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ON CONSTRUCTIONS OF SEMIGROUPS
K.P. Shum, X.M. Ren, C.M. Gong

Abstract

This paper gives a brief survey of constructions of semigroups by using structures of some
semigroups belonging to the class of regular semigroups, quasi-regular semigroups, and abun-
dant semigroups. In particular, we show some basic notation and structure theorems for some
semigroups, for example, Rees matrix semigroups over the O-group G° and their general-
izations, bands, F-ideal quasi-regular semigroups, C*-quasiregular semigroups, L*-inverse
semigroups, Q" -inverse semigroups, and regular ortho-lc-monoids.

Key words: regular semigroups, quasi-regular semigroups, abundant semigroups, con-
structions.

1. Rees matrix semigroups and their generalizations

For notation and terminology not given in this paper, the reader is referred to [1-13].

A semigroup is called completely 0-simple if it is O-simple and has a primitive idempo-
tent. In 1940, Rees provided the following recipe for manufacturing completely 0-simple
semigroups.

Let G be a group with identity element e, and let I, A be non-empty sets. Let
P = (px;) be a A x I matrix with entries in the 0-group G°(= G U {0}), and suppose
that P is regular, in the sense that no row or no column of P consists entirely of zeros.
Formally,

(Vie)(3Xx e A) px #0,

(VAeI)(Fiel) prn #0. (1)
Let S = (I x G x A)U{0}, and define a multiplication on S by

o - 0 if py;j =0,

(i,a,A)-0=0-(i,a,A) =0-0=0. (2)

The semigroup constructed with this recipe will be denoted by MO[G; I, A; P] and will
be called the I x A matriz semigroup over the 0-group G° with the reqular sandwich
matriz P.

Theorem 1 (The Rees Theorem, [14]). Let G° be a 0-group, let I, A be non-
empty sets, and let P = (px;) be a A x I matriz with entries in G°. Suppose that P
is regular in the sense of (1). Let S = (I x G x A)U {0}, and define a multiplication
on S by (2). Then S is a completely 0-simple semigroup.

Conversely, every completely 0-simple semigroup is isomorphic to one constructed
in this way.

In 1990, M.V. Lawson in [15] gave another abstract characterization of Rees matrix
semigroups as follows.



ON CONSTRUCTIONS OF SEMIGROUPS 181

Let S be a monoid with identity 1 and zero element 0, having group of units G(S).
Let A and I be non-empty sets, and let P be a A x I matrix over S with entries p)y;
where ()\,i) € A x I. The matriz semigroup M = M°(S; I, A; P) is the set of triples
I x S x A with a zero 0 adjoined and where we identify all the elements of the form
(7,0,A) with 0, under a multiplication given by

(i, 0) - Gy ) = {“’xp”y’“) t 70
0 otherwise.
Theorem 2 [15]. Let S be a Rees semigroup with e € U\ {0}. Then
(1) S is abundant if and only if eSe is abundant;
(i4) S is regular if and only if eSe is regular;
(tit) S is inverse if and only if S is reduced, eSe is inverse and Regy(S) is
a subsemigroup (for details, see [15]).

To further generalize the Rees matrix semigroup constructed above, we have recently
established in [16] the following construction of semigroups by using semigroupoids.

A semigroupoid is a pair (S, SY) consisting of a set S of morphisms and a set S°
of objects, together with the functions 7: S — S° and w: S — S°, and a function u
which is so called “multiplication” from the set S*S = {(z,y) € Sx S | 7(x) = w(y)}
to S; we usually write zy instead of pu(z,y), and if (z,y) € S .S, then we write Jzy;
in addition, the following two axioms hold:

(C1) If Jay, then 7(zy) = 7(y) and w(zy) = w(x);

(C2) z(yz) = (zy)z whenever the products are defined.

Let A, B € S°. Then, in this case, the set Mor (A,B) = {z € S | 7(x) = A and
w(z) = B} is called the Mor-set from A to B. A semigroupoid S is said to be strongly
connected if each Mor-set (A4, B) is non-empty.

Let I and A be two non-empty sets and S a strongly connected semigroupoid.
Define two surjective functions F: I — S and G : A — S°. Now,let p: A x I — S be
a function such that

P(x,) €Mor (F(i), G(N)).

We simply write p( ;) = pai so that the entries of the A x I matrix P = (px;) are py;.
Let M = M(S, F,G; P) be the following set

M = {(i,z,\) € I x S x A | z eMor(G(\), F(3))},

equipped with the multiplication given by (i,x, A\)(J,y, 1) = (3, zpr;y, 1) -

Then it is easy to check that the set M = {(i,2,\) € IXSxA |z €Mor(G(X), F(i))}
forms a semigroup under the above multiplication. We call M a Rees matriz semigroup
over a semigroupoid (for details, see [16]).

2. Presentations of bands and their generalizations

We say that a semigroup S is a band if every element of S is idempotent. In 1971,
Petrich in [17] gave the general structure theorem for bands.

Theorem 3 [14, Theorem 4.4.5]. Let Y be a semilattice, and let {E, | « € Y}
be a family of pairwise disjoint rectangular bands indexed by Y . For each «, let
E, = I, x Ay, and for each pair o, of elements of Y such that o > (3, let
®op: Eq — T1," X Ty, be a morphism, where

a®ap = (05,15) (a € Eq).
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Suppose also that
(1) if a= (i,u) € Eq, then ¢, and 1," are constant maps, and

@5y =i, (W) = p;

(i7) if a € S, b€ Sg and af =y, then qbqug and w‘;wg are constant maps;
(4i7) if (d)ggbz) is denoted by j and <¢$¢g> by v, then for all § <,

o) = o3, WP = vyl
Let B=\J{E. | a €Y }, and define the product of a in E, and b € Eg by
axb=((¢30%), (¥545)),

where v = af. Then (B, x) is a band, whose [J -classes are the rectangular bands E., .

Conversely, every band is determined in this way by a semilattice Y, a family of
rectangular bands E, = I, X A, indexed by Y, and a family of morphisms ® g :
Eqy —T1," X Tx, (o, BEY, > f3) satisfying (i), (i1) and (iii).

An element a of a semigroup S is called regular if there exists x € S such that
a = axa; an element a of S is called quasi-regular if there exists a natural number
n such that o™ is regular. A semigroup S is called regular (quasi-regular) if every
element of S is regular (quasi-regular). It is easy to see that quasi-regular semigroups
are generalizations of regular semigroups. As a generalization of bands, in 1989 Ren and
Guo introduced and studied E-ideal quasi-regular semigroups.

According to [18], a semigroup S is called an F -ideal quasi-regular semigroup if S is
quasi-regular and E(S) is an ideal of S.

For E-ideal quasi-regular semigroups, Ren and Guo [18] have given the following
constructions.

The set Q with a partial operation is called a partial power breaking semigroup if
there is a partial binary operation on the set ¢ such that for any p, ¢, 7 € Q, (pq)r € Q
(well-defined) if and only if p(gr) € Q; in this case, (pg)r = p(gr) holds, and for every
a € @, there exists n € N such that o™ ¢ Q.

Let Y be a semilattice, and let {E, = I, X Ay | @ € Y} be a family of pairwise
disjoint rectangular bands. Let @ be a partial power breaking semigroup together with
the mapping ¢ : Q@ — |J E, satisfying the following properties.

acY

(i) For any a, b € Q, if p(a) € E,, ¢(b) € Eg and aff = v, then ab € @ implies

p(ab) € E,. For every pair o, 8 € Y with a > 3, we can construct two mappings:

Uap:o HEs) — T1,% x Ti,,
a— (95, v5)

and
Do Ea — T1y" X Tp,,
e (05, V5)
that satisfy the following properties:

(ii) If e = (4,j) € E,, then ¢%, ¢ are constant transformations on I, and A,
respectively, and (¢%) = 4, (¥%) = j. Here we denote the values of the constant trans-
formations by (¢%) and (%), respectively.

(iii) 1° If e € E,, f € Eg, and § <y = af, then ¢§¢,{ and 1/)5;1/)2; are transforma-
tions on I, and A, respectively. Let (qbf;qb@ =1, (wf;wﬁ;) = 4, we have

N
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2° If e € Eo, a € Q, ¢(a) € Eg, and 0 < v = af, then ¢5¢%, #5645 and
YSys, PSS are constant transformations on I, and A, respectively. Let (gbfyqb‘;) =

ke, (YSpl) =1, (¢2¢5) =k, and (y24<) =1, we have
o5 = g, i) = s,

K Kl
$0 = g5, i) = s,
3°Ifa,beQ, ab¢ Q, ¢(a) € Ea, ¢(b) € Eg,and 6§ < = af, then ¢2¢?, ¢yt
are constant transformations on I, and A, respectively. Let (¢2¢%) = u, (¢29)) = v,
we have

5 = daeh st = vk
(iv)Ifa,beQ, abe Q, ¢(a) € E,, ¢(b) € Eg, and § <y = af, then

b b b b
§ = 050505 = Vsis.

We now write . = QU | Ea. and define an operation % on Y. as follows:
acY
a)If a,be @ and ab € Q, then axb=ab. It a, b € Q, ¢(a) € E,, ¢(b) € Es and

af =7, but ab ¢ Q, then
axb=((¢20h), (Vo).
b)If e€ E,, a€Q, ¢(a) € Eg, and af =+, then

axe= ({6595), (Y395)),

exa= ((¢567), (Y5¥5)).
c)If ee E,, f € Es, and af =, then

ex f = ((¢50]), (W5u])).
We denote the above system consisting of > and the operation * on > by
S =3(Q, U E., U, ®,p). It is easy to show that > = > (Q, U FEa,V,P,¢) is
acY acY

a semigroup, i.e. the above operation * on »_ is associative.

Theorem 4 [18]. Let S be a semigroup. Then S is an E-ideal quasi-regular
semigroup if and only if S is isomorphic to some semigroup of type >, =

= Z(Q? U Eav\IjacI)aSD)'
acY

3. A-products and generalized A-products

A regular semigroup S is called a left C'-semigroup (in short, LC-semigroup) if
for any @ € S, aS C Sa. In 1991, Zhu, Guo and Shum in [19] gave the following
characterizations for left C'-semigroups.

Theorem 5 [19]. Suppose that S is an orthodox semigroup with a band E of
idempotents. Then the following statements on S are equivalent:

(i) S is a left C-semigroup;

(77) (Ve € E) eS C Se;

(i7i) (Ve € E)(Ya € S) eae = ea;

(iv) DSN(Ex E) =LF;

(v) S is a semilattice of left groups;

(vi) L=JJ is a semilattice congruence on S.
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In studying of structure theory of left C'-semigroups, Guo, Ren and Shum [20]
introduced the concept of A-products of semigroups as follows.

Let Y be a semilattice. Let T' = |J T, be a semilattice of semigroups T, and
acY
I = U I, be a semilattice partition of the set I on the semilattice Y. For each
acY
a €Y, write S, =T, X I,; for any o, 5 € Y, > (3, define the mapping

\Ija,ﬁ . Sa "7'[57

a = wg,ﬁa

satisfying the following conditions:

(P1) Tf (u,i) € Sa, @' € I, then )i’ =i,

(P2) If (u,i) € Sa, (v,j) € Sp, then

(a) wéuofgwévo% are constant value mappings on I,5, denote the value by
T o

(b) if af > 6, (wlud) =k, we have {3 = (" ul

B,a8
Define a multiplication on the set S by

(u,1) * (v,5) = (uv, WDWEIN), (1) € Sa, (v,5) € Sp.

where wv is the product of v and v in the semigroup T'.
It is easy to verify that S = |J S, with the operation above forms a semigroup.

acY
The semigroup S constructed above is called a A-product of a semigroup 7" and a set [
with respect to semilattice Y, denoted by S =TAy yI.

Theorem 6 [21]. Let T = [Y; Gy, va,8] be a strong semilattice of group G, and let
I'=U,cy Lo be a semilattice decomposition of a left reqular band I for left zero bands
Iy . Then the A-product S =T Ay gl of T and I with respect to Y is a LC-semigroup.

Conwversely, every LC-semigroup S can be constructed in this way.

According to [22], a quasi-regular semigroup S is called a C* -quasiregular semigroup
if for any e € E(S), the mapping 1. : S' — eS'e defined by x +— exe is a semigroup
homomorphism and RegS is an ideal of S'.

Some characterizations of C*-quasiregular semigroups were given by Shum, Ren
and Guo in [22].

Theorem 7 [22]. The following statements are equivalent for a semigroup S :

(1) S is a C* -quasireqular semigroup;

(i) S is a quasi-completely reqular semigroup in which RegS is an ideal of S and
E(S) is a regular band;

(7it) S 1is a quasi-completely regular semigroup such that eS U Se C RegS and the
mapping . : E(S) — eE(S)e defined by f +— efe is a semigroup homomorphism for
all e € E(S);

(iv) S is a semilattice of quasi-rectangular groups such that

(Va € S)(3m € N) a™S U Sa™ C RegS

and E(S) is a regular band;
(v) S is a nil-extension of a quasi-C -semigroup.

It is well-known that the structure of completely regular semigroups can be de-
scribed by the translational hull of semigroups (see M. Petrich in [23]). Inspired by the
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work of M. Petrich, we can also construct quasi-completely regular semigroups by using
translations on semigroups.

To obtain structure of C*-quasiregular semigroups, we consider a more general
construction for semigroups rather than the A-product structure. We call this new
structure the generalized A-product structure.

We first cite the following concepts.

A mapping 6 from a power breaking partial semigroup @ to another one is called
a partial homomorphism if (ab)f = afbf, whenever a,b,ab € Q.

Write 7 (X)(7*(X)) for the semigroup of all left (right) transformations on a set X .
Also, we use the symbol () to denote the value of a constant mapping ¢ acting on
the set X.

We are now ready to state the definition of generalized A-product of semigroups.

(I) Let 7 be a partial homomorphism from a power breaking partial semigroup @
to a semilattice Y ; write Q, = 77 1(a), for any a € Y.

(IT) Let T = [Y, T4, &ap] be a strong semilattice of semigroups T, , where &,3 is the

structure homomorphism. Let I = |J I, and A = |J A, be a semilattice partition
acY acY
for the set I and for the set A on the semilattice Y, respectively. It is well-known that

if T,, are groups, then the strong semilattice T' = [Y, Ty, £ap] is a Clifford semigroup.
For every a € Y, form the following three sets, namely, the sets

Sg :QaUTa;
SL = Qo U (Iy x Ty),
ST = Qu U (T, x Ay).

(ITI) For any «, € Y with o > (3, define the mapping
o5 : S — Ts by ar abyg,

and we require that 6, g satisfies the following condition.
(P1) (i) baplr. = o
(ii) if a € Qo and a > [ > v, then ab, g0y = by - .
(iii) if @ € Qu, b€ Qp and ab € Qqp with af > 4§, then (ab)bnp,s = aba sb0s,s.
(IV) For «,3 € Y with a > (3, define the following two mappings ¢, g and ¥, g:

Pap:Se—T(g) by ar @%s;
Ya,p: S, =T (Ag) by aw— wg,ﬁ.

Let a5 and 1, g satisfy the following conditions (P1), (P2), (P2)* and (P3)*
respectively. _

(P2) If (i,9) € In x T,y and j € I, then {9 = .

(P2)* If (g,\) € T x Ag and p € Ay, then ppl%) = A.

For the sake of convenience, we write (i,9)0n.3 = a5 and (g, \)0,g = g0, for
any (i,9) € In x Ty, and (g, \) € To X Ay .

(P3) Let o, § and 6 € Y with af > 4.

() IfacsS, be Sf;, and ab € Q3. then @3%76 = @‘;7690%,5.

(i) Ifae S, be Sf; and ab ¢ Qa3, then gaiaﬁcp%,aﬁ is a constant mapping acting
on the set In3.

Let k = (0% o305 45) be the constant value of @2  50% 5 and g = aba,apb0s.0p-

Then

(k,9) b
‘Paﬁ?a = Vo 69P8,6°
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(P3)* Let o, § and 6 € Y with a8 >§

(i) If a€ Sy, be Sh, and ab € Qqp, then 1/)3%75 = wg,éwg,é.

11 a € , S , and a B, then 1s a constant mappin

i) If St b € Sp, and ab ¢ Qagp, then ¥§ 405 .5 i ing
acting on the set Ayg.

Let u = (2 505 45) be the constant value of % ;0% 5 and v = afa,asb0p,05-
Then (o)

Q/Ja%,is = 3,51/)%,5-
(V) Now, form theset S= |J So = U (QaU (o X Toa X Ay)) and define a binary

acY acY
operation on S satisfying the following conditions.

[MI1] If a € Qq, b€ Qp, and ab € Qup, then a b = ab.
[M2] If a € Qq, b€ Qp, and ab ¢ Qup, then

113 77

axb= (<‘pg¢,aﬁ@%,aﬁ>a aea,aﬁbeﬁ,aﬁv <wg,a6wg,a6>)'
[M3] If a € Qa, (i,g,)\) € Ig x 15 x Ag, then

£ (1,9, 0) = (0% 0505 %), 00a,apg8p.a8, (V2 apt o),

(iaga )‘) *a = (<(p(ﬁ a)ﬁ(pa aﬁ> 995 aﬁaea afs <wﬁ af o aﬁ>)
[M4] If (4,9, \) € Lo X To X Ng, (4, h, 1) € Ig x Tg x Ag, then

(3,9, 0) * (i, by 1) = (005051, g asaphbsap, (W00 5.

It can be verified, by routine checking, that (.S,x) is a semigroup.
Now, we write ¥ = {pa.8, V8,005 | @, 0 € Y,a > [} and call it the structure
mapping of the semigroup S = |J (Qa U (In X Ta X Ay)).
acY

Summarizing all the above steps, we give the following definition.

Definition 1 [22]. The above constructed semigroup S is called the generalized
A-product of the power breaking partial semigroup @, the semigroup T', the sets [
and A with respect to the semilattice Y and the structure mapping X. Denote this
semigroup by S = Ay (Q,I,T,A).

Now, we state a construction theorem for a C*-quasiregular semigroup.

Theorem 8 [22]. Let Y be a semilattice, ) be a power breaking partial semigroup,

G =1Y,Gq,&a 8] be a strong semilattice of groups Go,I = |J In, and A= |J Ay be
a€gY acY
a left reqular band and a right regular band, respectively. Then the generalized A -product

Ay x(Q,I,G,A) is a C* -quasiregular semigroup.
Conversely, every C*-quasireqular semigroup can be constructed by a generalized
A-product Ay x(Q,1,G,A).

4. Left wreath products and wreath products
In 1982, an abundant semigroup was first introduced and studied by J.B. Fountain
[5]. To show the definition of an abundant semigroup, we first cite a set of relations
called Green’s star relations on a semigroup S
L*={(a,b) € S x S| (Vo,y € SYazr = ay < bx = by},
R* = {(a,b) € S x S| (Vz,y € S")za = ya & za = yb},
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H* =L AR,
D* =L"VTR",
J*={(a,b) € Sx S| J*(a) = J"(b)},

where J*(a) denote the principal *-ideal generated by the element a in S (see [5]
and [24]).

Clearly, on any semigroup S we have £ C £* and R C R*. It is easy to see that
for regular elements a,b € S, (a,b) € £* if and only if (a,b) € L. Moreover, we can
easily see that £* is a right congruence and R* is a left congruence on S, respectively.

An abundant semigroup S is a semigroup in which each L£*-class and each R*-
class contains an idempotent. It is clear that a regular semigroup is abundant. In fact,
abundant semigroups can be regarded as natural generalizations of regular semigroups.

An abundant semigroup S is called an L* -inverse semigroup if S is an IC' semi-
group whose idempotents form a left regular band (for details, see [25]).

To obtain structure of L£*-inverse semigroups, the concept of left wreath product of
semigroups was introduced by Ren and Shum in [25].

Let T" be a type- A semigroup with semilattice Y of idempotents. Let B = Uycy Ba,
be a semilattice decomposition of a left regular band B into left zero bands B, .

Because the type- A semigroup I' is abundant, we can always identify the element
~ €T by its corresponding idempotent v € R (T)NE or by v* € L3(T') N E, respec-
tively. Moreover, since the type- A semigroup I' is also an IC abundant semigroup,
there is a connecting isomorphism 71 : (w!) — (w*) such that aw = w(an) for any
ac(wh) andwerl.

Now, we form the set B > I' = {(e,y)| e € Byt,v € I'}. In order to make this
set B < I' a semigroup, we need to introduce a multiplication “*” defined on the
set B < T' by the following mapping. Firstly, we define a mapping ¢ : I' — End(B)
by v — o, where ¢, € End(B), which is the endomorphism semigroup on B. This
mapping satisfies the following properties.

(P1) Absorbing: for each v € I' and « € Y, we have B,o., C B(,4)t . In particular,
if v € Y, then o, is an inner endomorphism on B such that e’ = fe for some f € B,
and all e € B.

(P2) Focusing: for a, 3 € ' and f € B(,p)t, we have 050,05 = 04305, where d¢
is an inner endomorphism induced by f on B satisfying h% = fh for all h € B.

(P3) Homogenizing: for e € B, g € B+, and h € By, if wr = w and eg? =
= eh?«, then fg°* = fho* for any f € B .

(P4) Idempotent connecting: assume that for any w € ', 5 is the connecting iso-
morphism which maps (wf) to (w*) by a > an. If (e,w!) and (f,w*) € BT, then
there is a bijection 6 : (¢) — (f) such that

(i) ef = f and g = e(g0)?~, for g € (e);

(ii) for g € (e) and « € {(w'), (g,a) € B< T if and only if (gf,an) € BT,

Equipped with the above mapping ¢, we now define a multiplication “*” on BT’
by

(e,w)* (f,7) = (ef7, wT)

for any (e,w), (f,7) € BT, where f7« = fo,,.

It can be verified that the multiplication “*” defined above for the set B < I is
associative. We call the semigroup a left wreath product of a left regular band B and
a type- A semigroup I' under a mapping ¢, denoted by B <, I

We are now going to establish a structure theorem for L£*-inverse semigroups.

Theorem 9 [25, Theorem 4.1]. A semigroup S is an L* -inverse semigroup if and
only if S is a left wreath product of a left reqular band B and a type- A semigroup T.
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In [26], we call an IC abundant semigroup S a Q*-inverse semigroup if the set of
its idempotents E forms a regular band, i.e. I satisfies the identity efege = efge, for
all e, f and ¢ in E.

Suppose that S is a Q*-inverse semigroup whose set of idempotents E forms a reg-
ular band. Denote the [J-class containing the element e € E by E(e). We first have
the following result.

Theorem 10 [26, Theorem 3.2]|. If an equivalence relation 6 on S is defined
by adb if and only if b = ecaf and a = gbh for some e € E(a™), f € E(a*), g € E(bT)
and h € E(b*), then the equivalence relation ¢ is the smallest type- A good congruence
on S.

Let S be a Q*-inverse semigroup with a regular band of idempotents E. Define
relations p; and p, on S as follows:

(a,b) € < (za,xb) € L* (z € F),

(a,b) € pr < (ax,bx) € R* (z € E).

Put p1 =dNp, and pa =0 Ny on S (see [26]). We are now able to establish the
following theorem for Q*-inverse semigroups.

To obtain structure theory for Q*-inverse semigroups, the concept of the
wreath product of semigroups was introduced by Ren and Shum in [26] as follows.

In the wreath product of semigroups, we need the following ingredients:

(a) Y: a semilattice.
(b) T': a type- A semigroup whose set of idempotents is the semilattice Y .
(¢) I: aleft regular band such that I = |J I,, where I, is a left zero band for

acY
all a €Y.
(d) A: aright regular band such that A = |J A., where A, is a right zero band
acY
forall a €Y.

We now form the following sets:
I ={(e,w)| weTl, ecl+},

P A ={(w,i)] weTl, i€y},

and
Il <A ={(e,w,i)| weT,eel,+ andi € Ay+}.

Since w € I and T' is a type-A semigroup, there are some idempotents
wh e RY(T) N E(I') and w* € L*(I') N E(T"). Also since the set of idempotents of
I' forms a semilattice, w! and w* are in Y. This illustrates that the sets I pa T,
' A, and I <xT' > A are well-defined. We only need to define an associative multi-
plication on the set I > I' >t A so that the set I o< I' =<1 A under the multiplication
turns out to be a semigroup.

Before we define a multiplication on [ < I' <1 A, we need to give a description for
the structure mappings.

Define a mapping ¢ : I' — End(I) by v+ o, for v € I and o, € End(I) satisfying
the following conditions.

(P1) For each v € ' and a € Y', we have I,0, C ()4t In particular, if v € Y,
then o, is an inner endomorphism on I such that there exists g € I, with e = ge,
for all e € I, where e¢?» denotes eo, .

(P2) For a, B €T and f € Iiop)t, we have 030005 = 0apdy, where 0y is an inner
endomorphism induced by f on I satisfying h® = fh = fhf, forall he I.
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(P3) For e € 1,1, g € I;+ and h € Ig, if wr = wf and eg? = eh?, then
fg°«r = fho«*, for all f € I,.

(P4) Assume that for any w € T', 7 is the connecting isomorphism which maps
wh to (W*) by a + an. If (e,w) and (f,w*) € I > T, then there is a bijection
0 : {e) — (f) such that

(i) ef = f and ge”> = e(gf)° for any g € (e) and a € (w);

(ii) for any g € (e) and a € (w'), (g,a) € I > T if and only if (g0, an) € [T,

Similarly, define a mapping ¢ : I' — End(A) by v +— p, for v € I' and p, € End(A)
satisfying the following conditions.

(P1) For each v € I' and o € Y, we have Ayp, € A(qy)- . In particular, if y €Y,
then p, is an inner endomorphism on A such that there exists : € A, with j” = ji
for all j € A, where j” denotes jp- .

(P2)" For o, B € I' and i € Anp)-, we have popge; = papei, where g; is an inner
endomorphism induced by 7 on A such that j% = ji = ¢j¢ for any j € A.

(P3) For i € Ay», j € Apv, and k € A, if 7w = &w and jP«i = kPvi, then
jPotm = kPotm for all m e A

(P4)" Assume that for any w € I', 7 is the connecting isomorphism which maps
(wh) to (w*) by a — an. If (wf,j) and (w*,i) € T 1 A, then there is a bijection
0" : (i) — (j) such that the following conditions hold:

(i) 70" =i, kP~i = iPn(k@'), for any k € (j) and a € (w');

(ii) for any k € (i) and a € (w'), (a, k) € T A if and only if (an, k#’) € T > A.

After gluing up the above components I,T" and A together with the mappings ¢
and ¢, we now define a multiplication on the set I <xI' <t A by

(e,w, 1) * (f,7,4) = (ef7, wr, i j), (3)

for any (e,w,i), (f,7,j) € IxT' >t A, where %« = fo,, and "~ =ip,.

Using the properties (P1), (P2), (P1) and (P2)’, we can easily verify that the
above multiplication “*” on I < I' b A is associative. We now call the above constructed
semigroup a wreath product of I,T" and A with respect to ¢ and v, and denote it by
Q =1, Iy AL

Theorem 11 [26, Theorem 4.4]. The wreath product I >, I’ by, A of a left
reqular band I, a type-A semigroup I" and a right reqular band A with respect to the
mappings ¢ and Y is a QF -inverse semigroup.

Conversely, every Q* -inverse semigroup S can be expressed by a wreath product of
I, 'y AL

Remark 1. The class of Q*-inverse semigroups contains several interesting classes
of semigroups as its special subclasses. We only discuss some of these special subclasses
as follows.

(a) L£*-inverse semigroups and R*-inverse semigroups

By Theorem 11, a Q*-inverse semigroup S can be expressed as a wreath product
I, I'oay A of I, I' and A with respect to the mappings ¢ and 1, where I' is
a type- A semigroup, I and A are respectively a left regular band and a right regular
band. In Theorem 11, if A = (), then S = I <, I', which is an L£*-inverse semigroup.
Similarly, if we let I = ), then T' >y, A becomes an R*-inverse semigroup. Thus,
the class of L*-inverse semigroups and the class of R*-inverse semigroups are two
special subclasses of the class of Q*-inverse semigroups. In this case, we can easily re-
obtain Theorem 10 for structure of £*-inverse semigroups, as a corollary of Theorem 11.
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(b) Quasi-inverse semigroups

We know that a quasi-inverse semigroup is a regular semigroup whose set of idem-
potent forms a regular band. It is clear that a quasi-inverse semigroup is a special
Q*-inverse semigroup.

When S is a quasi-inverse semigroup, we can define a relation § on S by adb if and
only if b = eaf for some e € E(aa’) and f € E(a’a), where a’ is an inverse element of a.
It can be immediately seen from [25] that § is the smallest inverse semigroup congruence
on S, and so I' = §/§ is the greatest inverse semigroup homomorphism image of S.
Obviously, the inverse semigroup I' = S/6 must be a type- A semigroup whose set of
idempotents forms a semilattice. As a result, a wreath product I b, I' >y, A of S,
regarded as a @Q*-inverse semigroup, can be simplified by using the so-called half-direct
product (in short, H.D.-product) of a quasi-inverse semigroup given by M. Yamada
in [27] as described in the following Theorem 12.

Theorem 12 [27, Theorem 6]. Let S be a quasi-inverse semigroup whose set of
idempotents forms a reqular band FE. Let § be the smallest inverse congruence on S
such that T' = S/& is the greatest inverse semigroup induced by &, and let Y be the
semilattice of I'. Define the congruences n1, n2 on E by eni f if and only if eRf; enaf
if and only if eLf, respectively. N

For X CE, write X ={¢|e€ X} and X ={€| e € X}, where € and € are the
11 -class and the ns -class containing e € X , respectively. Then the following statements
hold:

(1) E/m = E is a left reqular band such that E = U E.,, where every E, is a left
acY

zero band; E/ny = E isa right reqular band such that E= U Ea, where each Ea is
acY
a right zero band, for every aw € Y.

(ii) S is isomorphic to an H.D.-product of E, T and E with respect to the map-
pings ¢ and 1), respectively. Conversely, any H.D.-product of a left reqular band

I= | Aa, an inverse semigroup T' and a right regular band A = |J A, with respect
acY acY

to the mappings ¢’ and v’ is a quasi-inverse semigroup S, where T' is the greatest

inverse semigroup homomorphic image of S and Y is the semilattice of idempotents

of I.

In 1958, Kimura first considered [7] the spined product of semigroups as follows. If .S
and T are two semigroups having a common homomorphic image H, and if ¢ : S — H
and ¢ : T'— H are homomorphisms onto H, then the spined product of S and T
with respect to H, ¢ and 1 is defined by

Y ={(s,t) e SxT | s¢=1t}.
For Q*-inverse semigroups, we have also the following another constructions.

Theorem 13 [26, Theorem 5.1]. A semigroup S is a Q*-inverse semigroup
if and only if S is a spined product of an L*-inverse semigroup S1 = I >, I' and
an R*-inverse semigroup So =1 >y A with respect to a type-A semigroup I.

5. Semi-spined product of semigroups

In generalizing regular semigroups, apart from weakening the definition of regu-
larity, one of the most suitable approach is to modify the usual Green’s relations on
semigroups. During the recent 40 years, a series of generalized Green’s relations have
been established, such as (x)-Green’s relations, (1)-Green’s relations, (x,~)-Green’s re-
lations, (~,~)-Green’s relations and (~¢)-Green’s relations (see [28]). In this section,
we only introduce (*,~)-Green’s relations.
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According to Fountain, a semigroup S is rpp if all of its principal right ideals
aSt(a € S), regarded as the right S'-systems, are projective (see [29] and [24]).
It was shown in [24] that a semigroup S is rpp if and only if for any a € S, the
set

M, L {ec E(S)|S'a C Se & Kera; C Kere}

is non-empty, where E(S) is the set of all idempotents of S. An rpp semigroup is said
to be strongly rpp [20] if

MaeS) (FeeM,) ea=a.

In [20] and [30], (1)-Green’s relations have been applied to the study of rpp semi-
groups, especially strongly rpp semigroups. However, strongly rpp semigroups do not
form a satisfactory generalization of completely regular semigroups in the class of rpp
semigroups.

In order to get a satisfactory generalization of completely regular semigroups in the
class of rpp semigroups, Guo, Shum and Gong [31] introduced the so-called (x,~)-
Green’s relations on a semigroup S':

o
L5 = L7

d 5

R*™ =R,

Ho~ L Lo ARSY = L5 AR,
D~ Lo pr vy R,
ag b <L “ T (a) = T (b))

where, for any a, b € S,
aRb <L (Ve € E(S))ea = a < eb=1b"[15],

and J*™(a) is the smallest ideal containing and saturated by £*~ and R™".

Let S be a semigroup and £(S) the lattice of all equivalences on S. For any
o€ E(9), cal A C S a subset saturated by o if A is a union of some o-classes
of S; call S o-abundant if every o-class of S contains idempotents of S.

A semigroup S is called r-wide [31] if S is £*~-abundant and R*"™-abundant.
An r-wide semigroup is called a super-r-wide semigroup [31] if S is x, ~-abundant. Call
a semigroup S an ortho-le-monoid if S is a super-r-wide semigroup with E(S) < S
[31]. An ortho-lc-monoid S is called a regular ortho-lc-monoid it E(S) forms a regular
band. It is clear that an ortho-lc-monoid is strongly rpp, and each H* ™~ -class is a left
cancellative monoid (in short, le-monoid).

For (x,~)-Green’s relations, we have the following results.

Theorem 14 [31]. On a semigroup S, we have
(1) R*™"™ is usually not a left congruence even if S is an R*™ -abundant semigroup.
(i4) In general, we have L*™~ o R*™ £ R*™ o L7,
But
(2it) If S is super-r-wide, then R*™ is a left congruence and D*~ = L™ o R*"™
(=R~ o L% of course).
Thus,
(iv) When S is super-r-wide, the corresponding Green’s Lemma holds for the (x,~)-
Green’s relations.
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By using (*, ~)-Green’s relations, we can give some characterizations of super-r-wide
semigroups and ortho-lc-monoids.

Theorem 15 [31]. Let S be an r-wide semigroup. Then S is a super-r-wide semi-
group if and only if S is a strongly rpp semigroup on which x,~ = L% o R~ =
=R~ o L™ holds.

Call that a semigroup is a rectangular lc-monoid if it is isomorphic to the direct
product of a rectangular band and a left cancellative monoid.

Theorem 16 [31]. A semigroup S is an ortho-lc-monoid if and only if S is rpp
and a semilattice of rectangular lc-monoids.

Based on the semilattice decomposition of ortho-lc-monoids, the semi-spined product
structure of regular ortho-lc-monoids was provided in [31].
Let M = [Y; My, ¢q 8] be an lc-Clifford semigroup, i.e. a strong semilattice Y of left

cancellative monoids M/s, I = |J I, a semilattice decomposition of the left regular
acY

band I into left zero bands I,’s, and A = |J A, a semilattice decomposition of the
acY

right regular band A into right zero bands A,’'s. We define the following mappings

§:A= UIaxMa—Jl(I)
acY

and
e |J (Mo x Ay) — To(0)
acY
satisfying the following conditions:

(P1) If (i,a) € Io X M, and j € Ig, then §(i,a)j € Is;
Q1) If (b, ) € My x Ay and X € Ag, then Ae(b, 1) € Aug;
P2) If a < holds in (P1) for a, § €Y, then §(i,a)j = i;
Q2) If @« <8 holds in (Q1) for «, § € Y, then Ae(b, u) = p;
P3) If (i,a) € I, x M, and (j,b) € I3 x Mgz, then
6(i,a)d(j,b) = 0(8(i, a)j, apa,apbs,as);

(Q3) If (a,\) € M, x Ay and (b, ) € Mg x Ag, then

(
(
(
(

e(a, Ne(b, p) = e(apa,apbpp,ap: Ae(b, 1));
(P4) Let (i,a) € Io x My, j€ Iz and ke I,. If

5(i7 a)] = 5(17 a)ka
then

0(iy10)j = 0(i, 10)k.

Define a multiplication “o” on the set
S = U(IaxMaan)
acY
by
(4,0, A) (4, b, 1) = (6(i, a)j, apa,apbps,ap, Ae(b; 1)) (4)

It is easy to prove that S forms a semigroup under the multiplication (4).
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Definition 2 [31]. The semigroup S constructed above is called the semi-spined

product of the lc-Clifford semigroup M = [Y;M,,¢a.], the left regular band
I = |J I, and the right regular band A = |J A, with respect to the semilattice
acY acY

Y and structure mappings 0 and €.

By using the above definition of semi-spined product of semigroups, we obtain the
following structure theorem for regular ortho-lc-monoids.

Theorem 17 [31]. The semi-spined product of semigroups described in Defini-
tion 2 is a regular ortho-lc-monoid. Conversely, every regular ortho-le-monoid can be
constructed in this manner.
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Pesrome

K.II. Illym, C.M. Pen, Y.M. I'yn. O MeTomax mOCTPOEHUS MOJIYTPYIIIL.

B crarbe npejcrasien kpaTkuil 0630p METO0B OCTPOEHUS TIOJIYTPYIIIL ¢ UCIOIb30BAHUEM
CTPYKTYP HEKOTOPBIX TOJIYTPYII, OTHOCSIIUXCS K KJIACCAM PEryJIsSpPHBIX, KBA3UPEryJIsSTPHBIX
¥ u36BITOYHBIX MOAYrpynn. B 4acTHOCTH, IpUBEAEHDI OCHOBHBIE 0003HAYEHUS U CTPYKTYPHBIE
TEOPeMBbI J1j1d HEKOTOPBIX TOJIyIPYIIIL, TAKUX KAK PUCOBCKHUE IMOJIYTPYIIIbI MATPUYHOTO THUIIA HAJ,
0-rpymmoit G° u ux 0606menns, cBsa3kn, F-uaeaJbHble KBA3WPETYISpHBIE Moayrpymnst, C* -
KBa3uperyasapHble Toayrpynnbl, £ -uHBepcHble 1 Q" -MHBEPCHBIE TIOTYTPYIITBL U PETY TSI PHBIE
opTo-lc-MoHOMTBI.

KiroueBble cy1oBa: peryJisdpHbIe MOIyTPYIIbl, KBA3UPEryAaPHbBIE 0y IPYIIIbl, U30bITOU-
HBIE TIOJIYTPYIIIIEI, KOHCTPYKITHM.
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