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UDK 514.16NEW TRENDS ON FRACTIONAL INTEGRALAND DIFFERENTIAL EQUATIONSA.A. KilbasAbstratOne- and multi-dimensional integral equations and ordinary and partial di�erential equa-tions with frational integrals and derivatives by Riemann�Liouville, Liouville, Caputo,Hadamard and Riesz are onsidered. The method based on the redution of the Cauhy-type and Cauhy problems for the one-dimensional nonlinear frational di�erential equationsto Volterra integral equations is disussed. A uni�ed approah is presented to solve in lose formof some lasses of one- and multi-dimensional linear integral equations and linear ordinary andpartial di�erential equations of frational order. This approah is based on ompositional rela-tions, operational alulus and integral transforms by Laplae, Fourier and Mellin. Problemsand new trends of researh are disussed.1. IntrodutionIntegral and di�erential equations of frational order, in whih an unknown funtionis ontained under the operations of integrals and derivatives of frational order, havebeen of great interest reently. It oursed both by intensive development of the theoryof frational alulus itself and by the appliations of suh onstrutions in varioussienes. In this onnetion we note the books [1�9℄, the papers [10�12℄ and Proeedingsof the �rst Workshop on Frational Di�erentiation and its Appliations, July 19�21,Boreaux, Frane, Bordeaux Univ., Bordeaux, 2004.In the above monographs and papers one may �nd various appliations of frationalintegral and di�erential equations in physis, mehanis, hemistry, engineering andother disiplines together with bibliography in these �elds.The frational integral and di�erential equations have the following general forms

F [x, y(x), Iα1y(x), Iα2y(x), . . . , Iαmy(x)] = f(x) (1.1)and
F [x, y(x), Dα1y(x), Dα2y(x), . . . , Dαmy(x)] = f(x). (1.2)Here x is a point in m-dimensional Eulidean spae Rn (n ∈ N = {1, 2, . . .}) ,

F [x, y, y1, . . . , ym] and f(x) are given funtions, and Iαk and Dαk are the opera-tors of frational integration and di�erentiation with real αk > 0 or omplex αk ,
Re αk > 0 (k = 1, 2, . . . , m) . The orresponding linear equations with given funtions
ck(x) (k = 0, 1, . . . , m) and f(x) are represented as

c0(x)y(x) +

m
∑

k=1

ck(x) (Iαky) (x) = f(x), (1.3)

c0(x)y(x) +

m
∑

k=1

ck(x) (Dαky) (x) = f(x). (1.4)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 73The frational integration and di�erentiation operators in (1.1)�(1.4) an have di�er-ent forms. A survey of methods and results on frational integral equations was given inthe books by Goren�o, Vessela [2℄ and Samko, Kilbas, Marihev [4℄, while on frationaldi�erential equations in two survey papers by the author and Trujillo [13, 14℄.Among these equations the one-dimensional linear frational integral and di�erentialequations (1.3), (1.4) and the �model� nonlinear linear di�erential equation of the form
Dαy(x) = f [x, y(x)] (1.5)with real α > 0 or omplex α (Re α) > 0 , ontaining the Riemann �Liouville frationalintegrals and derivatives Iαy = Iα
a+y and Dαy = Dα

a+y , a ∈ R , were studied more.For omplex α ∈ C, Re α > 0 , suh frational integrals and derivatives of order α arede�ned by
(Iα

a+y)(x) =
1

Γ(α)

x
∫

a

y(t)dt

(x − t)1−α
(x > a; α ∈ C, Re α) > 0, (1.6)and

(Dα
a+y)(x) =

(

d

dx

)n

(In−α
a+ y)(x) (x > a; n = [Re α] + 1), (1.7)respetively, Γ(α) being the Euler Gamma-funtion. It should be noted that the Rie-mann �Liouville approah (1.6) to the de�nition of frational integration is a general-ization of the integration x

∫

a+

applied n times:
x
∫

a

dt

t
∫

a

dt1 . . .

tn−2
∫

a

y(tn−1)dtn−1 =
1

(n − 1)!

x
∫

a

(x − t)n−1y(t)dt; (1.8)if we use the formula (n − 1)! = Γ(n) and replaed n ∈ N by α ∈ C (Re α > 0) , then(1.8) yields (1.6). The frational di�erentiation operator Dα
a+ is inverse to the frationalintegration one from the left:

(Dα
a+Iα

a+y)(x) = y(x) (α ∈ C, Reα > 0) (1.9)for suitable funtion y(x) . In partiular if 0 < Re α < 1 ,
(Dα

a+y)(x) =
d

dx

1

Γ(1 − α)

x
∫

a

y(t)dt

(x − t)α
, (1.10)and if α = n ∈ N , then (Dn

a+y)(x) ≡ (Dny)(x) (D = d/dx) is the usual derivative oforder n .Integral equations (1.3) with Riemann �Liouville frational integrals (1.6) are theVolterra integral equations with power singularities, generalizing the lassial Abel equa-tion, and therefore these equations are alled Abel �Volterra integral equations. As inthe theory of ordinary di�erential equations, the methods to the investigation of di�eren-tial equations of frational order (1.4) and (1.5), with the Riemann �Liouville frationalderivative (1.7), are mainly based on the redution of these equations to Volterra integralequations of the seond kind. This approah was used by many authors to investigatethe uniqueness and the existene of the solution of the Cauhy-type problem for thenonlinear equation (1.5) on a �nite interval of the real line and to obtain the expliit



74 A.A. KILBASsolution of suh a problem for the linear equation (1.4). A survey of results in this �eldwas presented in the above paper by Kilbas and Trujillo [13, Setions 4 and 5℄.Here we disuss some results in this onnetion and show that suh a method an bealso applied to investigate the Cauhy-type and Cauhy problems to the one-dimensionalequations (1.5) and (1.4) with the so-alled Hadamard and Caputo frational derivatives
Dαy = HDα

a+y and Dαy = CDα
a+y of order α ∈ C , Reα > 0 . The Hadamardfrational derivative (HDα

a+y)(x) is de�ned by
(HDα

a+y)(x) = δn
(

J n−α
a+ y

)

(x) (x > a; n = [Re α] + 1), (1.11)where δ = xD , D = d/dx , is the so-alled δ -derivative, and (J α
a+y)(x) is the Hadamardfrational integral of order α :

(J α
a+y)(x) =

1

Γ(α)

x
∫

0

(

log
x

t

)α−1 y(t)dt

t
(x > a; α ∈ C, Re α > 0). (1.12)Suh an integral is a generalization of the integration x

∫

a+

1

x
applied n times:

x
∫

a

dt

t

t
∫

a

dt1
t1

. . .

tn−2
∫

a

y(tn−1)
dtn−1

tn−1
=

1

(n − 1)!

x
∫

a

(

log
x

t

)n−1 y(t)dt

t
; (1.13)ompare with (1.8). When α = n ∈ N , then (HDn

a+y)(x) ≡ (δny)(x) is δ derivative oforder n .The Caputo derivative (CDα
a+y)(x) is de�ned via the Riemann �Liouville derivative(1.7) by

(CDα
a+y)(x) =

(

Dα
a+

[

y(t) −
n−1
∑

k=0

y(k)(a)

k!
(t − a)k

])

(x) (n = [Re α] + 1), (1.14)where n = [Reα] + 1 for α 6∈ N while n = α for α ∈ N . When α 6∈ N , there holds therelation
(CDα

a+y)(x) =
1

Γ(α)

x
∫

a

y(n)(t)dt

(x − t)1−α
n = [Re(α)] + 1, (1.15)for suitable funtions y . For n−1 < α < n the derivative CDα

a+y in the form (1.15) wasde�ned by Caputo in [15℄ and presented in his book [16℄. Therefore the onstrutions(1.14) and (1.15) are alled Caputo derivatives.For one-dimensional linear di�erential equations of frational order, as in the ase oflinear ordinary di�erential equations, the same methods an be applied to study di�erentaspets of these equations. In partiular, methods based on operational alulus, om-positional relations and Laplae transform an be used to �nd their expliit solutions.Here we disuss some results in this onnetion and show that the Fourier and Mellintransforms an be also used to dedue expliit solutions of linear frational integraland di�erential equations of the form (1.3) and (1.4) with onstant oe�ients ck ∈ Rand with the Liouville and Hadamard frational integrals Iαy = Iα
−∞,+y ≡ Iα

+y and
Iαy = J α

0+y , and frational derivatives Dαy = Dα
−∞,+y ≡ Dα

+y and Dαy = HDα
0+y ,de�ned on the real line R and on the half axis R+ = (0,∞) , respetively.The multi-dimensional Fourier transform an be also applied to solve in losed formof the linear integral and di�erential equations (1.3) and (1.4) with onstant oe�ients



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 75
ck ∈ R with the Riesz frational integral Iαy = I

αy and derivative Dαy = D
αy ofomplex order α ∈ C (Re α > 0) . Suh integrals and derivatives are de�ned as negativeand positive powers (−∆)−α/2 and (−∆)α/2 of the Laplae operator

∆ =
∂2

∂x2
1

+ . . . +
∂2

∂x2
n

, (1.16)and it an be represented in terms of the diret F and the inverse F−1 Fourier trans-forms by
(Iαy)(x) ≡ (−∆)−α/2y)(x) =

(

F−1|x|−α(Fy
)

x), (1.17)

(Dαy)(x) ≡ (−∆)α/2y)(x) =
(

F−1|x|α(Fy
)

x), x = (x1, . . . , xn) ∈ R
n. (1.18)It should be noted that for 0 < α < n , the Riesz frational integration Iα an berealized for suitable funtions f as the Riesz potential, given (for x ∈ Rn ) by

(Iαf)(x) = γ(n, α)

∫

Rn

f(y)

|x − y|n−α
dy,

(

γ(n, α) =
Γ[(n − α)/2]

2απn/2Γ(α/2]

)

. (1.19)The method based on the Laplae and Fourier transforms, an be also applied todedue expliit solutions of partial di�erential equations of frational order. Here wedisuss some results in this onnetion and show that suh methods an be also appliedto investigate the Cauhy-type and Cauhy problems for partial frational di�erentialequations with the Riemann �Liouville partial frational derivative with respet to t oforder α > 0 de�ned by [3, Setion 24.2℄
(

RLDα
0+,tu

)

(x, t) =

(

∂

∂t

)[α]+1
1

Γ(1 − {α})

t
∫

0

u(x, y)dt

(y − t){α}
(x > 0, t > 0; α > 0), (1.20)

[α] and {α} being the integral and frational parts of α , and with the Caputo partialfrational derivative with respet to t of order 0 < α < 1 :
(cDα

t u)(t, x) =
1

Γ(1 − α)

t
∫

0

∂u(τ, x)

∂τ

∂τ

(t − τ)α
(x ∈ R, t > 0; 0 < α < 1). (1.21)Setion 2 deals with the Cauhy-type problem for nonlinear frational di�erentialequations with the Riemann �Liouville and Hadamard frational derivatives (1.7) and(1.11). Setion 3 is devoted to the Cauhy problem for the nonlinear equations with theso-alled sequential frational derivatives and with the Caputo derivative (1.14). Op-erational and ompositional methods to solution of one-dimensional frational integraland di�erential equations are disussed in Setions 4 and 5, respetively. The method tosolve suh equations based on the Laplae transform is disussed in Setion 6, while onthe Fourier and Mellin transforms in Setion 7. Suh an integral transforms approah tosolution of partial di�erential equations is presented in Setion 8. Some problems andnew trends of researh are disussed in Setion 9.We also mention that many authors have applied methods of frational integro-di�erentiation to onstruting solutions of ordinary and partial di�erential equations,to investigating integro-di�erential equations and to obtaining a uni�ed theory of speialfuntions. We do not disuss suh problems here. Anyone may beome aquainted withmethods and results in these �elds in the books [3, Chapter 8℄ and [17℄.



76 A.A. KILBAS2. Cauhy-type problems for ordinary di�erential equations of frationalorder: method of redution to Volterra integral equationsIn the beginning we indiate three �rst papers devoted to redution of frationaldi�erential equations with the Riemann �Liouville frational derivative Dα
a+y , givenby (1.7), to the Voltera integral equations. Pither and Sewell [18℄ �rst onsidered thenonlinear frational di�erential equation

(Dα
a+y)(x) = f [x, y(x)] (0 < α < 1, a ∈ R), (2.1)provided that f(x, y) is bounded and Lipshitzian with respet to y in a speial region

G ⊂ R × R . They tried to prove the uniqueness of a ontinuous solution y(x) of suhan equation on the basis of the orresponding result for the nonlinear integral equation
y(x) −

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
= 0 (x > a; 0 < α < 1). (2.2)But the result of Pither and Sewell given in [18, Theorem 4.2℄ is not orret beausethey have used the relation Iα

a+Dα
a+y = y instead of the orret one:

(Iα
a+Dα

a+y)(x) = y(x) −
B

Γ(α)
(x − a)α−1, B = (I1−α

a+ y)(a+). (2.3)However, the paper of Pither and Sewell ontained the idea of the redution of thefrational di�erential equation (2.1) to the Volterra integral equation (2.2).Barrett [19℄ �rst onsidered the Cauhy-type problem for the linear di�erential equa-tion
(Dα

a+y)(x) − λy(x) = f(x) (n − 1 ≤ Re α < n; λ ∈ C), (2.4)with the initial onditions
(Dα−k

a+ y)(a+) = bk ∈ C (k = 1, 2, . . . , n) (2.5)on a �nite interval (a, b) of the real axis R . Here (Dα−k
a+ y)(a+) means the limit in theright neighborhood (a, a + ǫ) (ǫ > 0) of the point a :

(Dα−k
a+ y)(a+) = lim

x→a+
(Dα−k

a+ y)(x) (1 ≤ k ≤ n − 1), (2.6)

(Dα−n
a+ y)(a+) = lim

x→a+
(In−α

a+ y)(x) (α 6= n), (Dα−n
a+ y)(a+) = y(a) (α = n). (2.7)Barrett proved that if f(x) belongs to L(a, b) or L(a, b)

⋂

C(a, b] , then the problem(2.4)�(2.5) has a unique solution y(x) in a subspae of L(a, b) and this solution isgiven by
y(x) =

n
∑

j=1

bj(x − a)α−jEα,α−j+1 (λ(x − a)α)+

+

x
∫

a

(x − t)α−1Eα,α (λ(x − t)α) f(t)dt. (2.8)Here Eα,β(z) is an entire funtion, alled the Mittag � Le�er funtion, de�ned by
Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
(α > 0, β > 0); (2.9)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 77see [20, Setion 18.1℄. Arguments of Barrett were based on the formula for the produt
Iα
a+Dα

a+f generalizing (2.3):
(Iα

a+Dα
a+y)(x) = y(x) −

n
∑

k=1

Bk
(x − a)α−k

Γ(α − k + 1)
, (2.10)

Bk = y
(n−k)
n−α (a), yn−α(x) = (In−α

a+ y)(x) (α ∈ C, n = [Re α] + 1). (2.11)Barrett [19℄ has used impliitly the method of redution of the Cauhy-type problem(2.4)�(2.5) to the Volterra integral equation of the seond kind
y(x) =

n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j +

λ

Γ(α)

x
∫

a

y(t)dt

(x − t)1−α
+

1

Γ(α)

x
∫

a

f(t)dt

(x − t)1−α
(2.12)and the method of suessive approximations. Aording to this method, we set

y0(x) =
n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j ,

ym(x) = y0(x) +
λ

Γ(α)

x
∫

a

ym−1(t)dt

(x − t)1−α
+

1

Γ(α)

x
∫

a

f(t)dt

(x − t)1−α
(m = 1, 2, . . .), (2.13)and have

ym(x) =

n
∑

j=1

bj

m+1
∑

i=1

λi−1(x − a)αi−j

Γ(αi − j + 1)
+

m
∑

i=1

λi−1

Γ(αi)

x
∫

a

(x − t)αi−1f(t)dt (2.14)for m = 1, 2, . . .. Passing to a limit, as m → ∞ , and taking into aount (2.9) we obtainthe solution (2.8) of the Cauhy-type problem (2.4)-(2.5).Al-Bassam [21℄ �rst onsidered the Cauhy-type problem
(Dα

a+y)(x) = f [x, y(x)] (0 < α ≤ 1), (2.15)

(Dα−1
a+ y)(a+) ≡ (I1−α

a+ y)(a+) = b1, b1 ∈ R, (2.16)in the spae of ontinuous funtions C[a, b] provided that f(x, y) is a real-valued, ontin-uous and Lipshitzian funtion in a domain G ⊂ R×R suh that sup(x,y)∈G |f(x, y)| =
b0 < ∞. Applying the operator Iα

a+ to both sides of (2.15), using the relation (2.3) andthe initial onditions (2.16), he redued the above problem to the Volterra nonlinearintegral equation
y(x) =

b1

Γ(α)
(x − a)α−1 +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(x > a; 0 < α ≤ 1). (2.17)Using the method of suessive approximations, Al-Bassam established the existeneof the ontinuous solution y(x) of the equation (2.17). Besides, he probably �rst indi-ated that the method of ontrating mapping an be applied to prove the uniquenessof this solution y(x) of (2.17), and gave suh a formal proof. Al-Bassam also indiated� but did not prove � the equivalene of the Cauhy-type problem (2.15)�(2.16) andthe integral equation (2.17), and therefore his results on the existene and uniquenessof the ontinuous solution y(x) ould be true only for the integral equation (2.17).



78 A.A. KILBASWe also note that the onditions suggested by Al-Bassam are not suitable to solve theCauhy-type problem (2.15)�(2.16) in the simplest linear ase when f [x, y(x)] = y(x) .The same remarks apply to his existene and uniqueness results formulated withoutproof to more general than (2.15)�(2.16) Cauhy-type problem with real α > 0 :
(Dα

a+y)(x) = f [x, y(x)] (n − 1 < α ≤ n, n = −[−α]), (2.18)

(Dα−k
a+ y)(a+) = bk, bk ∈ R (k = 1, 2, . . . , n), (2.19)where the orresponding Volterra equation has the form (2.17):

y(x) =

n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(2.20)

(x > a; n − 1 < α ≤ n),to the system of problems (2.18)�(2.19) and to more general than (2.18) di�erentialequations.The approah suggested by Al-Bassam was used by many authors. However, theyhave not ompleted their investigations. Most of the researhers obtained some resultsnot for the initial value problems, but for the orresponding Volterra integral equa-tions. Some authors onsidered only partiular ases. Moreover, some of the resultsobtained ontained mistakes in the proof of the equivalene of initial value problemsand the Volterra integral equations and in the proof of the uniqueness theorem. In thisonnetion see Kilbas and Trujilo [13, Setions 4 and 5℄.Kilbas, Bonilla and Trujillo [22, 23℄ have studied the Cauhy-type problem (2.18)�(2.19) with omplex α ∈ C (Re(α) > 0) on a �nite interval [a, b] of the real axis Rin the spae of absolutely integrable funtions L(a, b) . The equivalene of this problemand the nonlinear Volterra integral equation (2.20) was established. The existene anduniqueness of the solution y(x) of suh a problem was proved by using the method ofsuessive expansions. The results obtained were extended to the system of problems(2.18)�(2.19) in [24℄.Similar results to the Cauhy-type problem (2.18)�(2.19) in the weighted spae ofontinuous funtions Cn−α[a, b] :
Cn−α[a, b](x) =

{

y(x) : (x − a)n−αy(x) ∈ C[a, b]; α ∈ C, Re α > 0
}

, (2.21)with n = [Re(α)]+1 for α 6∈ N and n = α for α ∈ N , were established in Kilbas, Bonillaand Trujillo [25℄ and Kilbas, Rivero and Trujillo [26℄. In partiular, the orrespondingresults were dedued to the Cauhy-type problem (2.15)�(2.16), with real 0 < α ≤ 1being replaed by omplex α , 0 < Re(α) ≤ 1 , and similar assertions were establishedto the weighted Cauhy problem
(Dα

a+y)(x) = f [x, y(x)], lim
x→a+

[(x − a)n−αy(x)] = b1, b1 ∈ R, (2.22)equivalent to the problem (2.15)�(2.16), in the spae C1−α[a, b] .Kilbas and Marzan [27℄ extended the above results to the Cauhy-type problemfor more general than (2.18) nonlinear di�erential equation of omplex order α ∈ C

(0 < Re α1 < . . . < Re αn−1 < Re α) :
(Dα

a+y)(x) = f
[

x, y(x), (Dα1

a+y)(x), . . . , (D
αn−1

a+ y)(x)
]

(2.23)with the initial onditions (2.19).



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 793. Cauhy problems for ordinary di�erential equations of frational order:method of redution to Volterra integral equations. ContinuationDzhrbashyan and Nersesyan [28℄ �rst studied the linear di�erential equation of theform
(Dσy)(x) ≡ (Dσny)(x) +

n−1
∑

k=0

ak(x)(Dσn−k−1y)(x) + an(x)y(x) = f(x), (3.1)with the modi�ed frational derivatives (Dσny)(x) and (Dσn−k−1y)(x) (k = 0, 1,
. . . , n − 1) de�ned in terms of the Riemann �Liouville frational derivatives (1.7) by

Dσk = Dαk−1
0+ D

αk−1

0+ . . . Dα0

0+ (k = 1, 2, . . . n), Dσ0 = Dα0−1
0+ , (3.2)

σk =
k
∑

j=0

αj − 1 (k = 0, 1, . . . , n); 0 < αj ≤ 1 (j = 0, 1, . . . , n) (3.3)

(αk = σk − σk−1 (k = 1, 2, . . . , n), α0 = σ0 + 1) .Construtions of the form (3.2) are known as sequential frational derivatives. Speialases of suh modi�ed frational derivatives in the form (

Dα
0+

)k
(k ∈ N) together withthe orresponding linear frational di�erential equations were investigated by Miller andRoss [4℄.Dzhrbashyan and Nersesyan [28℄ proved that for α0 > 1 − αn the Cauhy problem

(Dσny)(x) = f(x), (Dσky)(0+) = bk ∈ C (k = 0, 1, . . . , n − 1) (3.4)has a unique ontinuous solution y(x) ∈ C[0, d] on an interval [0, d] provided thatthe funtions ak(x) (0 ≤ k ≤ n − 1) and f(x) satisfy some additional onditions. Inpartiular, when ak(x) = 0 (k = 0, 1, . . . , n) , they obtained the expliit solution
y(x) =

n−1
∑

k=0

bkxσk

Γ(1 + σk)
+

1

Γ(σn)

x
∫

a

(x − t)σn−1f(t)dt (3.5)of the Cauhy problem
(Dσny)(x) = f(x), (Dσk y)(0+) = bk (k = 0, 1, . . . , n − 1). (3.6)Bonilla, Kilbas and Trujillo [29℄ onstruted the theory of speial lasses of linearfrational di�erential equations with sequential frational derivatives and with onstantoe�ients.Delboso and Rodino [30℄ onsidered the Cauhy problem for the nonlinear di�er-ential equation

(Dα
0+y)(x) = f [x, y(x)] (0 ≤ x ≤ T ), y(k)(0) = yk(0) (k = 0, 1, 2, . . . , [α]), (3.7)with ontinuous funtion f(x, y) on [0, 1] × R . Using Shauder's �xed point theorem,they gave onditions for the existene of at least one and of a one ontinuous solution

y(x) on [0, δ] for the orresponding Volterra integral equation. Delboso and Rodinoshowed that if additionally f [x, y(x)] is weighted Lipshitzian:
|f [x, y(x)] − f [x, Y (x)]| ≤

M

xσ
|y(x) − Y (x)|, (3.8)



80 A.A. KILBASand f [x, y(x)] = f [y(x)] and f(0) = 0 , then the Cauhy problem
(Dα

0+y)(x) = f [y(x)], y(a) = b ∈ R (0 < α < 1, a > 0) (3.9)and the weighted Cauhy problem
(Dα

0+y)(x) = f [y(x)], lim
x→0

x1−αy(x) = c ∈ R (0 < α < 1) (3.10)have a unique solution y(x) suh that x1−αy(x) ∈ C[0, h] for any h > 0 .Hayek, Trujillo, Rivero, Bonilla and Moreno [31℄ investigated the Cauhy problemfor a system of linear di�erential equations
(Dα

0+y)(x) = f [x, y(x)], y(a) = b (0 < α ≤ 1, a > 0, b ∈ R
n) (3.11)with a real valued vetor funtion y(x) provided that f(x, y) is ontinuous and Lips-hitzian with respet to y . Applying the method of ontrative mapping de�ned on aomplete metri spae, they proved the existene and uniqueness of a ontinuous solu-tion y(x) of this problem. In partiular, they obtained suh a result to the system oflinear di�erential equations

(Dα
0+y)(x) = A(x)y(x) + B(x), y(a) = b (0 < α ≤ 1, a > 0, b ∈ R

n) (3.12)with ontinuous matries A(x) and B(x) .Kilbas, Marzan and Titioura [32℄ onsidered the Cauhy-type problem for the non-linear di�erential equation of the form (1.5) with the Hadamard frational derivative(1.11) on a �nite interval (a, b) (0 < a < b < ∞) :
(HDα

a+y)(x) = f [x, y(x)] (α ∈ C, Re α > 0); a > 0), (3.13)where n = [Re α + 1] for α 6∈ N and n = α for α ∈ N , with the initial onditions
(HDα−k

a+ y)(a+) = bk, bk ∈ C (k = 1, 2, . . . , n). (3.14)It was proved the equivalene of this problem and the Volterra integral equation
y(x) =

n
∑

j=1

bj

Γ(α − j + 1)

(

log
x

a

)α−1

+
1

Γ(α)

x
∫

a

(

log
x

t

)α−1

f [t, y(t)]
dt

t
(x > a) (3.15)in the spae X1

0 (a, b) of Lebesgue measurable funtions y(x) on [a, b] suh that
[y(x)/x] ∈ L(a, b) . Using this fat the onditions were given for a unique solutionof the problem (3.13)�(3.14) in X1

0 (a, b) . The method of suessive approximation anbe also applied to establish a unique solution of the orresponding Cauhy-type problemto the linear frational di�erential equation
(HDα

a+y)(x) = λy(x) + h(x) (λ ∈ C, Re α > 0)), (3.16)with the initial onditions (3.14) in the form
y(x) =

n
∑

j=1

bj

(

log
x

a

)α−j

Eα,α−j+1

(

λ
(

log
x

t

)α)

+

+

x
∫

a

(

log
x

t

)α−1

Eα,α

(

λ
(

log
x

t

)α)

f(t)
dt

t
. (3.17)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 81Kilbas and Marzan [33, 34℄ investigated the di�erential equation of the form (1.5)
(CDα

a+y)(x) = f [x, y(x)] (a ≤ x ≤ b; α ∈ C, Re α > 0) (3.18)with the Caputo frational derivative (1.14) and with the initial onditions
y(k)(a+) = bk, bk ∈ C (k = 0, 1, 2, . . . , n − 1), (3.19)where n = [Re α]+ 1 for α 6∈ N while n = α for α ∈ N . The equivalene of the Cauhyproblem (3.18)�(3.19) and the orresponding Volterra equation

y(x) =

n−1
∑

j=1

bj

j!
(x − a)α−j +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(x > a; n − 1 < α ≤ n) (3.20)in the spae Cn−1[a, b] of funtions y(x) ontinuously di�erentiable up to n − 1 wasproved. On the basis of this fat and Shauder's �xed point theorem, the onditions forthe existene of a unique solution y(x) ∈ Cn−1[a, b] of the problem (3.18)�(3.19) andonditions, when this problem has at least one suh a solution, were given. Using themethod of suessive expansions, the unique solution of the Cauhy problem for theorresponding to (3.18) linear equation

(CDα
a+y)(x) − λy(x) = f(x), y(k)(a+) = bk ∈ C (k = 0, 1, 2, . . . , n − 1), (3.21)was dedued in the form

y(x) =

n−1
∑

j=1

bj(x − a)jEα,j+1 (λ(x − a)α) +

x
∫

a

(x − t)α−1Eα,α (λ(x − t)α) f(t)dt. (3.22)4. Ordinary di�erential equations of frational order:operational alulus methodThe usefulness of operational alulus to solve ordinary di�erential equations is wellknown [35℄. The basis of suh an operational alulus for the operators of di�erentiationwas developed by Mikusinski [36℄. It is based on the interpretation of the Laplaeonvolution
(f ∗ g)(x) =

x
∫

0

f(x − t)g(t)dt (4.1)as a multipliation of elements f and g in the ring of funtions ontinuous on thehalf-axis R+ . Mikusinski applied his operational alulus to solve ordinary di�erentialequations with onstant oe�ients.Mikusinski's sheme was developed by Ditkin [37℄, Ditkin and Prudnikov [38℄, Meller[39℄ and Rodriguez [40℄ to onstrut the operational alulus for a Bessel-type di�er-ential operators with nononstant oe�ients. Dimovski [41℄ onsidered the transformapproah to the development of operational alulus. Rodriguez, Trujillo and Rivero[42℄ were probably the �rst who applied operational alulus for a Kratzel transform tosolve a Bessel-type di�erential equation of frational order.A series of papers were devoted to develop the operational alulus to frationalalulus operators with appliations to solution of di�erential equations of frationalorder. Luhko and Srivastava [43℄ have onstruted the operational alulus to theRiemann �Liouville frational derivative Dα
0+y given in (1.7), in a speial spae C−1 of



82 A.A. KILBASfuntions y(x) suh as x−p(Dα
0+)ky(x) ∈ C[0,∞) (k = 1, 2, . . . , m) for some p > −1 .They proved that the operation ∗λ de�ned for λ ≥ 1 by

(f ∗λ g)(x) = (Iλ−1
0+ f ∗ g)(x) =

x
∫

0

(Iλ−1
0+ f)(x − t)g(t)dt (λ ≥ 1), (4.2)

Iλ−1
0+ being the operation of Riemann �Liouville frational integration (1.6), is the on-volution (without divisors) of the linear operator Iα

0+ for α > 0 in the spae C−1 , andthat the Riemann �Liouville operator Iα
0+ has the onvolution representation

(Iα
0+f)(x) = (h ∗λ f)(x)

(

1 ≤ λ < α + 1, h(x) :=
xα−λ

Γ(α − λ − 1)

)

. (4.3)They showed that the spae C−1 with the operations ∗λ and + , having the propertyof distributivity
(f ∗λ (g + h)) (x) = (f ∗λ g)(x) + (f ∗λ h)(x) (f, g, h ∈ C−1), (4.4)beomes a ommutative ring without divisors of zero, and therefore, following Mikusin-ski [36℄, C−1 an be extended to the quotient �eld M . Luhko and Srivastava indiatedthat the elements of the �eld M an be onsidered as onvolution quotients f/g withthe operations

f

g
+

f1

g1
=

(f ∗λ g1) + (g ∗λ f1)

(g ∗λ g1)
,

(

f

g

)(

f1

g1

)

=
(f ∗λ f1)

(g ∗λ g1)
, (4.5)whih means that the ring C1 an be embedded in the �eld M by the map

f(x) →
(h ∗λ f)(x)

h(x)
, (4.6)with h(x) in (4.3). On the basis of these fats they de�ned the algebrai inverse of theoperator Iα

0+ as an element S of the �eld M whih is reiproal to the element h(x)in the �eld M :
S =

I

h
≡

h

(h ∗λ h)
≡

h

h2
, (4.7)where I = h/h denotes the identity element of the �eld M with respet to the operationof multipliation.Introduing the spae

Ωm
α (C−1) =

{

f(x) ∈ C−1 : (Dmα
0+ )kf)(x) ∈ C−1 (k = 1, 2, . . . , m)

}

(4.8)with m ∈ N and α > 0 , Luhko and Srivastava proved the relation for f(x) ∈ Ωm
α (C−1)in the �eld M

(

(Dα
0+)mf

)

(x) = Smf −

m−1
∑

k=0

Sm−kF (Dα
0+)kf, (4.9)where the operator F = E − Iα

0+Dα
0+ is given by

(Ff)(x) :=
(

(E − Imα
0+ Dα

0+)f
)

(x) =

−[−α]
∑

k=0

xα−k

Γ(α − k + 1)
lim
x→0

(Dα−k
0+ f)(x) (4.10)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 83and E is the identity operator. This result means that the Riemann �Liouville frationaldi�erentiation operator Dα
0+ is redued to the operator of multipliation in the �eld

M .Suh an operational alulus was applied by Luhko and Srivastava [43℄ to solve thefollowing Cauhy-type problem:
(

Pm(Dα
0+)y

)

(x) = f(x), Pm(z) =

m
∑

k=1

ckzk, (4.11)with any α > 0 and f(x) ∈ C−1 in the spae Ωm
α (C−1) with the initial onditions

lim
x→0

(

Dα−k
0+ (Dα

0+)iy
)

(x) = bik (i = 0, 1, . . .m − 1; k = 1, . . . , η). (4.12)They redued this problem to the algebrai equation in the �eld M

Pm(S) = f +

m−1
∑

i=0

Pi(S)γi, Pi(S) =

m−i
∑

j=1

ci+jS
j (i = 0, 1, . . . , m − 1), (4.13)found its unique solution

y =
I

Pm(S)
+

m−1
∑

i=0

Pi(S)

Pm(S)
γi (4.14)and gave the expliit solution of the Cauhy-type problem (4.11)�(4.12) in terms of thespeial funtion

E̺
α,β(z) =

∞
∑

k=0

(̺)kzk

k!Γ(αk + β)
, (4.15)where (̺)k is the Pohhammer symbol de�ned by

(̺)k = 1, (̺)k = ̺(̺ + 1) . . . (̺ + k − 1) (k = 1, 2, . . .). (4.16)(4.15) is a generalization of the Mittag � Le�er funtion (2.9), deduing from (4.15) for
̺ = 1 .Luhko and Yakubovih [44℄, Al-Bassam and Luhko ℄45℄ and Hadid and Luhko[46℄ have used suh a method to solve the Cauhy-type problems for frational di�er-ential equations with onstant oe�ients involving the so-alled Erdelyi �Kober-typefrational derivatives � see [3, Setion 18.1℄. The expliit solutions in these ases areexpressed via the funtion of Mittag � Le�er type

E̺ ((α, β)n; z) =

∞
∑

k=0

(̺)kzk

k!
∏n

i=1 Γ(αik + βi)
, (4.17)more general then (4.15).Luhko and Goren�o [47℄ have used the operational method to prove that the Cauhyproblem for the frational di�erential equations with the Caputo frational derivative(1.15)

(CDαy)(x) − λy(x) = f(x), (4.18)

y(k)(0) = bk (k = 0, 1, . . . n − 1; n − 1 < α ≤ n) (4.19)has the unique solution
y(x) =

n−1
∑

k=0

bkxkEα,k+1 (λxα) +

x
∫

0

tα−1Eα,α (λtα) f(x − t)dt (4.20)



84 A.A. KILBASin a speial spae of funtions. They also investigated the Cauhy problem for moregeneral frational di�erential equation
(Dα

∗ y)(x) −

m
∑

k=1

ck(Dαk

∗ y)(x) = f(x) (α > α1 > . . . > αm ≥ 0) (4.21)with the initial onditions (4.19) and onstruted its expliit solution via multivariateMittag-Le�er funtion.The above and other results were disussed in a survey paper by Luhko [48℄. Wealso note that Elizarraraz and Verde-Star [49℄ obtained the expliit general solution ofthe equation (4.11) and the expliit solution of the Cauhy-type problem (4.11)�(4.12)by using linear algebra onstrution and lassial methods of operational alulus. Theirapproah was based on introduing divided di�erenes of frational order, oinidingwith the Riemann �Liouville frational di�erential operators in a ertain spae of fun-tions, and generalized exponential polynomials, whih are onneted with funtions ofMittag � Le�er type.5. Integral and di�erential equations of frational order:ompositional methodThe idea of the ompositional method is based on the known formula for the Rie-mann �Liouville frational integral (1.6) and derivative (1.7):
(Iα

a+(t − a)β−1)(x) =
Γ(β)

Γ(β + α)
(x − a)β+α−1 (Re β > Reα) > 0, (5.1)

(Dα
a+(t − a)β−1)(x) =

Γ(β)

Γ(β − α)
(x − a)β−α−1 (Re β > Re α > 0). (5.2)Aording to (1.6) and (1.7), (5.1) and (5.2) mean that the omposition of the Riemann �Liouville frational integral Iα

a+ derivative Dα
a+ with the power funtion (x − a)β−1leads to the same funtion apart to a ertain funtion fator. It means that

y(x) = (x − a)β−1 (5.3)is a solution of the homogeneous integral equation
y(x) =

Γ(α + β)(x − a)α

Γ(α)Γ(β)

x
∫

a

y(t)dt

(x − t)1−α
(5.4)and of the frational di�erential equation

(Dα
a+y)(x) =

Γ(β)(x − a)−α

Γ(β − α)
y(x) (Re β > Re α > 0). (5.5)These arguments lead us to the onjeture that ompositions of frational integralsand derivatives with elementary funtions an give exat solutions of integral and di�er-ential equations of frational order. Moreover, from here we dedue another assumptionabout the possibility of suh results for ompositions of frational alulus operatorswith speial funtions. It allows us to �nd the expliit solutions of new lasses of dif-ferential equations of frational order. The ompositional method based on relationsbetween the Riemann �Liouville and Liouville frational di�erentiation operators withfuntions of Mittag � Le�er type was developed by the author together with Saigo, and



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 85with funtions of Bessel type � together with Bonilla, Rivero, Rodriguez and Trujillo.Here we haraterize some of the results.Kilbas and Saigo [50�53℄ and Saigo and Kilbas [54, 55℄ have investigated ompo-sitions of the Riemann �Liouville frational integral (1.6) and derivative (1.7) with aspeial entire funtion of the form
Eα,m,l(z) =

∞
∑

k=0

ckzk (5.6)with
c0 = 1, ck =

k−1
∏

i=0

Γ[α(im + l) + 1]

Γ[α(im + l + 1) + 1]
(k = 1, 2, . . .). (5.7)Suh a funtion, de�ned for α > 0 , m > 0 and l ∈ R suh that α(m + l) 6= −1,−2, . . .

(i + 0, 1, 2, . . .) , was introdued by Kilbas and Saigo in [56℄ while studying asymptotiproperties of solutions of linear integral equations of Abel �Volterra type. When m = 1 ,this funtion oinides with the Mittag � Le�er funtion Eα,αl+1(z) in (2.9) apart to theonstant fator Γ(αl + 1) :
Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z). (5.8)Kilbas and Saigo proved the relations

(

Iα
0+

[

tαlEα,m,l(atαm)
])

(x) =
1

a
xα(l−m+1) [Eα,m,l(axαm) − 1] , (5.9)provided that α > 0 , m > 0 and l > −1/l , and

(

Dα
0+

[

tα(l−m+1)Eα,m,l(atαm)
])

(x) =

=
Γ[α(l − m + 1) + 1]

Γ[α(l − m) + 1]
xα(l−m) + axαlEα,m,l(axαm), (5.10)provided that l > m − 1 − 1/α ; in partiular

(

Dα
0+

[

tα(l−m+1)Eα,m,l(atαm)
])

(x) = axαlEα,m,l(axαm), (5.11)when α(l − m) = −j for some j = 1, 2, . . . ,−[−α] .On the basis of (5.9) they proved that the Abel-Volterra integral equation
y(x) =

axβ

Γ(α)

x
∫

0

y(t)gt

(x − t)1−α
=

n
∑

k=0

fkxµk (0 < x < d ≤ ∞) (5.12)with α > 0 , β > −α and µk > −1 , fk ∈ R (k = 0, 1, . . . , n) has the solution
y(x) =

n
∑

k=0

fkxµkEα,1+β/α,µk/α

(

axα+β
)

. (5.13)Using (5.11), Kilbas and Saigo showed that the homogeneous frational di�erentialequation
(Dα

0+y)(x) = axβy(x) (0 < x < d < ∞; α > 0, a 6= 0, β > −α) (5.14)



86 A.A. KILBASwith α 6= 1, 2, . . . has linearly independent [α] + 1 solutions
yj(x) = xα−jEα,1+β/α,1+(β−j)/α

(

axα+β
)

(j = 1, 2, . . . , [α] + 1) (5.15)for β > {α} ≡ α−[α] . They also obtained the solution of the orresponding Cauhy-typeproblem for (5.14) with the initial onditions
(Dα−k

0+ y)(x)|x=0 = bk (k = 1, 2, . . . , [α] + 1) (5.16)in the form
y(x) =

[α]+1
∑

k=0

bkxα−jEα,1+β/α,1+(β−j)/α

(

axα+β
)

. (5.17)The result in (5.10) was applied to obtain the partiular solution y0(x) of the non-homogeneous frational di�erential equation with a quasi-polynomial free term
(Dα

0+y)(x) = axβy(x) +

n
∑

i=0

fix
µi (0 < x < d < ∞; α > 0, a 6= 0, β ∈ R), (5.18)where µi, fi ∈ R (i = 0, 1, . . . , n) , and the solution of the orresponding Cauhy-typeproblem for the equation (5.18) with the initial onditions (5.16). In partiular, expliitsolutions of frational di�erential equations of order 1/2 , arising in the theory of voltam-metry at expanding eletrodes [1, equation (8.6.1)℄ and in the theory of polarographywere onstruted.Kilbas and Saigo also onsidered the onnetion of the generalized Mittag-Le�erfuntion (5.6) with the right-sided Liouville frational integrals Iα

−y and derivative
Dα

−y of order α ∈ C (Re α ≥ 0) de�ned for x ∈ R by
(Iα

−y)(x) =
1

Γ(α)

∞
∫

x

y(t)dt

(t − x)1−α
(α ∈ C, Re α > 0) , (5.19)

(Dα
−y)(x) =

(

−
d

dx

)n

(In−α
− y)(x), n = [Re α] + 1, (5.20)For suh frational integrals and derivative they proved a relations similar to (5.9) and(5.10) and applied them to obtain the partiular solutions of the non-homogeneousintegral equation of the form (5.12), with the integral from 0 to x being replaed bythe integral from x to ∞ , and of the di�erential equation of the form (5.18), with Dα

0+being replaed by Dα
− , in terms of the generalized Mittag � Le�er type funtions (5.6).Saigo and Kilbas [57℄ applied suh an approah, based on ompositions of usualderivatives with the generalized Mittag � Le�er type funtion (5.6), to solve in losedform of new lasses of ordinary di�erential equations and orresponding Cauhy-typeproblems.Kilbas and Saigo [58℄ studied the solvability of the nonlinear equation

(Dα
0+y)(x) = axβym(x) + bxγ (0 < x < d < ∞; α > 0, m ∈ R, m 6= 1) (5.21)with real a (a 6= 0) , b , µ and ν . They proved that if (α + β)/(1 − m) > α − 1 , thenthe orresponding homogeneous nonlinear equation (b = 0) has at least one solutiongiven by

y(x) =

[

Γ(µ + 1)

aΓ(µ − α + 1)

]1/(1−m)

xµ, µ =
α + β

1 − m
, (5.22)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 87while the non-homogeneous nonlinear equation (5.21) with γ = (β + mα)/(1 − m) hasthe solution
y(x) = λxµ, µ =

α + β

1 − m
, (5.23)provided that the transendental equation

Γ

(

α + β

1 − m
+ 1 − α

)

[aξm + b] − Γ

(

α + β

1 − m
+ 1

)

ξ = 0 (5.24)is solvable and ξ = λ is its solution. The problem of the uniqueness of the solutions(5.22) and (5.23) was also disussed in [58℄. The solvability of the nonlinear equation(5.21) depends on the solvability of the transendental equation (5.24). Positive solutionsof suh a transendental equation were investigated in [59℄.Kilbas, Bonilla, Rodriguez, Trujillo and Rivero [60℄ and Bonilla, Kilbas, Rivero,Rodriguez L. and Trujillo [61℄ have studied ompositions of the left- and right-sidedLiouville frational integrals derivatives (5.19) and (5.20) with the speial funtions
Zν

ρ (z) =

∞
∫

1

tν−1 exp
(

−tρ −
z

t

)

dt (z ∈ C, Re z > 0; ρ > 0, ν ∈ C) (5.25)and
λ(β)

γ,σ(z) =
β

Γ(γ + 1 − 1/β)

∞
∫

1

(tβ − 1)γ−1/βtσe−ztdt (5.26)

(z ∈ C, Re z > 0; β > 0; γ ∈ C, Re γ >
1

β
− 1; σ ∈ R).These funtions are analyti with respet to z , and are invariant relative to the Liouvillefrational integrals (5.19) and derivatives (5.20) exept for a transformation of theindies:

(Iα
−Zν

ρ )(x) = Zν+α
ρ (x), (Iα

−λ(β)
γ,σ)(x) = λ

(β)
γ,σ−α(x), (5.27)

(Dα
−Zν

ρ )(x) = Zν−α
ρ (x), (Dα

−λ(β)
γ,σ)(x) = λ

(β)
γ,σ+α(x). (5.28)These relations were applied in [60℄ to obtain expliit solutions of di�erential equa-tions of frational order

xDρ+1
− y + (ν − ρ)xDρ

−y − ρy = 0, (5.29)

x2D2ρ+2
− y + (2ν − 3ρ − 1)xD2ρ+1

− y + (ν − ρ)(ν − 2ρ)D2ρ
− y + ρ2y = 0 (5.30)in terms of the funtion (5.25), and in [61℄ to obtain the expliit solution of the integralequation of the third kind

xy(x) =

∞
∫

x

[

γβ + σ +
(t − x)β−1

Γ(β)
+ (β − σ − 1)

(t − x)β

Γ(β + 1)

]

y(t)dt = 0 (x > 0) (5.31)and of di�erential equations of frational order
x[(Dα+β+1

− y)(x) − (Dα+1
− y)(x)] − (γβ + σ + α)(Dα+β

− y)(x)+

+(σ + α + 1 − β)(Dα
−y)(x) = 0 (x > 0) (5.32)in terms of the funtion (5.26).



88 A.A. KILBAS6. Frational integral and di�erential equations:Laplae transform methodHere we disuss the method based on the Laplae integral transform to dedueexpliit solutions of linear integral and di�erential equations of frational order. Firstwe present a sheme to solve frational integral and di�erential equation of the forms(1.3) and (1.4) by using the diret and inverse Laplae transforms L and L−1 :
(Lϕ)(p) =

∞
∫

0

ϕ(t)e−ptdt, (6.1)

(L−1g)(x) =
1

2πi

γ+∞
∫

γ−∞

epxg(p)dp (γ = Re p > σ, σ ∈ R). (6.2)One may �nd the theory of Laplae transform in the books by Ditkin and Prudnikov[35℄, Tithmarsh [62℄ and Sneddon [63℄.The transforms L and L−1 are inverse to eah other for suitable funtions ϕ, g :
L−1Lϕ = ϕ, LL−1g = g. (6.3)We onsider the equations (1.3) and (1.4) with the Riemann �Liouville integrals

Iαk = Iαk

0+ and derivatives Dαk = Dαk

0+ and onstant oe�ients ck ∈ C :
c0y(x) +

m
∑

k=1

ck

(

Iαk

0+y
)

(x) = f(x) (x > 0), (6.4)

c0y(x) +

m
∑

k=1

ck

(

Dαk

0+y
)

(x) = f(x) (x > 0). (6.5)It is known that for suitable funtions y(x) the Laplae transforms of Iα
0+y and Dα

0+yare given by
(LIα

0+y)(p) = p−α(Ly)(p), (LDα
0+y)(p) = pα(Ly)(p). (6.6)Applying the Laplae transform (6.1) to both sides of (6.4) and (6.5) and taking (6.6)into aount we have respetive formulas

[

c0 +

m
∑

k=1

ckp−αk

]

(Ly)(p) = (Lf)(p), (6.7)

[

c0 +

m
∑

k=1

ckpαk

]

(Ly)(p) = (Lf)(p). (6.8)Using the inverse Laplae transform (6.2) we obtain partiular solutions of the equations(6.4) and (6.5) in respetive forms
y(x) =

(

L−1

[

(Lf)(p)

c0 +
∑m

k=1 ckp−αk

])

(x), (6.9)

y(x) =

(

L−1

[

(Lf)(p)

c0 +
∑m

k=1 ckpαk

])

(x). (6.10)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 89We note that Laplae transform method was �rst applied by Hille and Tamarkin[64℄ (1930) to solve the Abel type integral equation of seond kind
ϕ(x) −

λ

Γ(α)

x
∫

0

ϕ(t)dt

(x − t)1−α
= f(x) (x > 0) (6.11)in terms of the Mittag-Le�er funtion (2.9) with β = 1 ;

ϕ(x) =
d

dx

x
∫

0

Eα [λ(x − t)α] f(t)dt, Eα(z) = Eα,1(z). (6.12)One may �nd results and bibliography of papers devoted to solution in losed form ofertain types of frational integral equation (6.4) in the books by Goren�o and Vessela[2℄ and by Samko, Kilbas and Marihev [3℄.Maravall [65℄ probably �rst suggested a formal approah based on the Laplae trans-form to obtain the expliit solution of a partiular ase of the frational di�erentialequation (6.5), but his paper published in Spanish, was pratially unknown.The Laplae transform was used by many authors to obtain the expliit solutionsof speial ases of the di�erential equation (6.5): see Kilbas and Trujillo [13℄.Miller and Ross [4℄ applied the Laplae transform method to solve the Cauhyproblem for the partiular ase of (6.5) with derivative αk = kα and 1/α = q = 1, 2, . . .:
m
∑

k=1

ck(Dkα
0+y)(x) + c0y(x) = f(x), (6.13)

y(0) = y′(0) = . . . y(m−1)(0) = 0. (6.14)Miller and Ross introdued a frational analogue of the Green funtion Gα(x) de�nedvia the inverse Laplae transform (6.2)
Gα(x) =

(

L−1

[

1

P (tα)

])

(x), P (x) = c0 +

m
∑

k=1

ckxk, (6.15)and proved that the unique solution y(x) of (6.13)�(6.14) has the form of the Laplaeonvolution of Gα(x) and f(x) :
y(x) =

x
∫

0

Gα(x − t)f(t)dt. (6.16)These investigations were developed by Podlubny [5, Chapter 5℄) who de�ned suha frational analogue of Green funtion Gα(x) to more general equation (3.1), showedthat the solution (3.5) of the Cauhy problem (3.6) an be expressed in terms of Gα(x) :
y(x) =

n−1
∑

k=0

bkyk(x) +

x
∫

0

Gα(x− t)f(t)dt, yk(x) = (Dαn

0+D
αn−1

0+ . . .Dαk

0+Gα)(x). (6.17)In partiular, he found the expliit formula of Gα(x) for the equation (6.5) as a multipleseries ontaining the Mittag � Le�er funtions (2.9).Examples of linear frational di�erential equations of the form (6.5) and (6.13),solved by using Laplae transform method and analogies of Green funtion, were givenby Miller and Ross [4, Chapters V and VI℄ and Podlubny [5, Setions 4.1.1 and 4.2.1℄.



90 A.A. KILBASGoren�o and Mainardi [66℄ applied the Laplae transform to solve the frationaldi�erential equation
(CDα

o+y)(x) = −ραy(x) + f(x) (α > 0; ρ > 0, x > 0), (6.18)with the Caputo derivative (1.15) and disussed the key role of the Mittag � Le�erfuntion (2.9) in the ases 1 < α < 2 and 2 < α < 3 .Using the formula for the Laplae onvolution


L





x
∫

0

k(x − t)f(t)dt







 (p) = (Lk)(p)(Lf)(p), (6.19)by analogy with (6.15) we introdue the Laplae frational analogue of the Green fun-tion
Gα1,...,αm

(x) =

(

L−1

[

1

Pα(x)

])

(x), Pα(x) = c0 +

m
∑

k=1

ckxαk . (6.20)Then the solutions (6.9) and (6.10) of the integral and di�erential equations (6.4) and(6.5) have respetive forms of the Laplae onvolutions of Gα1,...,αm
(1/x) and f(x) :

y(x) =

x
∫

0

Gα1,...,αm

(

1

x − t

)

f(t)dt, (6.21)and of Gα1,...,αm
(x) and f(x) :

y(x) =

x
∫

0

Gα1,...,αm
(x − t)f(t)dt. (6.22)7. Frational alulus equations: Fourier and Mellin transforms methodSimilarly to Setion 6, we present a sheme to solve frational integral and di�erentialequations of the forms (1.3) and (1.4) by using diret and inverse Fourier transforms Fand F−1 :

(Fϕ)(x) =

∞
∫

−∞

eixtϕ(t)dt (x ∈ R), (7.1)

(F−1g)(x) =
1

2π

∞
∫

−∞

e−ixtg(t)dt (x ∈ R), (7.2)and diret and inverse Mellin transforms M and M−1 :
(Mϕ)(s) =

∞
∫

0

ts−1ϕ(t)dt (s ∈ C), (7.3)

(M−1g)(x) =
1

2πi

γ+∞
∫

γ−∞

x−sg(s)ds (γ = Re p). (7.4)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 91One may �nd the theory of Fourier and Mellin transforms in the books by Tithmarsh[62℄, Sneddon [63℄ and Ditkin and Prudnikov [35℄. In partiular, they are inverse to eahother for suitable funtions ϕ, g :
F−1Fϕ = ϕ, FF−1g = g; (7.5)

M−1Mϕ = ϕ, MM−1g = g. (7.6)We onsider equations of the form (1.3) and (1.4) with onstant oe�ients ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

Iαk

+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.7)

c0y(x) +
m
∑

k=1

ck

(

Dαk

+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.8)involving the so-alled left-sided Liouville frational integrals and derivatives Iαk

+ y and
Dα

+y of order α ∈ C (Re α ≥ 0) de�ned for x ∈ R by
(Iα

+y)(x) =
1

Γ(α)

x
∫

−∞

y(t)dt

(x − t)1−α
(α ∈ C, Re α > 0) , (7.9)

(Dα
−y)(x) =

(

d

dx

)n

(In−α
+ y)(x), n = [Re α] + 1. (7.10)It is known [3, Setion 7.1℄ that for suitable funtions y(x) the Fourier transforms of

Iα
+y and Dα

+y are given by
(FIα

+y)(x) = (−ix)−α(Fy)(x), (FDα
+y)(x) = (−ix)α(Fy)(x). (7.11)Applying the Fourier transform (7.1) to both sides of (7.9) and (7.10), taking (7.11)into aount and using the inverse Fourier transform (7.2), we obtain solutions of theequations (7.7) and (7.8) in respetive forms

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck(−it)−αk

])

(x). (7.12)

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck(−it)αk

])

(x). (7.13)Using the Fourier onvolution formula


F





∞
∫

−∞

k(x − t)f(t)dt







 (x) = (Fk)(x)(Ff)(x), (7.14)by analogy with (6.20) we an introdue the Fourier frational analogue of the Greenfuntion
G1

α1,...,αm
(x) =

(

F−1

[

1

P 1
α(t)

])

(x), P 1
α(x) = c0 +

m
∑

k=1

ck(−ix)αk , (7.15)



92 A.A. KILBASand rewrite the solutions (7.12) and (7.13) in respetive forms of the Fourier onvolutionof Gα1,...,αm
(1/x) and f(x) :

y(x) =

∞
∫

−∞

G1
α1,...,αm

(

1

x − t

)

f(t)dt. (7.16)and of Gα1,...,αm
(x) and f(x) :

y(x) =

∞
∫

−∞

G1
α1,...,αm

(x − t)f(t)dt. (7.17)Similarly it is proved that the equations (1.3) and (1.4) with onstant oe�ients
ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

Iαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m) (7.18)

c0y(x) +

m
∑

k=1

ck

(

Dαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m) (7.19)with the right-sided Liouville frational integrals Iαk

− and derivatives Dαk

− , de�ned in(5.19) and (5.20), has solutions of the forms (7.16) and (7.17):
y(x) =

∞
∫

−∞

G2
α1,...,αm

(x − t)f(t)dt, (7.20)

y(x) =

∞
∫

−∞

G2
α1,...,αm

(x − t)f(t)dt, (7.21)where
G2

α1,...,αm
(x) =

(

F−1

[

1

P 2
α(t)

])

(x), P 2
α(x) = c0 +

m
∑

k=1

ck(ix)αk , (7.22)Now we onsider the equations of the forms (1.3) and (1.4) with onstant oe�ients
ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

J αk

0+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.23)

c0y(x) +

m
∑

k=1

ck

(

HDαk

0+y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.24)involving the Hadamard frational integrals and derivatives J αk

0+ y and HDαk

0+y de�nedby (1.12) and (1.11) on the half axis R+ , and the equations
c0y(x) +

m
∑

k=1

ck

(

J αk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.25)
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c0y(x) +

m
∑

k=1

ck

(

HDαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.26)with the Hadamard frational integrals and derivatives J αk

− y and HDα
−y de�ned foromplex α ∈ C (Re α > 0) by

(J α
−y)(x) =

1

Γ(α)

∞
∫

x

(

log
t

x

)α−1
y(t)dt

t
(x > 0), (7.27)and

(HDα
−y)(x) = (−δ)n

(

J n−α
− y

)

(x) (x > 0; n = [Reα] + 1), (7.28)respetively; see the paper by Butzer, Kilbas and Trujillo [67℄.It is known [67℄ that for suitable funtions y(x) the Mellin transforms of J α
0+y ,

HDα
0+y and J α

−y , HDα
−y are given by

(MJ α
0+y)(s) = (−s)−α(My)(s), (MHDα

0+y)(s) = (−s)α(My)(s), (7.29)

(MJ α
−y)(s) = s−α(My)(s), (MHDα

−y)(s) = sα(My)(s). (7.30)Applying the Mellin transform (7.3) to both sides of (7.23) and (7.24), taking (7.29)into aount and using the inverse Mellin transform (7.4), we obtain partiular solutionsof the equations (7.23) and (7.24) in respetive forms
y(x) =

(

M−1

[

(Mf)(s)

c0 +
∑m

k=1 ck(−s)−αk

])

(x) (7.31)and
y(x) =

(

M−1

[

(Mf)(s)

c0 +
∑m

k=1 ck(−s)αk

])

(x). (7.32)Using the Mellin onvolution formula


M





∞
∫

0

k
(x

t

)

f(t)
dt

t







 (p) = (Mk)(p)(Mf)(p), (7.33)by analogy with (7.15) and (7.22) we an introdue the Mellin frational analogies ofthe Green funtion
G3

α1,...,αm
(x) =

(

M−1

[

1

P 3
α(x)

])

(x), P 3
α(x) = c0 +

m
∑

k=1

ck(−x)−αk , (7.34)

G4
α1,...,αm

(x) =

(

M−1

[

1

P 4
α(x)

])

(x), P 4
α(x) = c0 +

m
∑

k=1

ck(−x)αk , (7.35)and represent solutions (7.31) and (7.32) in the respetive forms
y(x) =

∞
∫

0

G3
α1,...,αm

(x

t

)

f(t)
dt

t
(7.36)

y(x) =

∞
∫

0

G4
α1,...,αm

(x

t

)

f(t)
dt

t
(7.37)



94 A.A. KILBASSimilarly, on the basis (7.30) and (7.33) expliit solutions of the equations (7.25)and (7.26) are dedued in respetive forms
y(x) =

∞
∫

0

G5
α1,...,αm

(x

t

)

f(t)
dt

t
. (7.38)

G5
α1,...,αm

(x) =

(

M−1

[

1

P 5
α(x)

])

(x), P 5
α(x) = c0 +

m
∑

k=1

cks−αk , (7.39)and
y(x) =

∞
∫

0

G6
α1,...,αm

(x

t

)

f(t)
dt

t
. (7.40)

G6
α1,...,αm

(x) =

(

M−1

[

1

P 6
α(x)

])

(x), P 6
α(x) = c0 +

m
∑

k=1

cksαk . (7.41)8. Multi-dimensional integral and partial frationaldi�erential equations: integral transforms methodThe Fourier integral transform method, presented in Setion 7 to obtaining expliitsolutions of one-dimensional frational integral and di�erential equations (7.7)�(7.8) and(7.18)�(7.19), an be also applied to �nd expliit solutions of multi-dimensional linearintegral and di�erential equation of the form (1.3) and (1.4) with onstant oe�ients
ck ∈ R :

c0y(x) +
m
∑

k=1

ck (Iαky) (x) = f(x) (x ∈ R
n; ck ∈ C, k = 0, 1, . . . , m), (8.1)

c0y(x) +

m
∑

k=1

ck (Dαky) (x) = f(x) (x ∈ R
n; ck ∈ C, k = 0, 1, . . . , m), (8.2)involving the Riesz frational integrals I

αky and derivatives D
αky de�ned in (1.17)and (1.18). Suh an equation an be solved by using the multi-dimensional diret andinverse Fourier transforms F and F−1 :

(Fϕ)(x) =

∫

Rn

eix·tϕ(t)dt (x ∈ R
n) , (8.3)

(F−1g)(x) =
1

(2π)n

∫

Rn

e−ix·tg(t)dt (x ∈ R
n) . (8.4)One may �nd the theory of multi-dimensional Fourier transforms in the books by Steinand Weiss [68℄ and by Nikol'skii [69℄.The transforms (8.3) and (8.4) are inverse to eah other for suitable funtions ϕ ,g :

F−1Fϕ = ϕ, FF−1g = g; (8.5)Aording to (1.17) and (1.18), there hold the formulas
(FI

αy) (x) = |x|−α(Fy)(x), (FD
αy) (x) = |x|α(Fy)(x). (8.6)for suitable funtions y .



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 95Applying the Fourier transform (8.3) to both sides of (8.1) and (8.2), taking (8.6)into aount and using the inverse Fourier transform (8.4), we obtain expliit solutionsof the equations (8.1) and (8.2) in respetive forms
y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck|t|−αk

])

(x). (8.7)

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck|t|αk

])

(x). (8.8)Using the Fourier onvolution formula


F





∫

Rn

k(x − t)f(t)dt







 (x) = (Fk)(x)(Ff)(x), (8.9)by analogy with (7.15) and (7.22) we an introdue the Fourier multi-dimensional ana-logue of the Green funtion
Gα1,...,αm

(x) =

(

F−1

[

1

Pα(t)

])

(x), Pα(x) = c0 +

m
∑

k=1

ck|x|
αk , (8.10)and rewrite the solutions (8.7) and (8.8) in respetive forms of the Fourier onvolutionof Gα1,...,αm

(1/x) and f(x) :
y(x) =

∫

Rn

Gα1,...,αm

(

1

x − t

)

f(t)dt (8.11)and of Gα1,...,αm
(x) and f(x) :

y(x) =

∫

Rn

Gα1,...,αm
(x − t)f(t)dt. (8.12)One may �nd results and bibliography of papers devoted to investigation of multi-dimensional frational integral equations involving the Riesz potential (1.19) and moregeneral onstrutions in the monograph by Samko [7℄. A survey of results for par-tial di�erential equations of frational order and more general abstrat equations werepresented in the paper by Kilbas and Trujillo [14℄.Here we haraterize a series of papers where the Laplae, Fourier and Mellin trans-forms were applied to investigate the so-alled frational di�usion equations, and inmost of them formal expliit solutions of ertain boundary and initial problems for theonsidered equations were obtained.Wyss [70℄ studied the frational di�erential equation

x−α−1
+

Γ(α)
∗ u(x, t) = λ2 ∂2u(x, t)

∂x2
(x > 0; 0 < α ≤ 1, λ > 0), (8.13)where x−α−1

+ /Γ(α) is understood as distribution in a speial spae of generalized fun-tion. He investigated two problems for this equation
u(x, 0) = 0, u(0, T ) = b (t > 0) (8.14)when b = 0 and b = −1 . He sought a solution u(x, t) of these problems in the form

u(x, t) = f(y), y = t−α/2x, (8.15)



96 A.A. KILBASand redued (8.13)�(8.14) to the one-dimensional problem
λ2 d2f(y)

dy2
= (I−α

−;2/α,1f)(y) (y > 0), f(0) = 0, f(∞) = b, (8.16)where
(Iβ

−;σ,ηf)(y) =
σyση

Γ(β)

∞
∫

y

tσ(1−α−η)−1f(t)dt

(tσ − yσ)1−β
(β > 0, σ > 0, η ∈ C) (8.17)is the so-alled Erdelyi �Kober-type frational integral � see [3, (18.7)℄. Applying to theequation in (8.16) the diret and inverse Mellin transforms (7.3) and (7.4) and takinginto aount the initial onditions in (8.16), Wyss obtained the following solutions ofthe above two problems:

u(x, t) = π−1/2H2,1
2,3

[

x

2λ
t−α/2

∣

∣

∣

∣

(1, 1), (1, α/2)
(1/2, 1/2), (1, 1/2), (0, 1)

]

(8.18)and
u(x, t) = −π−1/2H3,0

2,3

[

x

2λ
t−α/2

∣

∣

∣

∣

(1, 1), (1, α/2)
(0, 1), (1/2, 1/2), (1, 1/2)

]

(8.19)respetively. These solutions are given in terms of the so-alled H -funtion, whih forintegers m, n, p, q ∈ N0 (0 ≤ m ≤ q, 0 ≤ n ≤ p) , for omplex ai, bj ∈ C and positive
αi, βj > 0 (1 ≤ i ≤ p; 1 ≤ j ≤ q) is de�ned by

Hm,n
p,q

[

z

∣

∣

∣

∣

(ai, αi)1,p

(bj, βj)1,q

]

=
1

2πi

∫

C

Hm,n
p,q

[

(ai, αi)1,p

(bj , βj)1,q

∣

∣

∣

∣

s

]

z−sds, (8.20)where
H(s) ≡ Hm,n

p,q

[

(ai, αi)1,p

(bj , βj)1,q

∣

∣

∣

∣

s

]

=

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1 − ai − αis)

∏p
i=n+1 Γ(ai + αis)

∏q
j=m+1 Γ(1 − bj − βjs)

, (8.21)the ontour C being speially hosen and an empty produt, if it ours, being takento be one. Note that the H -funtion ontains most of elementary and speial funtions;its theory an be found in the books by Mathai and Saxena [71, Chapter 2℄, Srivastava,Gupta and Goyal [72, Chapter 1℄, Prudnikov, Bryhkov and Marihev [73, Setion 8.3℄and Kilbas and Saigo [74, Chapters 1 and 2℄.Shneider and Wyss [75℄ onsidered the equation
u(x, t) =

m−1
∑

k=0

fk(x)tk +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(m − 1 < α ≤ m, m = 1, 2), (8.22)where x ∈ Rn (n ≥ 1) , t > 0 , fk(x) are the initial data, i. e.,

(

∂

∂t

)k

u(x, t)|t=0 = fk(x) (0 ≤ k ≤ m − 1, m = 1, 2), (8.23)and ∆ is the Laplaian (1.16). (8.22) presents the frational di�usion and the waveequation when m = 1 , 0 < α ≤ 1 and m = 2 , 1 < α ≤ 2 , respetively. Applying to



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 97(8.22) the Laplae transform (6.1) with respet to t and the inverse Mellin transform(7.4), they obtained the solution of (8.22) in the form:
u(x, t) =

m−1
∑

k=0

∫

Rn

Gα
k (|x − y|, t)fk(y)dy, (8.24)where y ∈ Rn , |x−y| =

[
∑n

k=1(xk − yk)2
]1/2 , and the analogies of the Green funtions

Gα
k (r, t) (0 ≤ k ≤ m − 1 m = 1, 2) are expressed via the H -funtion (8.20) by
Gα

k (r, t) =
π−n/2

2rn

( r

2

)2k/α

H2,0
1,2

[

r

2
t−α/2

∣

∣

∣

∣

(1, α/2)
(n/2 − k/α, 1/2), (1− k/α, 1/2)

]

. (8.25)Shneider and Wyss also obtained an expliit solution of the frational di�usionequation (8.22) with 0 < α ≤ 1 in the half spae D = Rn−1 × R+ with the boundary
∂D = Rn−1 × {0} , supplemented by a speial boundary ondition. Note that in thease 0 < α ≤ 1 Shneider [76℄ gave a more elegant solution of the equation (8.22) with
m = 1 :

u(x, t) = f(x) +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(0 < α ≤ 1), u(x, 0) = f(x) (8.26)by appliation of the Fourier transform (8.3) with respet to x and the Laplae trans-form (6.1) with respet to t and their orresponding inversion transforms (8.4) and(6.2).Fujita [77℄ studied a two-dimensional equation (8.22) in the ase 1 < α < 2

u(x, t) = f(x) +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(1 < α < 2; x ∈ R, t > 0) (8.27)in the spae C([0,∞); S(R)) onsisting of S(R)-valued ontinuous funtions on [0,∞) ,where S(R) is the spae of rapidly dereasing funtions of Shwartz. Using the Fouriertransform, he obtained its solution u(x, t) :

u(x, t) =
1

α

∞
∫

−∞

Pα(|y|, t)f(t)dt, (8.28)where
Pα(x, t) =

1

2π

∞
∫

−∞

exp
[

−t|s|2/αe−γπsign (s)i/2
]

e−ixsds, γ = 2 −
2

α
. (8.29)Fujita also investigated propeties of the fundamental solution of (8.27).Fujita [78℄ obtained the solution of the equation

u(x, t) = f(x) +
tα/2

Γ(1 + α/2)
g(x) +

1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(8.30)

(1 ≤ α ≤ 2; x ∈ R, t > 0)
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u(x, t) =

E

2






f (x + Yα(t)) + f (x − Yα(t)) +

x+Yα(t)
∫

x−Yα(t)

g(t)dt






, (8.31)where Yα(t) is a ontinuous, non-dereasing and nonnegative stohasti proess withMittag � Le�er distribution of order α/2 , and E stands for the expetation. Using theFourier transform (7.1) and probability methods Fujita [79℄ proved energy inequalitiesfor the integro-di�erential equations (8.27) and (8.30) whih orrespond to the energyinequality for the wave equation.The equation (8.13) belongs to the so-alled frational di�usion equations dedued byNigmatullin [80℄ (1984), [81℄ (1986). In the simplest ase of a one-dimensional di�usionsuh an equation is given by

(RLDα
0+,tu)(x, t) = λ2 ∂2u(x, t)

∂x2
(α > 0, λ > 0), (8.32)where (RLDα

0+,tu)(x, t) is the partial Riemann �Liouville frational derivative (1.20).When α = 1 and α = 2 , (8.32) oinides with the well-known heat (di�usion) andwave equations
∂u(x, t)

∂t
= λ2 ∂2u(x, t)

∂x2
,

∂2u(x, t)

∂t2
= λ2 ∂2u(x, t)

∂x2
(α > 0, λ > 0). (8.33)Mainardi [82�84℄ have studied the equation (8.32) with x ∈ R and t > 0 for

0 < α ≤ 2 under natural initial onditions. In [82℄ he investigated the Cauhy problemfor suh an equation, used the method suggested by Shneider [76℄ and applied theLaplae transform with respet to t and the Fourier transform with respet to x to�nd the expliit solution u(x, t) of this problem in the form
u(x, t) =

∞
∫

−∞

Gα(x − τ, t)f(τ)dτ, (8.34)where a frational analogue of the Green funtion Gα(x, t) is expressed in terms of theintegral of the Mittag � Le�er funtion (2.9) and of a speial funtion of Wright de�nedfor α > −1 and omplex β ∈ C by
φ(α, β; z) =

∞
∑

k=0

1

Γ(αk + β)

zk

k!
. (8.35)In [83, 84℄ Mainardi has used the same approah to �nd the fundamental solutionsof the Cauhy problem and of the so-alled signalling problem for the equation (8.32)with 0 < α ≤ 2 in terms of the Wright funtion (8.35).Goren�o and Mainardi [85℄ onsidered the frational di�usion equation (8.32) with

0 < α ≤ 2 and λ = 1 in the quarter-plane R++ = {(x, t) ∈ R2 : x > 0, t > 0} underertain initial and boundary onditions. They applied the Laplae transform to obtainthe expliit solution of these problems in the form (8.34), where a frational analogyof the Green funtion Gα(x, t) is the inverse Laplae transform with respet to t of
exp

(

−xtα/2
) and −t−α/2 exp

(

−xtα/2
) , respetively.Kohubei [86℄ has onsidered the di�usion equation

(CD
(α)
t u)(x, t) − (∆u)(x, t) = f(x, t), (8.36)
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n and t ∈ [0, T ] , with the Caputo regularized partial derivative of order

0 < α < 1 :
(cD

(α)
t u)(x, t) =

1

Γ(1 − α)





∂

∂τ

t
∫

0

u(x, τ)

(t − τ)α
dτ −

u(x, 0)

tα



 . (8.37)He proved a uniqueness theorem for a bounded solution of equation (8.36) with theinitial ondition
u(x, 0) = u0(x) (x ∈ R

n). (8.38)Kohubei also found the fundamental solution of the Cauhy problem (8.36), (8.38). Thefundamental solution of the Cauhy problem for more general than (8.36) equation, inwhih ∆ is replaed by a uniformly ellipti operator, was onstruted in terms of the
H -funtion (8.20) by Eidelman and Kohubei [87℄.In onlusion we indiate that the method based on the diret and inverse Laplaeand Fourier transforms, being applied with respet to x ∈ R and t > 0 , was appliedby Kilbas, Pierantozzi, Trujillo and Vazquez [88, 89℄ to �nd expliit solutions of theCauhy problem

(CDα
t u)(t, x) = λ(Dβ

xu)(t, x) (8.39)

(t > 0, −∞ < x < ∞; 0 < α ≤ 1, β > 0, λ 6= 0),

lim
x→±∞

u(t, x) = 0, u(0+, x) = g(x) (8.40)with the Caputo partial frational derivative (1.21), and of the Cauhy-type problem
(RLDα

t u)(t, x) = λ(Dβ
xu)(t, x) (8.41)

(t > 0, −∞ < x < ∞; 0 < α ≤ 1, β > 0, λ 6= 0),

lim
x→±∞

u(t, x) = 0, (RLDα−1
t u)(0+, x) = g(x) (8.42)with the Riemann �Liouville partial frational derivative (1.20). The fundamental solu-tions of the above problems were also onstruted in [88℄ and [89℄.9. Problems and new trends of researhIn Setions 2�3 we have presented methods and results to investigation of frationaldi�erential equations based on their redution to Volterra integral equations, in Setions4�5 and 6�8 we have disussed methods and results to investigation of frational integraland di�erential equations based on operational and ompositional methods, and onintegral transforms of Laplae, Fourier and Mellin. Some of these methods similar tothat known in the theory of ordinary di�erential equations. Now we haraterize someproblems in these diretions whih an lead to new possible trends of researh.The main di�ulties in the method of redution of Cauhy-type and Cauhy prob-lems for frational di�erential equations to the orresponding Volterra integral equa-tions onern the proof of the equivalene between solutions of these two onstrutionsin ertain funtion spaes. This problem is losely onneted with mapping propertiesof the operators of frational di�erentiation and integration in the spaes onsidered.Suh properties are well developed for the Riemann �Liouville frational integrals andderivatives (1.6) and (1.7) in the spaes of integrable and ontinuous funtions, and soat present the existene and uniqueness of a solution y(x) in these spaes are proved forthe simplest (model) nonlinear Cauhy-type problem (2.18), (2.19) and (2.23), (2.19)and system of these problems, for nonlinear Cauhy problems (3.4), (3.7) and (3.13),



100 A.A. KILBAS(3.14). It seems that the existene and uniqueness results in these funtion spaes anbe proved for Cauhy-type and Cauhy problems for frational di�erential equations ofanother type.Mapping properties of frational integration and di�erentiation operators in funtionspaes are suitable if we an haraterize their images, and suh a haraterization isgiven by a homeomorphism of the spaes onsidered with respet to frational alulusoperators. Mapping properties of the Riemann �Liouville frational integrals (1.6) arewell developed in H ö lder spaes Hλ([a, b]) and in Lp(a, b) (1 ≤ p < ∞) spaes ona �nite interval [a, b] of the real line R and in the weighted spaes of these funtionswith power weight [3, Setions 3�4℄. Therefore we hope that these results an be appliedto study the existene and uniqueness of the Cauhy-type problems for the equations(2.18), (2.23), (3.4), (3.7), (3.13) and more general frational di�erential equations inH ö lder- and Lp(a, b)-spaes.Mapping properties of the Liouville frational integration operator Iα
0+ , Iα

+ ≡ Iα
−∞+(de�ned by (1.6) with a = 0 and (7.9)) and Iα

− (de�ned by (5.19)), are also knownin weighted spaes of H ö lder and p-summable funtions on a half-axis R+ and on thewhole axis R ; see [3, Setions 5, 9℄. These results an be applied to study Cauhy-type and Cauhy problems to frational di�erential equations with the Liouville andCaputo frational derivatives. Applied problems an lead to studying frational dif-ferential equations with Riemann �Liouville, Liouville, Caputo, Hadamard and otherfrational derivatives in speial funtion spaes. In this ase it is neessary to developmapping properties of frational alulus operators in suh new spaes, whih will leadto new problems in frational alulus.It should be noted that if there is the equivalene of Cauhy-type problems andorresponding Volterra integral equations, the known methods in the theory of Volterraintegral equations an be applied to investigate the initial value probelms in variousfuntion spaes. In partiular, the above arguments an be used to study Cauhy-type and Cauhy problems for linear di�erential equations of frational order. To �ndexpliit solutions of these problems and frational di�erential equations, we an applythe method disussed in Setions 2 and 3.Setion 4 shows that the operational alulus method allows us to solve non-homogeneous linear frational di�erential equations with onstant oe�ients. Buttheir solutions are usually obtained in ertain su�iently ompleted spaes of fun-tions. Thus the problem here is a justi�ation of the solutions obtained in more simplefuntion spaes. Another problem is in studying the properties of speial funtionsgeneralizing the Mittag � Le�er funtion (2.9).An approah presented in Setion 5 and based on ompositions of frational inte-gration and di�erentiation operators with elementary and speial funtions, allows usto solve new lasses of linear frational integral and di�erential equations with nonon-stant oe�ients. The results were obtained on the basis of ompositions of frationalintegration and di�erentiation operators with speial funtions of Mittag � Le�er andBessel types. We hope that it is possible to �nd new omposition formulas betweenfrational alulus operators and various speial funtions whih will lead to expliitsolutions of new lasses of frational integral and di�erential equations.The method based on Laplae, Fourier and Mellin transforms an be used moresuitable to solve linear frational integral and di�erential equations with onstant o-e�ients. In these ases we also have the problem onerning funtion spaes of solu-tions. As we have seen in Setions 6 and 7, formally the one-dimensional Laplae andFourier and Mellin transforms yield the expliit solutions of the non-homogeneous lin-ear frational integral and di�erential equation (6.4)�(6.5), (7.7)�(7.8), (7.18)�(7.19),(7.23)�(7.24) and (7.25)�(7.26), respetively. Sine the Laplae, Fourier and Mellin



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 101transforms (6.1) and (7.3) are de�ned on the half-axis R+ , while the Fourier trans-form (7.1) on the whole real line R , we also need to investigate funtion spaes withrespet to these integral transforms. The same onern solutions of multi-dimensionalintegral and di�erential equations (8.1)�(8.2).Another problem is a representation of the expliit solutions (6.9)�(6.10), (7.12)�(7.13), (7.31)�(7.32) and (8.7)�(8.8) in more simple forms. In some ases these solutionsan be represented via the frational analogies of Green funtions (6.20), (7.15), (7.22),(7.34), (7.35), (7.39), (7.41) and (8.10) as onvolutions of the form (6.21)�(6.22), (7.16)�(7.17), (7.20)�(7.21), (7.36)�(7.37), (7.38), (7.40) and (8.11)�(8.12). The known expliitrepresentations of suh analogies are expressed in terms of the Mittag � Le�er funtion(2.9), its modi�ations and generalizations, and the H -funtion (8.20), and the Wrightfuntion (8.35). We hope that there are other equations whose expliit solutions anbe given via the above funtions, their generalizations and modi�ations. It seems thatin some ases suh frational analogies of Green funtion an be expressed in terms ofspeial funtions of hypergeometri and Bessel type.It should be noted that results presented in Setion 8 and onerning Cauhy prob-lems to some frational partial di�erential equations, were obtained without proof of theequivalene between the initial problems and orresponding multi-dimensional integralequations. This equivalene depend on mapping properties of multi-dimensional fra-tional alulus operators in some spaes of funtions. Therefore the problem to provesuh an equivalene is still open, and it seems that solution of this problem an lead toinvestigation of more general and new problems.The above method of integral transforms to solve in losed form some frational par-tial di�erential equations with onstant oe�ients was suitable beause of the simplestdomains for equations onsidered: half-spae or the whole spae. In more general asesuh an approah is not suitable, and while onsidering frational partial di�erentialequations on a domain in Rn another integral transforms must be used. Probably, theRadon transform or its modi�ations are suitable for suh an investigation.It seems that another integral transforms suh as the Hankel transform, the Meijertransform and other transforms with speial funtion kernels an be also used to dedueexpliit solutions of some lasses of ordinary and partial frational di�erential equations.It was noted in Setion 8 that the simplest partial di�usion equation (8.32) oinideswith lassial heat and wave equations in limit ases α = 1 and α = 2 , respetively.This fat leads us to the hypothesis that partial frational di�erential equations havemore various properties then the usual ones, and that the properties of the latter anbe dedued from the properties of the former. In this onnetion, from our point ofview, it is interesting to onstrut general theory of partial di�erential equations offrational order whih generalize lassial theory of partial di�erential equations ofellipti, hyperboli and paraboli types. It seems that in this way we an obtain newproperties of partial frational di�erential equations whih are impossible in lassialases.The present paper was prepared on the basis of the plenary talk made by the au-thor on the International Conferene �Atual Problems in Mathematis and Mehanis�(Kazan, September 27 � Otober 1) devoted to 200 years of Kazan State University and70 years of Sienti� Researh Institute of Mathematis and Mehanis of Kazan StateUniversity.This investigation was also supported by Belarusian Fundamental Researh Fund(projet F03MS-008).
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