроводности

$$m\beta^{sf}\frac{\partial P}{\partial t} - \frac{\operatorname{grad}\rho^{f}}{\rho^{f}}\frac{k}{\mu}(\operatorname{grad}P - \rho^{f}\mathbf{g}) + \operatorname{div}\boldsymbol{\upsilon}^{s} - \operatorname{div}\left\{\frac{k}{\mu}(\operatorname{grad}P - \rho^{f}\mathbf{g})\right\} - m\alpha^{sf}\frac{\partial T}{\partial t} = 0. \quad (16)$$

Тогда вариационное уравнение пьезопроводности будет иметь вид:

$$\int_{\Omega} m\beta^{sf} \frac{\partial P}{\partial t} \,\delta \dot{P} \,d\Omega - \int_{\Omega} \left[\frac{\operatorname{grad} \rho^{f}}{\rho^{f}} \frac{k}{\mu} \left(\operatorname{grad} P - \rho^{f} \mathbf{g} \right) \right] \delta \dot{P} \,d\Omega + \\ + \int_{\Omega} \operatorname{div} \boldsymbol{v}^{s} \,\delta \dot{P} \,d\Omega - \int_{S_{H}} q_{n}^{*} \,\delta \dot{P} \,dS - \int_{\Omega} \frac{k}{\mu} \left(\operatorname{grad} P - \rho^{f} \mathbf{g} \right) \operatorname{div} \left(\delta \dot{P} \right) d\Omega = 0, \quad (17)$$

где q_n^* – заданный градиент напора на S_H .

Считая отклонения температуры от начальной при термическом воздействии не слишком большими, будем предполагать справедливым закон теплопроводности Фурье. В предположении малости энергии диссипации при вязкопластическом деформировании уравнение теплопроводности для всего грунта в целом примет вид:

$$\frac{\partial}{\partial t} \{ [(1-m)\rho^s c^s + m\rho^f c^f]T \} + \operatorname{div} \{ [(1-m)\rho^s c^s \upsilon^s + m\rho^f c^f \upsilon^f]T \} = \\ = \operatorname{div} \{ [(1-m)\lambda^s + m\lambda^f] \operatorname{grad} T \},$$

где c^s , c^f и λ^s , λ^f – коэффициенты теплоемкости и теплопроводности скелета грунта и жидкости соответственно.

После некоторых преобразований из последнего уравнения можно получить уравнение теплопроводности

$$\frac{\partial}{\partial t} \{cT\} + \operatorname{div} \{cv^s + m\rho^f c^f (v^f - v^s)\}T = \operatorname{div} \{\lambda \operatorname{grad} T\},\$$

или

$$\frac{\partial}{\partial t} \{cT\} + \operatorname{div} \{\mathbf{Q}T\} = \operatorname{div} \{\lambda \operatorname{grad} T\}, \tag{18}$$

где $c = (1-m)\rho^s c^s + m\rho^f c^f$ – средняя теплоемкость грунта, $\lambda = (1-m)\lambda^s + m\lambda^f$ – средняя теплопроводность грунта, $\mathbf{Q} = c\mathbf{v}^s + m\rho^f c^f (\mathbf{v}^f - \mathbf{v}^s)$.

Для определения параметра m используется уравнение

$$\dot{m} = (1 - m)(\operatorname{div} v^s - \beta^s \dot{P} + \alpha^s \dot{T}).$$

3. Определяющие соотношения

Запишем уравнения состояния пористой упруго-вязко-пластической среды. Скорость деформаций можно представить в виде суммы девиаторной d'_{ij} и шаровой d_0 частей:

$$d_{ij} = d'_{ij} + \delta_{ij} d_0,$$

где

$$d_0 = d_{ii}, \quad d'_{ij} = d_{ij} - \delta_{ij} d_0.$$

Согласно принципу аддитивности деформаций запишем

$$d_{ij} = d_{ij}^e + d_{ij}^T + d_{ij}^p + d_{ij}^c,$$

где индексы *e*, *T*, *p* и *c* соответствуют параметрам упругого, температурного, пластического и вязкого состояний. Тогда подобные соотношения можно записать для девиаторной и шаровой частей тензора скоростей деформаций в виде

$$d'_{ij} = d'^{e}_{ij} + d'^{T}_{ij} + d'^{p}_{ij} + d'^{c}_{ij},$$

$$d_{0} = d^{e}_{0} + d^{T}_{0} + d^{p}_{0} + d^{c}_{0}.$$
(19)

Будем считать, что соотношения для шаровых тензоров и девиаторов эффективных напряжений и деформации скорости независимы. В этом случае для упругих деформаций в случае изотропного грунта определяющие соотношения примут вид:

$$d_0^e = \frac{1}{3K} \dot{\sigma}_0^{ef} - \frac{\beta^{sf}}{3} \dot{P}, \quad {d'}_{ij}^e = \frac{1}{2G} \dot{\sigma'}_{ij}^{ef}, \tag{20}$$

где σ_0^{ef} – шаровая часть тензора эффективных напряжений, ${\sigma'}_{ij}^{\text{ef}}$ – девиатор тензора эффективных напряжений.

Считая, что при изменении температуры будут изменяться только линейные деформации, для температурных деформаций имеем:

$$d_0^T = \frac{1}{3} \alpha^{sf} \dot{T}, \quad d'_{ij}^T = 0, \tag{21}$$

Для описания вязкого поведения пористой матрицы примем закон Кельвина – Фойгта, тогда для скоростей вязких деформаций можно записать

$$d_0^c = \frac{1}{3} \eta_0 \sigma_0^{\text{ef}}, \quad {d'}_{ij}^c = \eta {\sigma'}_{ij}^{\text{ef}}, \tag{22}$$

где η_0 и η – соответствующие коэффициенты вязкости.

В процессе моделирования грунтов [15, 16] вводят специальные характеристики прочности, которые определяют их несущую способность. К ним относятся сцепление c^* , которое характеризует прочность грунтовой среды на срез при отсутствии сжимающих напряжений; угол внутреннего трения φ^* , который характеризует повышение прочности на сдвиг при всестороннем сжатии; коэффициент дилатансии Λ , который характеризует разрыхление или уплотнение грунта при девиаторном нагружении. В этом случае соотношения для скоростей пластических деформаций можно записать в виде

$$d_0^p = \frac{2}{3}\Lambda \left(c^* - \sigma_0^{\text{ef}} \operatorname{tg} \varphi^*\right) \dot{\lambda}, \quad d'_{ij}^p = \dot{\lambda}\sigma'_{ij}^{\text{ef}}.$$
(23)

Условием возникновения предельного состояния будет являться соотношение

$$\sigma_{\tau}^{ef} = c^* - \sigma_0^{\text{ef}} \operatorname{tg} \varphi^*,$$

где

$$2\left(\sigma_{\tau}^{\rm ef}\right)^2 = \sigma'_{mn}^{\rm ef} \sigma'_{mn}^{\rm ef}$$

Для принятой модели параметр $\dot{\lambda}$ определяется в виде

$$\dot{\lambda} = \frac{1}{R} \left\{ \frac{\sigma_{mn}^{\prime \text{ef}}}{\sigma_{\tau}^{\text{ef}}} d_{mn}^{\prime} + \left[3 d_0 + \beta^s \dot{P} - \alpha_s \dot{T} - \eta_0 \sigma_0^{\text{ef}} \right] \frac{K}{G} \operatorname{tg} \varphi^* - 2\eta \sigma_{\tau}^{\text{ef}} \right\},$$

где

$$R = 2\sigma_{\tau}^{\text{ef}} + 2\left(c^* - \sigma_0^{ef} \operatorname{tg} \varphi^*\right) \Lambda \frac{K}{G} \operatorname{tg} \varphi^*.$$

Используя соотношения (19)–(23) получим определяющие соотношения для скоростей эффективных напряжений:

$$\dot{\sigma}_{ij}^{\text{ef}} = 2G \left(d'_{ij} - \dot{\lambda} \, \sigma_{ij}^{\text{ef}} - \eta \, \sigma_{ij}^{\text{ef}} \right),$$
$$\dot{\sigma}_{0}^{\text{ef}} = K \left[3d_{0} - \alpha^{sf} \, \dot{T} - \eta_{0} \, \sigma_{0}^{ef} - 2\Lambda \, \dot{\lambda} \, \left(c^{*} - \sigma_{0}^{\text{ef}} \, \text{tg} \, \varphi^{*} \right) \right] + K \beta^{sf} \dot{P}$$

Далее с помощью следующего соотношения определяем скорость тотальных напряжений

$$\dot{\sigma}_{ij}^{\text{tot}} = \dot{\sigma}_{ij}^{\text{ef}} - \delta_{ij} \dot{P},$$

которые фигурируют в уравнении (3).

Заключение

Таким образом, построена система разрешающих уравнений, описывающая процесс квазистатического деформирования пористых грунтовых сред сложной физической природы при фильтрации в них нефтеводяной смеси с учетом термического воздействия. Для описания процесса деформирования используется комбинированная лагранжево-эйлерова постановка. Связь между напряжениями в разных фазах определяется принципом напряжений Терцаги. Закон фильтрации записывается по отношению к разности приведенных скоростей жидкости и скелета грунта в форме Дарси – Герсеванова.

Работа выполнена при финансовой поддержке РФФИ (проект № 08-01-00546а).

Summary

D.V. Berezhnoi, <u>A.I. Golovanov</u>, S.A. Malkin, L.U. Sultanov. Investigation of Deformation of Fluid-Saturated Media in Terms of Arbitrary Lagrangian-Eulerian Formulation of Motion. I. Kinematics and Resolving Equations.

The present article starts a series of papers devoted to the development of a numerical algorithm for researching nonisothermal deformation of fluid-saturated porous media. The first part discusses the principal regulations of two-phase media kinematics taking into account the arbitrary Lagrangian-Eulerian formulation of motion and gives the basic set of resolving and determinative equations.

Key words: arbitrary Lagrangian-Eulerian formulation, nonisothermic deformation, fluidsaturated porous media, viscoplasticity.

Литература

- Donea J., Fasoli-Stella P., Giuliani S. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems // Trans. 4th Int. Conf. on Structural Mechanics in Reactor Technology. V. B: Thermal and Fluid/Structure Dynamics Analysis / Eds. T.A. Jaeger, B.A. Boley. - Amsterdam: North-Holland Publ. Comp., 1977. -Paper B1/2. - P. 1-12.
- Belytschko T., Kennedy J.M. Computer models for subassembly simulation // Nucl. Engrg. Des. - 1978. - V. 49. - P. 17-38.
- Donea J. Finite element analysis of transient dynamic fluid-structure interaction // Donea J. (ed.) Advanced Structural Dynamics. – London: Appl. Sci. Publ., 1980. – P. 255– 290.
- Donea J. Arbitrary Lagrangian Eulerian finite element methods // Belytschko T., Hughes T.J.R. (Eds.) Computer Methods for Transient Analysis. – Elsevier Sci. Publ., 1983. – P. 473–516.
- Hughes T.J.R., Liu W.K., Zimmermann T.K. Lagrangian-Eulerian finite element formulation for viscous flows // Comput. Methods Appl. Mech. Engrg. - 1981. - V. 29. -P. 329-349.
- Liu W.K. Finite element procedures for fluid-structure interactions and application to liquid storage tanks // Nucl. Engrg. Des. - 1981. - V. 65. - P. 221-238.
- Huerta A., Casadei F. New ALE application in non-linear fast-transient solid dynamics // Engrg. Comput. - 1994. - V. 11. - P. 317-345.
- 8. Belytschko T., Liu W.K., Moran B. Nonlinear Finite Elements for Continua and Structures. Chichester: John Wiley & Sons, 2000. 650 p.
- Wall W.A. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen: Ph.D. Thesis. – Bericht des Instituts für Baustatik Nr. 31, Universitat Stuttgart, 1999.
- Braess H., Wriggers P. Arbitrary Lagrangian Eulerian finite element analysis for free surface flow // Comput. Methods Appl. Mech. Engrg. - 2000. - V. 190. - P. 95-109.
- Rodriguez-Ferran A., Perez-Foguet A., Huerta A. Arbitrary Lagrangian-Eulerian (ALE) formulation for hyperelastoplaciticity // Int. J. Numer. Methods Engrg. - 2002. - V. 53. -P. 1831-1851.
- 12. Donea J., Huerta A. Finite Element Methods for Flow Problems. Chichester, New York: John Wiley & Sons, 2003. 350 p.
- Kuhl E., Hulshoff S., de Borst R. An arbitrary Lagrangian Eulerian finite-element approach for fluid-structure interaction phenomena // Int. J. Numer. Methods Engrg. – 2003. – V. 57 – P. 117–142.
- 14. Зарецкий Ю.К. Лекции по современной механике грунтов. Ростов н/Д: Изд-во Рост. ун-та, 1989. 607 с.
- 15. Терцаги К. Теоретическая механика грунтов. М.: Стройиздат, 1961. 507 с.
- 16. Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 448 с.

Поступила в редакцию 23.12.09

Бережной Дмитрий Валерьевич – кандидат физико-математических наук, доцент кафедры теоретической механики Казанского (Приволжского) федерального университета.

E-mail: Dmitri.Berezhnoi@ksu.ru

Голованов Александр Иванович – доктор физико-математических наук, профессор кафедры теоретической механики Казанского (Приволжского) федерального университета.

Малкин Сергей Александрович – кандидат физико-математических наук, старший преподаватель кафедры теоретической механики Казанского (Приволжского) федерального университета.

Султанов Ленар Усманович – кандидат физико-математических наук, старший научный сотрудник НИИММ им. Н.Г. Чеботарева Казанского (Приволжского) федерального университета.

E-mail: Lenar.Sultanov@ksu.ru