МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" филиал в городе Каире Арабской Республики Египет

Программа дисциплины (модуля) Алгебра и геометрия

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Искусственный интеллект и современная разработка программного обеспечения

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: английский

Год начала обучения по образовательной программе: 2025

Содержание

- 1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО
 - 2. Место дисциплины (модуля) в структуре ОПОП ВО
- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся
- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

- 4.1. Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)
 - 4.2. Содержание дисциплины (модуля)
- 5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)
 - 6. Фонд оценочных средств по дисциплине (модулю)
 - 7. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)
 - 9. Методические указания для обучающихся по освоению дисциплины (модуля)
- 10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем
- 11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья
 - 13. Приложение №1. Фонд оценочных средств
- 14. Приложение №2. Перечень литературы, необходимой для освоения дисциплины (модуля)
- 15. Приложение №3. Перечень информационных технологий, используемых освоения дисциплины (модуля), включая перечень программного обеспечения и информационных справочных систем

1. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения ОПОП ВО

Обучающийся, освоивший дисциплину (модуль), должен обладать следующими компетенциями:

Шифр компетенции	Расшифровка приобретаемой компетенции			
ОПК-1	Способен применять естественнонаучные и общеинженерные			
	знания, методы математического анализа и моделирования,			
	теоретического и экспериментального исследования в			
	профессиональной деятельности.			

Обучающийся, освоивший дисциплину (модуль):Должен знать:

- векторную алгебру и аналитическую геометрию, основы теории матриц и систем линейных уравнений, основы теории определителей;
- основы линейной алгебры, включая линейные пространства, евклидовы пространства, квадратичные формы, линейные операторы;
 - основы общей алгебры, основные алгебраические структуры;
 - основы аналитической геометрии на плоскости и в трехмерном пространстве.

Должен уметь:

- решать типовые задачи курса, используя алгебраические и геометрические методы; Должен владеть:
- методами линейной алгебры и аналитической геометрии для решения математических и прикладных задач информатики и экономики.

2. Место дисциплины (модуля) в структуре ОПОП ВО

Данная дисциплина (модуль) включена в Блок «Дисциплины, модули» Б1.О.04.01 основной профессиональной образовательной программы 09.03.04 "Программная инженерия (Современная разработка программного обеспечения)" и относится к обязательным дисциплинам.

Осваивается на 1 курсе в 1, 2 семестрах.

3. Объем дисциплины (модуля) в зачетных единицах с указанием количества часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины (модуля) составляет 7 зачетных(ые) единиц(ы) на 252 часа(ов).

Контактная работа -144 часа(ов), в том числе лекции - 72 часа(ов), практические занятия - 0 часа(ов), лабораторные работы - 72 часа(ов), контроль самостоятельной работы - 0 часа(ов).

Самостоятельная работа - 54 часа(ов).

Контроль (зачёт / экзамен) - 54 часа(ов).

Форма промежуточного контроля дисциплины (модуля): экзамен в 1 семестре; экзамен во 2 семестре.

- 4. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий
- 4.1 Структура и тематический план контактной и самостоятельной работы по дисциплине (модулю)

		Семестр	Виды и часы контактной работы, их трудоемкость (в часах)			ія работа
N	Разделы дисциплины (модуля)		Лекции	Практические занятия	Лабораторные работы	Самостоятельная работа
1.	Тема 1. Системы линейных уравнений.	1	6	0	6	5
2.	Тема 2. Арифметические линейные векторные пространства.	1	10	0	10	5
3.	Тема 3. Свойства матриц. Определитель матрицы. Обратная матрица.	1	10	0	10	5
4.	Тема 4. Поле комплексных чисел. Кольцо многочленов от одной переменной.	1	10	0	10	6
5.	Тема 5. Декартовы координаты на плоскости и в пространстве. Векторная алгебра.	2	6	0	6	5
6.	Тема 6. Уравнение прямой на плоскости.	2	6	0	6	5
7.	Тема 7. Уравнения прямой и плоскости в пространстве.	2	6	0	6	6
8.	Тема 8. Линии второго порядка на плоскости.	2	6	0	6	5
9.	Тема 9. Поверхности второго порядка и их классификация.	2	6	0	6	6
10.	Тема 10. Аффинные пространства. Линейные операторы.	2	6	0	6	6
	Итого		72	0	72	54

4.2 Содержание дисциплины (модуля)

Тема 1. Системы линейных уравнений.

Системы линейных уравнений. Совместные и несовместные системы линейных уравнений. Определенные и неопределенные системы линейных уравнений. Прямоугольные матрицы. Умножение матриц. Приведение матриц и систем линейных уравнений к ступенчатому виду. Преобразования первого и второго рода. Метод Гаусса.

Тема 2. Арифметические линейные векторные пространства.

Линейная зависимость строк (столбцов). Основная лемма о линейной зависимости, база и ранг системы строк (столбцов). Ранг матрицы. Критерий совместности и определенности системы линейных уравнений в терминах рангов матриц (теорема Кронекера - Капелли). Фундаментальная система решений однородной системы линейных уравнений.

Тема 3. Свойства матриц. Определитель матрицы. Обратная матрица.

Операции над матрицами и их свойства. Теорема о ранге произведения двух матриц. Определитель квадратной матрицы, его основные свойства. Аксиоматическое и индуктивное определение определителя. Критерий равенства определителя нулю. Формула разложения определителя матрицы по строке (столбцу). Теорема Крамера о системах линейных уравнений с квадратной матрицей. Определитель произведения квадратных матриц. Обратная матрица, ее явный вид (формула).

Тема 4. Поле комплексных чисел. Кольцо многочленов от одной переменной.

Основные алгебраические структуры: группы, кольца, поля. Поле комплексных чисел, геометрическое изображение, алгебраическая и тригонометрическая форма записи, извлечение

корней, корни из единицы. Теорема Гаусса об алгебраической замкнутости поля комплексных чисел. Кольцо многочленов от одной переменной. НОД и алгоритм Евклида. Кольцо многочленов многих переменных. Симметрические многочлены, их выражение через элементарные симметрические многочлены, формулы Виета.

Тема 5. Декартовы координаты на плоскости и в пространстве. Векторная алгебра.

Декартовы координаты на плоскости и в пространстве. Координатная запись. Переход от полярной системы координат к декартовой и наоборот. Связь между координатами в цилиндрической, сферической и декартовой системах координат. Векторная алгебра. Скалярное, векторное и смешанное произведения векторов и их свойства. Геометрическая интерпретация.

Тема 6. Уравнение прямой на плоскости.

Общее уравнение прямой на плоскости. Вывод уравнений прямой на плоскости по двум точкам, в отрезках, по координатам направляющего вектора. Нормальное уравнение прямой, уравнение прямой в отрезках, уравнение прямой, проходящей через заданную точку под заданным углом. Параметрическое уравнение прямой. Условия параллельности и перпендикулярности прямых. Расстояние от точки до прямой.

Тема 7. Уравнения прямой и плоскости в пространстве.

Общие уравнения прямой и плоскости в пространстве. Канонические уравнения прямой и плоскости в пространстве. Условия параллельности и перпендикулярности двух плоскостей. Каноническое уравнение прямой в пространстве, параллельные, пересекающиеся и скрещивающиеся прямые. Перпендикуляр к плоскости, проведенный через заданную точку. Угол между прямой и плоскостью. Уравнение плоскости, проходящей через три различные точки, не лежащие на одной прямой.

Тема 8. Линии второго порядка на плоскости.

Линии второго порядка на плоскости. Преобразование коэффициентов уравнения линии второго порядка при переходе к новой системе координат. Классификация кривых второго порядка. Канонические уравнения эллипса, гиперболы и параболы. Исследование их форм по их каноническим уравнениям. Эксцентриситет и директриса эллипса и параболы. Полярные и параметрические уравнения эллипса, гиперболы и параболы.

Тема 9. Поверхности второго порядка и их классификация.

Поверхности второго порядка, их классификация по их каноническим уравнениям. Преобразование коэффициентов уравнения при переходе к новой системе координат. Исследование форм поверхностей второго порядка по их уравнениям. Цилиндрические поверхности. Конические поверхности вращения. Эллиптический параболоид. Гиперболический параболоид. Центральные поверхности.

Тема 10. Аффинные пространства. Линейные операторы.

Преобразование коэффициентов уравнений поверхностей второго порядка при переходе к новой системе координат и при линейных преобразованиях. Различные виды линейных преобразований, их геометрический смысл. Матрицы операторов вращения, оператора параллельного переноса и симметрии в трехмерном пространстве. Аффинные пространства.

5. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Самостоятельная работа обучающихся выполняется по заданию и при методическом руководстве преподавателя, но без его непосредственного участия. Самостоятельная работа подразделяется на самостоятельную работу на аудиторных занятиях и на внеаудиторную самостоятельную работу. Самостоятельная работа обучающихся включает как полностью самостоятельное освоение отдельных тем (разделов) дисциплины (модуля), так и проработку тем (разделов), осваиваемых во время аудиторной работы. Во время самостоятельной работы обучающиеся читают и конспектируют учебную, научную и справочную литературу, выполняют задания, направленные на закрепление знаний и отработку умений и навыков, готовятся к текущему и промежуточному контролю по дисциплине (модулю).

Организация самостоятельной работы обучающихся регламентируется нормативными документами, учебно-методической литературой и электронными образовательными ресурсами, включая:

- 1. Порядок организации и осуществления образовательной деятельности по образовательным программам высшего образования программам бакалавриата, программам специалитета, программам магистратуры (утвержден приказом Министерства науки и высшего образования Российской Федерации от 6 апреля 2021 года №245)
- 2. Письмо Министерства образования Российской Федерации №14-55-996ин/15 от 27 ноября 2002 г. "Об активизации самостоятельной работы студентов высших учебных заведений"
- 3. Устав федерального государственного автономного образовательного учреждения "Казанский (Приволжский) федеральный университет"
- 4. Правила внутреннего распорядка федерального государственного автономного образовательного учреждения высшего профессионального образования "Казанский (Приволжский) федеральный университет"
 - 5. Локальные нормативные акты Казанского (Приволжского) федерального университета

6. Фонд оценочных средств по дисциплине (модулю)

Фонд оценочных средств по дисциплине (модулю) включает оценочные материалы, направленные на проверку освоения компетенций, в том числе знаний, умений и навыков. Фонд оценочных средств включает оценочные средства текущего контроля и оценочные средства промежуточной аттестации.

В фонде оценочных средств содержится следующая информация:

- соответствие компетенций планируемым результатам обучения по дисциплине (модулю);
- критерии оценивания сформированности компетенций;
- механизм формирования оценки по дисциплине (модулю);
- описание порядка применения и процедуры оценивания для каждого оценочного средства;
 - критерии оценивания для каждого оценочного средства;
- содержание оценочных средств, включая требования, предъявляемые к действиям обучающихся, демонстрируемым результатам, задания различных типов.

Фонд оценочных средств по дисциплине находится в Приложении 1 к программе дисциплины (модулю).

7. Перечень литературы, необходимой для освоения дисциплины (модуля)

Освоение дисциплины (модуля) предполагает изучение основной и дополнительной учебной литературы. Литература может быть доступна обучающимся в одном из двух вариантов (либо в обоих из них):

- в электронном виде через электронные библиотечные системы на основании заключенных КФУ договоров с правообладателями;
- в печатном виде в Научной библиотеке им. Н.И. Лобачевского. Обучающиеся получают учебную литературу на абонементе по читательским билетам в соответствии с правилами пользования Научной библиотекой.

Электронные издания доступны дистанционно из любой точки при введении обучающимся своего логина и пароля от личного кабинета в системе «Электронный университет». При использовании печатных изданий библиотечный фонд должен быть укомплектован ими из расчета не менее 0,5 экземпляра каждого из изданий основной литературы и не менее 0,25 экземпляра дополнительной литературы на каждого обучающегося из числа лиц, одновременно осваивающих данную дисциплину (модуль).

Перечень литературы, необходимой для освоения дисциплины (модуля), находится в Приложении 2 к рабочей программе дисциплины (модуля). Он подлежит обновлению при

изменении условий договоров КФУ с правообладателями электронных изданий и при изменении комплектования фондов Научной библиотеки КФУ.

8. Перечень ресурсов информационно-телекоммуникационной сети "Интернет", необходимых для освоения дисциплины (модуля)

- 1. Национальный Открытый Университет 'ИНТУИТ' http://www.intuit.ru/
- 2. Портал КФУ www.kpfu.ru
- 3. Свободная система компьютерной алгебры Maxima http://maxima.sourceforge.net/ru/
- 4. Федеральный портал 'Единое окно доступа к образовательным ресурсам' http://window.edu.ru/

9. Методические указания для обучающихся по освоению дисциплины (модуля)

Вид работ	Методические рекомендации
лекции	Студентам необходимо посещать лекции и вести конспект лекций вслед за изложением материала преподавателем. Рекомендуется прорабатывать конспект в течение дня после лекции и просматривать его вновь накануне следующей лекции. В случае обнаружения ошибок или возникновения вопросов по предыдущему материалу необходимо
лабораторные работы	обратиться к преподавателю. Подготовку к семинарам (практическим занятиям, лабораторным занятиям) следует начинать с изучения теоретической части (лекционного материала) с определениями основных понятий, выводом формул и доказательством теорем. Особое внимание следует обращать на определения основных понятий и формулировки основных теорем. Необходимо подробно разбирать примеры, которые поясняют определения и теоремы. При разборе теорем необходимо учитывать, что все предположения теоремы должны использоваться в доказательстве ее утверждения, при этом необходимо понимать, в каком месте доказательства используется то или иное предположение теоремы.
самостоятельная работа	
экзамен	Залогом успешной сдачи экзамена является работа в течение всего семестра. Непосредственную подготовку к экзамену рекомендуется разделить на два этапа. На первом этапе прорабатываются все экзаменационные вопросы и формулируются вопросы к преподавателю в рамках консультации по разделам, недостаточно подробно описанным в рамках лекционного курса или более трудным в освоении материала. После консультации происходит окончательная проработка и закрепление материала по всем экзаменационным вопросам.

10. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем представлен в Приложении 3 к рабочей программе дисциплины (модуля).

11. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю)

Материально-техническое обеспечение образовательного процесса по дисциплине (модулю) включает в себя следующие компоненты:

- помещения для самостоятельной работы обучающихся, укомплектованные специализированной мебелью (столы и стулья) и оснащенные компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду КФУ;
- учебные аудитории для контактной работы с преподавателем, укомплектованные специализированной мебелью (столы и стулья);
 - компьютер и принтер для распечатки раздаточных материалов;
 - мультимедийная аудитория.
- 12. Средства адаптации преподавания дисциплины (модуля) к потребностям обучающихся инвалидов и лиц с ограниченными возможностями здоровья При необходимости в образовательном процессе применяются следующие методы и технологии, облегчающие восприятие информации обучающимися инвалидами и лицами с ограниченными возможностями здоровья:
- создание текстовой версии любого нетекстового контента для его возможного преобразования в альтернативные формы, удобные для различных пользователей;
- создание контента, который можно представить в различных видах без потери данных или структуры, предусмотреть возможность масштабирования текста и изображений без потери качества, предусмотреть доступность управления контентом с клавиатуры;
- создание возможностей для обучающихся воспринимать одну и ту же информацию из разных источников например, так, чтобы лица с нарушениями слуха получали информацию визуально, с нарушениями зрения аудиально;
- применение программных средств, обеспечивающих возможность освоения навыков и умений, формируемых дисциплиной (модулем), за счёт альтернативных способов, в том числе виртуальных лабораторий и симуляционных технологий;
- применение дистанционных образовательных технологий для передачи информации, организации различных форм интерактивной контактной работы обучающегося с преподавателем, в том числе вебинаров, которые могут быть использованы для проведения виртуальных лекций с возможностью взаимодействия всех участников дистанционного обучения, проведения семинаров, выступления с докладами и защиты выполненных работ, проведения тренингов, организации коллективной работы;
- применение дистанционных образовательных технологий для организации форм текущего и промежуточного контроля;
- увеличение продолжительности сдачи обучающимся инвалидом или лицом с ограниченными возможностями здоровья форм промежуточной аттестации по отношению к установленной продолжительности их сдачи:
- продолжительности сдачи зачёта или экзамена, проводимого в письменной форме, не более чем на 90 минут;
- продолжительности подготовки обучающегося к ответу на зачёте или экзамене, проводимом в устной форме, не более чем на 20 минут;
- продолжительности выступления обучающегося при защите курсовой работы не более чем на 15 минут.

Программа составлена в соответствии с требованиями Φ ГОС ВО и учебным планом по направлению 09.03.04 "Программная инженерия (Современная разработка программного обеспечения).

Приложение №1 к рабочей программе дисциплины (модуля) «Алгебра и геометрия»

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) федеральный университет» Филиал в городе Каире Арабской Республики Египет

Фонд оценочных средств по дисциплине (модулю) Алгебра и геометрия

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Искусственный интеллект и современная разработка программного

обеспечения

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: английский

Год начала обучения по образовательной программе: 2025

СОДЕРЖАНИЕ

- 1. COOТВЕТСТВИЕ КОМПЕТЕНЦИЙ ПЛАНИРУЕМЫМ РЕЗУЛЬТАТАМ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)
- 2. КРИТЕРИИ ОЦЕНИВАНИЯ СФОРМИРОВАННОСТИ КОМПЕТЕНЦИЙ
- 3. РАСПРЕДЕЛЕНИЕ ОЦЕНОК ЗА ФОРМЫ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНУЮ АТТЕСТАЦИЮ
- 4. ОЦЕНОЧНЫЕ СРЕДСТВА, ПОРЯДОК ИХ ПРИМЕНЕНИЯ И КРИТЕРИИ ОЦЕНИВАНИЯ
 - 4.1. ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ
 - 4.1.1. Контрольная работа по темам: 1) Системы линейных уравнений, 2) Арифметические линейные векторные пространства.
 - 4.1.1.1. Порядок проведения и процедура оценивания
 - 4.1.1.2. Критерии оценивания
 - 4.1.1.3. Содержание оценочного средства
 - 4.1.2. Контрольная работа по темам: 3) Свойства матриц. Определитель матрицы. Обратная матрица, 4) Поле комплексных чисел. Кольцо многочленов от одной переменной.
 - 4.1.2.1. Порядок проведения и процедура оценивания
 - 4.1.2.2. Критерии оценивания
 - 4.1.2.3. Содержание оценочного средства
 - 4.1.3. Устный опрос по темам: 1) Системы линейных уравнений, 2) Арифметические линейные векторные пространства, 3) Свойства матриц. Определитель матрицы. Обратная матрица, 4) Поле комплексных чисел. Кольцо многочленов от одной переменной.
 - 4.1.3.1. Порядок проведения и процедура оценивания
 - 4.1.3.2. Критерии оценивания
 - 4.1.3.3. Содержание оценочного средства
 - 4.1.4. Контрольная работа по темам: 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра, 6) Уравнение прямой на плоскости, 7) Уравнения прямой и плоскости в пространстве,
 - 4.1.4.1. Порядок проведения и процедура оценивания
 - 4.1.4.2. Критерии оценивания
 - 4.1.4.3. Содержание оценочного средства
 - 4.1.5. Контрольная работа по темам: 8) Линии второго порядка на плоскости, 9) Поверхности второго порядка и их классификация, 10) Аффинные пространства. Линейные операторы.
 - 4.1.5.1. Порядок проведения и процедура оценивания
 - 4.1.5.2. Критерии оценивания
 - 4.1.5.3. Содержание оценочного средства
 - 4.1.6. Устный опрос по темам: 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра, 6) Уравнение прямой на плоскости, 7) Уравнения прямой и плоскости в пространстве, 8) Линии второго порядка на плоскости, 9) Поверхности второго порядка и их классификация, 10) Аффинные пространства. Линейные операторы.
 - 4.1.6.1. Порядок проведения и процедура оценивания
 - 4.1.6.2. Критерии оценивания
 - 4.1.6.3. Содержание оценочного средства
 - 4.2. ОЦЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ
 - 4.2.1. Экзамен 1
 - 4.2.1.1. Порядок проведения и процедура оценивания

- 4.2.1.2. Критерии оценивания 4.2.1.3. Оценочные средства
- 4.2.2. Экзамен 2
 - 4.2.2.1. Порядок проведения и процедура оценивания 4.2.2.2. Критерии оценивания 4.2.2.3. Оценочные средства

1. Соответствие компетенций планируемым результатам обучения по дисциплине (модулю)

Код и	Индикаторы достижения	Оценочные средства текущего		
наименование	компетенции	контроля и промежуточной		
компетенции		аттестации		
ОПК-1 Способен	Знать	Текущий контроль:		
применять	- векторную алгебру и	Устный опрос по темам: 1)		
естественнонаучны	аналитическую геометрию, основы	Системы линейных уравнений, 2)		
е и	теории матриц и систем линейных	Арифметические линейные		
общеинженерные	уравнений, основы теории	векторные пространства, 3)		
знания, методы	определителей;	Свойства матриц. Определитель		
математического	- основы линейной алгебры, включая	матрицы. Обратная матрица, 4)		
анализа и	линейные пространства, евклидовы	Поле комплексных чисел. Кольцо		
моделирования,	пространства, квадратичные формы,	многочленов от одной переменной.		
теоретического и	линейные операторы;	Устный опрос по темам: 5)		
экспериментальног	- основы общей алгебры, основные	Декартовы координаты на		
о исследования в	алгебраические структуры;	плоскости и в пространстве.		
профессиональной	- основы аналитической геометрии на	Векторная алгебра, 6) Уравнение		
деятельности.	плоскости и в трехмерном	прямой на плоскости, 7) Уравнения		
	пространстве.	прямой и плоскости в		
		пространстве, 8) Линии второго		
		порядка на плоскости, 9)		
		Поверхности второго порядка и их		
		классификация, 10) Аффинные		
		пространства. Линейные		
		операторы.		
		Промежуточная аттестация:		
		Экзамен 1		
		Экзамен 2		
	Уметь решать типовые задачи курса,	Текущий контроль:		
	используя алгебраические и	Контрольная работа по темам: 1)		
	геометрические методы.	Системы линейных уравнений, 2)		
		Арифметические линейные		
		векторные пространства.		
		Контрольная работа по темам: 3)		
		Свойства матриц. Определитель		
		матрицы. Обратная матрица, 4)		
		Поле комплексных чисел. Кольцо		
		многочленов от одной переменной.		
	Владеть методами линейной алгебры	Контрольная работа по темам: 5)		
	и аналитической геометрии для	Декартовы координаты на		
	решения математических и	плоскости и в пространстве.		
	прикладных задач информатики и	Векторная алгебра, 6) Уравнение		
	экономики.	прямой на плоскости, 7) Уравнения		
		прямой и плоскости в		
		пространстве.		
		Контрольная работа по темам: 8)		
		Линии второго порядка на		
		плоскости, 9) Поверхности		
		второго порядка и их		
		классификация, 10) Аффинные		
L	1	1 , , , , , , , , , , , , , , , , , , ,		

пространства.	Линейные
операторы.	

2. Критерии оценивания сформированности компетенций

Компе		Не зачтено		
тенци	Высокий уровень	Средний уровень	Низкий уровень	Ниже порогового
Я	(отлично)	(хорошо)	(удовлетворительн	уровня
	(86-100 баллов)	(71-85 баллов)	71-85 баллов) о)	
			(56-70 баллов)	льно)
				(0-55 баллов)
ОПК-1	Знает основные	Знает основные	Знает основные	Не знает основных
	понятия и	понятия и большую	понятия и базовые	понятий и
	теоретические	часть теоретических	теоретические	теоретических
	результаты по	результатов по	результаты по	результатов по
	алгебре и	алгебре и геометрии,	алгебре и геометрии,	алгебре и
	геометрии,	изложенных в курсе	изложенные в курсе	геометрии.
	изложенные в курсе	лекций.	лекций.	
	лекций.			
	Умеет свободно	Умеет решать	Умеет решать	Не умеет решать
	решать типовые	большую часть	базовые задачи	базовые задачи
	задачи курса,	типовых задач курса,	курса, используя	курса.
	используя	используя	алгебраические и	
	алгебраические и	алгебраические и	геометрические	
	геометрические	геометрические	методы.	
	методы.	методы.		
	Свободно владеет	Владеет большей	Владеет базовыми	Не владеет
	методами линейной	частью методов	методами линейной	базовыми
	алгебры и	линейной алгебры и	алгебры и	методами
	аналитической	аналитической	аналитической	линейной алгебры
	геометрии для	геометрии для	геометрии для	и аналитической
	решения	решения	решения некоторых	геометрии.
	математических и	математических и	математических и	
	прикладных задач	прикладных задач	прикладных задач	
	информатики и	информатики и	информатики и	
	экономики.	экономики.	экономики.	

3. Распределение оценок за формы текущего контроля и промежуточную аттестацию

1 семестр:

Текущий контроль:

Контрольная работа.

Темы:

- 1) Системы линейных уравнений.
- 2) Арифметические линейные векторные пространства.

Максимальное количество баллов – 20

Контрольная работа.

Темы:

- 3) Свойства матриц. Определитель матрицы. Обратная матрица.
- 4) Поле комплексных чисел. Кольцо многочленов от одной переменной.

Максимальное количество баллов - 20

Устный опрос

Темы:

- 1) Системы линейных уравнений.
- 2) Арифметические линейные векторные пространства.
- 3) Свойства матриц. Определитель матрицы. Обратная матрица.
- 4) Поле комплексных чисел. Кольцо многочленов от одной переменной.

Максимальное количество баллов - 10

Итого 20+20+10 = 50 баллов

Промежуточная аттестация – Экзамен 1

Экзамен проводится в традиционной форме в два этапа – письменная часть и устная часть. Вначале обучающимся раздаются билеты. Каждый билет на экзамене включает в себя два теоретических вопроса, содержащих определения и теоремы из пройденного курса, и одну задачу. При ответе на вопросы билета необходимо знать определения используемых в ответе терминов и понятий, а также знать формулировки и доказательства соответствующих теоретических результатов. При решении задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. На письменную подготовку к ответу дается 60 минут. После письменной подготовки обучающийся отвечает преподавателю по своему билету, а также на дополнительные и уточняющие вопросы.

Итого – 50 баллов

Общее количество баллов по дисциплине за текущий контроль и промежуточную аттестацию: 50+50=100 баллов.

Соответствие баллов и оценок:

86-100 – отлично

71-85 – хорошо

56-70 – удовлетворительно

0-55 — неудовлетворительно

2 семестр:

Текущий контроль:

Контрольная работа.

Темы:

- 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра.
- 6) Уравнение прямой на плоскости.
- 7) Уравнения прямой и плоскости в пространстве.

Максимальное количество баллов – 20

Контрольная работа.

Темы:

- 8) Линии второго порядка на плоскости.
- 9) Поверхности второго порядка и их классификация.
- 10) Аффинные пространства. Линейные операторы.

Максимальное количество баллов - 20

Устный опрос

Темы:

- 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра.
- 6) Уравнение прямой на плоскости.
- 7) Уравнения прямой и плоскости в пространстве.
- 8) Линии второго порядка на плоскости.
- 9) Поверхности второго порядка и их классификация.
- 10) Аффинные пространства. Линейные операторы.

Максимальное количество баллов - 10

Итого 20+20+10 = 50 баллов

Промежуточная аттестация – Экзамен 2

Экзамен проводится в традиционной форме в два этапа – письменная часть и устная часть. Вначале обучающимся раздаются билеты. Каждый билет на экзамене включает в себя два теоретических вопроса, содержащих определения и теоремы из пройденного курса, и одну задачу. При ответе на вопросы билета необходимо знать определения используемых в ответе терминов и понятий, а также знать формулировки и доказательства соответствующих теоретических результатов. При решении задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. На письменную подготовку к ответу дается 60 минут. После письменной подготовки обучающийся отвечает преподавателю по своему билету, а также на дополнительные и уточняющие вопросы.

Итого – 50 баллов

Общее количество баллов по дисциплине за текущий контроль и промежуточную аттестацию: 50+50=100 баллов.

Соответствие баллов и оценок:

86-100 – отлично

71-85 — хорошо

56-70 – удовлетворительно

0-55 — неудовлетворительно

4. Оценочные средства, порядок их применения и критерии оценивания

4.1. Оценочные средства текущего контроля

4.1.1.

Контрольная работа.

Темы:

- 1) Системы линейных уравнений.
- 2) Арифметические линейные векторные пространства.

4.1.1.1. Порядок проведения.

Контрольная работа проводится в письменной форме на практическом занятии. Время выполнения контрольной работы — 1ч. 30мин. Обучающимся раздаются индивидуальные варианты, содержащие 4 задачи. При решении каждой задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. Преподаватель проверяет правильность и полноту решения задач,

правильность логических выкладок, вычислений и окончательных ответов, а также соответствуют ли используемые в решении методы и алгоритмы указанным в условии задачи.

4.1.1.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, в решении нет математических ошибок

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

- полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, но допустил вычислительные ошибки
 - полностью правильно решил 3 задачи из 4х

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

- решил задачи верно, но решение не было доведено до конца, не было полностью обосновано и/или были допущены вычислительные ошибки.
 - -полностью правильно решил половину задач

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

- не решил задачи или сделал лишь начальные шаги решения;
- решил часть задач, но допустил существенные ошибки, показавшие, что обучающийся не обладает соответствующими знаниями и умениями.

4.1.1.3. Содержание оценочного средства

1. Методом Гаусса найти общее и одно частное решение системы линейных уравнений:

$$\begin{cases} 5x_1 + 3x_2 + 5x_3 + 12x_4 = 10 \\ 2x_1 + 2x_2 + 3x_3 + 5x_4 = 4 \\ x_1 + 7x_2 + 9x_3 + 4x_4 = 2 \end{cases}$$

2. Проверить линейную зависимость/независимость системы векторов:

$$a_1 = (2, -3, 1), a_2 = (3, -1, 5), a_3 = (1, -4, 3)$$

3. Найти все значения λ , при которых вектор b линейно выражается через векторы a_1, a_2 и a_3 :

$$a_1 = (2, 3, 5), a_2 = (3, 7, 8), a_3 = (1, -6, 1), b = (7, -2, \lambda)$$

4. Найти все базисы системы векторов:

$$a_1 = (1, 2, 3, 4), a_2 = (2, 3, 4, 5), a_3 = (3, 4, 5, 6), a_4 = (4, 5, 6, 7)$$

4.1.2.

Контрольная работа.

Темы:

- 5) Свойства матриц. Определитель матрицы. Обратная матрица.
- 6) Поле комплексных чисел. Кольцо многочленов от одной переменной.

4.1.2.1. Порядок проведения и процедура оценивания

Контрольная работа проводится в письменной форме на практическом занятии. Время выполнения контрольной работы — 1ч. 30мин. Обучающимся раздаются индивидуальные варианты, содержащие 4 задачи. При решении каждой задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. Преподаватель проверяет правильность и полноту решения задач,

правильность логических выкладок, вычислений и окончательных ответов, а также соответствуют ли используемые в решении методы и алгоритмы указанным в условии задачи.

4.1.2.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, в решении нет математических ошибок

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

- полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, но допустил вычислительные ошибки
 - полностью правильно решил 3 задачи из 4х

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

- решил задачи верно, но решение не было доведено до конца, не было полностью обосновано и/или были допущены вычислительные ошибки.
 - -полностью правильно решил половину задач

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

- не решил задачи или сделал лишь начальные шаги решения;
- решил часть задач, но допустил существенные ошибки, показавшие, что обучающийся не обладает соответствующими знаниями и умениями.

4.1.2.3. Содержание оценочного средства

1. Вычислить определитель:

$$\begin{bmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{bmatrix}$$

2. Найти обратную к матрице

$$\begin{pmatrix} 2 & 7 & 3 \\ 3 & 9 & 4 \\ 1 & 5 & 3 \end{pmatrix}$$

- 3. Найти все корни степени 3 из комплексного числа і.
- 4. Найти НОД двух многочленов и выразить его через исходные многочлены:

$$f(x) = x^4 + x^3 - 3x^2 - 4x - 1$$
, $g(x) = x^3 + x^2 - x - 1$.

4.1.3.

Устный опрос

Tembr

- 5) Системы линейных уравнений.
- 6) Арифметические линейные векторные пространства.
- 7) Свойства матриц. Определитель матрицы. Обратная матрица.
- 8) Поле комплексных чисел. Кольцо многочленов от одной переменной.

4.1.3.1. Порядок проведения и процедура оценивания.

Устный опрос проводится на практических занятиях. Обучающиеся выступают с докладами, сообщениями, дополнениями, участвуют в дискуссии, отвечают на вопросы преподавателя. Оценивается уровень домашней подготовки по теме, способность системно и логично излагать материал, анализировать, формулировать собственную позицию, отвечать на дополнительные вопросы.

4.1.3.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 свободно владеет основными понятиями, дает полные ответы на вопросы, демонстрирует высокую подготовленность и эрудицию

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

владеет основными понятиями, дает ответы на вопросы, допуская отдельные погрешности и неточности

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

 владеет, в целом, основными понятиями, в ответах на вопросы допускает значительные погрешности и неточности

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

 не дает правильных ответов на вопросы, показывает слабое владение основными понятиями.

4.1.3.3. Содержание оценочного средства

Примеры вопросов:

- 1. Комплексные числа.
- 2. Алгебраическая и тригонометрическая формы чисел.
- 3. Формула Муавра.
- 4. Фундаментальная теорема алгебры.
- 5. Кратность корня.
- 6. Наибольший общий делитель и алгоритм Евклида. Неприводимые многочлены.
- 7. Элементарных преобразования матриц.
- 8. Ступенчатый и главный ступенчатый вид матрицы.
- 9. Приведение матрицы к главному ступенчатому виду. Элементарные преобразования и равносильность систем линейных уравнений.
 - 10. Классификация систем.
 - 11. Обратная матрица и критерий ее существования.
 - 12. Ранг матрицы.

4.1.4.

Контрольная работа.

Темы:

- 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра.
- 6) Уравнение прямой на плоскости.
- 7) Уравнения прямой и плоскости в пространстве.

4.1.4.1. Порядок проведения.

Контрольная работа проводится в письменной форме на практическом занятии. Время выполнения контрольной работы — 1ч. 30мин. Обучающимся раздаются индивидуальные варианты, содержащие 4 задачи. При решении каждой задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. Преподаватель проверяет правильность и полноту решения задач, правильность логических выкладок, вычислений и окончательных ответов, а также соответствуют ли используемые в решении методы и алгоритмы указанным в условии задачи.

4.1.4.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, в решении нет математических ошибок

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

- полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, но допустил вычислительные ошибки
 - полностью правильно решил 3 задачи из 4х

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

- решил задачи верно, но решение не было доведено до конца, не было полностью обосновано и/или были допущены вычислительные ошибки.
 - -полностью правильно решил половину задач

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

- не решил задачи или сделал лишь начальные шаги решения;
- -решил часть задач, но допустил существенные ошибки, показавшие, что обучающийся не обладает соответствующими знаниями и умениями.

4.1.4.3. Содержание оценочного средства

- 1. Даны середины сторон треугольника $M_1(2,4)$, $M_2(-3,0)$, $M_3(2,1)$. Найти его вершины.
- 2. Доказать, что треугольник с вершинами A(3,-1,2), B(0,-4,2) и C(-3,2,1) равнобедренный.
- 3. Составить уравнение прямой, проходящей через точку (7,9) перпендикулярно к прямой 3x 2y + 4 = 0.
- 4. Вычислить расстояние от плоскости 15x 10y + 6z 190 = 0 до начала координат.

4.1.5.

Контрольная работа.

Темы:

- 8) Линии второго порядка на плоскости.
- 9) Поверхности второго порядка и их классификация.
- 10) Аффинные пространства. Линейные операторы.

4.1.5.1. Порядок проведения.

Контрольная работа проводится в письменной форме на практическом занятии. Время выполнения контрольной работы — 1ч. 30мин. Обучающимся раздаются индивидуальные варианты, содержащие 4 задачи. При решении каждой задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. Преподаватель проверяет правильность и полноту решения задач, правильность логических выкладок, вычислений и окончательных ответов, а также соответствуют ли используемые в решении методы и алгоритмы указанным в условии задачи.

4.1.5.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, в решении нет математических ошибок

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

 полностью правильно решил все задачи, применив требуемый алгоритм решения или обосновав ответ, но допустил вычислительные ошибки – полностью правильно решил 3 задачи из 4х

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

- решил задачи верно, но решение не было доведено до конца, не было полностью обосновано и/или были допущены вычислительные ошибки.
 - -полностью правильно решил половину задач

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

- не решил задачи или сделал лишь начальные шаги решения;
- решил часть задач, но допустил существенные ошибки, показавшие, что обучающийся не обладает соответствующими знаниями и умениями.

4.1.5.3. Содержание оценочного средства

- 1. Написать уравнение гиперболы, имеющей общие фокусы с эллипсом $\frac{x^2}{49}+\frac{y^2}{24}=1$, при условии, что ее эксцентриситет $e=\frac{5}{4}$.
 - 2. Определить аффинный тип кривой второго порядка, заданной уравнением:

$$x^2 - 2xy + 4y^2 + 2x - 2y - 4 = 0$$

3. Определить метрический тип поверхности второго порядка, заданной уравнением: $x^2+5y^2+z^2+2xy+6xz+2yz-2x+6y+2z=0$

4. Написать формулы преобразования координат, если даны старые координаты новых базисных векторов и старые координаты нового начала координат: $\vec{e}'_1 = \{2,5\}, \ \vec{e}'_2 = \{7,9\}, \ O'(3,1).$

4.1.6.

Устный опрос

Темы:

- 5) Декартовы координаты на плоскости и в пространстве. Векторная алгебра.
- 6) Уравнение прямой на плоскости.
- 7) Уравнения прямой и плоскости в пространстве.
- 8) Линии второго порядка на плоскости.
- 9) Поверхности второго порядка и их классификация.
- 10) Аффинные пространства. Линейные операторы.

4.1.6.1. Порядок проведения и процедура оценивания.

Устный опрос проводится на практических занятиях. Обучающиеся выступают с докладами, сообщениями, дополнениями, участвуют в дискуссии, отвечают на вопросы преподавателя. Оценивается уровень домашней подготовки по теме, способность системно и логично излагать материал, анализировать, формулировать собственную позицию, отвечать на дополнительные вопросы.

4.1.6.2. Критерии оценивания

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

 свободно владеет основными понятиями, дает полные ответы на вопросы, демонстрирует высокую подготовленность и эрудицию

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

владеет основными понятиями, дает ответы на вопросы, допуская отдельные погрешности и неточности

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

 владеет, в целом, основными понятиями, в ответах на вопросы допускает значительные погрешности и неточности

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

 не дает правильных ответов на вопросы, показывает слабое владение основными понятиями.

4.1.6.3. Содержание оценочного средства

Примеры вопросов:

- 1. Определение линейной зависимости системы векторов
- 2. Коллинеарные и компланарные векторы
- 3. Базис на плоскости и в пространстве.
- 4. Проекция вектора на числовую ось.
- 5. Найти координаты вектора в различных базисах
- 6. Свойства скалярного, векторного и смешанного произведений
- 7. Определение угла между векторами
- 8. Общее уравнение прямой на плоскостии
- 9. Общее уравнение плоскости в пространстве
- 10. Канонические и параметрические уравнения прямой в пространстве.
- 11. Формулы расстояний от точки до прямой и от точки до плоскости.
- 12. Поверхности вращения и канонические уравнения поверхностей второго порядка

4.2. Оценочные средства промежуточной аттестации

4.2.1. Экзамен 1

4.2.1.1. Порядок проведения.

Экзамен проводится в традиционной форме в два этапа – письменная часть и устная часть. Вначале обучающимся раздаются билеты. Каждый билет на экзамене включает в себя два теоретических вопроса, содержащих определения и теоремы из пройденного курса, и одну задачу. При ответе на вопросы билета необходимо знать определения используемых в ответе терминов и понятий, а также знать формулировки и доказательства соответствующих теоретических результатов. При решении задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. На письменную подготовку к ответу дается 60 минут. После письменной подготовки обучающийся отвечает преподавателю по своему билету, а также на дополнительные и уточняющие вопросы.

4.2.1.2. Критерии оценивания.

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

-дает полные ответы на вопросы, свободно владеет основными понятиями и иллюстрирует их на примерах, формулирует утверждения, отвечает на дополнительные вопросы преподавателя, демонстрирует высокую подготовленность и эрудицию.

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

 владеет основными понятиями, формулирует утверждения, дает ответы на вопросы, допуская отдельные погрешности и неточности в ответе.

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

– владеет основными понятиями, формулирует утверждения, в ответе на вопросы допускает значительные погрешности и неточности.

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

 не дает правильных ответов на вопросы, показывает слабое владение основными понятиями.

4.2.1.3. Оценочные средства.

Образец билета:

Вопросы:

- 1. Скалярное произведение векторов. Свойства и применение.
- 2. Системы линейных уравнений (определение и терминология). Теорема Кронекера-Капелли.
- 3. Разложить на линейные множители над полем комплексных чисел многочлен x^6+27 .

Список вопросов к экзамену 1:

- 1. Элементарные преобразования СЛУ. Теорема об эквивалентности систем линейных уравнений при применении элементарных преобразований.
- 2. Метод Гаусса решения СЛУ.
- 3. Определители малых порядков. Вычисление определителей 2- и 3-го порядков и вывод формул Крамера для систем второго и третьего порядков.
- 4. Арифметические линейные пространства. Линейная зависимость и независимость векторов, признаки.
- 5. Базис, размерность, теорема о базисе.
- 6. Скалярное произведение векторов. Свойства и применение.
- 7. Матрицы. Операции над матрицами (сложение, умножение, транспонирование). Ранг матрицы (определение)
- 8. Матрицы. Вычисление обратной матрицы.
- 9. Ранг матрицы. Теорема о ранге. Вычисление ранга матрицы.
- 10. Определители высоких порядков: определение и свойства, связанные с линейными преобразованиями строк и столбцов.
- 11. Определители высоких порядков: определение и способы вычисления.
- 12. Системы линейных уравнений (определение и терминология). Теорема Кронекера-Капелли.
- 13. Однородные системы линейных уравнений. Фундаментальная система решений однородной системы. Общее решение системы линейных уравнений.
- 14. Многочлены. Степень многочлена. Операции над многочленами. Деление многочлена с остатком. Схема Горнера вычисления значения многочлена.
- 15. Корень многочлена. Теорема Безу. Кратные корни. Разложение многочлена на линейные множители.
- 16. Корни многочлена. Формулы Виета. Симметрические многочлены.
- 17. Комплексные числа. Алгебраическая и тригонометрическая формы.
- 18. Комплексные числа. Формула Муавра и вычисление корней степени п. Основная теорема алгебры (без доказательства)
- 19. Алгоритм Евклида. Разложение многочлена на неприводимые множители.
- 20. Понятия группы, кольца и поля. Примеры числовых групп, колец и полей.

4.2.2. Экзамен 2

4.2.2.1. Порядок проведения.

Экзамен проводится в традиционной форме в два этапа – письменная часть и устная часть. Вначале обучающимся раздаются билеты. Каждый билет на экзамене включает в себя два теоретических вопроса, содержащих определения и теоремы из пройденного курса, и одну задачу. При ответе на вопросы билета необходимо знать определения используемых в ответе терминов и понятий, а также знать формулировки и доказательства соответствующих теоретических результатов. При решении задачи обучающийся должен привести полное ее решение, обосновав при этом корректность производимых действий, либо воспользовавшись требуемым алгоритмом (если это прямо указано в условии задачи), а также записать окончательный ответ. На письменную подготовку к ответу дается 60 минут. После письменной подготовки обучающийся отвечает преподавателю по своему билету, а также на дополнительные и уточняющие вопросы.

4.2.2.2. Критерии оценивания.

Баллы в интервале 86-100% от максимальных ставятся, если обучающийся:

-дает полные ответы на вопросы, свободно владеет основными понятиями и иллюстрирует их на примерах, формулирует утверждения, отвечает на дополнительные вопросы преподавателя, демонстрирует высокую подготовленность и эрудицию.

Баллы в интервале 71-85% от максимальных ставятся, если обучающийся:

 владеет основными понятиями, формулирует утверждения, дает ответы на вопросы, допуская отдельные погрешности и неточности в ответе.

Баллы в интервале 56-70% от максимальных ставятся, если обучающийся:

– владеет основными понятиями, формулирует утверждения, в ответе на вопросы допускает значительные погрешности и неточности.

Баллы в интервале 0-55% от максимальных ставятся, если обучающийся:

 не дает правильных ответов на вопросы, показывает слабое владение основными понятиями.

4.2.2.3. Оценочные средства.

Образец билета:

Вопросы:

- 1. Смешанное произведение векторов. Определение, представление в виде определителя. Геометрический смысл. Условие компланарности трех векторов.
- 2. Поверхности второго порядка. Общее уравнение. Инвариант поверхностей второго порядка. Классификация поверхностей.
 - 3. Найти расстояние от точки (1,3,5) до прямой

$$\begin{cases} 2x + y + z - 1 = 0, \\ 3x + y + 2z - 3 = 0. \end{cases}$$

Список вопросов к экзамену 2:

- 1. Определение вектора. Обозначение. Коллинеарность. Модуль. Равенство векторов. Свободные векторы.
- 2. Линейные действия над векторами. Сумма векторов и ее свойства. Нулевой вектор. Противоположный вектор. Разность векторов. Произведение вектора на число и его свойства.
- 3. Проекция вектора на вектор, геометрический смысл. Свойство линейности.
- 4. Скалярное произведение векторов и его свойства. Связь с проекцией вектора на вектор. Перпендикулярность векторов.
- 5. Разложение вектора в декартовом базисе. Декартова система координат и декартов базис. Равенство векторов в декартовом базисе. Геометрический смысл компонентов.
- 6. Действия над векторами в декартовом базисе. Сложение, вычитание, умножение на скаляр. Скалярное произведение.
- 7. Направляющие косинусы векторов. Угол между векторами. Условие параллельности и перпендикулярности. Расстояние между данными точками.
- 8. Векторное произведение. Представление в виде определителя. Свойства антикоммутативности, ассоциативности, дистрибутивности. Ориентация результирующего вектора. Модуль векторного произведения, его геометрический смысл.
- 9. Смешанное произведение векторов. Определение, представление в виде определителя. Геометрический смысл. Условие компланарности трех векторов.
- 10. Прямая на плоскости декартовых координат. Формы уравнения прямой. Угол между прямыми, перпендикулярность. Параллельность. Расстояние от точки до прямой.
- 11. Плоскость в декартовых координатах. Общее уравнение плоскости. Уравнения плоскости проходящей через точку и через три точки. Расстояние от точки до плоскости.
- 12. Прямая в декартовых координатах. Канонические уравнения прямой. Уравнение прямой по двум точкам. Параметрические уравнения.

- 13. Прямая как пересечение двух плоскостей. Угол между прямыми. Перпендикулярность и параллельность прямых. Расстояние от точки до прямой.
- 14. Задачи на прямую и плоскость. Условие принадлежности 2-х прямых одной плоскости. Угол между прямой и плоскостью. Условие перпендикулярности и параллельности.
- 15. Линии второго порядка. Общее уравнение линий второго порядка. Инвариант линий второго порядка. Классификация.
- 16. Окружность, эллипс, гипербола, парабола. Их канонические уравнения, параметрические уравнения, графики кривых.
- 17. Поверхности второго порядка. Общее уравнение. Инвариант поверхностей второго порядка. Классификация поверхностей.
- 18. Цилиндры второго порядка, эллипсоид, однополостной и двухполостной гиперболоиды. Конус второго порядка, эллиптический и гиперболический параболоиды. Их канонические уравнения.
- 19. Аффинные пространства. Определение. Координаты в аффинном пространстве.
- 20. Матрицы преобразований в трехмерном пространстве.

Перечень литературы, необходимой для освоения дисциплины (модуля)

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Искусственный интеллект и современная разработка программного

обеспечения

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: английский

Год начала обучения по образовательной программе: 2025

Основная литература:

- 1.Ильин, В. А. Линейная алгебра : учебник / В. А. Ильин, Э. Г. Позняк. 6-е изд., стер. Москва : ФИЗМАТЛИТ, 2020. 280 с. ISBN 978-5-9221-0481-4. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/185610 (дата обращения: 12.12.2022). Режим доступа: для авториз. пользователей.
- 2. Ильин, В. А. Аналитическая геометрия : учебник / В. А. Ильин, Э. Г. Позняк. 7-е изд., стер. Москва : ФИЗМАТЛИТ, 2009. 224 с. ISBN 978-5-9221-0511-8. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/2179 (дата обращения: 12.12.2022). Режим доступа: для авториз. пользователей.
- 3. Сборник задач по алгебре : учебное пособие. Москва : МЦНМО, 2009. 408 с. ISBN 978-5-94057-413-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/9360 (дата обращения: 12.12.2022). Режим доступа: для авториз. пользователей.

Дополнительная литература:

- 1.Беклемишев, Д. В. Курс аналитической геометрии и линейной алгебры : учебник для вузов / Д. В. Беклемишев. 19-е изд., стер. Санкт-Петербург : Лань, 2022. 448 с. ISBN 978-5-8114-9223-7. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/189312 (дата обращения: 12.12.2022). Режим доступа: для авториз. пользователей.
- 2. Рудык, Б. М. Линейная алгебра: учебное пособие / Б.М. Рудык. Москва: ИНФРА-М, 2019. 318 с. образование: (Высшее Бакалавриат). ISBN . -Текст электронный. - URL: _ https://znanium.com/catalog/product/1010102 (дата обращения: 12.12.2022). - Режим доступа: по подписке. 3. Цубербиллер, О. Н. Задачи и упражнения по аналитической геометрии : учебное пособие / О. Н. Цубербиллер. — 34-е изд., стер. — Санкт-Петербург: Лань, 2022. — 336 с. — ISBN 978-5-8114-0475-9. электронный Лань электронно-библиотечная система. https://e.lanbook.com/book/210389 (дата обращения: 12.12.2022). — Режим доступа: для авториз. пользователей.

Перечень информационных технологий, включая перечень программного обеспечения и информационных справочных систем

Направление подготовки: 09.03.04 - Программная инженерия

Профиль подготовки: Искусственный интеллект и современная разработка программного

обеспечения

Квалификация выпускника: бакалавр

Форма обучения: <u>очное</u> Язык обучения: английский

Год начала обучения по образовательной программе: 2025

Освоение дисциплины (модуля) предполагает использование следующего программного обеспечения и информационно-справочных систем:

- 1. Операционная система Microsoft office professional plus 2010, или Microsoft Windows 7 Профессиональная, или Windows XP (Volume License)
- 2. Пакет офисного программного обеспечения Microsoft Office 365, или Microsoft office professional plus 2010
 - 3. Adobe Reader XI или Adobe Acrobat Reader DC
 - 4. Браузер Mozilla Firefox
 - 5. Браузер Google Chrome
 - 6. Kaspersky Endpoint Security для Windows
 - 7. Электронная библиотечная система «ZNANIUM.COM»
 - 8. Электронная библиотечная система Издательства «Лань»