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Abstract

The Lévy Laplacians are infinite-dimensional Laplace operators defined as the Cesaro mean
of the second-order directional derivatives. In the theory of Sobolev—Schwarz distributions over
a Gaussian measure on an infinite-dimensional space (the Hida calculus), we can consider
two canonical Lévy Laplacians. The first Laplacian, the so-called classical Lévy Laplacian,
has been well studied. The interest in the second Laplacian is due to its connection with
the Malliavin calculus (the theory of Sobolev spaces over the Wiener measure) and the Yang—
Mills gauge theory. The representation in the form of the quadratic function of the annihilation
process for the classical Lévy-Laplacian is known. This representation can be obtained using
the S-transform (the Segal-Bargmann transform). In the paper, we show, by analogy, that
the representation in the form of the quadratic function of the derivative of the annihilation
process exists for the second Lévy-Laplacian. The obtained representation can be used for
studying the gauge fields and the Lévy Laplacian in the Malliavin calculus.
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Introduction

In the present paper, we study some relationships between infinite-dimensional
Laplacians and quantum stochastic processes.

Let us recall the definition of the Lévy Laplacian. Let E be a real locally convex
space continuously embedded into a separable Hilbert space H. Let the image of F
under the embedding be dense in H . The value of the Lévy Laplacian on a function f
on F is determined by the formula

n

ALf(@) = Tim =S @en  en), &

where {e,} is an orthonormal basis in H such that all its elements belong to E. This
definition depends on a choice of the orthonormal basis {e,}. For so-called weakly
uniformly dense bases in H = Ly([0, 1], R), this definition coincides with the definition
of the Lévy Laplacian as an integral functional determined by the special form of the se-
cond derivative (see [1, 2]). If we replace in (1) the Césaro mean by the sum of the series,
we obtain the definition of the Volterra-Gross Laplacian.

Now let

E =Wy?([0,1,R) == {y € AC([0,1],R): 7(0) = 0, € Lx([0, 1], R)}.

This space is canonically isomorphic to Ls([0,1],R) (the isomorphism is determined
by the differentiation). We can define the Lévy Laplacian on the functions on E by
the following two ways. On the one hand, we can choose some good orthonormal basis
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in W,7*([0,1],R). Then we obtain the Lévy Laplacian A(Ll) of order 1. On the other
hand, Wy7?([0,1],R) is embedded into H = Ly([0,1],R). We can choose some good
orthonormal basis in H and obtain the Lévy Laplacian A(Lfl) of order (—1).1

The theory of the Sobolev—Schwartz distributions over the abstract Wiener measure
is called the Hida calculus or the white noise theory. It is known that the Volterra—

Gross Laplacian Ay can be represented by the formula Ay g = / a?dt, where a is

R
the annihilation process (see, e.g., [7, 8]). An analogue of the Lévy Laplacian Al in
the Hida calculus we will call the classical Lévy Laplacian. The classical Lévy Laplacian
1
Al can be interpreted as / a?(dt?) (see [8] and also [9], where this formula appears

0
with the reference to Kuo). In this paper, we will show that the analogue of the Lévy
1

- 1
Laplacian A(L D can be interpreted as — / a?(dt?). The connections between the
™

0
Lévy Laplacians and quantum stochastic processes were also discussed in [5, 6, 10, 11].

In the latter paper, a rigorous meaning for the formulas

Ap =lim [ asa;dsdt
e—0

|s—t|<e
and )
-1 . ..
A(L ) — —_lim asa; ds dt
T2 e—0
|s—t|<e
was given.

Note that one of the main reasons for the interest in the Lévy Laplacian A(L_l) is
its connection to the gauge fields (see [4, 12-16]).

1. Lévy Laplacians

{p1,...,pa} is an orthonormal basis in R? everywhere below. If E is a locally
convex space (LCS), its dual space E* is equipped with strong topology. If E and V are
LCSs, the space L°(E,V) is the space of all continuous linear operators from E to V.
We assume that L°(F,V) is equipped with the topology of the uniform convergence on
bounded sets.

Let Ec = S(R,C%) be the Schwartz space of C?-valued rapidly decreasing functions
and Ef = S* (R,C%) be the space of generalized functions of slow growth. Let E, =
(6= (€',...,¢8) € Ec: €¥ =0,if p#v}. Then B = B1&... ®E,. Let Ty = Ty(RY, C)
and T5"™ be the space of all C-valued tensors of type (0,2) and the space of all
symmetric C-valued tensors of type (0,2) on R?, respectively. Let L™ (R2,Ty) = {g €
Lo(R% 1) guu(t,s) = guu(s,t)}. Let C%(Egc, C) be the space of all two times Fréchet
complex differentiable C-valued functions on E¢ = S(R,C%) satisfying the following
condition:

the second derivative of f € C%(Eg,C) has the form

()¢ ) = / / KV, (€5, 0)CH (8" (s) di dst | KL, (:6)CH (00" (8) dt, ¢, n € Ee, (2)
R R

R

LOne can consider the family of so-called exotic Lévy Laplacian Ag) , where { > 0 (see [3]). The Lap-
lacian A(L_l) belongs to the extension of this family for negative | < 0 (see [4] and also [5, 6]).
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where KV (¢,--) € LyY™(R2,Ty), KL(¢,)) € Loo(R, T5¥™) for any ¢ € Ec. (KV is
the Volterra kernel and KL is the Lévy kernel of the second derivative).
If f e C2(Ec,C), it is possible to extend f”(£) as a bilinear jointly continuous
functional on Ly(R,C?%) x Ly (R, C%). We will denote this extension by the same symbol.
Let {e,} be an orthonormal basis in Ly([0,1],R). We identify any element h €
Ly([0,1],R) with h € Ly(R,R) defined by

h(t) = {h(t), if ¢t e0,1], 3

0, otherwise.
We do not require {e,} to have its elements from S(R,R).

Definition 1. The Lévy Laplacian A}{:e"}’s of order s € {—1,1} is a linear mapping

from Dom AE‘)‘”}’S to the space of all C-valued functions on E¢ defined by:
1 n d
ALTFR(E) = tim D KT e ) (4)
=1p=

where Dom A{Le"}’s is the space of all f unctions f € C%(Ec,C), for which the right
side of (4) exists for any £ € E¢.

The following definition is from [1].

Definition 2. An orthonormal basis {e,} in L2([0, 1], R) is weakly uniformly dense,
if ) .
li = er(t) — ) =
Tim. h(t)(n N ety —1)dt =0
5 k=1
for any h € Lo ([0,1],R).

Let 1,(t) = /2sin(mnt) and h,(t) = v2cos(mnt) for n € N and ho(t) = 1.
The orthonormal bases {h,}52, and {l,}32, in Ly([0,1],R) are weakly uniformly
dense.

Proposition 1. Let {e,} be a weakly uniformly dense basis in Lo(]0,1],R). Let
f € C#(Ec,C). Then

d 1
A0 =1 [ Kltend ®
n=17

This is a well-known fact for d =1 (see, e.g., [1, 2, 7]). If d > 1 formula (5) can be
proved by analogy (see [4]).

Due to the kernel theorem (see, e.g., [17]) for any f € C?(Ec,C) the second par-
tial derivative fg#E“ (&) belongs to S*(R?,C). Let C% (- 1)(E<C7(C) be the space of all
f € C?(Ec,C) such that for any pu € {1,...,d} and for any ¢ € E¢ the second mixed
generalized derivative of f]’éM g, (&) € S*(R?,C) has the form

*
<%( EMEM /¢ s,t)vy,(dsdt), ¢ € S(R?,C), (6)

where 15, is a o-additive o-finite C-valued measure on R?.
Let I ={(s,t) €R?: s=1,0<s < 1}.Let 1; be the indicator of this set.
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Proposition 2. If f € C’%,(_l)(Ec,C), then

d 1
A= g (e Z / 1;(s, 1), (dsdt). (7)

Proof. Let

1
— if [t] <1
() = eXp(t2—1>’ il <1, 8)
0, otherwise.

Let 7 (t) = 7( / / t)dt and 7¢(t) = 71 (t/e)/e. Let IZ = l,#7°. Then ¢ € S(R,R),
—00

the support of I8 belongs to [—¢,1 + €] and I converges to I, as € — 0 uniformly on

any compact set. Let ht = h, * 7°. Then hS converges to h, in Ly(R,R) as ¢ — 0.

Due to I/, = mnh,,, we have (I5) = mnhS . Hence, we obtain

72n2<fg“Eu (&), hn @ hy) = il_l}% mn®( JIELMEH (&), hy, ® hy) =

= lim [ I (s)l5, ()05, (dt ds) = / Ln(8)ln (t)V/5,, (dt ds).  (9)

e—0

R2 R2

The last equality is due to Lebesgue’s dominated convergence theorem. For any (s,t) €
R? we have

7}LH;OﬁZl 17(s,t) (10)

and
sup |— In( ’ 11
Thus Lebesgue’s dominated convergence theorem and (9) together imply (7). O

Remark 1. One of the approaches to define the Lévy Laplacian is to define it
as the integral functional determined by the special form of the second derivative

(see [1, 2, 7]). Particularly, the operators Ag) and A(Lfl) can be defined by for-
mulas (5), and (7), respectively. It can be shown that form (6) is generalization of
the form of the second derivative from [12].

2. Lévy Laplacians in Hida calculus

The operator
2

d
A=1+82- 2
* dt?’
is a self-adjoint operator on Hc = Lo(R, C?). For any p > 0 let E, be the domain of A?
equipped with the Hilbert norm |€|, = |AP{| g, . For any p < 0 let E, be the completion
of Hc with respect with the Hilbert norm [£], = |AP¢|g,.. Then S(R,C?) coincides

with the projective limit projlim E, and S*(R,C?) coincides with the inductive limit
p——+o0

mdilmE . We have the real and complex Gelfand triplets:
p——+o0

S(R,RY) = Eg C Ly(R,RY) = Hp C S*(R,R?) = Ej,.
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and
Ec C He C E(E

The Fock space over the Hilbert space E), is defined as

oo

P(Ey) = {6 = (fu)ios fu € B 613 = D nllful? < o},

n=0

Let £ = projlimI'(E,). Then &* = indJlrimF(E_p). Let the symbol ((-,-)) denote
p——4o0 pP—T0O0

the duality form on £* x £.

Let pr be the Gaussian pseudomeasure on S(R,R%) with the Fourier transform
(&) = exp(—(&, &) /2) . The Minlos—Sazonov theorem implies that uy is o-additive
measure on S(R,R?). The unitary Wiener-It6-Segal isomorphism between I'(Hc¢) and
Lo(Ef, pr,C) is determined by the values of this isomorphism on the coherent states:

€92 gon

Ye = (1767,---,7,...) — P = e<z’5>_<5’5>/2, £e Ec.

Below we will not distinguish between the spaces I'(Hg) and Lo(ER, ur,C).
The Gelfand triplet € C Lo (Ef, ur, C) C £* is called the Hida-Kubo—Takenaka space.
£ is the space of white noise test functionals (Hida test functionals), and £* is the space
of white noise generalized functionals (Hida generalized functionals).

The S-transform (the Bargman—Segal transform) of generalized white noise func-
tional ® € £* is the function S®: Eg — C defined by the formula S®(&) = ((P,¢)),
¢ € Ec. It is known that a complex function G on E¢ is a S-transform of some gener-
alized white noise functional if and only if G satisfies the following two conditions (see,
e.g., [7, 18]):

A. for any (,n € E¢ the function G¢,(z) = G(2n+ () is entire on C;

B. there exist constants C7,C5 > 0 and p > 0 that for each £ € E¢ hold:

G(&)] < Crexp(Calé]?).

If a complex-valued function on the space E¢ satisfies the conditions above, it is called
U -functional. Let the symbol Fi; denote the space of all U-functionals.

Definition 3. The domain of the Lévy Laplacian Z}e"}’s of order s € {—1,1} is
the space Domﬁée"}’s ={P e 50 ¢c DomAEe’l}’S7AEe“’}’SS<I> € Fu}. The Lévy
Laplacian ﬁ{;”}’s is a linear mapping from Dom E{Le"}’s to £* defined by

Al e = sTIAL(59). (12)

Remark 2. It is known that if ® € Lo(E%, ur,C), then S® € C?(E¢,C) and
the Lévy kernel of S®” is equal to zero (see, e.g., theorem 6.42 from [18]). Hence, if

¢ € Ly(Ef, pr,C), then K{LE"}J(I) =0, where {e,} is a weakly uniformly dense basis.

The elements from £ can be realized as entire functions on Ef (see, e.g., [7]). For
any ¢ € Ef let a(¢) be the operator of differentiation in the direction:

a(Q)p(€) = Im(@(€ + 1) = $(E)/t, €€ B ped.
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If ¢ € B, then a(¢) € LY(&,E). If ¢ € Eg, then a(¢) can be extended to the operator
a(¢) € LP(&*,&*). For any ® € £* and ( € Eg the following holds:

S(a()@)(&) = (S'(€), C)-

A continuous mapping from R to L° (€,&*) is a quantum stochastic process in the
sense of the Hida calculus (see [19]). Note that there is the canonical embedding id of
E* into L(E,E*) defined by the following way:

(id®)(¢) = Do, D € £, $€E.

The mapping R > t — a} = a(p,d;) € LY(E,E*) is a quantum stochastic process,
which is called the annihilation process. The mapping R 3 ¢t — (a})* = a(p,d:)* €
Lb(£,£%) is a quantum stochastic process, which is called the creation process. It is
possible to show that these mappings are smooth and the mapping R > ¢ — a} €
Lb(&,€*) is also quantum stochastic process (see [20]). The sum (a} + (a})*) is the
white noise process, which is the derivative of the Brownian motion.

Using Obata’s result on the integral kernel operators (see [17, 20]), it is possi-

ble to give a rigorous sense for the integral // Kuv(t, 8)a} aldtds, where k € Egz.
If ¢, ¢ € £, then
o (5,1) = (i, (s,1) = ({{aka} 6, 9))) € EE>.

If kK € (EZ%*, then there exists the unique Zg2(k) € LP(&,E) such that
((Zo, 2( )b, ) = (K, Mp0). If K € ES?, then Ega(k) can be extended to the ope-

rator S 2(k) € LP(E*,E*). For any ® € £* and k € EZ? the following holds:

/ b (. 8)al'al dt ds @) (€) = SEoa(M)(E) = (SP"(©).r). (13
0

Let {e,} be a weakly uniformly dense basis. If ® € Domﬁ{;"}’1 and S® € C%(Ec,C),
proposition 1 implies

d 1
SRy =Y / KL (6,0 dt = 3 (SOl 4 (6),17). (14)
n=17

So, the right side of (13) has sense if k,, = 0,1, where J,, is the Kronecker symbol.
1

Thus, formula (14) gives a rigorous sense for E{Le”'}’l = / aZ(dt?) (see [8]). (The formula
0

1
A{h nhl o /11 s,t)asaz (ds dt) (15)
0

1

is probably more accurate. However, there is a conjecture that the formula / aZ(dt?)

0
can be included into the quantum Ito table (see [9]).)
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If k € Eg’Q, it is possible to give a rigorous sense for the integral

1
/HW, (t,s)ala” dtds
0

~ 82
as 5072

(767585%) € Lb(5*75*), Let ku, =0 if p#v. Let S® € C%,(—1)(E<C>(C)~ Then

1
/n,“, (t, s)ala? dt ds <1>) (€) = S(EO,Q(%K)Q (€) = <S<I>”(§), af;s“> -

00

pn=1

d B d 1
Z< Bfas Z/KW s, t)v (ds dt). (16)
p=1 0

The following theorem is a direct corollary of proposition 2.

Theorem 1. If ® € Dom &Eh"}’_l and S® € C’i,(_l)(Ec,(C). Then

1
SAP ey =Y %/ ¢ (dsdt). (17)

p=1

1
~ _ 1
Due to (16), formula (17) gives a rigorous sense for Aih”}’ ' = —2/ (dt?).
0

(Similarly to (15), the formula

1
ng},—l _ % /1I(s,t)dsdt(d5dt)
0

is probably more accurate.)

3. Yang—Mills equations

Let A(z) = A, (z)dz" be a smooth u(N)-valued 1-form on R?. This form deter-
mines a connection in the trivial vector bundle with base R¢, fiber CV, and struc-
ture group U(N). The covariant derivative of CY(R%,u(N)) is defined by V,¢ =

Ou¢ + [Ay, ¢]. The curvature F(z Z Fo(x)dz" A dz” is determined by

p<v
Fu, =0,A, —0,A,+[A,, Al
The Yang—Mills equations on a connection A have the form
V" =0. (18)

In paper [12] by Accardi, Gibilisco, and Volovich, the following was proved. The pa-
rallel transport associated with the connection A is a solution to the Laplace equation
for the Lévy Laplacian if and only if A satisfies to the Yang-Mills equations. In [12],
the parallel transport was considered as an operator-valued functional on the space of
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C'-smooth curves in R? and the Lévy Laplacian was defined as an integral functional
determined by the special form of the second derivative. In [14, 15|, it was shown that
this Laplacian can be defined as the Cesaro mean of the second directional derivatives
(this Laplacian coincides with wQA{Lh"}’fl ).

A stochastic parallel transport and its connection to the Lévy Laplacian can be
considered. Let {b;}:c[0,1] be a standard d-dimensional Brownian motion and (2, F, P)
be the probability space associated with this process. The stochastic parallel transport
U4 (b,t) is a solution to the stochastic equation:

t
UAb,t) = Iy — /Au(bS)UA(b,s) o dbH,

0

where odb is the Stratonovich differential.

In paper [13] by Leandre and Volovich, the Lévy Laplacian on the Sobolev space
over the Wiener measure P was introduced. This Laplacian was defined as the integral
functional. It was shown that the stochastic parallel transport U4 (b, 1) is a solution to
the Laplace equation for a such Lévy Laplacian if and only if A satisfies to the Yang—
Mills equations. In [16], the Lévy Laplacian Aj defined as the Cesaro mean of the
second directional derivatives on the Sobolev space over the Wiener measure P was
introduced. In [16], it was proven that A satisfies to the Yang-Mills equations if and
only if UA(b, 1) satisfies

ALUA(b, 1) = UA(b,1)/UA(b,t)‘lFW(bt)FW(bt)UA(b,t) dt.
0

Thus, in contrast to the deterministic case, the Lévy Laplacian as the integral functional
and the Lévy Laplacian as the Cesaro mean are two different operators on the Sobolev
space over P.

In [4], it was proven that the Lévy Laplacian Ay coincides with 7T2££h"} 1 un-
der the canonical embedding J of the Sobolev space over the Wiener measure into
My (C) ®, E* (the space of My (C)-valued Hida functionals). Moreover, it is possi-
ble to show that S-transform of JU#(b,1) belongs to CZ(Ec, My (C)) (this space is

defined by analogy with C%(Ec,C)). Thus,

J(ALUA(D,1)) = (jaf(dt2))JUA(b,1).
0

It would be of interest to investigate whether the definition of the Lévy Laplacian
from [13] could be reformulated in terms of the quantum stochastic processes. It is still
unknown how the Lévy Laplacians from [13] and [16] are connected.

Conclusions

Further research is needed to see whether the Lévy Laplacian A(Lfl) could be in-

cluded in the Ito quantum table and used in some areas related to quantum probability
(see, e.g., [21-23] and, especially, [9]). In addition, it would be of relevance to study
the approach based on the Lévy Laplacian in some areas connected to the theory of
gauge fields (see, e.g., [24-27]).
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Jlansiacuan JleBu n IIponecc yHNn4ITO2KEeHU A

B.0O. Boaxos

Mamemamunveckutd uncmumym um. B.A. Cmexaosa Poccutickol axademuu HAYK,
2. Mocksa, 119991, Poccus

Mocxkosckuti 2ocydapcmeenoillt mexruveckuti yrusepcumem um. H.D. Baymana,
2. Mockea, 105005, Poccus

AnnoTanus

Jlamtacuansr JIeBu npescTaBistior coboit beckoHeUIHOMEPHBIE orrepaTopsl Jlamtaca, onpeme-
JIEHHBIE KaK cpejHee Ue3apo BTOPBIX MIPOU3BOIHBIX IO HAIIPABJIEHUIO. B Teopun pacnpeiemeHuit
Cobonena —IBapna Ha I raycCOBCKOH MepOii HA GECKOHEIHOMEPHOM HPOCTPAHCTBE (HCIHUCTIe-
HuM XWJbI) MOXKHO PACCMOTPETDH JBa KAHOHMYECKUX Jjamiacuana Jlesu. Ilepsblii n3 HUX, Tak
Ha3bIBaEMbIil KJIacCHYecKuil jamiacuan Jlesu, xoporro udyder. VlHTepec KO BTOpOMY JIaIljIacu-
amy OByCJIOBJICH €r0 CBA3bIO ¢ ucauciaenneMm Majutassna (Teopueit mpocrpancts CoboeBa HaT
Mepoii Bunepa) u kanubposouHnoit Teopueit fura—Mumnica. s KIacCHIECKOro JIAIJIacHaHa
JleBU M3BECTHO TpeCTaBJEHUE B BUJE KBAJIPATUYHON (PYHKIIMH OT IPOIECCA YHUUTOKEHUS.
DTO mpesCTaBIEHNE MOKET OBITD MOJIYYIEHO ¢ MOMOIIBIO S -nipeobpas3oBanns (npeobpasoBaHmst
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Curana—Baprmana). B HacTosmieil crarbe Mo aHAJIOTAU TOKA3aHO, 9TO JJIsI BTOPOTO JIATLIACH-
aHa JleBu cymecTByeT NpejcTaB/IeHUE B BHUIE KBaPATUIHON (DYHKIMU OT ITPOM3BOIHON PO~
1ecca yHUITOXKeHus. [lo/ryueHHoe peIcTaB/IeHNe MOYKET OKa3aThCs MTOJIE3HBIM JIJIsT U3y YEHUSI
KaJnOPOBOYHBIX IOJIEH U Jiaiiacuana Jlesu B ucuucienuun MajisiBaHa.

Kuarouesblie cioBa: Jlammacuan JleBu, ncaucienne Xuabl, KBAHTOBAsI BEPOSITHOCTD, PO~
[eCC YHUITOXKEHUST
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