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UDK 510.532 RELATIVE ENUMERABILITYAND THE D-C. E. DEGREESM.M. ArslanovAbstra
tWe study the relationship between the relative enumerability and the d -
. e. degrees.We prove that the degree of the halting problem is splittable into two 
. e. degrees su
h thatthe upper 
one of ea
h of them 
ontains only d -
. e. degrees whi
h are 
. e. in another one.Key words: Turing degrees, 
omputably enumerable degrees, relative 
omputable enu-merability, splitting, de�nability.The ∆0

2 degrees of unsolvability are basi
 obje
ts of study in 
lassi
al 
omputabilitytheory, sin
e they are the degrees of those sets whose 
hara
teristi
 fun
tions are limitsof 
omputable fun
tions. A natural tool for understanding the Turing degrees is the in-trodu
tion of hierar
hies to 
lassify various kinds of 
omplexity. The most 
ommon su
hhierar
hy, the arithmeti
al hierar
hy, is itself not of mu
h use in the 
lassi�
ation of the
∆0

2 degrees, sin
e it is far too 
oarse. This fa
t has led to the introdu
tion of hierar
hiesbased on �ner distin
tions than quanti�er alternation. Two su
h hierar
hies are by nowwell-established. One, the CEA hierar
hy independently de�ned by Arslanov [1℄ andJo
kus
h and Shore [2, 3℄, is, like the arithmeti
al hierar
hy, based on the 
omplexityof the de�nitions of the involved sets, repla
ing the alternation of quanti�ers with theiteration of 
omputable enumerability in and above a set, a signi�
antly less powerfulpro
edure. The se
ond su
h hierar
hy, the di�eren
e hierar
hy due to Putnam [4℄ andErshov [5, 6℄, is built up by starting with the 
omputable enumerable sets as a base,and then iterating the operation of taking set-theoreti
 di�eren
es, thereby 
lassifyingsets on the basis of the di�
ulty of their 
onstru
tion in 
omparison with 
. e. sets.Analysis of the relationship of the CEA hierar
hy to the di�eren
e hierar
hy is there-fore a natural means of 
omparing the de�nability of sets to the inherent di�
ulty oftheir 
onstru
tion.We took the �rst steps toward this analysis in [1℄: we proved that there is a ∆0
2

2 -CEA set whi
h is not of n-
. e. degree for any n < ω . Generalizing this resultJo
kus
h and Shore [3℄ proved that for any 
omputable ordinal α < β , there is a β -
. e. degree whi
h is not α -CEA, while, on the other hand, that for every uniformlygiven 
lass of ∆0
2 degrees, there is a ∆0

2 2 -CEA degree whi
h is not in this 
lass. Fromthe latter result, it follows that for ea
h α ≤ ω , there is a 2 -CEA set whi
h is not of
α -
. e. degree. This result is more interesting when α > 1 , sin
e d-
. e. sets, and hen
e
2 -CEA sets, not of 
. e. degree had already been 
onstru
ted by Cooper (unpublished).In [7℄ we took a further step towards analyzing the relationship of this se
ond level ofthe CEA hierar
hy to the di�eren
e proving that any ω -
. e. degree whi
h is 2 -CEA isalso 2 -
. e. In this paper we also obtained a se
ond result whi
h imposes a signi�
antlimit on possible extensions of this result: there exists a d-
. e. set C su
h that forevery n ≥ 3 , there exists a set A whi
h is simultaneously C -CEA and (n + 1)-
. e.,yet fails to be of n-
. e. degree.
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tion are obtained in [8℄. Let u and v be 
. e. degreessu
h that v < u . Then there is a d-
. e. degree d su
h that v < d < u and d is not
. e. in v .This result naturally raises the following problem, whi
h has a long history. Let
a < b be non-
omputable 
. e. degrees. Is there a CEA in a d-
. e. degree d < b su
hthat b is not 
. e.?Below we list all so far known results on this question:1. [9℄ Let a be a non-
omputable 
. e. degree su
h that a′ = 0′ . Then there isa non-
. e. but 
. e. in a degree b > a . Moreover,2. [10℄ Let c < h be 
. e. degrees su
h that c is low and h is high. Then there isa degree a < h su
h that a is CEA in c degree.3. [10℄ For all high 
. e. degrees h < g , there is a properly d-
. e. degree a su
hthat h < a < g and a 
. e. in h .4. [10℄ There is a 
. e. degree a,0 < a < 0′ su
h that for any 
. e. in a degree

b > a , if b 6 0′ then b is 
. e.5. [11℄ Let a > 0 be a superlow degree. Then there is a properly d-
. e. degree
d > a su
h that d is 
. e. in a .(A set A is 
alled superlow if A′ ≡tt ∅′ . A degree is superlow if it 
ontainsa superlow set.)(A set A is 
alled superlow if A′ ≡tt ∅′ . A degree is superlow if it 
ontains a superlowset.)These results allow us to formulate the following well-known hypothesis whi
h isstill 
an be 
onsidered as an open problem.Conje
ture. For every low 
. e. degree a > 0 , there is a CEA in a d-
. e. degree

b whi
h is not 
. e.Re
ent investigations have shown that this problem is 
losely related to anotherimportant problem on de�nability of the 
. e. degrees in the d-
. e. degree stru
ture, andin this investigation deeper understanding of the splitting properties of d-
. e. degreesmay be useful.Let a > 0 be a properly d-
. e. degree and let b be a 
. e. degree su
h that
b < a . Sin
e a is 
. e. in some 
. e. degree a0 < a , it follows from the Sa
ks SplittingTheorem, relativized to a0 ∪ b < a , that a is splittable into two 2-CEA degrees whi
hare above b , i.e. there are 2-CEA-degrees c0 and c1 su
h that c0 ∪ c1 = a and
b < c0 < a, b < c1 < a . Moreover, Arslanov, Cooper and Li [12, 13℄ proved thatany 
. e. degree is splittable in the d-
. e. degrees over any low d-
. e. degree. In thispaper we prove that 0′ is splittable into 
. e. degrees v0 and v1 su
h that for every
d-
. e. degree d and ea
h i ≤ 1 , if vi ≤ d then d is 
. e. in v1−i .We adopt the usual notational 
onventions found, for instan
e, in [14℄. In parti
ular,we write [s] after fun
tionals and formulas to indi
ate that every fun
tional or parametertherein is evaluated at stage s . In parti
ular, for an ora
le X and 
. e. fun
tional Φ ,
Φ(X ; y, s) means only that at most s steps are allowed for the 
omputation from ora
le
X to 
onverge, whereas Φ(X ; y)[s] means also that the approximation Xs is used asthe ora
le, and may mean as well that some fun
tion-value y(s) is being used as theargument for the 
omputation. When using a 
. e. ora
le, we adopt the 
ommon pra
ti
eof taking the use fun
tion to be nonde
reasing in the stage.



154 M.M. ARSLANOVTheorem 1. There exists a splitting of 0′ into 
. e. degrees v0 and v1 su
h thatfor every d-
. e. degree d and ea
h i ≤ 1 , if vi ≤ d then d is 
. e. in v1−i .Proof. We will 
onstru
t 
. e. sets V0 and V1 so that the degrees vi = deg Vi havethe desired properties. We also 
onstru
t auxiliary 
. e. sets U0, U1 .This is ensured by the following two types of requirements.To ensure that ∅′ 6≤T Vi , we satisfy requirements
• P i

e : Ui 6= ΘVi

i,e (for ea
h partial 
omputable fun
tional Θi,e ).To ensure that for all d-
. e. sets D , if Vi ≤T D then D is of degree 
. e. in V1−i ,we satisfy requirements.
• Ri

e : De = ∆
Vi⊕Qi

e

i,e & Qi
e ≤T Vi⊕De (for ea
h d-
. e. set De we build an asso
iated

d-
. e. set Qi
e 
. e. in V1−i and a partial 
omputable fun
tional ∆i,e ).The 
ondition Qi

e ≤T V ⊕ De will be met by the usual permitting argument.To ensure that Qi
e is 
. e. in V1−i we use a 
ommon method whi
h works as follows.When an integer x is enumerated into Qi

e at stage s we appoint a 
ertain marker α(x) .Then we allow x to be removed from Qi
e at a later stage t only if V1−i ↾ α(x)[t − 1] 6=

6= V1−i ↾ α(x)[t].The 
ondition ∅′ ≤T V0 ⊕ V1 will follow from the 
onstru
tion dire
tly.The basi
 strategy for P -requirements in isolation is the one developed by Friedbergand Mu
hnik:(1) Pi
k an unused witness x from the 
olumn asso
iated with this requirement(< i, ω > for i ≤ 1), whi
h is larger than all higher-priority restraints, and keepit out of U .(2) Wait for ΘV
e (x) ↓= 0 .(3) Put x into U and prote
t V ↾ (θ(x) + 1) .The basi
 strategy for R -requirements in isolation is to build ∆V ⊕Q , ensuring thatit is total and 
omputes D 
orre
tly. Sin
e we build the set V during the 
onstru
tion,we may easily meet this requirement by 
hanging V , if ne
essary.While the strategies for the requirements in isolation are thus very simple, there areobviously several 
on�i
ts between them. The R -strategy threatens to 
ontribute into

V in�nitely many numbers while P -restraints of lower priority may obstru
t it.Before giving the expli
it 
onstru
tion we �rst explain the intuition for the Pi - and
Sj -requirements below one Re -strategy.Basi
 module for the Ri

e -strategy above P -requirements.We use an ω -sequen
e of �
y
les�, where ea
h 
y
le k pro
eeds as follows:(1) At a stage s set ∆
Vi⊕Qi

e

i,e (k) = De,s(k) with a use δi,e,s(k) > all P i - and P 1−i -restraints, and δi,e,s(k) > δi,e,s(k−1) and start 
y
le k+1 to run simultaneouslywith 
y
le k .(2) Wait for De(k) to 
hange (at a stage t , say).(3) (i) Enumerate δi,e,s(k) into Qi
e ,(ii) set ∆

V i
⊕Qi

e

i,e (k) = De,t(k) with a new use δi,e,t(k) > all P i -restraints, and
δi,e,t(k) > δi,e,s(k) , and(iii) appoint the marker αi(δi,e,s(k)) as the �rst integer y su
h that y ≥ δi,e,t(k)and y = < 2, l > for some l .
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hange ba
k (at a stage u , say).(5) We need� to keep Qi
e below V i ⊕ De (at stage t k enters De , and we put δi,e,s(k) into

Qi
e . Now k leaves De ).� to 
orre
t the axiom ∆

(V i
⊕Qi

e)
i,e (k) = De(k)We have two possibilities to a
hieve this:� either by enumerating δi,e,s(k) into V i� or by removing δi,e,s(k) from Qi

e (in this 
ase we need to enumerate αi(δi,e,s(k))into V1−i ).The 
ru
ial point here is that our 
hoi
e between these two possibilities dependsupon the priority ordering of requirements P i and P 1−i that may be injured:a) If the highest-priority strategy whi
h would be injured by this 
orre
tion isa P i -strategy (or there is no strategy at all that would be injured), thenenumerate αi(δi,e,s(k)) into V1−i and remove δi,e,s(k) from Qi
e .b) Otherwise, put δi,e,s(k) into V i , and set ∆

V i
⊕Qi

e

i,e (k) = De,u(k) .Set ∆
Vi⊕Qi

e

i,e (k) = De,u(k) with the same use δi,e,u(k) = δi,e,t(k).In both 
ases start 
y
le k + 1 to run simultaneously.We now give the 
onstru
tion. We say that the axiom ∆
V i

⊕Qi
e

i,e (k) = De(k) requires
orre
tion at stage s if at a stage t < s we set ∆
V i

⊕Qi
e

i,e (k) = De,t(k) with a use
δi,e,t(k), De,s(k) 6= De,t(k) , and (V i ⊕ Qi

e)t ↾ δi,e,t(k) = (V i ⊕ Qi
e)s ↾ δi,e,t(k) .Stage s = 0 . Set U0 = V0 = V1 = ∅[0]. x0

e,0 =< 0, e >, x1
e,0 =< 1, e > .Stage s > 0 . Fix e su
h that s = 〈e, m〉 for some m .Substage 1 (P 0

e -requirement).a) If ΘV0
0,e(x

0
e)[s] ↓= 0 and x0

e,s−1 6∈ U0,s , then enumerate x0
e,s−1 into U0,s , andprote
t V0 ↾ θ0,e,s(x

0
e,s−1) with priority P 0

e .b) If ΘV0
0,e(x

0
e)[s] ↓= U0,s(x

0
e,s−1) = 1 , then de�ne

x0
e,s = (µx)[(∃y)(∀j)(x = 〈0, y〉 ∧ x > all Ri

j -uses assigned so far].Otherwise, set x0
e,s = x0

e,s−1.Substage 2 (P 1
e -requirement). Similar to the previous 
ase with ne
essary 
hanges(Θ0

e, V0, U0, x
0
e, θ0,e by Θ1

e, V1, U1, x
1
e, θ1,e a

ordingly).Substage 3. Let z be the greatest integer su
h that for any k < z there existsa stage s′ < s su
h that at stage s′ the axiom ∆

Vi⊕Q(i,e)

i,e (k) = De(k)[s′]was set. Let k < z be the smallest integer (if any) su
h that the axiom
∆

(Vi⊕Qi,e)
i,e (k) = De(k) requires 
orre
tion at stage s . Let t be a stage at whi
hthe axiom ∆

(Vi⊕Qi,e)
i,e (k) = = De(k) was set.We 
onsider two 
ases.Case 1) De,s(k) = 1 . In this 
ase we pro
eed as in step (3) of the Basi
 Module:(i) enumerate δi,e,t(k) into Qi,e ,
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Vi⊕Qi,e

i,e (k) = De,s(k) with a new use δi,e,s(k) > all P -restraints,and δi,e,s(k) > δi,e,t(k) , and(iii) appoint the marker αi(δi,e,s(k)) as the �rst integer y su
h that y ≥
δi,e,s(k) and y =< 2, l > for some l .Case 2) De,s(k) = 0 . Therefore, there is a stage u < s su
h that De,u(k) = 1 , andat stage u we (re)set the axiom ∆

Vi⊕Qi,e

i,e (k) = De(k) . It follows also thatat stage u we enumerated δp,e,t(k) into Qi,e . In this 
ase we pro
eed as instep (5) of the Basi
 Module:a) if the highest-priority strategy whi
h would be injured by the
Qi,e(δi,e,t(k))− or Vi(δi,e,t(k))− 
orre
tion is a P -strategy (or thereis no strategy at all that would be injured), then enumerate αi(δi,e,t(k))into V1−i and remove δi,e,t(k) from Qi,e .b) Otherwise, put δi,e,t(k) into Vi .Set ∆

Vi⊕Qi,e

i,e (k) = De,s(k) .Substage 4. If none of the axioms ∆
Vi⊕Qi,e

i,e (k) = De(k) for k < z requires 
or-re
tion at stage s , then set the new axiom De,s(z) = ∆
Vi⊕Qi,e

i,e (z) with a use
δi,e,s(z) > all P -, R -restraints.Substage 5. Go to stage s + 1 .End of the 
onstru
tion.Veri�
ation.Let vi=deg(Vi ), i ≤ 1 .Lemma 1. Qi,e ≤T Vi ⊕ De.Proof. To Vi ⊕ De -
omputably 
ompute whether x ∈ Qi,e , �rst �nd a stage u atwhi
h a new axiom De(y) = ∆

Vi⊕Qi,e

i,e (y) with a use δi,e,u(y) ≥ x is settled. Obviously,su
h a stage u exists.Suppose now that x = δi,e,s(k) was 
hosen as a use for some ∆
Vi⊕Qi,e

i,e (k) at a stage
s ≤ u (otherwise, x 6∈ Qi,e ). Find a stage v ≥ u at whi
h Vi,v ↾ x = Vi ↾ x and
De,v(x) = De(x) . Now x ∈ Qi,e if and only if x ∈ Qi,e,v .Lemma 2. If De = ΦU⊕V

e then De ≤T V ⊕ Qe .Proof. It follows immediately by 
onstru
tion.Lemma 3. Qi,e is 
. e. in V1−i .Proof. It follows immediately from the 
onstru
tion.Lemma 4. For ea
h i ≤ 1 and e ∈ ω , requirements P i
e are eventually satis�ed.Proof. Fix e and assume by indu
tion that the Lemma holds for all j < e .Choose s minimal so that no P i

j -restraints may be injured by some R -requirement.By 
onstru
tion we may injure P i
e by �nitely many times 
ontributing some integersinto Vi to prote
t the V1−i -restraint of higher priority. But beginning at some stage swe take witnesses for ∆-uses greater than the V1−i -restraints, after that we meet therequirement P i

e .



RELATIVE ENUMERABILITY AND THE D -C. E. DEGREES 157Lemma 5. 0′ = v0 ∪ v1 .Proof. Suppose, in 
ontrary, that v0 ∪ v1 < 0′ . Then by [8, Theorem 4.1℄ thereexists a d-
. e. degree d su
h that v0 ∪ v1 < d and d is not 
. e. in v0 ∪ v1 , andtherefore it is not 
. e. in v1 . We have v0 < d and d is not 
. e. in v1 , a 
ontradi
tion.
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