
Comparative study of the X-ray diagnostic procedures safety using bacterial test-systems

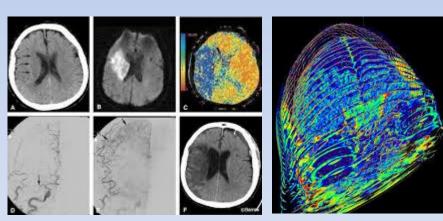
Ryzhkin S.A, Margulis A.B., Belonogova N.V., Ilinskaya O.N.

Kazan (Volga region) Federal University,
Kazan State Medical University,
Kazan State Medical Academy

X-ray for medical imaging

• Radiography : X-ray sources and film.

• Fluoroscopy: X-ray sources and fluorescent screen

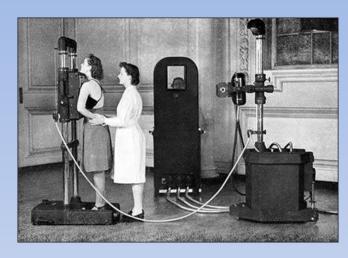


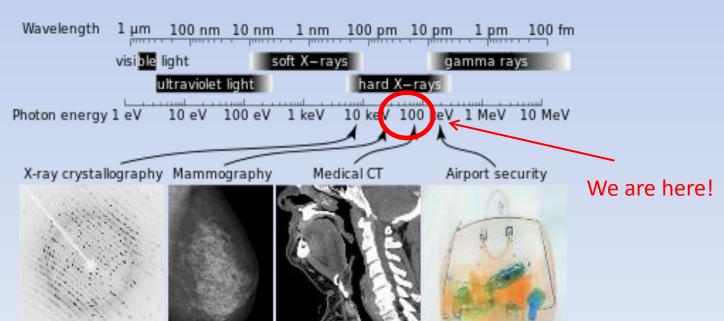
• **Computed tomography**: X-ray and electronic sensors (flat panel detectors)

Other techniques for imaging:

Radioisotope scans MRI scans (Magnetic resonance imaging) (1980s)

Ultrasound (1970s)




From 1960s, radiography, fluoroscopy, and CT, are all *digital imaging modes* with image analysis software and data storage and retrieval

Medical application of X-ray

Radiography was put to diagnostic use very early, before the dangers of ionizing radiation were discovered

Gamma rays for cancer treatment and gamma rays emission for radioisotope scan are not the subject of the report

We have tested:

Low-doses digital fluorographic device "Electron-01" (industrial series № 05325, Sankt-Petersburg, Russia)

Diagnostic stationary complex Vision (industrial series № 6070546, Villa Sistemi Medicali, Italy) with a workplace for roentgenographyc studies

Computed tomograph
«LightSpeed Pro32»
(General Electric Medical
Systems Healthcare,
Germany)

I. Fluoroscopy

Exposure mode of the biological material in the simulation study of digital fluorography of the chest in the frontal view on the device "Electron-01"

		Measu	∆U,	Radiation					
Electric potential (U), kV	Electric charge flowing for 1 sec (Q), mAs	Time (t), sec	U, kV	Dose on the sample location, (D), mGy	D', mGy/sec	t, sec	Al - layer reducing a half of radiation, mm	%	output, mGy×m²/ mAs
100	8,1	0,016	101,4	0,672	33,06	0,02	3,77	1,4	0,085

Table 2
Estimation of effective doses for conditional patient of 19 years using the mode from Table 1

Distance	Set	Settings		Radiation	K _e ,	Calculated
"source- receiver", m	U, kV	Q, mAs	size, cm×cm	output, mGy×m²/mAs	mZv/mGy ×m _a	effective dose, mZv
1,0	100	8,1	35×35	0,085	220	0,151

II. Radiography

Table 3

Mode exposure of the biological material in the simulation study of digital roentgenography of the chest in the frontal back view on the stationary complex "Vision" (mode 1)

Sett	ings		Dose to				
U, kV	Q, mAs	U, kV	D, mGy	D', mGy/s	t, sec	Al-layer, mm	sample, mGy
77	125	78,57	7,108	22,72	0,313	3,14	7,108

Table 4

Mode exposure of the biological material in the simulation study of digital roentgenography of the chest in the side view on the stationary complex "Vision" (mode 2)

Settings			Dose to				
U, kV	Q, mAs	U, kV	D, mGy	D', mGy/s	t, sec	Al-layer, mm	sample, mGy
76	32	77,96	1,785	22,24	0,08	3,10	1,785

Toxicity of X-ray produced by tested devices

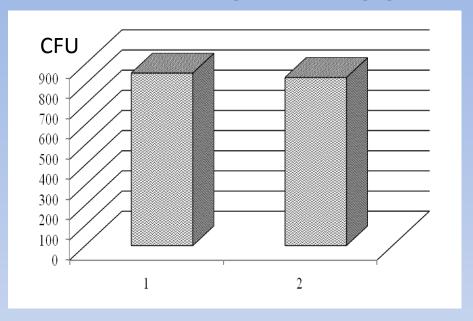
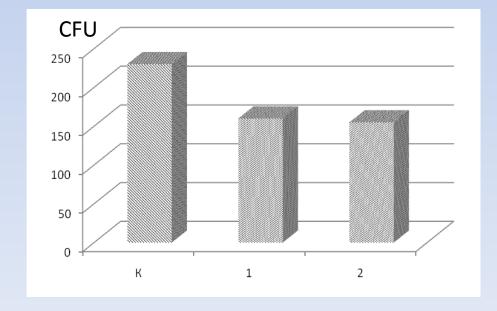



Fig.1.

Bacterial colony forming units: 1 – without radiation; 2- exposed to X-ray produced by "Electron-01"

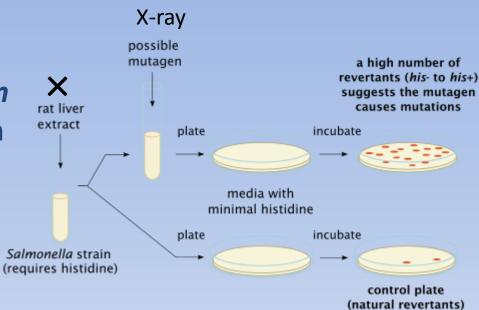


Fig.2.

Bacterial colony forming units: K – without radiation; 1- exposed to X-ray produced by stationary complex "Vision" at frontal view; 2 -by "Vision" at side view

Ames test

with Salmonella thyphimurium auxotrophs (his-) for detection of point mutations induced by X-ray from tested devices

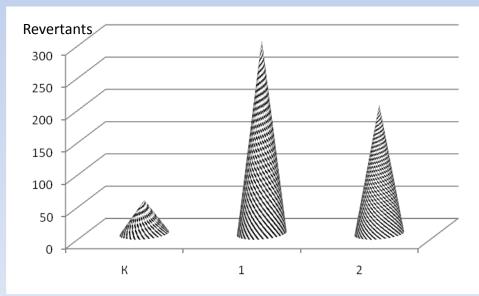
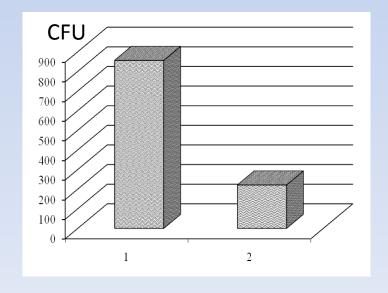


Fig.3.


Revertant (his+) colonies: K –
without radiation; 1- exposed to Xray produced by stationary
complex "Vision" at frontal view; 2
- by "Vision" at side view

III. Computed tomography

Table 5

Mode exposure of the biological material in the simulation study of computed tomography LightSpeed P32 ("Abdomen")

		Se	ettings		P-f/s ,	Detector location	Dose for 1	Dose×length, mGy × cm			
Mode	U, kV	I, mA	ts, sec	t, sec	d, mm	n	mm		turn, mGy	calculated	total
Abdomen topogram	120	10	-	-	-	-	-	on the	0,04	0,04	
Abdomen helical	120	750	1,0	9,8	5,0	5	1,9	exposure place	14,17	7,46	7,5

Toxicity of X-ray produced by LightSpeedPro32 ("Abdomen helical" mode)

Fig.4.

Bacterial colony forming units: 1 – without irradiation; 2- exposed to X-ray produced by CT "LightSpeed Pro32" at "Abdomen helical" mode

Summary

Source of radiation	Procedure	Mode	Dose, mGy	Toxicity	Mutagenicity
"Electron- 01"	Fluoroscopy	Frontal view	0,151	No	No
Stationary complex	Radiography	Frontal back view	7,108	Yes, medium	Yes (weak)
"Vision"		Side view	1,785	Yes, medium	Yes (weak)
CT "LightSpeed Pro32"	Computed tomography	Abdomen topogram	0,04	Not	tested
		Abdomen helical	14,17	Yes, high	Theoretically yes (medium)
Canadian nature	No	Life	1,8 - 4,1 in one year	No	???

Conclusion

- X-ray diagnostic procedures have <u>toxic and mutagenic</u> <u>influence on bacteria</u>, excluding procedures performed on low-dose machines for fluoroscopy
- Simple toxicity and genotoxicity <u>tests are informative</u> for estimation of radiological safety of different X-ray devices functioning at different modes
- Bacterial test-systems could be used for detection of some X-ray machines needed service
- Our results illustrate the <u>need of microflora</u> <u>improvement</u> by patients undergoing X-ray diagnostic, especially of abdominal organs and intestinal path

Thank you for the attention Շնորհակալություն ուշադրության համար Спасибо за внимание!

