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UDK 530.12 NOTES ON CLASSICAL ANALOGSOF QUANTUM BLACK HOLESV. BerezinAbstra
tThe model is built in whi
h the main global properties of 
lassi
al and quasi-
lassi
al bla
kholes be
ome lo
al (the event horizon, �no-hair,� temperature and entropy). Our 
onstru
tionis based on the features of a quantum 
ollapse, dis
overed when studying some quantum bla
khole models. But our model is purely 
lassi
al, and this allows to use self-
onsistently theEinstein equations and 
lassi
al (lo
al) thermodynami
s and explain in this way the � log 3�-puzzle.Key words: 
lassi
al and quasi-
lassi
al bla
k holes.Introdu
tionMore than 80 years ago the famous soviet poet Vladimir Mayakovsky advised ev-erybody (even the elderly bla
k people) to study Russian only be
ause Vladimir Leninspoke this language (Vladimir Mayakovsky �To Our Youth,� 1927). I met many oldbla
k men in my life but nobody 
an speak Russian, may be they never heard aboutMayakovsky, and this very verse was not translated into English. The advi
e remainedjust a dream.But, I indeed met one (now) elderly woman Lu
ette Carter, the wife to the famousrelativist Brandon Carter, who was studying Russian when being a PhD student, onlybe
ause she be
ame aware of the book �Einstein Spa
es� by Alexey Zinovievi
h Petrovpublished at that time only in Russian (A.Z. Petrov, �Prostranstva Einshteina,� M.:Fizmatgiz, 1961), and de
ided to read it. And this is a reality.About 65 years ago (1946), Alexey Zinovievi
h Petrov started his seminal investiga-tions of the algebrai
 stru
ture of the spa
e-times � solutions to the va
uum Einsteinequations. The result of the enormous e�orts lasted for at least 15 years is known atpresent as the Petrov Classi�
ation of Gravitational Fields, Petrov types I, D, II, N andIII in modern notations.Of these, we are interested here in the degenerate Petrov type D. This is be
auseall the bla
k hole solutions belong to it. The appearan
e of bla
k holes is a strikingphenomenon, the origin of whi
h lies in the relativisti
 
hara
ter of the spa
e-time, i.e.,in the fundamental role played by the speed of light de�ning the 
ausal stru
ture, andin the equivalen
e between mass and energy. The latter feature tells us that in anyself-
onsistent relativisti
 theory of gravity all the energy should gravitate, in
ludingthe gravitational energy itself. In the most 
on
entrated form these two e�e
ts revealthemselves in bla
k holes. The bla
k hole spa
e-times have a rather unusual (from thepoint of view of our experien
e, or 
ommon sense) geometri
 and 
ausal stru
ture. Theirphysi
al properties are also impressive and, in fa
t, marginal. In the next se
tion someof them will be brie�y des
ribed. But now we would like to emphasize that all the un-usual features of the bla
k holes are that of the spa
e-times themselves. Moreover, the



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 95quantized matter �elds a
quire, in the presen
e of bla
k holes, some unexpe
ted prop-erties. This 
an be 
onsidered as the �rst step to the semi-
lassi
al quantization of thebla
k holes spa
e-times, and any future quantum theory of gravity, or �of everything,�should reprodu
e all these results. It is in this sense that bla
k holes be
ome a bridgebetween the 
lassi
al General Relativity (or any other relativisti
 gravitational theory)and the overall quantum realm. 1. PreliminariesClassi
al de�nition of a bla
k hole is based on the existen
e of the event horizon [1℄� the boundary of a spa
e-time region from whi
h the light 
annot es
ape to in�nity.The very notion of the event horizon is global and requires the knowledge of the wholehistory, both past and future.Classi
al "bla
k hole has no hair" [2℄ and is des
ribed by only few parameters:mass, Coulomb-like 
harge and angular momentum. The S
hwarzs
hild bla
k hole hasonly mass, the Reissner-Nordstrom one has mass and 
harge, the Kerr bla
k hole hasmass and angular momentum. The most general type � Kerr �Newman bla
k hole - hasall three parameters. This resembles the body in thermal equilibrium. The pro
ess ofbe
oming bold is also global; its duration, formally, is in�nite, like the pro
ess of 
om-ing to thermal equilibrium. It goes through radiating of all possible perturbations andgoverned by S
hroedinger-like wave equation, �rst derived in [3℄. The results of manynumeri
al studies for a long period (two de
ades) were summarized in [4℄. It appearedthat su
h perturbation modes have dis
rete spe
tra with 
omplex frequen
ies w . Theyre
eived the name �quasi-normal frequen
ies.� The imaginary parts are equidistant in-di
ating that the de
aying modes are radiating away in a manner reminis
ent of thelast pure dying tones of a ringing bell, and the higher the overtone, the shorter itslifetime. The real part of quasi-normal frequen
ies tends to some 
onstant value whi
hdepends on the bla
k hole type. For S
hwarzs
hild bla
k holes we are interested in here
Gm wn = 0.0437123 −

i

4

(
n +

1

2

)
+ O[(n + 1)−1/2], n → ∞ , where m is the mass,and G is the Newton's 
onstant. All that shows that bla
k holes have some inherentfrequen
y. Therefore, they are not �dead� but have some �private life,� en
oded in somefeatures of their horizons. Evidently, this is also a global property be
ause it does notdepend on what is going on inside.Investigation of the pro
esses near an event horizon showed that they 
an be re-versible and irreversible like in thermodynami
s [5, 6℄. The assimilation of a point(
lassi
al) parti
le by a non-extremal (if a bla
k hole has more than one parameter,then, for a �xed value of parameters other than mass, there exists the minimal value ofmass � 
riti
al, or extreme � below whi
h the event horizon does not exist) bla
k holereversible if it is inje
ted at the event horizon from a radial turning point of its motion.In this 
ase, the bla
k hole (horizon) area remains un
hanged, and the 
hange in otherparameters (mass, 
harge, and angular momentum) 
an be undone by another suitable(reversible) pro
ess. In all other 
ases, the horizon area A in
reases. Thus, for 
lassi
albla
k holes dA ≥ 0 .The new area in bla
k hole physi
s started with the seminal paper by J.D. Beken-stein [7�9℄, where he presented serious physi
al arguments that the S
hwarzs
hild bla
khole should be des
ribed by a 
ertain amount of entropy whi
h is proportional to thearea of event horizon. Su
h a stri
t proportionality 
ould appear to be playing gameswith symbols with only one parameter, bla
k hole mass, but it was then 
on�rmed byJ.M. Bardeen, B. Carter and S.W. Hawking [10℄, who proved the four laws of thermo-dynami
s for the general 
lass of Kerr �Newman bla
k holes. Moreover, it was shownthat the role of temperature is played by the surfa
e gravity κ at the event horizon



96 V. BEREZIN(up to some numeri
al fa
tor), whi
h is 
onstant there. And only after dis
overing byS.W. Hawking the bla
k hole evaporation [11, 12℄, this thermodynami
al analogy be-
ame the real physi
al phenomenon. He 
onsidered the quantum theory of masslesss
alar �eld on the S
hwarzs
hild stati
 spa
e-time ba
kground and found that the spe-
i�
 boundary 
onditions (only infalling waves in the vi
inity of the horizon) result ina thermal behavior of the wave fun
tions and nonvanishing energy �ow to the in�nity.It appeared that the spe
trum of su
h a radiation is Plan
kian with the temperature
TH =

κH

2π
, (1)where κ is the surfa
e gravity at the event horizon. It follows, then, that the bla
k holeentropy is exa
tly one-fourth of dimensionless horizon area

S =
1

4

A

ℓ2
pℓ

, (2)where ℓpℓ
=

√
~G

c3
∼ 10−33 
m is the Plan
k length (~ is the Plan
k 
onstant, c isthe speed of light, and G is the Newton's gravitational 
onstant). We will use the units

~ = c = 1 , so ℓpℓ
=

√
G and the Plan
k mass is mpℓ

=

√
~c

G
= 1/

√
G ∼ 10−5 g.The nature of Hawking radiation and its bla
k body spe
trum lies in the nontrivial
ausal stru
ture of the spa
e-times 
ontaining bla
k holes. The 
ru
ial point is theexisten
e of the event horizons. The same takes pla
e in the Rindler spa
e-time. Thisspa
e-time is obtained by transforming the two-dimensional Minkowski �at spa
e-timefrom the �ordinary� 
oordinates (t, x) and metri
 ds2 = dt2 − dx2 related to the setof inertial observers, to the so-
alled Rindler 
oordinates (η, ξ) (t =
1

a
eaξ sinh aη, x =

±
1

a
eaξ coshaη, −∞ < η < ∞, −∞ < ξ < ∞) and metri
 ds2 = e2aξ(dη2−dη2) . Thus,the Rindler spa
e-time is stati
 and lo
ally �at but di�ers from the two-dimensionalMinkowski spa
e-time globally, be
ause it 
overs only one half of the latter and, inaddition, possesses the event horizon at t = ± x (η = ±∞ , ξ = const). The Rindlerobservers at ξ = const are uniformly a

elerated. The norm of the a

eleration ve
tor

aµ equals α =
√−aµ aµ = ae−aξ . Considering a quantum s
alar �eld in the Rindlerspa
e-time, W.G. Unruh found [13℄, in fa
t, the �nite temperature quantum �eld theorywith the temperature

TU =
a

2π
. (3)We see that this temperature is proportional to the a

eleration of the Rindler observersitting a ξ = 0 with g00 = 1 . But, all of them are equivalent (we 
an always shift thespatial 
oordinate ξ → ξ − ξ0 ). The temperature is not an invariant, but it is a tem-poral 
omponent of a heat ve
tor. This means that ea
h observer measures the Unruhtemperature when using its proper time τ (ds = dτ ). If the same observer uses thelo
al 
lo
ks that show the lo
al time t (ds =

√
g00 dt), the lo
al temperature measuredby him equals Tloc =

TU√
g00

=
a

2 π
e−aξ =

α

2 π
, whi
h is proportional to the lo
al a
-
eleration α . The very fa
t that the uniformly a

elerated observer (= dete
tor) willdete
t the real parti
les in the va
uum, was known to people doing quantum ele
trody-nami
s long ago. It was understood as a 
hange of a va
uum state due to the externalfor
es that 
ause su
h an a

eleration. The same happens in the spa
e-time with eventhorizons. But that the spe
trum is thermal appeared to be new and purely relativisti
feature. We know from the university 
ourse of thermodynami
s that the 
ondition for
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 spa
e-times is Tloc
√

g00 = const. Thus, all the Rindlerobservers are in thermal equilibrium with ea
h other. Is the Rindler spa
e-time uniquein this sense? To answer, let us 
onsider some general two-dimensional stati
 spa
e-timewith a metri

ds2 = eν dt2 − dρ2 = eν dt2 − eλ dq2. (4)In the Rindler 
ase ρ =
1

a
eaξ , eν = a2ρ2 = g00 . The stati
 observer undergoes a 
on-stant a

eleration with the invariant α =

1

2

∣∣∣∣
dν

dρ

∣∣∣∣ =
1

2

∣∣∣∣
dν

dq

∣∣∣∣ e−λ/2 , and the (now lo
al)Rindler parameter a(ρ) , whi
h is 
alled �the surfa
e gravity κ ,� is
κ =

1

2

∣∣∣∣
dν

dq

∣∣∣∣ e
(ν−λ)/2 =

1

2

∣∣∣∣
dν

dρ

∣∣∣∣ e
ν/2. (5)The thermal equilibrium requires κ = const , therefore, g00 = Cρ2 , and this proves thatthe Rindler spa
e-time is the only one where stati
 observers are in thermal equilibrium.By the Einstein equivalen
e prin
iple, we 
an extend all we learned studying Rindlerspa
e-times, to the stati
 gravitational �elds, espe
ially to the spheri
ally symmetri
ones, be
ause after �xing spheri
al angles θ and ϕ the latter be
ome, in fa
t, thetwo-dimensional pseudo-surfa
es. Of 
ourse, in general these surfa
es are 
urved, theequivalen
e prin
iple holds only lo
ally, and the stati
 observers will not be in thermalequilibrium with ea
h other. Su
h a temperature is observer-dependent and 
annot be
onsidered as an intrinsi
 property of a given spa
e-time. But for the bla
k hole spa
e-times, the position of the event horizon is absolute and does not depend on the observer.So, its temperature does serve an important 
hara
teristi
 of spa
e-time itself. To knowthe temperature, we just need to 
ompute the surfa
e gravity value at the event horizon

κH . For the S
hwarzs
hild bla
k hole with the famous metri

ds2 = F dt2 −

1

F
dr2 − r2(dθ2 + sin2 θ dϕ2), F = 1 −

2 Gm

r
, (6)where m is the bla
k hole mass, and r is the radius of a sphere (in that sense that itsarea is 4πr2 ), the horizon is lo
ated at the radius rg = 2Gm , and the surfa
e gravityis

κH =
1

2

∣∣∣∣
dν

dr

∣∣∣∣ e(ν−λ)/2 =
1

2
F ′(rH) =

Gm

r2

∣∣∣∣
rg

=
1

4 Gm
. (7)Therefore, the Hawking temperature is just the Unruh temperature at the event horizonmeasured by distant observers (at in�nity). The same is true also for Kerr �Newmanbla
k holes. Note that outside the event horizon r > rg the S
hwarzs
hild observers arenot in thermal equilibrium with ea
h other, and this is a thermodynami
al explanationof the Hawking radiation and, thus, evaporation of bla
k holes. It should be stressedthat both the bla
k hole temperature and entropy are global features be
ause their veryappearan
e is due to the existen
e of the event horizon.Evaporating, bla
k holes be
ome smaller and smaller and will rea
h eventuallya Plan
k size where the still unknown quantum gravity should play an importantrole. Sin
e the radiation is quantized, the bla
k hole mass have to be quantized aswell. Of 
ourse, the relation is not dire
t be
ause a bla
k hole is not ne
essarily trans-formed into bla
k hole again, but the new bla
k hole will eventually be formed only dueto radiation. Not only the rest masses and kineti
 energy of parti
les, in
luding the totalangular momentum, may 
ontribute to the bla
k hole mass, but also Coulomb and mag-neti
 energies of their ele
tri
 and gauge 
harges and all kinds of other physi
al �elds
on�ned under the event horizon. But the 
ommon feature for all types of bla
k holes



98 V. BEREZINis their entropy with its universal relation (2) to the horizon area. Thus, the bla
k holequantization means the quantization of its entropy. Moreover, the thermodynami
aldes
ription is possible only if the jump in the temperature due to quantization of mass,
harge and angular momentum during bla
k hole evaporation is negligible 
omparedto its absolute value, while the notion of the entropy as a measure of the information,hidden or ignored, is still valid. This latter feature gives rise to 
ommon believe that thebla
k hole quasi-
lassi
al quantization 
an shed light on the stru
ture of the future fullquantum gravity, or, at least, will provide us with some sele
tion rules in the attemptsto 
onstru
t su
h a theory. The quantization of a bla
k hole as a whole was proposedlong ago by J. Bekenstein [14℄. The idea was based on the remarkable observation thatthe horizon area of non-extremal bla
k holes behaves as a 
lassi
al adiabati
 invari-ant. The Bohr � Sommerfeld quantization rule then predi
ts the equidistant spe
trumfor the horizon area and thus, for the bla
k hole entropy. The gedanken experimentsshow that, due to the quantum e�e
ts, the minimal in
rease in the horizon area in thepro
esses of 
apturing a neutral or ele
tri
ally 
harged parti
le approximately equals
∆ Amin ≈ 4 ℓ2

pℓ
. This suggests for the bla
k hole entropy

SBH = γ0 N, N = 1, 2, . . . , (8)where γ0 is of order of unity. In their famous work on the bla
k hole spe
tros
opy,J.D. Bekenstein and V.F. Mukhanov [15℄ related the bla
k hole entropy to the number
gn of mi
rostates that 
orresponds to the parti
ular external ma
rostate through thewell-known formula in statisti
al physi
s gn = exp[SBH(n)] ; i.e., gn is the degenera
yof the n-th area eigenvalue. Sin
e gn should be integer, they dedu
ed that

γ0 = log k, k = 2, 3, . . . (9)In the spirit of the information theory and the famous 
laim by J.A. Wheeler �It fromBit,� the value of log 2 seems most suitable one.The logarithmi
 behavior of the spa
ing 
oe�
ient γ0 
omes also from the LoopQuantum Gravity. It was shown in [16, 17℄ that the entropy of the S
hwarzs
hild bla
khole is proportional to the horizon area as well as a numeri
al 
onstant 
alled the Bar-bero � Immirzi parameter. To �t the Bekenstein �Hawking relation (2) and the possiblevalue for γ0 (9) this parameter should equal log 2/(π
√

3) if the fundamental group inLQG is SU(2) , and log 3/(2π
√

2) if it is SU(3) . The 
hoi
e of the value for γ0 leadsto minimal possible 
hange in the bla
k hole mass. S. Hod [18℄, using Bohr's 
orrespon-den
e prin
iple, dedu
ed that γ0 should be proportional to log 3 be
ause he noti
edthat
Gm Re w = 0.0437123 =

log 3

8π
. (10)The value of γ0 as well as that of Barbero � Immirzi parameter and, thus, the 
hoi
e ofthe fundamental group in LQG must be universal. Therefore, it is not surprising thatpeople tried to �nd some analyti
al methods for evaluating the quasi-normal frequen
iesfor di�erent types of bla
k holes. By using rather sophisti
ated tools from the generaltheory of ordinary di�erential equations, L. Molt and A. Neitzke showed [19, 20℄ that forthe s
alar and tensor perturbations around S
hwarzs
hild bla
k holes the value log 3is exa
t. For more general types of bla
k holes, the 
orresponding 
al
ulations wereful�lled in [21℄. It appeared that the simple value log 3 for the spa
ing 
oe�
ient γ0 isby no means universal, but ex
eptional. That is why we use the expression �the mysteryof log 3 .�Below, we 
onstru
t a model whi
h is not really a bla
k hole, but possesses itsmain features. It has an event horizon � but lo
al, the temperature � but lo
al. Then,
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al thermodynami
s for su
h a model and show how the mystery of
log 3 
an be solved. There is a hope that our model will be helpful in understanding theunderlining physi
s of many other interesting features of quasi-
lassi
al bla
k holes.2. The �Standard model�2.1. Quantum shells. We start the 
onstru
tion of our model with a brief de-s
ription of a parti
ular model of quantum S
hwarzs
hild bla
k hole. Namely, this isa theory of quantized spheri
ally symmetri
 self-gravitating thin dust shells [22, 23℄ �the simplest generalization of a point parti
le. In this 
ase, there is only one dynami-
al degree of freedom, the shell radius (real gravitons are absent due to the spheri
alsymmetry = Birkho� theorem), and the Wheeler �DeWitt equation is redu
ed to thestationary one-dimensional S
hroedinger-like equation in �nite di�eren
es. Most impor-tant is the fa
t that the model is self-
onsistent, it takes into a

ount the ba
k rea
tionof the gravitating sour
e (thin shell) on the geodesi
ally 
omplete S
hwarzs
hild man-ifold whi
h has a nontrivial 
ausal stru
ture. The geodesi
ally 
omplete S
hwarzs
hildspa
e-time has a geometry of non-transversable wormhole (it is also 
alled an eternalbla
k hole). There are two asymptoti
ally �at regions with spatial in�nities 
onne
tedby the Einstein �Rosen bridge (the throat). Two sides of the bridge are 
ausally dis
on-ne
ted and separated by (past and future) event horizons. Inside the shell we have somepart of S
hwarzs
hild metri
 with the mass parameter min , while outside the shell, theS
hwarzs
hild mass is mout .In quantum me
hani
s, there are no traje
tories, and the shell wave fun
tion �feels�the existen
e of the event horizons and both in�nities. The result is the ne
essity ofimposing an additional boundary 
ondition and the appearan
e of two quantum num-bers for two quantities des
ribing the quantum states (for �xed min ) � the bare mass
∆M of the shell (the sum of masses of the 
onstituents) and its total mass (energy)
∆m = mout − min whi
h in
ludes the gravitational mass defe
t. The dis
rete massspe
trum for bound sates looks as follows (n and p are integers):

2 (∆m)2 − M2

√
M2 − (∆m)2

=
2 m2

pℓ

∆m + 2min
n,

M2 − (∆m)2 = 2 (1 + 2p)m2
pℓ

. (11)For given bare mass M , the 
hange of a quantum state 
auses the 
hange in the massinside the shell min and in the total mass of the system mout . Therefore, during thegravitational 
ollapse the total mass de
reases, while the inner mass in
reases. When
ould su
h a pro
ess be stopped? The natural limit is the 
rossing of the Einstein �Rosenbridge, sin
e su
h a transition requires (at least in a quasi-
lassi
al regime) insertionof in�nitely large volume, with, of 
ourse, zero probability. Computer simulations showthat the pro
ess of quantum 
ollapse for our shells stops when the prin
ipal quantumnumber be
omes zero, n = 0 .The point n = 0 in our spe
trum is very spe
ial. In this 
ase the shell does not�feel� not only the outer region (what is natural for the spheri
al 
on�guration), butit does not know anything about what is going on inside. It �feels� only itself. Su
h asituation reminds the �no hair� property of a 
lassi
al bla
k hole. Finally, when all theshells (both the primary one and newly born) are in the 
orresponding states ni = 0 ,the whole system does not �remember� its own history. Then it is this �no-memory�state that 
an be 
alled �the quantum bla
k hole.� Note that the total masses of all theshells obey the relation ∆ mi =
1√
2

Mi .



100 V. BEREZIN2.2. Classi
al analog of quantum S
hwarzs
hild bla
k hole. The �nal stateof quantum gravitational 
ollapse 
an be viewed as some stationary matter distribution.Therefore, we may hope that for massive enough quantum bla
k hole su
h a distributionis des
ribed approximately by a 
lassi
al stati
 spheri
ally symmetri
 perfe
t �uid withenergy density ε and (e�e
tive) pressure p obeying 
lassi
al Einstein equations. This iswhat we 
all a 
lassi
al analog of a quantum bla
k hole. Of 
ourse, su
h a distributionhas to be very spe
i�
. To study its main features, let us 
onsider the situation in moredetails.Any stati
 spheri
ally symmetri
 metri
 
an be written in the form
ds2 = eν dt2 − eλ dr2 − r2(dθ2 + sin2 θ dϕ2). (12)Here r is the radius of a sphere with the area A = 4πr2 , ν = ν(r) , λ = λ(r) . There areonly three (stati
 spheri
ally symmetri
) Einstein equations. The 
onstraint equation
an be written in the integral form. For this, let us integrate the �rst of Eqs. (11):

e−λ = 1 −
2 Gm(r)

r
, (13)where

m(r) = 4π

r∫

0

ε r̃ 2 dr̃ (14)is the mass fun
tion that should be identi�ed with min . Now, the �no-memory� prin
ipleis readily formulated as the requirement that m(r) = ar , i.e.,
e−λ = 1 − 2Ga = const, ε =

a

4πr2
. (15)We 
an also introdu
e a bare mass fun
tion M(r) (the mass of the system inside a sphereof radius r without gravitational mass defe
t):

M(r) =

∫
ε dV = 4π

r∫

0

ε eλ/2 r̃ 2 dr̃ =
ar√

1 − 2Ga
. (16)The remaining two equations 
an now be solved for p(r) and eν(r) . The general solutionis rather 
omplex, but the 
orre
t non-relativisti
 limit for the pressure p(r) (we areto reprodu
e the famous equation for hydrostati
 equilibrium) is given by only thefollowing one-parameter family:

p(r) =
b

4πr2
, b =

1

G

(
1 − 3Ga −

√
1 − 2Ga

√
1 − 4Ga

)
. (17)We see that the solution exists only for a ≤

1

4G
, then b ≤ a . The physi
al meaning ofthese inequalities is that the speed of sound 
annot ex
eed the speed of light, v2

sound =
b

a
≤ 1 = c2 , the equality being rea
hed just for a = b =

1

4G
. Finally, for the temporalmetri
 
oe�
ient g00 = eν we get

eν = C2
0 r4b/(a+b) = C2

0 r2G(a+b)/(1−2Ga).Thus, demanding the �no-memory� feature and the existen
e of the 
orre
t non-relativisti
 limit, we obtained the two-parameter family of stati
 solutions. But, weneed a one-parameter family, so we have to 
ontinue our sear
h.



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 101Evidently, the point r = 0 is singular both for matter distribution and g00 metri

oe�
ient. To examine what kind of singularity we are dealing with, one should 
al
ulatethe Riemann 
urvature tensor. It appears that for b < a this tensor is, indeed, divergentat r = 0 . But, if a = b =
1

4G
, we are witnessing a mira
le, the (before) divergent
omponents be
ome zero. Thus, demanding, in addition to the previous two very naturalrequirements, the third one (also natural), namely, the absen
e of the real (
urvature)singularity at r = 0 , we arrive at the following one-parameter family of solutions to theEinstein equations (11)

eν = C2
0r2, eλ = 2, ε = p =

1

16πGr2
. (18)So, the equation of state of our perfe
t �uid is the sti�est possible one. The 
onstantof integration C0 
an be determined by mat
hing the interior and exterior metri
s atsome boundary value of radius, r = r0 . Let us suppose that for r > r0 the spa
e-timeis empty, so, the interior should be mat
hed to the S
hwarzs
hild metri
 with the massparameter m . Of 
ourse, to 
ompensate the jump in the pressure ∆p (= p(r0) = p0) ,we must in
lude in our model a surfa
e tension Σ ; so, a
tually, we are dealing withsome sort of liquid. It is easy to 
he
k that

C2
0 =

1

2r2
0

, ∆p =
2 Σ√
2r0

, eν =
1

2

(
r

r0

)2

,

p0 = ε0 =
1

16πGr2
0

; m = m0 =
r0

4G
.Note that the bare mass M =

√
2m , the relation is exa
tly the same as for the shell�no-memory� state and r0 = 4Gm0 , so, the size of our analog model is twi
e as that fora 
lassi
al bla
k hole of the same mass.The spe
ial point in our solution r = 0 is not a trivial 
oordinate singularity, likein a three-dimensional spheri
ally symmetri
 spa
e, be
ause ds2 (r = 0) = 0 . Thislooks like an event horizon. Indeed, the two-dimensional (t − r)-part of our metri
des
ribes a lo
ally �at manifold. Sin
e the stati
 observers at r = const are, in fa
t,uniformly a

elerated, this is a Rindler spa
e-time with the event horizon at r = 0 .The 
orresponding Rindler parameter whi
h in more general 
ase is 
alled the �surfa
egravity,� equals

κ =
1

2

∣∣∣∣
dν

dr

∣∣∣∣ e
(ν−λ)/2 =

C0√
2

=
1

2r0
. (19)Therefore, the Unruh temperature in our model is TU =

1

4πr0
=

1

16πGm
, what istwi
e less than the Hawking temperature for the S
hwarzs
hild bla
k hole,

TH =
1

8πGm
= 2TU . (20)Let us resume what we have got by now. We 
onstru
ted a purely 
lassi
al model thatpossesses some features of (semi)
lassi
al bla
k holes: event horizon and temperature,but instead of being global, they are lo
al. Indeed, by de�nition, the surfa
e r = 0
annot be 
rossed; thus, the event horizon in our model be
omes lo
al. The temperatureis also lo
al, Tloc = TU/

√
g00 = 1/2

√
2πr , and does not depend on the boundary value

r0 . And, one more important feature: if one removes some outer layer, nothing would be
hanged inside. This is a re�e
tion of the fa
t that all parts of our matter distributionare in thermal equilibrium.



102 V. BEREZINQuantum nature of radiation and the fa
t that the bla
k hole entropy has a dis
reteequidistant spe
trum suggest that our distribution 
onsists, a
tually, of some numberof Quasi-parti
les, �gravitational phonons.� Thus, having at hand lo
al intensive pa-rameters: e�e
tive pressure p(r) , temperature Tloc(r) , 
hemi
al potential µ(r) , andextensive parameters: bare mass M , volume V , entropy S and �parti
le� number N ,we are now ready to 
onstru
t the lo
al thermodynami
s.2.3. Thermodynami
s. The �rst law of thermodynami
s reads
dM = ε dV = Tloc dS − p dV + µ dN. (21)Dividing the above expression by the volume element dV we get the �rst law in itslo
al form
ε(r) = Tloc(r) s(r) − p(r) + µ(r)n(r), (22)where s and n are the entropy and parti
le densities, respe
tively. In our model

ε = p , but what about s? The lo
al observer 
annot 
al
ulate it without know-ing the 
orresponding mi
ros
opi
 stru
ture, but he 
an ask his global 
ounterpartwho is edu
ated enough (reads proper books) and knows that the total entropy of thebla
k hole is S =
1

4G
Ahor , what for the S
hwarzs
hild bla
k hole gives (Ahor = 4πr2

g)

S =
π

G
r2
g =

π r2
0

4G
. Having this information, our lo
al observer 
an dedu
e that

s(r) =
1

8
√

2Gr
, Tloc(r) s(r) =

1

32πGr2
. (23)Remembering now that ε =

1

16πGr2
, we obtain

Tloc(r) s(r) =
1

2
ε, µ(r)n(r) =

3

2
ε.We will need also the expression for the free energy F :

F =

∫
f dV, f = ε − Tloc s =

1

2
ε. (24)It is known that the thermal equilibrium 
onditions for the systems in stati
 gravita-tional �eld are

T
√

g00 = const, µ
√

g00 = const. (25)The 
onstants on the right-hand sides are universal for our model � they do not dependon the boundary value r0 . Therefore, their ratio is also a universal 
onstant. Thus, wehave
µ

T
= 3

s

n
= 3

S

N
= 3γ0. (26)Hen
e, the entropy is naturally quantized:

S = γ0 N, N = 1, 2, . . . (27)2.4. Solving the mystery of log 3. In order to 
al
ulate the spa
ing 
oe�
ient
γ0 we have to make some assumption about the mi
ros
opi
 stru
ture of our model.We assume that the interior matter distribution 
onsists of N bla
k hole phonons withthe equidistant spe
trum of ex
itations

εn = ω n, n = 1, 2, . . . (28)



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 103In this 
ase, the partition fun
tion for the whole system is the produ
t of those ones forea
h phonon, and
Ztot = (Z1)

N , Z1 =
∑

n

e−εn/T =
∑

n

(
e−ω/T

)n

=
e−ω/T

1 − e−ω/T
. (29)It is natural to suppose that ω is just the bla
k hole resonan
e frequen
y and its ex-isten
e follows from the properties of quasi-normal modes (as was already explainedearlier). Of 
ourse, ω is a temporal 
omponent of a four-ve
tor, the same is the tem-perature T , so their ratio does not depend on the 
hoi
e of the 
lo
ks by lo
al stati
observers. We a

ept that the observers are using their proper time, so T is just theUnruh temperature TU whi
h is 
onstant in the whole interior. The partition fun
tion isan invariant, and we 
an 
al
ulate it in another way, using thermodynami
al relations.Indeed, we 
an 
onsider some small volume element dV and the 
orresponding partitionfun
tion Zsmall . Then, using the well-known formula for the free energy F = −T log Z ,and writing it for the volume element

dF = f dV = −Tloc log Zsmall, (30)where, as before, we use the lo
al intrinsi
 quantities in thermodynami
al relations.From this we have
∫

f

Tloc
dV = −

∑
log Zsmall = − logZtot. (31)The left-hand side is

∫
f

Tloc
dV =

1

2

∫
ε

Tloc
=

π r2
0

4G
=

π r2
g

G
= S. (32)Here rg is the S
hwarzs
hild radius, and S is the total bla
k hole entropy. Eventually,we obtain the important relation

e−S = Ztot = (Z1)
N , (33)from whi
h it follows that

e−ω/T

1 − e−ω/T
= e−S/N = e−γ0 , eγ0 = eω/T − 1. (34)To go further, let us 
onsider the irreversible pro
ess of 
onverting the mass (energy)of the system into radiation from a thermodynami
al point of view. In our model su
ha pro
ess takes pla
e just at the boundary r = r0 , and the thin shell with zero surfa
eenergy density and surfa
e tension Σ serves as a 
onverter supplying the radiation withextra energy and extra entropy, this resembles the �bri
k wall� model. The nature ofthis radiation is purely quantum be
ause our system is not radiating 
lassi
ally. Thejump in the Unruh temperature of the inner and outer near-boundary stati
 observersis 
ompensated exa
tly by the gravitational in�uen
e of the surfa
e tension. One 
animagine that the near-boundary layer of thi
kness ∆r0 is 
onverting into radiation, thusde
reasing the boundary of the inner region to (r0−∆r0) . Its energy is ∆M = ε∆V . Tothis we should add the energy released from the work done by the surfa
e tension due toits shift, whi
h is equal exa
tly to ∑

d(4πr2
0) = pd∆V = ε∆V = ∆M . Therefore, boththe energy and the temperature in the 
onverter be
omes two times higher than thatfor any inner layer of the same thi
kness. And this double energy is gained by radiatingquanta. Clearly, they have double frequen
y and exhibit double temperature, so

Re w

TH
=

ω

TU
= log 3, (35)



104 V. BEREZINas follows from the spe
trum of quasi-normal modes for the S
hwarzs
hild bla
k holes.Substituting this into Eq. (34) and remembering that
3 − 1 = 2, (36)we obtain
γ0 = log 2. (37)Sin
e the radiated energy is thermalized, the interpretation of dm as equal to Re w isan improper pro
edure. This resolves the � log 3 -paradox.�3. Beyond the �Standard model�The model proposed above is very stringent. And the question arises: whi
h ofthe imposed 
onditions 
ould be weakened? Let us remember the steps towards the�nal results. First, we demanded the �no memory� 
ondition to be ful�lled. This wasne
essary to ensure the bla
k hole mimi
ry. Se
ond, we assumed the perfe
t �uid energy-momentum tensor. Then, the requirement for the absen
e of a 
urvature singularity atzero radius has led us both to the appearan
e of the temperature and to the unique(sti�est possible) equation of state. Surely, the thermal equilibrium is the 
ru
ial feature,but how about the isotropy in the �uid pressure?To make this point 
learer, let us 
onsider the general form of stati
 spheri
allysymmetri
 metri
 with stati
 observers in mutual thermal equilibrium. As we alreadyknow, the spa
e-time in su
h a 
ase should be a dire
t produ
t of Rindler (lo
ally �at)manifold and 2-dimensional sphere of radius R :

ds2 = a2ρ2 dt2 − dρ2 − R2(ρ)(dθ2 + sin2 θ dϕ2), (38)where a is the a

eleration parameter, and R(ρ) is the only unknown fun
tion of theradial 
oordinate ρ . The Einstein equations read as follows:
−

2R′′

R
+

1 − R′2

R2
= 8πGε,

− 2
R′

ρ R
+

1 − R′2

R2
= −8πGpr,

−
R′′

R
−

R′

ρ R
= −8πGpt.

(39)Here �prime� denotes ordinary derivatives and we assume that, in general, the radialpressure pr is not equal to the tangential pressure pt . With the �no memory� 
ondition
R′ = α = const, the above equations be
ome algebrai
; besides, in this 
ase ε+pr = 2ptand for isotropi
 pressure pr = pt we re
over the previous result. But, let us rememberthat the relation between the bare and total masses M =

√
2m in our model appearedthe same as that of the quantized thin dust shells in the �no memory� states. And thisdoes not point to the fa
t that our 
lassi
al analog 
onsists solely of massive 
onstituents.But in reality, 
lassi
al bla
k holes may 
ontain some radiation (i.e., massless parti
les)as well. Consider now the extreme situation when the analog model distribution isrepresented by massless parti
les only. Then, ε = pr + 2pt and, hen
e, pr = 0, ε = 2pt

α = 1/
√

3 . Su
h a strange equation of state means that we are dealing not with a
ondensed matter but rather with a set of thin shells of small (vanishing) energies that
onsist of massless parti
les orbiting along the spheres of 
onstant radii in all possibledire
tions [25℄. But su
h a distribution is unstable, be
ause the orbits 
oin
ide withthe last 
ir
ular ones in the outer S
hwarzs
hild metri
. In the intermediate 
ase, there



NOTES ON CLASSICAL ANALOGS OF QUANTUM BLACK HOLES 105is a mixture, and these orbits be
ome stable. Moreover, if one assumes that these twosystems are non-intera
tive (ex
ept gravitationally), what seems quite natural in thespirit of our �no memory� 
ondition, then it is not di�
ult to show, using separate
ontinuity equations, that R′ = const and the perfe
t �uid part of the mixture has thesti�est possible equation of state.Su
h a generalized model possesses plausible features. First, the value for R′ is nomore unique, instead, 1/3 < α2 ≤ 1/2 . Se
ond, these orbiting massless parti
les 
anbe understood as remnants of radiated quasi-normal modes and, at the same time,as the origin of the equidistant �phonon� spe
trum in the perfe
t �uid. Third, the�Hawking evaporation� of our analog model 
an now be 
onsidered as the indu
edradiation tunneling trough the potential barrier 
aused by the surfa
e tension at theboundary.It is not yet 
lear how to make use of the thermodynami
al relations in this rather
omplex system and. . . but the work is in progress.This work was supported by the grant No. 10-02-00635-a from the Russian Founda-tion of Fundamental Investigations (RFFI).�åçþìåÂ.À. Áåðåçèí. Çàìå÷àíèÿ î êëàññè÷åñêèõ àíàëîãàõ êâàíòîâûõ ÷¼ðíûõ äûð.Ïîñòðîåíà ìîäåëü, â êîòîðîé îñíîâíûå ãëîáàëüíûå ñâîéñòâà êëàññè÷åñêèõ è êâàçè-êëàññè÷åñêèõ ÷åðíûõ äûð ñòàíîâÿòñÿ ëîêàëüíûìè (ãîðèçîíò ñîáûòèé, îòñóòñòâèå ¾âî-ëîñ¿, òåìïåðàòóðà è ýíòðîïèÿ). Íàøà ñõåìà áàçèðóåòñÿ íà îñîáåííîñòÿõ êâàíòîâîãî êîë-ëàïñà, îáíàðóæåííûõ ïðè èçó÷åíèè íåêîòîðûõ êîíêðåòíûõ ìîäåëåé êâàíòîâûõ ÷åðíûõäûð. Îäíàêî íàøà ìîäåëü ÿâëÿåòñÿ ÷èñòî êëàññè÷åñêîé, ÷òî ïîçâîëÿåò èñïîëüçîâàòü ñà-ìîñîãëàñîâàííûì îáðàçîì óðàâíåíèÿ Ýéíøòåéíà è êëàññè÷åñêóþ (ëîêàëüíóþ) òåðìîäè-íàìèêó è òàêèì îáðàçîì îáúÿñíèòü ¾ïðîáëåìó log 3¿.Êëþ÷åâûå ñëîâà: êëàññè÷åñêèå è êâàçèêëàññè÷åñêèå ÷¼ðíûå äûðû.
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