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UDK 514.763SOME DEVELOPMENTS OF PETROV'S WORKON CONFORMAL AND PROJECTIVE STRUCTUREG. HallAbstratThis paper disusses the ahievements of A.Z. Petrov in the area of onformal and projetivestruture of spae-times. In fat, it will be mostly onerned with the latter topi but points outuses of the former in developing the projetive theory of spae-times. Some new developmentsin this area of Petrov's researh will be given.Key words: projetive struture, onformal struture, Petrov lassi�ation, urvaturemap. IntrodutionPetrov's work on the algebrai lassi�ation of the Weyl tensor of the gravitational�eld in Einstein's general theory of relativity was a major breakthrough in ahievinga fuller understanding of this theory through its appliations to the generation of muh-needed exat solutions of Einstein's �eld equations. The �nal form of Petrov's work�rst appeared in [1℄ (and in English translation in [2℄) and also in his book [3℄. Theessene of this lassi�ation, for Petrov, was an algebrai lassi�ation of the Riemanntensor at a point of a spae-time whih was itself an Einstein spae. However, in theimportant speial ase when the spae-time is a vauum spae-time, the assoiatedRiemann tensor has idential algebrai properties to the Weyl tensor of any spae-timeand so Petrov's algebrai lassi�ation is usually taken to apply, quite generally, to theWeyl tensor. Petrov showed that there were essentially three distint algebrai types forsuh a Riemann tensor (and hene for the Weyl tensor of any spae-time) at a partiularspae-time point. Within a deade of his original paper, many other workers had realisedits usefulness and extended his ideas to a omprehensive theory of what is now referredto as the Petrov Classi�ation. Two of Petrov's types have been divided by eigenvaluedegeneray, and so one now speaks of the Petrov types I , D , II , N and III , with type
O reserved for the trivial ase when the Weyl tensor vanishes at the point in question.Further details an be found in the above mentioned works of Petrov and also in manyother plaes, for example, [4�6℄.In his book [3℄, Petrov also disussed the idea of �geodesi mappings� of gravita-tional �elds, that is, roughly speaking, �when two gravitational �elds have the same(unparametrised) geodesis�. This problem has been revived reently [7�13℄ and has in-terested both geometers (for obvious reasons) and relativists (beause of the appliationto the Newton-Einstein priniple of equivalene in general relativity theory). The mainpart of this paper will be onerned with this problem. In fat, Petrov's lassi�ation ofthe Weyl tensor is rather useful in some of the ways of attaking it. In addition, Petrov'salgebrai ideas suggested to the present author the idea of the urvature map [6℄ andthis also turns out to be useful in the study of projetive struture.



176 G. HALL1. The Petrov lassi�ationLet M be a smooth, onneted, Hausdor� 4-dimensional manifold with smoothLorentz metri g of signature (−,+,+,+) so that (M, g) is a spae- time. Let ∇denote the Levi �Civita onnetion arising from g and Riem the assoiated urvaturetensor. The omponents of Riem are Ra
bcd ; the assoiated Rii tensor, Ricc , hasomponents Rab ≡ Rc

acb and the Rii salar is R ≡ Rab g
ab . The Weyl tensor isdenoted by C and has omponents Ca

bcd . Using the usual algebrai symmetries of theRiemann tensor omponents Rabcd at some point m ∈M , Petrov [1�3℄ introdued thewell-known 6×6 notation for this tensor to turn it into a 6×6 symmetri matrix, Rαβat m where Greek letters take the values 1,. . . ,6 and represent a skew-symmetri pair ofindies aording to Petrov's sheme 1 ↔ (14), 2 ↔ (24), 3 ↔ (34), 4 ↔ (23), 5 ↔ (31),and 6 ↔ (12) . Thus, R1234 → R(12)(34) = R63 , et. Petrov also notied that thesymmetri matrix Rαβ possessed ertain other onvenient symmetries beause of thefat that (M, g) was assumed to be an Einstein spae (Ricc =
R

4
g ). Nowadays, theseare usually expressed, using the duality operator ∗ , in terms of the left and right �duals�of Riem . Sine Petrov's ideas apply to the Weyl tensor of any spae-time, the remainderof the argument will be given in terms of it. The dual relation referred to above is thengiven by

∗Cabcd = C∗

abcd (1)One then onsiders the matrix Cαβ and studies its possible Jordan anonial formswith respet to the (6×6) form of the bivetor metri Gabcd = gacgbd−gadgbc (whih ispermitted by the algebrai symmetries of Gabcd ) and is non-degenerate with signature
(−,−,−,+,+,+) . This Petrov did by �rst transferring attention to what is essentiallythe omplex tensor +

C derived from C and with omponents +

Cabcd = Cabcd + i
∗

Cabcdwhere ∗

Cabcd denotes either the left or right dual of C , these being equal, by (1), andthen showing how this led to a study of a ertain 3 × 3 trae-free omplex matrixderived from and ontaining all the information in the original one. (It is remarked thatthe trae-free ondition arises from the ondition Cab
ab = 0 and is stronger that theorresponding ondition on Riem (in an Einstein spae) whih is Rab

ab = R .)Thus the possible Segre types (over C) of the original (6 × 6 Weyl) matrix Cαβare those of a omplex 3× 3 matrix and are {111} , {21} and {3} . These are Petrov'sthree types of gravitational �eld at m ∈ M . By re�ning the lassi�ation on the basisof eigenvalue degeneray, they are usually given in six types as {111} (type I), {(11)1}(type D), {21} (type II) {(21)} (type N) and {3} (type III) together with type Oif C(m) = 0 . The symbol D here refers to the term �degenerate� whilst N stands for�null� (this latter term arising from ertain algebrai similarities between this type andthe Maxwell-Minkowski tensor in �pure radiation� eletromagneti �elds). The trae-free ondition referred to earlier shows that all the eigenvalues of the original 6 × 6matrix (or the 3 × 3 one derived from it) in the types N , III (and O) ases are zero.If the Petrov type at m ∈ M is D , II , N , III or O , the Weyl tensor is said to bealgebraially speial at m and if it is I it is said to be algebraially general at m .It is remarked that Petrov's lassi�ation is pointwise and an vary from pointto point over M subjet to ontinuity requirements. In fat, one may deompose Mdisjointly in the forms M = I ∪ D ∪ II ∪ N ∪ III ∪ O = I ∪ intD ∪ int II ∪ intN ∪
int III ∪ intO ∪ F where a Petrov symbol now refers to all those points of M whihare of that Petrov type, int denotes the interior operator in the manifold topology of
M and the subset F is determined by the disjointness of the deomposition and is thuslosed and an be shown to have empty interior [6℄.



SOME DEVELOPMENTS OF PETROV'S WORK. . . 177Of the main developments of Petrov's work sine its announement in Kazan oneshould mention the algebrai work of Bel [14℄, Geheniau [15℄, and Debever [16℄, whodisovered the beautiful reformulation of Petrov's lassi�ation using the idea of prini-pal (or repeated prinipal) null diretions (the Bel riteria) and the resultant anonialforms for C based on them (see also Sahs [17℄ and Ehlers and Kundt [5℄ for a ratherelegant treatment of this problem). A omprehensive spinor treatment of similar mat-ters was also given by Penrose [18℄ and a disussion of the physial interpretation of thePetrov lassi�ation was given by Pirani [19℄.2. Projetive relatednessNow let M be a manifold of dimension n ≥ 2 and g a smooth metri on M of anysignature with Levi �Civita onnetion ∇ and with urvature and Rii tensors, et.denoted as before. Suppose g′ is another smooth metri on M of arbitrary signaturewhose assoiated strutures are denoted by adding a prime to the orresponding onesfor g . Call ∇ and ∇′ (or g and g′ , or (M, g) and (M, g′)) projetively related if theunparamatrised geodesis of ∇ and ∇′ oinide. If suh is the ase then M admitsan exat global 1-form ψ suh that, in any oordinate domain of M , the Christo�elsymbols from ∇ and ∇′ satisfy
Γ′a

bc − Γa
bc = δa

bψc + δa
cψb (2)and, onversely, if (2) holds in any oordinate domain, (M, g) and (M, g′) are pro-jetively related. Equation (2) an, by using the identity ∇′g′ = 0 , be written in theequivalent form

g′ab;c = 2g′abψc + g′acψb + g′bcψa (3)where a semi-olon denotes a ovariant derivative with respet to ∇ . Equation (2)reveals a relation between the type (1, 3) urvature tensors Riem and Riem′ of ∇ and
∇′ , respetively, given by

R′a
bcd = Ra

bcd + δa
dψbc − δa

cψbd (⇒ R′

ab = Rab − 3ψab) (4)where ψab ≡ ψa;b −ψaψb . Sine ψ is exat, ψ = dχ for some smooth funtion χ on Mand then ψab = ψba . The problem thus beomes that of solving (3) for g′ and ψ .Petrov studied this problem in some detail (see [3℄). He approahed it as a problemregarding two quadrati forms g and g′ and onsidered the assoiated Jordan forms of
g′ with respet to g . In Petrov's work, (M, g) was a spae-time and g′ also had Lorentzsignature. In this ase the only possible Segre types for g′ are {1, 111} , {211} {31} and
{zz̄11} together with their degeneraies. Here, {1, 111} means that g′ is diagonalisableover R (with a omma separating the �timelike eigenvalue� from the �spaelike� ones),and {zz̄11} neessarily ours when g′ is diagonalisable over C but not R . Petrovthen proeeds to solve (an equivalent form of) (3) for eah of these Segre types usinga method based on the Rii rotation oe�ients.An alternative approah was suggested by the Russian mathematiian Sinjukov [20℄(and for the remainder of this setion the manifold M is of any dimension n ≥ 2 andthe metris g and g′ are of arbitrary signature). His idea is essential to modify theapproah ontained in (2) and (3) by drawing attention away from the pair (g′, ψ) tothe pair (a, λ) where a is a (neessarily) non-degenerate, smooth, type (0, 2) symmetritensor and λ a smooth (neessarily) exat 1-form, on M given by

aab = e2χg′cdgac gbd, λa = −e2χψbg
′bcgac (⇒ λa = −aabψ

b) (5)



178 G. HALL(where g′ab are the ontravariant omponents of g′ and not g′ab with indies raisedusing g ). Then (5) an be inverted to give
g′ab = e−2χacd g

ac gbd, ψa = −e−2χλb g
bc g′ac. (6)The ondition (3) for projetive relatedness is now, from (5) and (6), equivalent to themore onvenient (Sinjukov) equation for the (Sinjukov) tensor a [20℄:

aab;c = gac λb + gbc λa. (7)The idea then is to solve (7) for a and λ and onvert bak, using (6), to �nd g′ and
ψ . With a and λ thus found, one �rst de�nes a type (2, 0) tensor a−1 on M whih is,at eah m ∈ M , the inverse matrix of a (aac a

−1cb = δb
a ). Then one de�nes a relatedtype (0, 2) tensor on M by a−1

ab = gac gbd a
−1cd . Finally, one de�nes a global funtion

χ =
1

2
log
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∣

and a global exat 1-form ψ ≡ dχ on M . Then g′ab = e2χa−1
ab ,whih is a global metri on M , and ψ , together satisfy (3) and onstitute the requiredsolution on M (see, e.g., [13, 21℄; the expression here for g′ab orrets a typographialerror in [13℄).It is remarked at this point that one may assoiate with (M, g) its type (1, 3) Weylprojetive tensor W with omponents given by

W a
bcd = Ra

bcd −
1

n− 1
(δa

cRbd − δa
dRbc). (8)This tensor was disovered by Weyl [22℄ and has the property that if (M, g) and (M, g′)are projetively related, the Weyl projetive tensors assoiated with g and g′ are equalon M .In the remaining setions, the aim is to survey and extend some of Petrov's resultson projetive relatedness using the Sinjukov transformation, Petrov's lassi�ation ofthe Weyl onformal tensor C , the urvature map [6℄ and holonomy theory.3. First order systems, urvature maps and holonomyFor the remainder of this paper, let (M, g) be a spae-time and let g′ be any other(not neessarily Lorentz) metri on M so that (M, g) and (M, g′) are projetivelyrelated. Then (2)�(7) hold (and n = 4 in (8)). On applying the Rii identity to theSinjukov tensor a and using (7) one �nds

(aab;cd − aab:dc =)aaeR
e
bcd + abeR

e
acd = gac λbd + gbc λad − gad λbc − gbd λac, (9)where λab ≡ λa;b(= λba) . On applying ertain standard proedures to this equationand with repeated use of (7) one an show [12, 21℄ that if Φ is any of the omponentsof a , the omponents of λ or the salar λa

;a , then, in any oordinate domain of M , Φsatis�es a �rst-order di�erential equation of the form Φ,a = Fa where a omma denotesa partial derivative and the quantities Fa depend only on the various quantities that
Φ an represent and those desribing the geometry of M . Thus, any global solution for
a and λ of (7) is uniquely determined by giving the quantities a , λ and λa

;a at anypoint m ∈M . From this it follows [21℄ that if the pairs (a, λ), (b, µ) are global solutionpairs of (7) and if there exists a non-empty open subset U ⊂ M suh that b = a+ αg

(α ∈ R) on U then b = a+ αg and λ = µ , on M . In partiular, if a = b on U , then
a = b and λ = µ on M and so (a, λ) = (b, µ) . Thus, if M admits a non-empty, opensubset U suh that the only solution of (7) on U is λ = 0 and a = αg (0 6= α ∈ R),the only solution of (7) on M is λ = 0 and a = αg (and so ∇ = ∇′ on M ).



SOME DEVELOPMENTS OF PETROV'S WORK. . . 179This last result is useful in getting global solutions for (7) from loal ones. Toattak the loal problem, the following onstrution is helpful. Let Λm denote the setof all tensor type (2, 0) 2-forms (bivetors) at m ∈ M and onsider the linear map
f : Λm → Λm onstruted from the urvature tensor Riem of (M, g) where

f : F ab → Rab
cdF

cd (F ab = −F ba). (10)(The similarity with Petrov's 6 × 6 matrix and its assoiated linear map is lear.) Letkerf and rgf denote the kernel and range spae of f . The rank of f (the dimensionof rgf ) at m is alled the urvature rank (of (M, g)) at m [6℄ and this urvature ranktogether with the nature of rgf ontain muh useful information. Clearly, if F ∈kerfand G ∈rgf , F abGab = 0 and so F and G are orthogonal with respet to the bivetormetri and dim(kerf) + dim(rgf) = 6 . However, (kerf)∩(rgf ) need not onsist onlyof the zero bivetor (as it would if the bivetor metri were positive de�nite). In fat,for vauum metris of Petrov type I , D , II , N , III and O , one has, for the pair(dim(rgf) , dim(kerf)), the respetive values (6, 0) (or (4, 2)), (6, 0) , (6, 0) , (2, 4) ,
(4, 2) and (0, 6) and for the types N and III , (rgf)∩(kerf ) is 2-dimensional (and0-dimensional for all other types). It is remarked that the evenness of dim(rgf ) follows,sine g has Lorentz signature, from (1) beause in this ase Riem = C . For the aseof vauum metris, the Petrov anonial types trivially give a omplete lassi�ationof the map f but for general spae-times, a more detailed lassi�ation is required.To ahieve this, it is onvenient to introdue �ve urvature lasses in the following way.In these de�nitions if F ∈ Λm is of matrix rank 2 it is alled simple. In this ase it maybe written as F ab = paqb − qapb = p∧ q for tangent vetors p , q at m and the 2-spaespanned by p and q is alled the blade of F . Otherwise F is non-simple and gives riseto a anonial pair of blades at m whih are orthogonal [6, 17℄.Class AThis overs all possibilities not overed by lasses B , C , D and O below. For thislass, the urvature rank at m is 2, 3, 4, 5 or 6.Class BThis ours when dim(rgf) = 2 and when rgf is spanned by a timelike-spaelikepair of simple bivetors with orthogonal blades (hosen so that one is the dual of theother). In this ase, one an hoose a null tetrad l, n, x, y ∈ TmM suh that thesebivetors are F = l ∧ n and ∗

F = x ∧ y , so that F is timelike and ∗

F is spaelike andthen (using the algebrai identity Ra[bcd] = 0 to remove ross terms) one has, at m ,
Rabcd = αFabFcd + β

∗

F ab

∗

F cd (11)for α, β ∈ R , α 6= 0 6= β .Class CIn this ase dim(rgf) = 2 or 3 and rgf may be spanned by independent simplebivetors F and G (or F , G and H ) with the property that there exists 0 6= r ∈ TmMsuh that r lies in the blades of ∗

F and ∗

G (or ∗

F , ∗

G and ∗

H ). Thus, Fabr
b = Gabr

b(=
Habr

b) = 0 and r is then unique up to a multipliative non-zero real number.Class DIn this ase dim(rgf) = 1 . If rgf is spanned by the bivetor F then, at m ,
Rabcd = αFabFcd (12)for 0 6= α ∈ R and Ra[bcd] = 0 implies that Fa[bFcd] = 0 from whih it may be hekedthat F is neessarily simple.



180 G. HALLClass OIn this ase Riem vanishes at m .This urvature lassi�ation is, like the Petrov lassi�ation, pointwise. One maytopologially deompose M into its urvature lasses in a similar way to that done forPetrov's types [6℄.There is a partiularly useful result regarding the urvature rank of f . If F isa simple bivetor in kerf (for (M, g)), then the blade of F is a 2-dimensional eigenspaeof the symmetri type (0, 2) tensor ∇λ , whilst if F is a non-simple bivetor in kerfthe anonial blade pair of F give two g -orthogonal 2-dimensional eigenspaes of ∇λ .It an then be shown [7, 13℄ that if kerf is suh that the tangent spae TmM to M at
m ∈M is an eigenspae of ∇λ at eah point of M then, on M ,

(i) λa;b = cgab; (ii) λdR
d

abc = 0; (iii) aaeR
e
bcd + abeR

e
acd = 0, (13)where c is onstant in (i) . Then λ is a homotheti (o)vetor �eld on M and if λ van-ishes over some non-empty open subset of M it vanishes on M . Further, the equationsin parts (ii) and (iii) may be solved algebraially for λ and a at any m ∈ M if theurvature lass is known at m [6℄. Part (iii) is also usefully related to the urvaturelass at the appropriate point.The �nal tehnique required in the study of the projetive problem is the holonomyalgebra of (M, g) . The details here are a little lengthy and are given in [6, 13, 21, 23℄.Brie�y, the holonomy algebra of (M, g) an be shown to be a subalgebra of the Liealgebra of the Lorentz group and an be lassi�ed onveniently into �fteen types [24℄whih are labeled R1, . . . , R15 . Of ourse, the holonomy group of (M, g) depends notonly on its holonomy algebra but also on the topologial properties of M . But theholonomy algebra is all that will be required here. The type R1 is the trivial �atase, R5 is impossible for a spae-time, R15 is the general ase and the holonomytypes R2 − R4 and R6 − R14 re�et the number of independent (loally) ovariantlyonstant and reurrent vetor �elds admitted by ∇ on M . The holonomy lassi�ationof (M, g) is, unlike the Petrov and urvature lassi�ations, a global statement about

(M, g) . Taken together with the in�nitesimal holonomy algebra [6, 23℄, it ombineswith the various urvature lasses over M desribed above to provide a powerful toolin solving the projetive problem.4. Main resultsFirst onsider the ase when (M, g) is a spae-time whih is an Einstein spae (andwhih inludes the speial ase when (M, g) is vauum). For this situation one has,in the notation established above, the following result [7�9, 11�13℄.Theorem 1. Let (M, g) be a spae-time whih is an Einstein spae and let g′ beanother smooth metri on M of arbitrary signature, whih is projetively related to g .Then either ∇ = ∇′ or (M, g) and (M, g′) eah have onstant urvature. If (M, g) isvauum and not �at, then (M, g′) is also vauum (and not �at) and, further, g′ = cgfor onstant  exept possibly when (M, g) is a pp-wave spae-time (when the simplerelation between g and g′ an easily be found) .Proof. A very brief sketh of several proofs will be given (Petrov's approah hasalready been mentioned). The �rst approah, given in [7℄, was atually given only forvauum spae-times but is easily extended to Einstein spaes. This approah relieson (3) and (8) and makes no use of the Sinjukov transformation. First, one disjointlydeomposes M into its regions of onstant Petrov type, as desribed in Setion 1.A relationship between the urvature map f and the Petrov types of Riem is then



SOME DEVELOPMENTS OF PETROV'S WORK. . . 181established and anonial forms for eah Petrov type are written down for eah regionin the above deomposition with use being made of the equality of the tensors W in (8)for g and g′ . In an improved proof given in [8℄, use is made of the Sinjukov equations(5)�(7). Here, one is able to show that either ∇′ = ∇ or the Weyl tensor and anysolution pair (a, λ) of (7) satisfy
aaeC

e
bcd + abeC

e
acd = 0, Cabcd λ

d = 0 (14)on M . One then deomposes M as M = A ∪B where A = {m ∈M : C(m) 6= 0} and
B = {m ∈M : C(m) = 0} so that A is open and B is losed in M . (In [8℄ this argumentwas given rather lumsily and will be lari�ed here). It was then shown that λa wasa projetive vetor �eld on M and so if it vanishes on some non-empty open subset of
M it vanishes on M (and then from (6) and (2) ψ = 0 and so ∇ = ∇′ , on M ). (In fat,this result is essentially a onsequene of the �rst order system desribed in Setion 3.)If m ∈ A and λ(m) 6= 0 , it follows from the seond equation in (14) together with theBel riteria (Setion 1) that, at m and in some open neighbourhood W of m , the Petrovtype of (M, g) is N and λ spans a (repeated) prinipal null diretion at m . Then onederives the ontradition that λ vanishes on W and so λ vanishes on A . Sine A isopen it follows that, if A 6= ∅ , λ again vanishes on M . Finally, if A = ∅ , M = B andso (M, g) is of onstant urvature (and so also is (M, g) [25℄). It an also be shown thatif g and g′ are not of onstant urvature they have the same signatures (somethingwhih was assumed by Petrov) but that (M, g′) may not be an Einstein spae. Otherproofs have also been given, but the pp-wave possibility desribed in the statementof the theorem only seems to have been pointed out learly in [7℄. (In theorem 1, if
g is of signature (+,+,+,+) or (+,+,−,−) again one gets the result that either eahof (M, g) and (M, g′) is of onstant urvature or ∇ = ∇′ , that g′ need not representan Einstein spae nor have the same signature as g but that (exluding the onstanturvature ase) Rii �atness is preserved [8, 9℄).For a general spae-time, it is onvenient to proeed by onsidering the holonomytype of (M, g) . All types exept the most general one an be solved and the followingtheorem summarizes part of the situation.Theorem 2. Let (M, g) and (M, g′) be projetively related spae-times.

(i) If g and g′ are (loally) onformally related on M , then they are globally on-formally related on M and further ∇ = ∇′ and g′ = cg on M for c onstant.
(ii) If (M, g) has holonomy type R2 , R3 , R4 , R6 , R7 , R8 or R12 , then ∇ = ∇′and the relation between g and g′ an be alulated easily using holonomy theory.
(iii) If (M, g) has holonomy type R10 , R11 or R13 and with urvature rank > 1at some m ∈ M , then ∇ = ∇′ and the relation between g and g′ an be alulatedeasily using holonomy theory.Proof. Again a brief sketh only will be given. The result in part (i) was partlynotied by Thomas [26℄. The full result is proved by hoosing m ∈M and a onnetedopen neighbourhood U of M on whih g′ = φg for φ : U → R and substituting into(3), ontrating with gab and then substituting bak and ontrating with gac to get

ψ = 0 and χ = const on U . The result follows from a topologial argument using theonnetedness of M . For parts (ii) and (iii) , one �rst uses a result mentioned justbefore (13) regarding the kernel, kerf , of the urvature map f and shows that for eahof the holonomy types in parts (ii) and (iii) TmM is an eigenspae of ∇λ and henethat λ is a homotheti vetor �eld on M . Then (13) an be used in onjuntion with theremarks following it to hoose m ∈M and an open onneted neighbourhood U of mand to write a anonial form for the tensor a in U , whih is determined by part (iii)



182 G. HALLof (13), in terms of a null tetrad hosen to ��t� the holonomy invariant distributionsand/or vetor �elds. One then substitutes into (7) and performs ertain ontrationsto see that λ vanishes on U and hene, sine it is homotheti, on M .This solves the problem for all holonomy types exept types R10 , R11 or R13 (andwith urvature rank ≤ 1 at eah point of M ), and for types R9 , R14 and R15 . Thesolution in these ases is more ompliated and an be found in [13, 21℄ (and furtherholonomy details are available in [27℄). For these ases, one does not neessarily ahieve
∇ = ∇′ but the relationship between g and g′ an still be found. The general ase R15is not ompletely solved (although some progress an be made [21℄). In partiular, in theimportant ase for relativisti osmology when (M, g) is a �generi� FRWL osmologialmodel (neessarily of type R15 ), it has been ompletely solved [10℄ and (M, g′) mustalso be an FRWL metri.Another problem whih has been essentially solved is the following one [21℄. If (M, g)and (M, g′) are projetively related, how are their holonomy groups related? Clearly,from the above results, there is a lose link between suh holonomy groups (often equal-ity), as Theorem 2 shows, but it does not follow that they are the same and examplesof non-equality have been given. Further, the Petrov type and the urvature lass at
m ∈ M and the holonomy type of (M, g) are, as may be expeted, losely related.In fat, it an be shown [6℄ that if the holonomy type of (M, g) is R2 or R4 , the Petrovtype at any point is either O or D and similarly for holonomy type R3 it is O or N ,for R7 it is O or D , for R13 it is O , I or D and for all other holonomy types exept
R10 and R15 it is algebraially speial. In addition, for the Petrov types R2 , R3 and
R4 , it is Petrov type O at m if and only if Riem(m) = 0 . Similarly, if the holonomytype is R2 , R3 or R4 , the urvature lass at any m ∈ M is O or D , for holonomytypes R6 , R8 , R10 , R11 and R13 it is O , C or D , for R7 it is O , B or D , for R9 and
R12 , it is O , C , D or A and for R14 or R15 , it ould be any urvature lass (but, if
R14 , it annot be urvature lass B everywhere). Another question, perhaps less inter-esting for physiists, is the problem when the original (M, g) satis�es dimM = 4 andwith g positive de�nite. Tehniques similar to those above also lead to a solution forthis problem in all but the most general holonomy ase [28℄. Similarly, the ase when
dimM = 4 and g has neutral signature (+,+,−,−) has been onsidered1. Furtherdetails for spae-times an be found in [29℄.The author wishes to thank David Lonie for many illuminating disussions andollaborations. �åçþìå�. Õîëë. �àçâèòèå èññëåäîâàíèé À.Ç. Ïåòðîâà ïî êîí�îðìíîé è ïðîåêòèâíîé ñòðóê-òóðàì.Â ñòàòüå îáñóæäàþòñÿ äîñòèæåíèÿ À.Ç. Ïåòðîâà â îáëàñòè èññëåäîâàíèÿ êîí�îðìíîéè ïðîåêòèâíîé ñòðóêòóð ïðîñòðàíñòâà-âðåìåíè. Îñíîâíîå âíèìàíèå óäåëåíî ïîñëåäíåé,îäíàêî ïîêàçàíî è çíà÷åíèå ïåðâîé â ðàçâèòèè ïðîåêòèâíîé òåîðèè ïðîñòðàíñòâà-âðåìåíè.Ïðèâåäåíû íåêîòîðûå íîâûå ðåçóëüòàòû â äàííîé îáëàñòè èññëåäîâàíèÿ À.Ç. Ïåòðîâà.Êëþ÷åâûå ñëîâà: ïðîåêòèâíàÿ ñòðóêòóðà, êîí�îðìíàÿ ñòðóêòóðà, êëàññè�è-êàöèÿ À.Ç. Ïåòðîâà, êàðòà êðèâèçíû.

1Wang Z., Hall G.S. Projetive Struture in 4-Dimensional Manifolds with Metri of Signature
(+, +,−,−) . � Submitted.
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