YYEHBIE 3ATIMCKIN KASAHCKOT'O YHUBEPCUTETA
Tom 154, xu. 2 DU3NKO-MaTeMaTHIECKUE HAYKH 2012

UDK 510.532
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AND THE D-C. E. DEGREES
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Abstract

We study the relationship between the relative enumerability and the d-c. e. degrees.
We prove that the degree of the halting problem is splittable into two c. e. degrees such that
the upper cone of each of them contains only d-c. e. degrees which are c. e. in another one.
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The AY degrees of unsolvability are basic objects of study in classical computability
theory, since they are the degrees of those sets whose characteristic functions are limits
of computable functions. A natural tool for understanding the Turing degrees is the in-
troduction of hierarchies to classify various kinds of complexity. The most common such
hierarchy, the arithmetical hierarchy, is itself not of much use in the classification of the
AY degrees, since it is far too coarse. This fact has led to the introduction of hierarchies
based on finer distinctions than quantifier alternation. Two such hierarchies are by now
well-established. One, the CEA hierarchy independently defined by Arslanov [1] and
Jockusch and Shore [2, 3], is, like the arithmetical hierarchy, based on the complexity
of the definitions of the involved sets, replacing the alternation of quantifiers with the
iteration of computable enumerability in and above a set, a significantly less powerful
procedure. The second such hierarchy, the difference hierarchy due to Putnam [4] and
Ershov [5, 6], is built up by starting with the computable enumerable sets as a base,
and then iterating the operation of taking set-theoretic differences, thereby classifying
sets on the basis of the difficulty of their construction in comparison with c. e. sets.
Analysis of the relationship of the CEA hierarchy to the difference hierarchy is there-
fore a natural means of comparing the definability of sets to the inherent difficulty of
their construction.

We took the first steps toward this analysis in [1]: we proved that there is a A
2-CEA set which is not of n-c. e. degree for any n < w. Generalizing this result
Jockusch and Shore [3] proved that for any computable ordinal o < 3, there is a 3-
c. e. degree which is not a-CEA, while, on the other hand, that for every uniformly
given class of AY degrees, there is a AY 2-CEA degree which is not in this class. From
the latter result, it follows that for each o < w, there is a 2-CEA set which is not of
a-c. e. degree. This result is more interesting when « > 1, since d-c. e. sets, and hence
2-CEA sets, not of c. e. degree had already been constructed by Cooper (unpublished).
In [7] we took a further step towards analyzing the relationship of this second level of
the CEA hierarchy to the difference proving that any w-c. e. degree which is 2-CEA is
also 2-c. e. In this paper we also obtained a second result which imposes a significant
limit on possible extensions of this result: there exists a d-c. e. set C such that for
every n > 3, there exists a set A which is simultaneously C-CEA and (n + 1)-c. e.,
yet fails to be of n-c. e. degree.
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Further results in this direction are obtained in [8]. Let u and v be c. e. degrees
such that v < u. Then there is a d-c. e. degree d such that v < d < u and d is not
c.e.in v.

This result naturally raises the following problem, which has a long history. Let
a < b be non-computable c. e. degrees. Is there a CEA in a d-c. e. degree d < b such
that b is not c. e.?

Below we list all so far known results on this question:

1. [9] Let a be a non-computable c. e. degree such that a’ = 0’. Then there is
a non-c. e. but c. e. in a degree b > a. Moreover,

2. [10] Let ¢ < h be c. e. degrees such that c is low and h is high. Then there is
a degree a < h such that a is CEA in c degree.

3. [10] For all high c. e. degrees h < g, there is a properly d-c. e. degree a such
that h<a<g and a c.e.in h.

4. [10] There is a c. e. degree a,0 < a < 0 such that for any c. e. in a degree
b > a,if b <0 then b isc. e.

5. [11] Let a > 0 be a superlow degree. Then there is a properly d-c. e. degree
d > a such that d is c. e. in a.

(A set A is called superlow if A’ =4 @'. A degree is superlow if it contains
a superlow set.)

(A set A is called superlowif A" = (. A degree is superlow if it contains a superlow
set.)

These results allow us to formulate the following well-known hypothesis which is
still can be considered as an open problem.

Conjecture. For every low c. e. degree a > 0, there is a CEA in a d-c. e. degree
b which is not c. e.

Recent investigations have shown that this problem is closely related to another
important problem on definability of the c. e. degrees in the d-c. e. degree structure, and
in this investigation deeper understanding of the splitting properties of d-c. e. degrees
may be useful.

Let a > 0 be a properly d-c. e. degree and let b be a c. e. degree such that
b < a. Since a is c. e. in some c. e. degree ag < a, it follows from the Sacks Splitting
Theorem, relativized to ag Ub < a, that a is splittable into two 2-CEA degrees which
are above b, i.e. there are 2-CEA-degrees ¢y and c¢; such that ¢g Uc; = a and
b < ¢y < a, b < c; < a. Moreover, Arslanov, Cooper and Li [12, 13] proved that
any c. e. degree is splittable in the d-c. e. degrees over any low d-c. e. degree. In this
paper we prove that 0’ is splittable into c. e. degrees vg and v; such that for every
d-c. e. degree d and each i <1, if v; <d then d is c. e. in v;_;.

We adopt the usual notational conventions found, for instance, in [14]. In particular,
we write [s] after functionals and formulas to indicate that every functional or parameter
therein is evaluated at stage s. In particular, for an oracle X and c. e. functional @,
®(X;y,s) means only that at most s steps are allowed for the computation from oracle
X to converge, whereas ®(X;y)[s] means also that the approximation X, is used as
the oracle, and may mean as well that some function-value y(s) is being used as the
argument for the computation. When using a c. e. oracle, we adopt the common practice
of taking the use function to be nondecreasing in the stage.
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Theorem 1. There exists a splitting of 0’ into c. e. degrees vo and vy such that
for every d-c. e. degree d and each 1 <1, if v; <d then d is c. e. in vi_;.

Proof. We will construct c. e. sets V and Vi so that the degrees v; = deg V; have
the desired properties. We also construct auxiliary c. e. sets Upy, U .

This is ensured by the following two types of requirements.

To ensure that () £ V;, we satisfy requirements

o Pi: U, # @Ye (for each partial computable functional ©; ).

To ensure that for all d-c. e. sets D, if V; <7 D then D is of degree c. e. in Vj_;,
we satisfy requirements.

e Ri:D,= Az‘f’f% & Q <7 V;@®D., (for each d-c. e. set D, we build an associated
d-c. e.set Q! c.e.in Vi_; and a partial computable functional A; ).

The condition Q¢ <7 V & D, will be met by the usual permitting argument.

To ensure that Qi is c. e.in Vi_; we use a common method which works as follows.
When an integer z is enumerated into Q' at stage s we appoint a certain marker a(z).
Then we allow = to be removed from Q¢ at a later stage t only if Vi_; | a(z)[t — 1] #
# Viei [ a(2)]t].

The condition @/ <7 Vp @ V4 will follow from the construction directly.

The basic strategy for P-requirements in isolation is the one developed by Friedberg
and Muchnik:

(1) Pick an unused witness = from the column associated with this requirement
(< i,w > for i <1), which is larger than all higher-priority restraints, and keep
it out of U.

(2) Wait for ©Y (z) |=0.
(3) Put z into U and protect V [ (0(z) +1).

The basic strategy for R-requirements in isolation is to build AYV®?  ensuring that
it is total and computes D correctly. Since we build the set V' during the construction,
we may easily meet this requirement by changing V', if necessary.

While the strategies for the requirements in isolation are thus very simple, there are
obviously several conflicts between them. The R-strategy threatens to contribute into
V' infinitely many numbers while P-restraints of lower priority may obstruct it.

Before giving the explicit construction we first explain the intuition for the P;- and
S;-requirements below one R.-strategy.

Basic modaule for the R!-strategy above P-requirements.
We use an w-sequence of “cycles”, where each cycle k proceeds as follows:

(1) At a stage s set AV (k) = D (k) with a use &; . s(k) > all P'- and P*~-

i,e
restraints, and 0; ¢ s(k) > d;¢,s(k—1) and start cycle k4 1 to run simultaneously
with cycle k.

(2) Wait for D.(k) to change (at a stage ¢, say).
(3) (i) Enumerate §; . (k) into Q°,

(ii) set AZ;’@QQ (k) = De+(k) with a new use &; (k) > all P'-restraints, and
5i,e,t(k) > 5i,e,s(k); and

(iii) appoint the marker «;(0;.,s(k)) as the first integer y such that y > §; . (k)
and y = < 2,1 > for some [.
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(4) Wait for D.(k) to change back (at a stage u, say).

(5) We need

— to keep Q' below V'@ D, (at stage t k enters D., and we put &; . (k) into
Qi. Now k leaves D).

— to correct the axiom Agvi@Qé)(kz) = D.(k)

e
We have two possibilities to achieve this:

— either by enumerating ;. s(k) into V*

— or by removing 0; (k) from Q¢ (in this case we need to enumerate «;(d; ¢ s(k))
into V1_;).

The crucial point here is that our choice between these two possibilities depends
upon the priority ordering of requirements P* and P'~? that may be injured:

a) If the highest-priority strategy which would be injured by this correction is
a Pi-strategy (or there is no strategy at all that would be injured), then
enumerate «;(0; ¢ s(k)) into Vi_; and remove §; . s(k) from Q°.

b) Otherwise, put ;. (k) into V', and set AZ;@Qé (k) = De (k).
VidQe 1y _ : -
Set A;."7(k) = De (k) with the same use 6; ¢ u(k) = d;e,t(k).
In both cases start cycle & + 1 to run simultaneously.

We now give the construction. We say that the axiom AXZ@QZ (k) = D.(k) requires
correction at stage s if at a stage t < s we set AZ;GBQ;(k) = D. (k) with a use
6i,e,t(k); De,s(k) 7é De,t(k)a and (V’L D Qi)t f 5i,e,t(k) = (V’L @ Qi)s r 5i,e,t(k) .

Stage s = 0. Set Uy = Vo = Vi = 0[0]. 28, =< 0,e >, !, =<1,e>.

Stage s > 0. Fix e such that s = (e, m) for some m.

Substage 1 (PY-requirement).

a) If @K‘)e(:ng)[s] =10 and x87571 ¢ Up,s, then enumerate :Eg,#l into Uy s, and
protect Vo | 0pes(20 ) with priority PY.

e,s—1

b) If ©7° (29)[s] | =Ups(20,_1) = 1, then define

:cgys = (ux)[(3y)(¥j)(z = (0,y) Az > all Rj-uses assigned so far].

0

: 0 _
Otherwise, set =, , =z, ;.

Substage 2 ( P! -requirement). Similar to the previous case with necessary changes
(@2, Vb, UO, .732, 90,6 by @é, Vl, Ul, Jié, 9176 accordingly).

Substage 3. Let z be the greatest integer such that for any k& < z there exists
a stage s’ < s such that at stage s’ the axiom Axie@Q(i’e)(k) = D.(k)[s']
was set. Let k& < z be the smallest integer (if any) such that the axiom
AEE@Qi’e)(lﬂ) = D, (k) requires correction at stage s. Let ¢ be a stage at which
the axiom AgY;@Q”)(k) = = D.(k) was set.

We consider two cases.

Case 1) D. (k) =1. In this case we proceed as in step (3) of the Basic Module:
(i) enumerate &; (k) into Q.,
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(ii) set AZZ@Q’”C(IC) = D, s(k) with a new use 0;. (k) > all P-restraints,
and 6; ¢ s(k) > 0;.c¢(k), and

(iii) appoint the marker «;(d;e,s(k)) as the first integer y such that y >
0ies(k) and y =< 2,1 > for some [.

Case 2) D. (k) = 0. Therefore, there is a stage u < s such that D, ,(k) = 1, and
at stage u we (re)set the axiom Ax‘e@Q"’e(lﬂ) = D.(k). It follows also that
at stage u we enumerated 0, (k) into Q;.. In this case we proceed as in
step (5) of the Basic Module:

a) if the highest-priority strategy which would be injured by the
Qie(diet(k))— or Vi(d;e.(k))— correction is a P-strategy (or there
is no strategy at all that would be injured), then enumerate ;(d; ¢ ¢(k))
into Vi_; and remove 0; (k) from Q..

b) Otherwise, put J; (k) into V;.

Set AViFU (k) = D, (k).

Vi@Qi,e
rection at stage s, then set the new axiom D, s(z) = AX;@Q’”C(Z) with a use
0ies(z) > all P-, R-restraints.

Substage 4. If none of the axioms A (k) = D.(k) for k < z requires cor-

Substage 5. Go to stage s+ 1.

End of the construction.

Verification.
Let vi=deg(V;), i <1.

Lemma 1. Q;. <7 V;® D,..

Proof. To V; @ D.-computably compute whether x € Q; ., first find a stage u at
which a new axiom D.(y) = Ax‘e@Q’”e
such a stage u exists.

Suppose now that @ = ;.. s(k) was chosen as a use for some A

(y) with a use ;¢ (y) > z is settled. Obviously,
X’faQi’e (k) at a stage
s < u (otherwise, © & Q;¢). Find a stage v > w at which V;, [ = V; |  and
D, ,(z) = D.(x). Now z € Q; . if and only if 2 € Q;c-

O
Lemma 2. If D, = ®Y®V then D, <7 V ® Q..
Proof. It follows immediately by construction. O
Lemma 3. Q;. isc. e. in Vi_;.
Proof. It follows immediately from the construction. O

Lemma 4. For each i <1 and e € w, requirements P! are eventually satisfied.

Proof. Fix e and assume by induction that the Lemma holds for all j < e.
Choose s minimal so that no Pf—restraints may be injured by some R-requirement.
By construction we may injure P! by finitely many times contributing some integers
into V; to protect the Vj_;-restraint of higher priority. But beginning at some stage s
we take witnesses for A-uses greater than the Vj_;-restraints, after that we meet the
requirement P?.

O
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Lemma 5. 0/ = vgUvy.

Proof. Suppose, in contrary, that vo U vy < 0’. Then by [8, Theorem 4.1] there
exists a d-c. e. degree d such that vo Uv; < d and d is not c. e. in vg U vy, and
therefore it is not c. e. in v;. We have vy < d and d is not c. e. in v1, a contradiction.

O
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Pesrome

M.M. Apcaanos. OTHOCHTETBHAS TIEPEUNCTUMOCTh W d-BBIYUCINMO TEPEUUCINMBIE CTe-
TIeHH.

B pab6ore m3yvaercs CBsA3b MKy OTHOCUTEIHHON MEePEeINCINMOCTHIO U d-BBIMHCINMO TIe-
peuncauMbIME cTereHsaMu. JIoKa3zaHo, 9T0 THIOPUHIOBAs CTEIEHb HPOO/IeMbI OCTAHOBKHU Ma-
muHbl ThIOPUHTa Pa3a0KUMa Ha TAKWe [Be BBIMUCINMO IePednCInMble CTeIeHN, 9TO BePXHUI
KOHYC KaK/10il U3 HIX COCTOUT TOJIBKO M3 TeX d-BBIYUCINMO MEPETUCTUMBIX CTEIeHel, KOTOphIe
MePEeINCTUMBL OTHOCUTEIHLHO BTOPOU CTEIeHH.

KiroueBble cjioBa: TBIOPUHTOBBIE CTEIIEHN, BBIYUCIIMO TIE€PEINCTNMBIE CTEIIeHH, OTHOCH-
TeJsIbHAs [I€PEIUCIUMOCTD, PA3I0KeHNe, OIPeIe/INMOCTb.
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