International Conference on Algebra, Analysis and Geometry Kazan, Russia, August 22-28, 2021

Optimal Green energy points on the circles

Vladimir N. Dubinin

Institute for Applied Mathematics,
Far Eastern Branch of the Russian Academy of Sciences
Vladivostok
e-mail: dubinin@iam.dvo.ru

"Auf einen weiteren Satz... hat mich Herr G. Polya aufmerksam gemacht":

$$
\prod_{\substack{k=1}}^{n} \prod_{\substack{=1 \\ l \neq k}}^{n}\left|z_{k}-z_{l}\right| \leq \prod_{k=1}^{n} \prod_{\substack{l=1 \\ l \neq k}}^{n}\left|z_{k}^{*}-z_{l}^{*}\right|=n^{n}
$$

I. Schur, Mathemetische Z., 1(4), 1918, p. 385.

Discrete energy

$$
\begin{gathered}
\sum_{k=1}^{n} \sum_{\substack{l=1 \\
\mid \neq k}}^{n} K\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right) \nu\left(\mathbf{x}_{k}\right) \nu\left(\mathbf{x}_{l}\right), \quad \mathbf{x}_{k} \in \mathbb{R}^{d}, \quad k=1, \ldots, n . \\
K\left(z_{k}, z_{l}\right)=-\log \left|z_{k}-z_{l}\right|, \\
\sum_{k=1}^{n} \sum_{\substack{i=1 \\
\mid \neq k}}^{n}-\log \left|z_{k}-z_{l}\right| \geq \sum_{k=1}^{n} \sum_{\substack{l=1 \\
\mid \neq k}}^{n}-\log \left|z_{k}^{*}-z_{l}^{*}\right| .
\end{gathered}
$$

Riesz energy

The Riesz s-energy $(s \neq 0)$ of n points z_{1}, \ldots, z_{n} of the complex plane is defined by

$$
\sum_{k=1}^{n} \sum_{\substack{l=1 \\ l \neq k}}^{n}\left|z_{k}-z_{l}\right|^{-s}
$$

It can be shown using the classical Tóth's result and a convexity argument that for $s \geq-1$ and each $n \geq 2$, the n-th roots of unity

$$
z_{k}^{*}=\exp \frac{2 \pi i(k-1)}{n}, k=1, \ldots, n
$$

form minimal n-point s-energy configuration for the unit circle $|z|=1:$

$$
\sum_{k=1}^{n} \sum_{\substack{l=1 \\ l \neq k}}^{n}\left|z_{k}-z_{l}\right|^{-s} \geq \sum_{k=1}^{n} \sum_{\substack{l=1 \\ l \neq k}}^{n}\left|z_{k}^{*}-z_{l}^{*}\right|^{-s}
$$

L. Fejes Tóth, Regular Figures, A Pergamon Press Book, The Macmillan Co., New York, 1964.

Motivation

Various sophisticated problems related to the optimality of the Riesz s-energy for different values of s and for the points z_{k} lying in the plane sets or in \mathbb{R}^{d} have been treated in a number of papers.

1. J.S. Brauchart, D.P. Hardin, E.B. Saff, The Riesz energy of the Nth roots of unity: an asymptotic expansion for large N, Bulletin of the London Mathematical Society, Volume 41, Part 4, August 2009, 621-633.
2. J.S. Brauchart, D.P. Hardin, and E.B. Saff. The next-order term for optimal Riesz and logarithmic energy asymptotics on the sphere. Contemp. Math, 2012. V. 578. P.31-61.
3.S. Borodachov, D. Hardin, E. Saff, Discrete energy on rectifiable sets. Springer, 2019.

Green energy

$$
\sum_{\substack{=1}}^{n} \sum_{\substack{l=1 \\ l \neq k}}^{n} g_{B}\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right) \nu\left(\mathbf{x}_{k}\right) \nu\left(\mathbf{x}_{l}\right), \quad \mathbf{x}_{k} \in B \subset \mathbb{R}^{d}, \quad k=1, \ldots, n .
$$

For $d=2, B=\left\{z=r e^{i \theta}: \mu_{1}<r<\mu_{2}\right\}$ and a real ζ we have

$$
\begin{aligned}
& g_{B}(z, \zeta)=\frac{\log \frac{r}{\mu_{1}} \log \frac{\zeta}{\mu_{2}}}{\log \frac{\mu_{1}}{\mu_{2}}}-\log \left|\frac{\mu_{2}^{2}\left(1-\zeta^{-1} r e^{i \theta}\right)}{\mu_{2}^{2}-\zeta r e^{i \theta}}\right|+ \\
& +\sum_{n=1}^{\infty} \frac{\left(\frac{\zeta}{\mu_{2}}\right)^{n}-\left(\frac{\mu_{2}}{\zeta}\right)^{n}}{1-\left(\frac{\mu_{2}}{\mu_{1}}\right)^{2 n}}\left[\left(\frac{r}{\mu_{2}}\right)^{n}-\left(\frac{\mu_{2}}{r}\right)^{n}\right] \frac{\cos n \theta}{n}
\end{aligned}
$$

Let $\theta_{k}, k=1, \ldots, 2 n, n \geq 2$, be real numbers, such that

$$
\theta_{1}<\theta_{2}<\ldots<\theta_{2 n}<\theta_{1}+2 \pi
$$

and let $Z=\left\{z_{k}\right\}_{k=1}^{2 n}, z_{k}=e^{i \theta_{k}}, k=1, \ldots, 2 n$. Denote by

$$
E(Z, B)=\sum_{\substack{k=1}}^{2 n} \sum_{\substack{l=1 \\ l \neq k}}^{2 n} g_{B}\left(z_{k}, z_{l}\right)
$$

the Green energy of the collection Z with respect to the ring $B:=\left\{z: \mu_{1}<|z|<\mu_{2}\right\}, 0<\mu_{1}<1<\mu_{2}<\infty$.
Theorem 1.

$$
E(Z, B) \geq E\left(Z^{*}, B\right)
$$

where $Z^{*}=\left\{z_{k}^{*}\right\}_{k=1}^{2 n},\left|z_{k}^{*}\right|=1, \arg z_{2 j-1}^{*}=-\frac{\eta}{2 n}+\frac{2 \pi j}{n}, \arg z_{2 j}^{*}=$ $\frac{\eta}{2 n}+\frac{2 \pi j}{n}, j=1, \ldots, n, \eta=\sum_{j=1}^{n}\left(\theta_{2 j}-\theta_{2 j-1}\right)$.

Lower bounds

Condenser capacities

$$
\begin{gathered}
\operatorname{cap} C^{*}(r)=-\frac{4 \pi n}{\log r}- \\
-2 \pi\left\{\sum_{k=1}^{2 n} \log r\left(B, z_{k}^{*}\right)+E\left(Z^{*}, B\right)\right\}\left(\frac{1}{\log r}\right)^{2}+o\left(\left(\frac{1}{\log r}\right)^{2}\right), r \rightarrow 0 \\
\operatorname{cap} \operatorname{Dis} C^{*}(r)=-\frac{4 \pi n}{\log r}- \\
-2 \pi\left\{\sum_{k=1}^{2 n} \log r\left(B, z_{k}\right)+E(Z, B)\right\}\left(\frac{1}{\log r}\right)^{2}+o\left(\left(\frac{1}{\log r}\right)^{2}\right), r \rightarrow 0,
\end{gathered}
$$

where $r\left(B, z_{k}\right)$ is the inner radius of B with respect to the point $z_{k}, k=1, \ldots, n$.

Dissymmetrization

Upper bound

Theorem 2. Let Z and B be as above. Then, for the discrete Green energy

$$
\mathcal{E}(Z, B):=\sum_{k=1}^{2 n} \sum_{\substack{l=1 \\ \neq k}}^{2 n}(-1)^{k+1} g_{B}\left(z_{k}, z_{l}\right)
$$

we have

$$
\mathcal{E}(Z, B) \leq \mathcal{E}\left(\mathcal{Z}^{*}, B\right)
$$

where $\mathcal{Z}^{*}=\left\{\exp \left(\frac{\pi i k}{n}\right)\right\}_{k=1}^{2 n}$.
The proof of the inequality is carried out by reduction to the extremal decomposition problems, which have a long history and many applications.

Upper bound

By taking the limit $\mu_{1} \rightarrow 0, \mu_{2} \rightarrow \infty$ we have

$$
\prod_{k=1}^{n} \prod_{\substack{l=1 \\ l \neq k}}^{n}\left|z_{k}-z_{l}\right|^{(-1)^{k+l}} \geq\left(\frac{n}{2}\right)^{2 n}
$$

Extremal decomposition

$$
\prod_{k=1}^{n} r\left(B_{k}, z_{k}\right) \leq \prod_{k=1}^{n} r\left(B_{k}^{*}, z_{k}^{*}\right)
$$

\mathbb{R}^{d} is a d-dimensional Euclidean space with the usual norm $\|\cdot\|$, with points $\mathbf{x}=\left(x_{1}, \ldots, x_{d}\right), d \geq 3$. A domain B in \mathbb{R}^{d} is admissible if it has the Green function for the Laplace operator vanishing at the points of the boundary ∂B of the domain B. This Green function with pole at the point $\mathbf{x}_{0} \in B$ will be denoted by $g_{B}\left(\mathbf{x}, \mathbf{x}_{0}\right)$. In the neighborhood of \mathbf{x}_{0} the following expansion holds

$$
g_{B}\left(\mathbf{x}, \mathbf{x}_{0}\right)=\lambda_{d}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2-d}+O(1), \quad \mathbf{x} \rightarrow \mathbf{x}_{0}
$$

where $\lambda_{d}=\left((d-2) \omega_{d-1}\right)^{-1}, \omega_{d-1}=2 \pi^{d / 2} / \Gamma(d / 2)$ is the surface measure of the unit hyper-sphere. In all points of B different from the pole \mathbf{x}_{0}, the Green function is harmonic.

Denote by J the $(d-2)$-dimensional plane

$$
\left\{\mathbf{x} \in \mathbb{R}^{d}: \mathbf{x}=\left(0,0, x_{3}, \ldots, x_{d}\right)\right\}
$$

We will need the cylindrical coordinates $\left(r, \theta, \mathbf{x}^{\prime}\right)$ of the point $\mathbf{x}=\left\{x_{1}, \ldots, x_{d}\right\}$ in \mathbb{R}^{d}, related to the Cartesian coordinates by $x_{1}=r \cos \theta, x_{2}=r \sin \theta, \mathbf{x}^{\prime} \in J$. A domain $B \subset \mathbb{R}^{d}$ will be called the rotation domain (with respect to the axis J), if for any point ($\left.r, \theta, \mathbf{x}^{\prime}\right) \in B$ and any φ the point ($r, \varphi, \mathbf{x}^{\prime}$) belongs to B.

Green energy

Suppose that B is an admissible rotation domain and let $\Omega=\{S\}$ be the collection comprising a finite number of distinct circles S of the form $S=\left\{\left(r_{0}, \theta, \mathbf{x}_{0}^{\prime}\right): 0 \leq \theta \leq 2 \pi\right\}$ lying in the domain B (here $r_{0}>0$ and $\mathbf{x}_{0}^{\prime} \in J$ are assumed to be fixed). For arbitrary real numbers $\theta_{j}, j=0, \ldots, m-1$,

$$
0 \leq \theta_{0}<\theta_{1}<\ldots<\theta_{m-1}<2 \pi
$$

denote by $X=\left\{\mathbf{x}_{k}\right\}_{k=1}^{n}$ the collection of all distinct points of B at which the circles from Ω intersect the half-planes

$$
L_{j}=\left\{\left(r, \theta, \mathbf{x}^{\prime}\right): \theta=\theta_{j}\right\}, j=0, \ldots, m-1
$$

Let $\Delta=\left\{\nu\left(\mathbf{x}_{k}\right)\right\}_{k=1}^{n}$ be an arbitrary discrete charge. The Green energy of this charge with respect of the domain B is defined by

$$
E(X, \Delta, B)=\sum_{k=1}^{n} \sum_{\substack{=1 \\ l \neq k}}^{n} g_{B}\left(\mathbf{x}_{k}, \mathbf{x}_{l}\right) \nu\left(\mathbf{x}_{k}\right) \nu\left(\mathbf{x}_{l}\right)
$$

Green energy

Theorem 3. Let $X^{*}=\left\{\mathbf{x}_{k}^{*}\right\}_{k=1}^{n}$ be the collection of points at which the circles from Ω intersect the half-planes

$$
L_{j}^{*}=\left\{\left(r, \theta, \mathbf{x}^{\prime}\right): \theta=2 \pi j / m\right\}, j=0, \ldots, m-1
$$

Suppose that the charge $\Delta=\left\{\nu\left(\mathbf{x}_{k}\right)\right\}_{k=1}^{n}$ takes equal values $\nu\left(\mathbf{x}_{k}\right)=\nu\left(\mathbf{x}_{l}\right)$ at the points \mathbf{x}_{k} and \mathbf{x}_{l} from the collection X that lie on the same circle from Ω and, furthermore, that the points $\mathbf{x}_{k} \in X$ and $\mathbf{x}_{k}^{*} \in X^{*}$ lie on the same circle from $\Omega, k=1, \ldots, n$. Then

$$
E(X, \Delta, B) \geq E\left(X^{*}, \Delta, B\right)
$$

Upper bound

For any $d \geq 3$

$$
\sum_{k=1}^{2 n} \sum_{\substack{l=1 \\ \mid \neq k}}^{2 n} \frac{(-1)^{k+1}}{\left|z_{k}-z_{\mid}\right|^{d-2}} \leq \sum_{k=1}^{2 n} \sum_{\substack{=1 \\ 1 \neq k}}^{2 n} \frac{(-1)^{k+1}}{\left|z_{k}^{*}-z_{\mid}^{*}\right|^{d-2}}
$$

where $z_{k}, k=1, \ldots, 2 n$, are located on the circle $|z|=1$ in the ascending order of the index k and $z_{k}^{*}=\exp (\pi i(k-1) / n), k=1, \ldots, 2 n$. V.N. Dubinin, E.G. Prilepkina, "Optimal Green energy points on the circles in d-space". Journal of Mathematical Analysis and Applications, 499:2 (2021) (Article 125055)

Thank you for attention!

