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UDK 514.16NEW TRENDS ON FRACTIONAL INTEGRALAND DIFFERENTIAL EQUATIONSA.A. KilbasAbstra
tOne- and multi-dimensional integral equations and ordinary and partial di�erential equa-tions with fra
tional integrals and derivatives by Riemann�Liouville, Liouville, Caputo,Hadamard and Riesz are 
onsidered. The method based on the redu
tion of the Cau
hy-type and Cau
hy problems for the one-dimensional nonlinear fra
tional di�erential equationsto Volterra integral equations is dis
ussed. A uni�ed approa
h is presented to solve in 
lose formof some 
lasses of one- and multi-dimensional linear integral equations and linear ordinary andpartial di�erential equations of fra
tional order. This approa
h is based on 
ompositional rela-tions, operational 
al
ulus and integral transforms by Lapla
e, Fourier and Mellin. Problemsand new trends of resear
h are dis
ussed.1. Introdu
tionIntegral and di�erential equations of fra
tional order, in whi
h an unknown fun
tionis 
ontained under the operations of integrals and derivatives of fra
tional order, havebeen of great interest re
ently. It 
oursed both by intensive development of the theoryof fra
tional 
al
ulus itself and by the appli
ations of su
h 
onstru
tions in variouss
ien
es. In this 
onne
tion we note the books [1�9℄, the papers [10�12℄ and Pro
eedingsof the �rst Workshop on Fra
tional Di�erentiation and its Appli
ations, July 19�21,Boreaux, Fran
e, Bordeaux Univ., Bordeaux, 2004.In the above monographs and papers one may �nd various appli
ations of fra
tionalintegral and di�erential equations in physi
s, me
hani
s, 
hemistry, engineering andother dis
iplines together with bibliography in these �elds.The fra
tional integral and di�erential equations have the following general forms

F [x, y(x), Iα1y(x), Iα2y(x), . . . , Iαmy(x)] = f(x) (1.1)and
F [x, y(x), Dα1y(x), Dα2y(x), . . . , Dαmy(x)] = f(x). (1.2)Here x is a point in m-dimensional Eu
lidean spa
e Rn (n ∈ N = {1, 2, . . .}) ,

F [x, y, y1, . . . , ym] and f(x) are given fun
tions, and Iαk and Dαk are the opera-tors of fra
tional integration and di�erentiation with real αk > 0 or 
omplex αk ,
Re αk > 0 (k = 1, 2, . . . , m) . The 
orresponding linear equations with given fun
tions
ck(x) (k = 0, 1, . . . , m) and f(x) are represented as

c0(x)y(x) +

m
∑

k=1

ck(x) (Iαky) (x) = f(x), (1.3)

c0(x)y(x) +

m
∑

k=1

ck(x) (Dαky) (x) = f(x). (1.4)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 73The fra
tional integration and di�erentiation operators in (1.1)�(1.4) 
an have di�er-ent forms. A survey of methods and results on fra
tional integral equations was given inthe books by Goren�o, Vessela [2℄ and Samko, Kilbas, Mari
hev [4℄, while on fra
tionaldi�erential equations in two survey papers by the author and Trujillo [13, 14℄.Among these equations the one-dimensional linear fra
tional integral and di�erentialequations (1.3), (1.4) and the �model� nonlinear linear di�erential equation of the form
Dαy(x) = f [x, y(x)] (1.5)with real α > 0 or 
omplex α (Re α) > 0 , 
ontaining the Riemann �Liouville fra
tionalintegrals and derivatives Iαy = Iα
a+y and Dαy = Dα

a+y , a ∈ R , were studied more.For 
omplex α ∈ C, Re α > 0 , su
h fra
tional integrals and derivatives of order α arede�ned by
(Iα

a+y)(x) =
1

Γ(α)

x
∫

a

y(t)dt

(x − t)1−α
(x > a; α ∈ C, Re α) > 0, (1.6)and

(Dα
a+y)(x) =

(

d

dx

)n

(In−α
a+ y)(x) (x > a; n = [Re α] + 1), (1.7)respe
tively, Γ(α) being the Euler Gamma-fun
tion. It should be noted that the Rie-mann �Liouville approa
h (1.6) to the de�nition of fra
tional integration is a general-ization of the integration x

∫

a+

applied n times:
x
∫

a

dt

t
∫

a

dt1 . . .

tn−2
∫

a

y(tn−1)dtn−1 =
1

(n − 1)!

x
∫

a

(x − t)n−1y(t)dt; (1.8)if we use the formula (n − 1)! = Γ(n) and repla
ed n ∈ N by α ∈ C (Re α > 0) , then(1.8) yields (1.6). The fra
tional di�erentiation operator Dα
a+ is inverse to the fra
tionalintegration one from the left:

(Dα
a+Iα

a+y)(x) = y(x) (α ∈ C, Reα > 0) (1.9)for suitable fun
tion y(x) . In parti
ular if 0 < Re α < 1 ,
(Dα

a+y)(x) =
d

dx

1

Γ(1 − α)

x
∫

a

y(t)dt

(x − t)α
, (1.10)and if α = n ∈ N , then (Dn

a+y)(x) ≡ (Dny)(x) (D = d/dx) is the usual derivative oforder n .Integral equations (1.3) with Riemann �Liouville fra
tional integrals (1.6) are theVolterra integral equations with power singularities, generalizing the 
lassi
al Abel equa-tion, and therefore these equations are 
alled Abel �Volterra integral equations. As inthe theory of ordinary di�erential equations, the methods to the investigation of di�eren-tial equations of fra
tional order (1.4) and (1.5), with the Riemann �Liouville fra
tionalderivative (1.7), are mainly based on the redu
tion of these equations to Volterra integralequations of the se
ond kind. This approa
h was used by many authors to investigatethe uniqueness and the existen
e of the solution of the Cau
hy-type problem for thenonlinear equation (1.5) on a �nite interval of the real line and to obtain the expli
it



74 A.A. KILBASsolution of su
h a problem for the linear equation (1.4). A survey of results in this �eldwas presented in the above paper by Kilbas and Trujillo [13, Se
tions 4 and 5℄.Here we dis
uss some results in this 
onne
tion and show that su
h a method 
an bealso applied to investigate the Cau
hy-type and Cau
hy problems to the one-dimensionalequations (1.5) and (1.4) with the so-
alled Hadamard and Caputo fra
tional derivatives
Dαy = HDα

a+y and Dαy = CDα
a+y of order α ∈ C , Reα > 0 . The Hadamardfra
tional derivative (HDα

a+y)(x) is de�ned by
(HDα

a+y)(x) = δn
(

J n−α
a+ y

)

(x) (x > a; n = [Re α] + 1), (1.11)where δ = xD , D = d/dx , is the so-
alled δ -derivative, and (J α
a+y)(x) is the Hadamardfra
tional integral of order α :

(J α
a+y)(x) =

1

Γ(α)

x
∫

0

(

log
x

t

)α−1 y(t)dt

t
(x > a; α ∈ C, Re α > 0). (1.12)Su
h an integral is a generalization of the integration x

∫

a+

1

x
applied n times:

x
∫

a

dt

t

t
∫

a

dt1
t1

. . .

tn−2
∫

a

y(tn−1)
dtn−1

tn−1
=

1

(n − 1)!

x
∫

a

(

log
x

t

)n−1 y(t)dt

t
; (1.13)
ompare with (1.8). When α = n ∈ N , then (HDn

a+y)(x) ≡ (δny)(x) is δ derivative oforder n .The Caputo derivative (CDα
a+y)(x) is de�ned via the Riemann �Liouville derivative(1.7) by

(CDα
a+y)(x) =

(

Dα
a+

[

y(t) −
n−1
∑

k=0

y(k)(a)

k!
(t − a)k

])

(x) (n = [Re α] + 1), (1.14)where n = [Reα] + 1 for α 6∈ N while n = α for α ∈ N . When α 6∈ N , there holds therelation
(CDα

a+y)(x) =
1

Γ(α)

x
∫

a

y(n)(t)dt

(x − t)1−α
n = [Re(α)] + 1, (1.15)for suitable fun
tions y . For n−1 < α < n the derivative CDα

a+y in the form (1.15) wasde�ned by Caputo in [15℄ and presented in his book [16℄. Therefore the 
onstru
tions(1.14) and (1.15) are 
alled Caputo derivatives.For one-dimensional linear di�erential equations of fra
tional order, as in the 
ase oflinear ordinary di�erential equations, the same methods 
an be applied to study di�erentaspe
ts of these equations. In parti
ular, methods based on operational 
al
ulus, 
om-positional relations and Lapla
e transform 
an be used to �nd their expli
it solutions.Here we dis
uss some results in this 
onne
tion and show that the Fourier and Mellintransforms 
an be also used to dedu
e expli
it solutions of linear fra
tional integraland di�erential equations of the form (1.3) and (1.4) with 
onstant 
oe�
ients ck ∈ Rand with the Liouville and Hadamard fra
tional integrals Iαy = Iα
−∞,+y ≡ Iα

+y and
Iαy = J α

0+y , and fra
tional derivatives Dαy = Dα
−∞,+y ≡ Dα

+y and Dαy = HDα
0+y ,de�ned on the real line R and on the half axis R+ = (0,∞) , respe
tively.The multi-dimensional Fourier transform 
an be also applied to solve in 
losed formof the linear integral and di�erential equations (1.3) and (1.4) with 
onstant 
oe�
ients
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ck ∈ R with the Riesz fra
tional integral Iαy = I

αy and derivative Dαy = D
αy of
omplex order α ∈ C (Re α > 0) . Su
h integrals and derivatives are de�ned as negativeand positive powers (−∆)−α/2 and (−∆)α/2 of the Lapla
e operator

∆ =
∂2

∂x2
1

+ . . . +
∂2

∂x2
n

, (1.16)and it 
an be represented in terms of the dire
t F and the inverse F−1 Fourier trans-forms by
(Iαy)(x) ≡ (−∆)−α/2y)(x) =

(

F−1|x|−α(Fy
)

x), (1.17)

(Dαy)(x) ≡ (−∆)α/2y)(x) =
(

F−1|x|α(Fy
)

x), x = (x1, . . . , xn) ∈ R
n. (1.18)It should be noted that for 0 < α < n , the Riesz fra
tional integration Iα 
an berealized for suitable fun
tions f as the Riesz potential, given (for x ∈ Rn ) by

(Iαf)(x) = γ(n, α)

∫

Rn

f(y)

|x − y|n−α
dy,

(

γ(n, α) =
Γ[(n − α)/2]

2απn/2Γ(α/2]

)

. (1.19)The method based on the Lapla
e and Fourier transforms, 
an be also applied todedu
e expli
it solutions of partial di�erential equations of fra
tional order. Here wedis
uss some results in this 
onne
tion and show that su
h methods 
an be also appliedto investigate the Cau
hy-type and Cau
hy problems for partial fra
tional di�erentialequations with the Riemann �Liouville partial fra
tional derivative with respe
t to t oforder α > 0 de�ned by [3, Se
tion 24.2℄
(

RLDα
0+,tu

)

(x, t) =

(

∂

∂t

)[α]+1
1

Γ(1 − {α})

t
∫

0

u(x, y)dt

(y − t){α}
(x > 0, t > 0; α > 0), (1.20)

[α] and {α} being the integral and fra
tional parts of α , and with the Caputo partialfra
tional derivative with respe
t to t of order 0 < α < 1 :
(cDα

t u)(t, x) =
1

Γ(1 − α)

t
∫

0

∂u(τ, x)

∂τ

∂τ

(t − τ)α
(x ∈ R, t > 0; 0 < α < 1). (1.21)Se
tion 2 deals with the Cau
hy-type problem for nonlinear fra
tional di�erentialequations with the Riemann �Liouville and Hadamard fra
tional derivatives (1.7) and(1.11). Se
tion 3 is devoted to the Cau
hy problem for the nonlinear equations with theso-
alled sequential fra
tional derivatives and with the Caputo derivative (1.14). Op-erational and 
ompositional methods to solution of one-dimensional fra
tional integraland di�erential equations are dis
ussed in Se
tions 4 and 5, respe
tively. The method tosolve su
h equations based on the Lapla
e transform is dis
ussed in Se
tion 6, while onthe Fourier and Mellin transforms in Se
tion 7. Su
h an integral transforms approa
h tosolution of partial di�erential equations is presented in Se
tion 8. Some problems andnew trends of resear
h are dis
ussed in Se
tion 9.We also mention that many authors have applied methods of fra
tional integro-di�erentiation to 
onstru
ting solutions of ordinary and partial di�erential equations,to investigating integro-di�erential equations and to obtaining a uni�ed theory of spe
ialfun
tions. We do not dis
uss su
h problems here. Anyone may be
ome a
quainted withmethods and results in these �elds in the books [3, Chapter 8℄ and [17℄.



76 A.A. KILBAS2. Cau
hy-type problems for ordinary di�erential equations of fra
tionalorder: method of redu
tion to Volterra integral equationsIn the beginning we indi
ate three �rst papers devoted to redu
tion of fra
tionaldi�erential equations with the Riemann �Liouville fra
tional derivative Dα
a+y , givenby (1.7), to the Voltera integral equations. Pit
her and Sewell [18℄ �rst 
onsidered thenonlinear fra
tional di�erential equation

(Dα
a+y)(x) = f [x, y(x)] (0 < α < 1, a ∈ R), (2.1)provided that f(x, y) is bounded and Lips
hitzian with respe
t to y in a spe
ial region

G ⊂ R × R . They tried to prove the uniqueness of a 
ontinuous solution y(x) of su
han equation on the basis of the 
orresponding result for the nonlinear integral equation
y(x) −

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
= 0 (x > a; 0 < α < 1). (2.2)But the result of Pit
her and Sewell given in [18, Theorem 4.2℄ is not 
orre
t be
ausethey have used the relation Iα

a+Dα
a+y = y instead of the 
orre
t one:

(Iα
a+Dα

a+y)(x) = y(x) −
B

Γ(α)
(x − a)α−1, B = (I1−α

a+ y)(a+). (2.3)However, the paper of Pit
her and Sewell 
ontained the idea of the redu
tion of thefra
tional di�erential equation (2.1) to the Volterra integral equation (2.2).Barrett [19℄ �rst 
onsidered the Cau
hy-type problem for the linear di�erential equa-tion
(Dα

a+y)(x) − λy(x) = f(x) (n − 1 ≤ Re α < n; λ ∈ C), (2.4)with the initial 
onditions
(Dα−k

a+ y)(a+) = bk ∈ C (k = 1, 2, . . . , n) (2.5)on a �nite interval (a, b) of the real axis R . Here (Dα−k
a+ y)(a+) means the limit in theright neighborhood (a, a + ǫ) (ǫ > 0) of the point a :

(Dα−k
a+ y)(a+) = lim

x→a+
(Dα−k

a+ y)(x) (1 ≤ k ≤ n − 1), (2.6)

(Dα−n
a+ y)(a+) = lim

x→a+
(In−α

a+ y)(x) (α 6= n), (Dα−n
a+ y)(a+) = y(a) (α = n). (2.7)Barrett proved that if f(x) belongs to L(a, b) or L(a, b)

⋂

C(a, b] , then the problem(2.4)�(2.5) has a unique solution y(x) in a subspa
e of L(a, b) and this solution isgiven by
y(x) =

n
∑

j=1

bj(x − a)α−jEα,α−j+1 (λ(x − a)α)+

+

x
∫

a

(x − t)α−1Eα,α (λ(x − t)α) f(t)dt. (2.8)Here Eα,β(z) is an entire fun
tion, 
alled the Mittag � Le�er fun
tion, de�ned by
Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
(α > 0, β > 0); (2.9)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 77see [20, Se
tion 18.1℄. Arguments of Barrett were based on the formula for the produ
t
Iα
a+Dα

a+f generalizing (2.3):
(Iα

a+Dα
a+y)(x) = y(x) −

n
∑

k=1

Bk
(x − a)α−k

Γ(α − k + 1)
, (2.10)

Bk = y
(n−k)
n−α (a), yn−α(x) = (In−α

a+ y)(x) (α ∈ C, n = [Re α] + 1). (2.11)Barrett [19℄ has used impli
itly the method of redu
tion of the Cau
hy-type problem(2.4)�(2.5) to the Volterra integral equation of the se
ond kind
y(x) =

n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j +

λ

Γ(α)

x
∫

a

y(t)dt

(x − t)1−α
+

1

Γ(α)

x
∫

a

f(t)dt

(x − t)1−α
(2.12)and the method of su

essive approximations. A

ording to this method, we set

y0(x) =
n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j ,

ym(x) = y0(x) +
λ

Γ(α)

x
∫

a

ym−1(t)dt

(x − t)1−α
+

1

Γ(α)

x
∫

a

f(t)dt

(x − t)1−α
(m = 1, 2, . . .), (2.13)and have

ym(x) =

n
∑

j=1

bj

m+1
∑

i=1

λi−1(x − a)αi−j

Γ(αi − j + 1)
+

m
∑

i=1

λi−1

Γ(αi)

x
∫

a

(x − t)αi−1f(t)dt (2.14)for m = 1, 2, . . .. Passing to a limit, as m → ∞ , and taking into a

ount (2.9) we obtainthe solution (2.8) of the Cau
hy-type problem (2.4)-(2.5).Al-Bassam [21℄ �rst 
onsidered the Cau
hy-type problem
(Dα

a+y)(x) = f [x, y(x)] (0 < α ≤ 1), (2.15)

(Dα−1
a+ y)(a+) ≡ (I1−α

a+ y)(a+) = b1, b1 ∈ R, (2.16)in the spa
e of 
ontinuous fun
tions C[a, b] provided that f(x, y) is a real-valued, 
ontin-uous and Lips
hitzian fun
tion in a domain G ⊂ R×R su
h that sup(x,y)∈G |f(x, y)| =
b0 < ∞. Applying the operator Iα

a+ to both sides of (2.15), using the relation (2.3) andthe initial 
onditions (2.16), he redu
ed the above problem to the Volterra nonlinearintegral equation
y(x) =

b1

Γ(α)
(x − a)α−1 +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(x > a; 0 < α ≤ 1). (2.17)Using the method of su

essive approximations, Al-Bassam established the existen
eof the 
ontinuous solution y(x) of the equation (2.17). Besides, he probably �rst indi-
ated that the method of 
ontra
ting mapping 
an be applied to prove the uniquenessof this solution y(x) of (2.17), and gave su
h a formal proof. Al-Bassam also indi
ated� but did not prove � the equivalen
e of the Cau
hy-type problem (2.15)�(2.16) andthe integral equation (2.17), and therefore his results on the existen
e and uniquenessof the 
ontinuous solution y(x) 
ould be true only for the integral equation (2.17).



78 A.A. KILBASWe also note that the 
onditions suggested by Al-Bassam are not suitable to solve theCau
hy-type problem (2.15)�(2.16) in the simplest linear 
ase when f [x, y(x)] = y(x) .The same remarks apply to his existen
e and uniqueness results formulated withoutproof to more general than (2.15)�(2.16) Cau
hy-type problem with real α > 0 :
(Dα

a+y)(x) = f [x, y(x)] (n − 1 < α ≤ n, n = −[−α]), (2.18)

(Dα−k
a+ y)(a+) = bk, bk ∈ R (k = 1, 2, . . . , n), (2.19)where the 
orresponding Volterra equation has the form (2.17):

y(x) =

n
∑

j=1

bj

Γ(α − j + 1)
(x − a)α−j +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(2.20)

(x > a; n − 1 < α ≤ n),to the system of problems (2.18)�(2.19) and to more general than (2.18) di�erentialequations.The approa
h suggested by Al-Bassam was used by many authors. However, theyhave not 
ompleted their investigations. Most of the resear
hers obtained some resultsnot for the initial value problems, but for the 
orresponding Volterra integral equa-tions. Some authors 
onsidered only parti
ular 
ases. Moreover, some of the resultsobtained 
ontained mistakes in the proof of the equivalen
e of initial value problemsand the Volterra integral equations and in the proof of the uniqueness theorem. In this
onne
tion see Kilbas and Trujilo [13, Se
tions 4 and 5℄.Kilbas, Bonilla and Trujillo [22, 23℄ have studied the Cau
hy-type problem (2.18)�(2.19) with 
omplex α ∈ C (Re(α) > 0) on a �nite interval [a, b] of the real axis Rin the spa
e of absolutely integrable fun
tions L(a, b) . The equivalen
e of this problemand the nonlinear Volterra integral equation (2.20) was established. The existen
e anduniqueness of the solution y(x) of su
h a problem was proved by using the method ofsu

essive expansions. The results obtained were extended to the system of problems(2.18)�(2.19) in [24℄.Similar results to the Cau
hy-type problem (2.18)�(2.19) in the weighted spa
e of
ontinuous fun
tions Cn−α[a, b] :
Cn−α[a, b](x) =

{

y(x) : (x − a)n−αy(x) ∈ C[a, b]; α ∈ C, Re α > 0
}

, (2.21)with n = [Re(α)]+1 for α 6∈ N and n = α for α ∈ N , were established in Kilbas, Bonillaand Trujillo [25℄ and Kilbas, Rivero and Trujillo [26℄. In parti
ular, the 
orrespondingresults were dedu
ed to the Cau
hy-type problem (2.15)�(2.16), with real 0 < α ≤ 1being repla
ed by 
omplex α , 0 < Re(α) ≤ 1 , and similar assertions were establishedto the weighted Cau
hy problem
(Dα

a+y)(x) = f [x, y(x)], lim
x→a+

[(x − a)n−αy(x)] = b1, b1 ∈ R, (2.22)equivalent to the problem (2.15)�(2.16), in the spa
e C1−α[a, b] .Kilbas and Marzan [27℄ extended the above results to the Cau
hy-type problemfor more general than (2.18) nonlinear di�erential equation of 
omplex order α ∈ C

(0 < Re α1 < . . . < Re αn−1 < Re α) :
(Dα

a+y)(x) = f
[

x, y(x), (Dα1

a+y)(x), . . . , (D
αn−1

a+ y)(x)
]

(2.23)with the initial 
onditions (2.19).
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hy problems for ordinary di�erential equations of fra
tional order:method of redu
tion to Volterra integral equations. ContinuationDzhrbashyan and Nersesyan [28℄ �rst studied the linear di�erential equation of theform
(Dσy)(x) ≡ (Dσny)(x) +

n−1
∑

k=0

ak(x)(Dσn−k−1y)(x) + an(x)y(x) = f(x), (3.1)with the modi�ed fra
tional derivatives (Dσny)(x) and (Dσn−k−1y)(x) (k = 0, 1,
. . . , n − 1) de�ned in terms of the Riemann �Liouville fra
tional derivatives (1.7) by

Dσk = Dαk−1
0+ D

αk−1

0+ . . . Dα0

0+ (k = 1, 2, . . . n), Dσ0 = Dα0−1
0+ , (3.2)

σk =
k
∑

j=0

αj − 1 (k = 0, 1, . . . , n); 0 < αj ≤ 1 (j = 0, 1, . . . , n) (3.3)

(αk = σk − σk−1 (k = 1, 2, . . . , n), α0 = σ0 + 1) .Constru
tions of the form (3.2) are known as sequential fra
tional derivatives. Spe
ial
ases of su
h modi�ed fra
tional derivatives in the form (

Dα
0+

)k
(k ∈ N) together withthe 
orresponding linear fra
tional di�erential equations were investigated by Miller andRoss [4℄.Dzhrbashyan and Nersesyan [28℄ proved that for α0 > 1 − αn the Cau
hy problem

(Dσny)(x) = f(x), (Dσky)(0+) = bk ∈ C (k = 0, 1, . . . , n − 1) (3.4)has a unique 
ontinuous solution y(x) ∈ C[0, d] on an interval [0, d] provided thatthe fun
tions ak(x) (0 ≤ k ≤ n − 1) and f(x) satisfy some additional 
onditions. Inparti
ular, when ak(x) = 0 (k = 0, 1, . . . , n) , they obtained the expli
it solution
y(x) =

n−1
∑

k=0

bkxσk

Γ(1 + σk)
+

1

Γ(σn)

x
∫

a

(x − t)σn−1f(t)dt (3.5)of the Cau
hy problem
(Dσny)(x) = f(x), (Dσk y)(0+) = bk (k = 0, 1, . . . , n − 1). (3.6)Bonilla, Kilbas and Trujillo [29℄ 
onstru
ted the theory of spe
ial 
lasses of linearfra
tional di�erential equations with sequential fra
tional derivatives and with 
onstant
oe�
ients.Delbos
o and Rodino [30℄ 
onsidered the Cau
hy problem for the nonlinear di�er-ential equation

(Dα
0+y)(x) = f [x, y(x)] (0 ≤ x ≤ T ), y(k)(0) = yk(0) (k = 0, 1, 2, . . . , [α]), (3.7)with 
ontinuous fun
tion f(x, y) on [0, 1] × R . Using S
hauder's �xed point theorem,they gave 
onditions for the existen
e of at least one and of a one 
ontinuous solution

y(x) on [0, δ] for the 
orresponding Volterra integral equation. Delbos
o and Rodinoshowed that if additionally f [x, y(x)] is weighted Lips
hitzian:
|f [x, y(x)] − f [x, Y (x)]| ≤

M

xσ
|y(x) − Y (x)|, (3.8)



80 A.A. KILBASand f [x, y(x)] = f [y(x)] and f(0) = 0 , then the Cau
hy problem
(Dα

0+y)(x) = f [y(x)], y(a) = b ∈ R (0 < α < 1, a > 0) (3.9)and the weighted Cau
hy problem
(Dα

0+y)(x) = f [y(x)], lim
x→0

x1−αy(x) = c ∈ R (0 < α < 1) (3.10)have a unique solution y(x) su
h that x1−αy(x) ∈ C[0, h] for any h > 0 .Hayek, Trujillo, Rivero, Bonilla and Moreno [31℄ investigated the Cau
hy problemfor a system of linear di�erential equations
(Dα

0+y)(x) = f [x, y(x)], y(a) = b (0 < α ≤ 1, a > 0, b ∈ R
n) (3.11)with a real valued ve
tor fun
tion y(x) provided that f(x, y) is 
ontinuous and Lips-
hitzian with respe
t to y . Applying the method of 
ontra
tive mapping de�ned on a
omplete metri
 spa
e, they proved the existen
e and uniqueness of a 
ontinuous solu-tion y(x) of this problem. In parti
ular, they obtained su
h a result to the system oflinear di�erential equations

(Dα
0+y)(x) = A(x)y(x) + B(x), y(a) = b (0 < α ≤ 1, a > 0, b ∈ R

n) (3.12)with 
ontinuous matri
es A(x) and B(x) .Kilbas, Marzan and Titioura [32℄ 
onsidered the Cau
hy-type problem for the non-linear di�erential equation of the form (1.5) with the Hadamard fra
tional derivative(1.11) on a �nite interval (a, b) (0 < a < b < ∞) :
(HDα

a+y)(x) = f [x, y(x)] (α ∈ C, Re α > 0); a > 0), (3.13)where n = [Re α + 1] for α 6∈ N and n = α for α ∈ N , with the initial 
onditions
(HDα−k

a+ y)(a+) = bk, bk ∈ C (k = 1, 2, . . . , n). (3.14)It was proved the equivalen
e of this problem and the Volterra integral equation
y(x) =

n
∑

j=1

bj

Γ(α − j + 1)

(

log
x

a

)α−1

+
1

Γ(α)

x
∫

a

(

log
x

t

)α−1

f [t, y(t)]
dt

t
(x > a) (3.15)in the spa
e X1

0 (a, b) of Lebesgue measurable fun
tions y(x) on [a, b] su
h that
[y(x)/x] ∈ L(a, b) . Using this fa
t the 
onditions were given for a unique solutionof the problem (3.13)�(3.14) in X1

0 (a, b) . The method of su

essive approximation 
anbe also applied to establish a unique solution of the 
orresponding Cau
hy-type problemto the linear fra
tional di�erential equation
(HDα

a+y)(x) = λy(x) + h(x) (λ ∈ C, Re α > 0)), (3.16)with the initial 
onditions (3.14) in the form
y(x) =

n
∑

j=1

bj

(

log
x

a

)α−j

Eα,α−j+1

(

λ
(

log
x

t

)α)

+

+

x
∫

a

(

log
x

t

)α−1

Eα,α

(

λ
(

log
x

t

)α)

f(t)
dt

t
. (3.17)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 81Kilbas and Marzan [33, 34℄ investigated the di�erential equation of the form (1.5)
(CDα

a+y)(x) = f [x, y(x)] (a ≤ x ≤ b; α ∈ C, Re α > 0) (3.18)with the Caputo fra
tional derivative (1.14) and with the initial 
onditions
y(k)(a+) = bk, bk ∈ C (k = 0, 1, 2, . . . , n − 1), (3.19)where n = [Re α]+ 1 for α 6∈ N while n = α for α ∈ N . The equivalen
e of the Cau
hyproblem (3.18)�(3.19) and the 
orresponding Volterra equation

y(x) =

n−1
∑

j=1

bj

j!
(x − a)α−j +

1

Γ(α)

x
∫

a

f [t, y(t)]dt

(x − t)1−α
(x > a; n − 1 < α ≤ n) (3.20)in the spa
e Cn−1[a, b] of fun
tions y(x) 
ontinuously di�erentiable up to n − 1 wasproved. On the basis of this fa
t and S
hauder's �xed point theorem, the 
onditions forthe existen
e of a unique solution y(x) ∈ Cn−1[a, b] of the problem (3.18)�(3.19) and
onditions, when this problem has at least one su
h a solution, were given. Using themethod of su

essive expansions, the unique solution of the Cau
hy problem for the
orresponding to (3.18) linear equation

(CDα
a+y)(x) − λy(x) = f(x), y(k)(a+) = bk ∈ C (k = 0, 1, 2, . . . , n − 1), (3.21)was dedu
ed in the form

y(x) =

n−1
∑

j=1

bj(x − a)jEα,j+1 (λ(x − a)α) +

x
∫

a

(x − t)α−1Eα,α (λ(x − t)α) f(t)dt. (3.22)4. Ordinary di�erential equations of fra
tional order:operational 
al
ulus methodThe usefulness of operational 
al
ulus to solve ordinary di�erential equations is wellknown [35℄. The basis of su
h an operational 
al
ulus for the operators of di�erentiationwas developed by Mikusinski [36℄. It is based on the interpretation of the Lapla
e
onvolution
(f ∗ g)(x) =

x
∫

0

f(x − t)g(t)dt (4.1)as a multipli
ation of elements f and g in the ring of fun
tions 
ontinuous on thehalf-axis R+ . Mikusinski applied his operational 
al
ulus to solve ordinary di�erentialequations with 
onstant 
oe�
ients.Mikusinski's s
heme was developed by Ditkin [37℄, Ditkin and Prudnikov [38℄, Meller[39℄ and Rodriguez [40℄ to 
onstru
t the operational 
al
ulus for a Bessel-type di�er-ential operators with non
onstant 
oe�
ients. Dimovski [41℄ 
onsidered the transformapproa
h to the development of operational 
al
ulus. Rodriguez, Trujillo and Rivero[42℄ were probably the �rst who applied operational 
al
ulus for a Kratzel transform tosolve a Bessel-type di�erential equation of fra
tional order.A series of papers were devoted to develop the operational 
al
ulus to fra
tional
al
ulus operators with appli
ations to solution of di�erential equations of fra
tionalorder. Lu
hko and Srivastava [43℄ have 
onstru
ted the operational 
al
ulus to theRiemann �Liouville fra
tional derivative Dα
0+y given in (1.7), in a spe
ial spa
e C−1 of
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tions y(x) su
h as x−p(Dα
0+)ky(x) ∈ C[0,∞) (k = 1, 2, . . . , m) for some p > −1 .They proved that the operation ∗λ de�ned for λ ≥ 1 by

(f ∗λ g)(x) = (Iλ−1
0+ f ∗ g)(x) =

x
∫

0

(Iλ−1
0+ f)(x − t)g(t)dt (λ ≥ 1), (4.2)

Iλ−1
0+ being the operation of Riemann �Liouville fra
tional integration (1.6), is the 
on-volution (without divisors) of the linear operator Iα

0+ for α > 0 in the spa
e C−1 , andthat the Riemann �Liouville operator Iα
0+ has the 
onvolution representation

(Iα
0+f)(x) = (h ∗λ f)(x)

(

1 ≤ λ < α + 1, h(x) :=
xα−λ

Γ(α − λ − 1)

)

. (4.3)They showed that the spa
e C−1 with the operations ∗λ and + , having the propertyof distributivity
(f ∗λ (g + h)) (x) = (f ∗λ g)(x) + (f ∗λ h)(x) (f, g, h ∈ C−1), (4.4)be
omes a 
ommutative ring without divisors of zero, and therefore, following Mikusin-ski [36℄, C−1 
an be extended to the quotient �eld M . Lu
hko and Srivastava indi
atedthat the elements of the �eld M 
an be 
onsidered as 
onvolution quotients f/g withthe operations

f

g
+

f1

g1
=

(f ∗λ g1) + (g ∗λ f1)

(g ∗λ g1)
,

(

f

g

)(

f1

g1

)

=
(f ∗λ f1)

(g ∗λ g1)
, (4.5)whi
h means that the ring C1 
an be embedded in the �eld M by the map

f(x) →
(h ∗λ f)(x)

h(x)
, (4.6)with h(x) in (4.3). On the basis of these fa
ts they de�ned the algebrai
 inverse of theoperator Iα

0+ as an element S of the �eld M whi
h is re
ipro
al to the element h(x)in the �eld M :
S =

I

h
≡

h

(h ∗λ h)
≡

h

h2
, (4.7)where I = h/h denotes the identity element of the �eld M with respe
t to the operationof multipli
ation.Introdu
ing the spa
e

Ωm
α (C−1) =

{

f(x) ∈ C−1 : (Dmα
0+ )kf)(x) ∈ C−1 (k = 1, 2, . . . , m)

}

(4.8)with m ∈ N and α > 0 , Lu
hko and Srivastava proved the relation for f(x) ∈ Ωm
α (C−1)in the �eld M

(

(Dα
0+)mf

)

(x) = Smf −

m−1
∑

k=0

Sm−kF (Dα
0+)kf, (4.9)where the operator F = E − Iα

0+Dα
0+ is given by

(Ff)(x) :=
(

(E − Imα
0+ Dα

0+)f
)

(x) =

−[−α]
∑

k=0

xα−k

Γ(α − k + 1)
lim
x→0

(Dα−k
0+ f)(x) (4.10)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 83and E is the identity operator. This result means that the Riemann �Liouville fra
tionaldi�erentiation operator Dα
0+ is redu
ed to the operator of multipli
ation in the �eld

M .Su
h an operational 
al
ulus was applied by Lu
hko and Srivastava [43℄ to solve thefollowing Cau
hy-type problem:
(

Pm(Dα
0+)y

)

(x) = f(x), Pm(z) =

m
∑

k=1

ckzk, (4.11)with any α > 0 and f(x) ∈ C−1 in the spa
e Ωm
α (C−1) with the initial 
onditions

lim
x→0

(

Dα−k
0+ (Dα

0+)iy
)

(x) = bik (i = 0, 1, . . .m − 1; k = 1, . . . , η). (4.12)They redu
ed this problem to the algebrai
 equation in the �eld M

Pm(S) = f +

m−1
∑

i=0

Pi(S)γi, Pi(S) =

m−i
∑

j=1

ci+jS
j (i = 0, 1, . . . , m − 1), (4.13)found its unique solution

y =
I

Pm(S)
+

m−1
∑

i=0

Pi(S)

Pm(S)
γi (4.14)and gave the expli
it solution of the Cau
hy-type problem (4.11)�(4.12) in terms of thespe
ial fun
tion

E̺
α,β(z) =

∞
∑

k=0

(̺)kzk

k!Γ(αk + β)
, (4.15)where (̺)k is the Po
hhammer symbol de�ned by

(̺)k = 1, (̺)k = ̺(̺ + 1) . . . (̺ + k − 1) (k = 1, 2, . . .). (4.16)(4.15) is a generalization of the Mittag � Le�er fun
tion (2.9), dedu
ing from (4.15) for
̺ = 1 .Lu
hko and Yakubovi
h [44℄, Al-Bassam and Lu
hko ℄45℄ and Hadid and Lu
hko[46℄ have used su
h a method to solve the Cau
hy-type problems for fra
tional di�er-ential equations with 
onstant 
oe�
ients involving the so-
alled Erdelyi �Kober-typefra
tional derivatives � see [3, Se
tion 18.1℄. The expli
it solutions in these 
ases areexpressed via the fun
tion of Mittag � Le�er type

E̺ ((α, β)n; z) =

∞
∑

k=0

(̺)kzk

k!
∏n

i=1 Γ(αik + βi)
, (4.17)more general then (4.15).Lu
hko and Goren�o [47℄ have used the operational method to prove that the Cau
hyproblem for the fra
tional di�erential equations with the Caputo fra
tional derivative(1.15)

(CDαy)(x) − λy(x) = f(x), (4.18)

y(k)(0) = bk (k = 0, 1, . . . n − 1; n − 1 < α ≤ n) (4.19)has the unique solution
y(x) =

n−1
∑

k=0

bkxkEα,k+1 (λxα) +

x
∫

0

tα−1Eα,α (λtα) f(x − t)dt (4.20)
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ial spa
e of fun
tions. They also investigated the Cau
hy problem for moregeneral fra
tional di�erential equation
(Dα

∗ y)(x) −

m
∑

k=1

ck(Dαk

∗ y)(x) = f(x) (α > α1 > . . . > αm ≥ 0) (4.21)with the initial 
onditions (4.19) and 
onstru
ted its expli
it solution via multivariateMittag-Le�er fun
tion.The above and other results were dis
ussed in a survey paper by Lu
hko [48℄. Wealso note that Elizarraraz and Verde-Star [49℄ obtained the expli
it general solution ofthe equation (4.11) and the expli
it solution of the Cau
hy-type problem (4.11)�(4.12)by using linear algebra 
onstru
tion and 
lassi
al methods of operational 
al
ulus. Theirapproa
h was based on introdu
ing divided di�eren
es of fra
tional order, 
oin
idingwith the Riemann �Liouville fra
tional di�erential operators in a 
ertain spa
e of fun
-tions, and generalized exponential polynomials, whi
h are 
onne
ted with fun
tions ofMittag � Le�er type.5. Integral and di�erential equations of fra
tional order:
ompositional methodThe idea of the 
ompositional method is based on the known formula for the Rie-mann �Liouville fra
tional integral (1.6) and derivative (1.7):
(Iα

a+(t − a)β−1)(x) =
Γ(β)

Γ(β + α)
(x − a)β+α−1 (Re β > Reα) > 0, (5.1)

(Dα
a+(t − a)β−1)(x) =

Γ(β)

Γ(β − α)
(x − a)β−α−1 (Re β > Re α > 0). (5.2)A

ording to (1.6) and (1.7), (5.1) and (5.2) mean that the 
omposition of the Riemann �Liouville fra
tional integral Iα

a+ derivative Dα
a+ with the power fun
tion (x − a)β−1leads to the same fun
tion apart to a 
ertain fun
tion fa
tor. It means that

y(x) = (x − a)β−1 (5.3)is a solution of the homogeneous integral equation
y(x) =

Γ(α + β)(x − a)α

Γ(α)Γ(β)

x
∫

a

y(t)dt

(x − t)1−α
(5.4)and of the fra
tional di�erential equation

(Dα
a+y)(x) =

Γ(β)(x − a)−α

Γ(β − α)
y(x) (Re β > Re α > 0). (5.5)These arguments lead us to the 
onje
ture that 
ompositions of fra
tional integralsand derivatives with elementary fun
tions 
an give exa
t solutions of integral and di�er-ential equations of fra
tional order. Moreover, from here we dedu
e another assumptionabout the possibility of su
h results for 
ompositions of fra
tional 
al
ulus operatorswith spe
ial fun
tions. It allows us to �nd the expli
it solutions of new 
lasses of dif-ferential equations of fra
tional order. The 
ompositional method based on relationsbetween the Riemann �Liouville and Liouville fra
tional di�erentiation operators withfun
tions of Mittag � Le�er type was developed by the author together with Saigo, and
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tions of Bessel type � together with Bonilla, Rivero, Rodriguez and Trujillo.Here we 
hara
terize some of the results.Kilbas and Saigo [50�53℄ and Saigo and Kilbas [54, 55℄ have investigated 
ompo-sitions of the Riemann �Liouville fra
tional integral (1.6) and derivative (1.7) with aspe
ial entire fun
tion of the form
Eα,m,l(z) =

∞
∑

k=0

ckzk (5.6)with
c0 = 1, ck =

k−1
∏

i=0

Γ[α(im + l) + 1]

Γ[α(im + l + 1) + 1]
(k = 1, 2, . . .). (5.7)Su
h a fun
tion, de�ned for α > 0 , m > 0 and l ∈ R su
h that α(m + l) 6= −1,−2, . . .

(i + 0, 1, 2, . . .) , was introdu
ed by Kilbas and Saigo in [56℄ while studying asymptoti
properties of solutions of linear integral equations of Abel �Volterra type. When m = 1 ,this fun
tion 
oin
ides with the Mittag � Le�er fun
tion Eα,αl+1(z) in (2.9) apart to the
onstant fa
tor Γ(αl + 1) :
Eα,1,l(z) = Γ(αl + 1)Eα,αl+1(z). (5.8)Kilbas and Saigo proved the relations

(

Iα
0+

[

tαlEα,m,l(atαm)
])

(x) =
1

a
xα(l−m+1) [Eα,m,l(axαm) − 1] , (5.9)provided that α > 0 , m > 0 and l > −1/l , and

(

Dα
0+

[

tα(l−m+1)Eα,m,l(atαm)
])

(x) =

=
Γ[α(l − m + 1) + 1]

Γ[α(l − m) + 1]
xα(l−m) + axαlEα,m,l(axαm), (5.10)provided that l > m − 1 − 1/α ; in parti
ular

(

Dα
0+

[

tα(l−m+1)Eα,m,l(atαm)
])

(x) = axαlEα,m,l(axαm), (5.11)when α(l − m) = −j for some j = 1, 2, . . . ,−[−α] .On the basis of (5.9) they proved that the Abel-Volterra integral equation
y(x) =

axβ

Γ(α)

x
∫

0

y(t)gt

(x − t)1−α
=

n
∑

k=0

fkxµk (0 < x < d ≤ ∞) (5.12)with α > 0 , β > −α and µk > −1 , fk ∈ R (k = 0, 1, . . . , n) has the solution
y(x) =

n
∑

k=0

fkxµkEα,1+β/α,µk/α

(

axα+β
)

. (5.13)Using (5.11), Kilbas and Saigo showed that the homogeneous fra
tional di�erentialequation
(Dα

0+y)(x) = axβy(x) (0 < x < d < ∞; α > 0, a 6= 0, β > −α) (5.14)



86 A.A. KILBASwith α 6= 1, 2, . . . has linearly independent [α] + 1 solutions
yj(x) = xα−jEα,1+β/α,1+(β−j)/α

(

axα+β
)

(j = 1, 2, . . . , [α] + 1) (5.15)for β > {α} ≡ α−[α] . They also obtained the solution of the 
orresponding Cau
hy-typeproblem for (5.14) with the initial 
onditions
(Dα−k

0+ y)(x)|x=0 = bk (k = 1, 2, . . . , [α] + 1) (5.16)in the form
y(x) =

[α]+1
∑

k=0

bkxα−jEα,1+β/α,1+(β−j)/α

(

axα+β
)

. (5.17)The result in (5.10) was applied to obtain the parti
ular solution y0(x) of the non-homogeneous fra
tional di�erential equation with a quasi-polynomial free term
(Dα

0+y)(x) = axβy(x) +

n
∑

i=0

fix
µi (0 < x < d < ∞; α > 0, a 6= 0, β ∈ R), (5.18)where µi, fi ∈ R (i = 0, 1, . . . , n) , and the solution of the 
orresponding Cau
hy-typeproblem for the equation (5.18) with the initial 
onditions (5.16). In parti
ular, expli
itsolutions of fra
tional di�erential equations of order 1/2 , arising in the theory of voltam-metry at expanding ele
trodes [1, equation (8.6.1)℄ and in the theory of polarographywere 
onstru
ted.Kilbas and Saigo also 
onsidered the 
onne
tion of the generalized Mittag-Le�erfun
tion (5.6) with the right-sided Liouville fra
tional integrals Iα

−y and derivative
Dα

−y of order α ∈ C (Re α ≥ 0) de�ned for x ∈ R by
(Iα

−y)(x) =
1

Γ(α)

∞
∫

x

y(t)dt

(t − x)1−α
(α ∈ C, Re α > 0) , (5.19)

(Dα
−y)(x) =

(

−
d

dx

)n

(In−α
− y)(x), n = [Re α] + 1, (5.20)For su
h fra
tional integrals and derivative they proved a relations similar to (5.9) and(5.10) and applied them to obtain the parti
ular solutions of the non-homogeneousintegral equation of the form (5.12), with the integral from 0 to x being repla
ed bythe integral from x to ∞ , and of the di�erential equation of the form (5.18), with Dα

0+being repla
ed by Dα
− , in terms of the generalized Mittag � Le�er type fun
tions (5.6).Saigo and Kilbas [57℄ applied su
h an approa
h, based on 
ompositions of usualderivatives with the generalized Mittag � Le�er type fun
tion (5.6), to solve in 
losedform of new 
lasses of ordinary di�erential equations and 
orresponding Cau
hy-typeproblems.Kilbas and Saigo [58℄ studied the solvability of the nonlinear equation

(Dα
0+y)(x) = axβym(x) + bxγ (0 < x < d < ∞; α > 0, m ∈ R, m 6= 1) (5.21)with real a (a 6= 0) , b , µ and ν . They proved that if (α + β)/(1 − m) > α − 1 , thenthe 
orresponding homogeneous nonlinear equation (b = 0) has at least one solutiongiven by

y(x) =

[

Γ(µ + 1)

aΓ(µ − α + 1)

]1/(1−m)

xµ, µ =
α + β

1 − m
, (5.22)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 87while the non-homogeneous nonlinear equation (5.21) with γ = (β + mα)/(1 − m) hasthe solution
y(x) = λxµ, µ =

α + β

1 − m
, (5.23)provided that the trans
endental equation

Γ

(

α + β

1 − m
+ 1 − α

)

[aξm + b] − Γ

(

α + β

1 − m
+ 1

)

ξ = 0 (5.24)is solvable and ξ = λ is its solution. The problem of the uniqueness of the solutions(5.22) and (5.23) was also dis
ussed in [58℄. The solvability of the nonlinear equation(5.21) depends on the solvability of the trans
endental equation (5.24). Positive solutionsof su
h a trans
endental equation were investigated in [59℄.Kilbas, Bonilla, Rodriguez, Trujillo and Rivero [60℄ and Bonilla, Kilbas, Rivero,Rodriguez L. and Trujillo [61℄ have studied 
ompositions of the left- and right-sidedLiouville fra
tional integrals derivatives (5.19) and (5.20) with the spe
ial fun
tions
Zν

ρ (z) =

∞
∫

1

tν−1 exp
(

−tρ −
z

t

)

dt (z ∈ C, Re z > 0; ρ > 0, ν ∈ C) (5.25)and
λ(β)

γ,σ(z) =
β

Γ(γ + 1 − 1/β)

∞
∫

1

(tβ − 1)γ−1/βtσe−ztdt (5.26)

(z ∈ C, Re z > 0; β > 0; γ ∈ C, Re γ >
1

β
− 1; σ ∈ R).These fun
tions are analyti
 with respe
t to z , and are invariant relative to the Liouvillefra
tional integrals (5.19) and derivatives (5.20) ex
ept for a transformation of theindi
es:

(Iα
−Zν

ρ )(x) = Zν+α
ρ (x), (Iα

−λ(β)
γ,σ)(x) = λ

(β)
γ,σ−α(x), (5.27)

(Dα
−Zν

ρ )(x) = Zν−α
ρ (x), (Dα

−λ(β)
γ,σ)(x) = λ

(β)
γ,σ+α(x). (5.28)These relations were applied in [60℄ to obtain expli
it solutions of di�erential equa-tions of fra
tional order

xDρ+1
− y + (ν − ρ)xDρ

−y − ρy = 0, (5.29)

x2D2ρ+2
− y + (2ν − 3ρ − 1)xD2ρ+1

− y + (ν − ρ)(ν − 2ρ)D2ρ
− y + ρ2y = 0 (5.30)in terms of the fun
tion (5.25), and in [61℄ to obtain the expli
it solution of the integralequation of the third kind

xy(x) =

∞
∫

x

[

γβ + σ +
(t − x)β−1

Γ(β)
+ (β − σ − 1)

(t − x)β

Γ(β + 1)

]

y(t)dt = 0 (x > 0) (5.31)and of di�erential equations of fra
tional order
x[(Dα+β+1

− y)(x) − (Dα+1
− y)(x)] − (γβ + σ + α)(Dα+β

− y)(x)+

+(σ + α + 1 − β)(Dα
−y)(x) = 0 (x > 0) (5.32)in terms of the fun
tion (5.26).



88 A.A. KILBAS6. Fra
tional integral and di�erential equations:Lapla
e transform methodHere we dis
uss the method based on the Lapla
e integral transform to dedu
eexpli
it solutions of linear integral and di�erential equations of fra
tional order. Firstwe present a s
heme to solve fra
tional integral and di�erential equation of the forms(1.3) and (1.4) by using the dire
t and inverse Lapla
e transforms L and L−1 :
(Lϕ)(p) =

∞
∫

0

ϕ(t)e−ptdt, (6.1)

(L−1g)(x) =
1

2πi

γ+∞
∫

γ−∞

epxg(p)dp (γ = Re p > σ, σ ∈ R). (6.2)One may �nd the theory of Lapla
e transform in the books by Ditkin and Prudnikov[35℄, Tit
hmarsh [62℄ and Sneddon [63℄.The transforms L and L−1 are inverse to ea
h other for suitable fun
tions ϕ, g :
L−1Lϕ = ϕ, LL−1g = g. (6.3)We 
onsider the equations (1.3) and (1.4) with the Riemann �Liouville integrals

Iαk = Iαk

0+ and derivatives Dαk = Dαk

0+ and 
onstant 
oe�
ients ck ∈ C :
c0y(x) +

m
∑

k=1

ck

(

Iαk

0+y
)

(x) = f(x) (x > 0), (6.4)

c0y(x) +

m
∑

k=1

ck

(

Dαk

0+y
)

(x) = f(x) (x > 0). (6.5)It is known that for suitable fun
tions y(x) the Lapla
e transforms of Iα
0+y and Dα

0+yare given by
(LIα

0+y)(p) = p−α(Ly)(p), (LDα
0+y)(p) = pα(Ly)(p). (6.6)Applying the Lapla
e transform (6.1) to both sides of (6.4) and (6.5) and taking (6.6)into a

ount we have respe
tive formulas

[

c0 +

m
∑

k=1

ckp−αk

]

(Ly)(p) = (Lf)(p), (6.7)

[

c0 +

m
∑

k=1

ckpαk

]

(Ly)(p) = (Lf)(p). (6.8)Using the inverse Lapla
e transform (6.2) we obtain parti
ular solutions of the equations(6.4) and (6.5) in respe
tive forms
y(x) =

(

L−1

[

(Lf)(p)

c0 +
∑m

k=1 ckp−αk

])

(x), (6.9)

y(x) =

(

L−1

[

(Lf)(p)

c0 +
∑m

k=1 ckpαk

])

(x). (6.10)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 89We note that Lapla
e transform method was �rst applied by Hille and Tamarkin[64℄ (1930) to solve the Abel type integral equation of se
ond kind
ϕ(x) −

λ

Γ(α)

x
∫

0

ϕ(t)dt

(x − t)1−α
= f(x) (x > 0) (6.11)in terms of the Mittag-Le�er fun
tion (2.9) with β = 1 ;

ϕ(x) =
d

dx

x
∫

0

Eα [λ(x − t)α] f(t)dt, Eα(z) = Eα,1(z). (6.12)One may �nd results and bibliography of papers devoted to solution in 
losed form of
ertain types of fra
tional integral equation (6.4) in the books by Goren�o and Vessela[2℄ and by Samko, Kilbas and Mari
hev [3℄.Maravall [65℄ probably �rst suggested a formal approa
h based on the Lapla
e trans-form to obtain the expli
it solution of a parti
ular 
ase of the fra
tional di�erentialequation (6.5), but his paper published in Spanish, was pra
ti
ally unknown.The Lapla
e transform was used by many authors to obtain the expli
it solutionsof spe
ial 
ases of the di�erential equation (6.5): see Kilbas and Trujillo [13℄.Miller and Ross [4℄ applied the Lapla
e transform method to solve the Cau
hyproblem for the parti
ular 
ase of (6.5) with derivative αk = kα and 1/α = q = 1, 2, . . .:
m
∑

k=1

ck(Dkα
0+y)(x) + c0y(x) = f(x), (6.13)

y(0) = y′(0) = . . . y(m−1)(0) = 0. (6.14)Miller and Ross introdu
ed a fra
tional analogue of the Green fun
tion Gα(x) de�nedvia the inverse Lapla
e transform (6.2)
Gα(x) =

(

L−1

[

1

P (tα)

])

(x), P (x) = c0 +

m
∑

k=1

ckxk, (6.15)and proved that the unique solution y(x) of (6.13)�(6.14) has the form of the Lapla
e
onvolution of Gα(x) and f(x) :
y(x) =

x
∫

0

Gα(x − t)f(t)dt. (6.16)These investigations were developed by Podlubny [5, Chapter 5℄) who de�ned su
ha fra
tional analogue of Green fun
tion Gα(x) to more general equation (3.1), showedthat the solution (3.5) of the Cau
hy problem (3.6) 
an be expressed in terms of Gα(x) :
y(x) =

n−1
∑

k=0

bkyk(x) +

x
∫

0

Gα(x− t)f(t)dt, yk(x) = (Dαn

0+D
αn−1

0+ . . .Dαk

0+Gα)(x). (6.17)In parti
ular, he found the expli
it formula of Gα(x) for the equation (6.5) as a multipleseries 
ontaining the Mittag � Le�er fun
tions (2.9).Examples of linear fra
tional di�erential equations of the form (6.5) and (6.13),solved by using Lapla
e transform method and analogies of Green fun
tion, were givenby Miller and Ross [4, Chapters V and VI℄ and Podlubny [5, Se
tions 4.1.1 and 4.2.1℄.



90 A.A. KILBASGoren�o and Mainardi [66℄ applied the Lapla
e transform to solve the fra
tionaldi�erential equation
(CDα

o+y)(x) = −ραy(x) + f(x) (α > 0; ρ > 0, x > 0), (6.18)with the Caputo derivative (1.15) and dis
ussed the key role of the Mittag � Le�erfun
tion (2.9) in the 
ases 1 < α < 2 and 2 < α < 3 .Using the formula for the Lapla
e 
onvolution


L





x
∫

0

k(x − t)f(t)dt







 (p) = (Lk)(p)(Lf)(p), (6.19)by analogy with (6.15) we introdu
e the Lapla
e fra
tional analogue of the Green fun
-tion
Gα1,...,αm

(x) =

(

L−1

[

1

Pα(x)

])

(x), Pα(x) = c0 +

m
∑

k=1

ckxαk . (6.20)Then the solutions (6.9) and (6.10) of the integral and di�erential equations (6.4) and(6.5) have respe
tive forms of the Lapla
e 
onvolutions of Gα1,...,αm
(1/x) and f(x) :

y(x) =

x
∫

0

Gα1,...,αm

(

1

x − t

)

f(t)dt, (6.21)and of Gα1,...,αm
(x) and f(x) :

y(x) =

x
∫

0

Gα1,...,αm
(x − t)f(t)dt. (6.22)7. Fra
tional 
al
ulus equations: Fourier and Mellin transforms methodSimilarly to Se
tion 6, we present a s
heme to solve fra
tional integral and di�erentialequations of the forms (1.3) and (1.4) by using dire
t and inverse Fourier transforms Fand F−1 :

(Fϕ)(x) =

∞
∫

−∞

eixtϕ(t)dt (x ∈ R), (7.1)

(F−1g)(x) =
1

2π

∞
∫

−∞

e−ixtg(t)dt (x ∈ R), (7.2)and dire
t and inverse Mellin transforms M and M−1 :
(Mϕ)(s) =

∞
∫

0

ts−1ϕ(t)dt (s ∈ C), (7.3)

(M−1g)(x) =
1

2πi

γ+∞
∫

γ−∞

x−sg(s)ds (γ = Re p). (7.4)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 91One may �nd the theory of Fourier and Mellin transforms in the books by Tit
hmarsh[62℄, Sneddon [63℄ and Ditkin and Prudnikov [35℄. In parti
ular, they are inverse to ea
hother for suitable fun
tions ϕ, g :
F−1Fϕ = ϕ, FF−1g = g; (7.5)

M−1Mϕ = ϕ, MM−1g = g. (7.6)We 
onsider equations of the form (1.3) and (1.4) with 
onstant 
oe�
ients ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

Iαk

+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.7)

c0y(x) +
m
∑

k=1

ck

(

Dαk

+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.8)involving the so-
alled left-sided Liouville fra
tional integrals and derivatives Iαk

+ y and
Dα

+y of order α ∈ C (Re α ≥ 0) de�ned for x ∈ R by
(Iα

+y)(x) =
1

Γ(α)

x
∫

−∞

y(t)dt

(x − t)1−α
(α ∈ C, Re α > 0) , (7.9)

(Dα
−y)(x) =

(

d

dx

)n

(In−α
+ y)(x), n = [Re α] + 1. (7.10)It is known [3, Se
tion 7.1℄ that for suitable fun
tions y(x) the Fourier transforms of

Iα
+y and Dα

+y are given by
(FIα

+y)(x) = (−ix)−α(Fy)(x), (FDα
+y)(x) = (−ix)α(Fy)(x). (7.11)Applying the Fourier transform (7.1) to both sides of (7.9) and (7.10), taking (7.11)into a

ount and using the inverse Fourier transform (7.2), we obtain solutions of theequations (7.7) and (7.8) in respe
tive forms

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck(−it)−αk

])

(x). (7.12)

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck(−it)αk

])

(x). (7.13)Using the Fourier 
onvolution formula


F





∞
∫

−∞

k(x − t)f(t)dt







 (x) = (Fk)(x)(Ff)(x), (7.14)by analogy with (6.20) we 
an introdu
e the Fourier fra
tional analogue of the Greenfun
tion
G1

α1,...,αm
(x) =

(

F−1

[

1

P 1
α(t)

])

(x), P 1
α(x) = c0 +

m
∑

k=1

ck(−ix)αk , (7.15)



92 A.A. KILBASand rewrite the solutions (7.12) and (7.13) in respe
tive forms of the Fourier 
onvolutionof Gα1,...,αm
(1/x) and f(x) :

y(x) =

∞
∫

−∞

G1
α1,...,αm

(

1

x − t

)

f(t)dt. (7.16)and of Gα1,...,αm
(x) and f(x) :

y(x) =

∞
∫

−∞

G1
α1,...,αm

(x − t)f(t)dt. (7.17)Similarly it is proved that the equations (1.3) and (1.4) with 
onstant 
oe�
ients
ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

Iαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m) (7.18)

c0y(x) +

m
∑

k=1

ck

(

Dαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m) (7.19)with the right-sided Liouville fra
tional integrals Iαk

− and derivatives Dαk

− , de�ned in(5.19) and (5.20), has solutions of the forms (7.16) and (7.17):
y(x) =

∞
∫

−∞

G2
α1,...,αm

(x − t)f(t)dt, (7.20)

y(x) =

∞
∫

−∞

G2
α1,...,αm

(x − t)f(t)dt, (7.21)where
G2

α1,...,αm
(x) =

(

F−1

[

1

P 2
α(t)

])

(x), P 2
α(x) = c0 +

m
∑

k=1

ck(ix)αk , (7.22)Now we 
onsider the equations of the forms (1.3) and (1.4) with 
onstant 
oe�
ients
ck ∈ R

c0y(x) +

m
∑

k=1

ck

(

J αk

0+ y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.23)

c0y(x) +

m
∑

k=1

ck

(

HDαk

0+y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.24)involving the Hadamard fra
tional integrals and derivatives J αk

0+ y and HDαk

0+y de�nedby (1.12) and (1.11) on the half axis R+ , and the equations
c0y(x) +

m
∑

k=1

ck

(

J αk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.25)
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c0y(x) +

m
∑

k=1

ck

(

HDαk

− y
)

(x) = f(x) (x > 0; ck ∈ C, k = 0, 1, . . . , m), (7.26)with the Hadamard fra
tional integrals and derivatives J αk

− y and HDα
−y de�ned for
omplex α ∈ C (Re α > 0) by

(J α
−y)(x) =

1

Γ(α)

∞
∫

x

(

log
t

x

)α−1
y(t)dt

t
(x > 0), (7.27)and

(HDα
−y)(x) = (−δ)n

(

J n−α
− y

)

(x) (x > 0; n = [Reα] + 1), (7.28)respe
tively; see the paper by Butzer, Kilbas and Trujillo [67℄.It is known [67℄ that for suitable fun
tions y(x) the Mellin transforms of J α
0+y ,

HDα
0+y and J α

−y , HDα
−y are given by

(MJ α
0+y)(s) = (−s)−α(My)(s), (MHDα

0+y)(s) = (−s)α(My)(s), (7.29)

(MJ α
−y)(s) = s−α(My)(s), (MHDα

−y)(s) = sα(My)(s). (7.30)Applying the Mellin transform (7.3) to both sides of (7.23) and (7.24), taking (7.29)into a

ount and using the inverse Mellin transform (7.4), we obtain parti
ular solutionsof the equations (7.23) and (7.24) in respe
tive forms
y(x) =

(

M−1

[

(Mf)(s)

c0 +
∑m

k=1 ck(−s)−αk

])

(x) (7.31)and
y(x) =

(

M−1

[

(Mf)(s)

c0 +
∑m

k=1 ck(−s)αk

])

(x). (7.32)Using the Mellin 
onvolution formula


M





∞
∫

0

k
(x

t

)

f(t)
dt

t







 (p) = (Mk)(p)(Mf)(p), (7.33)by analogy with (7.15) and (7.22) we 
an introdu
e the Mellin fra
tional analogies ofthe Green fun
tion
G3

α1,...,αm
(x) =

(

M−1

[

1

P 3
α(x)

])

(x), P 3
α(x) = c0 +

m
∑

k=1

ck(−x)−αk , (7.34)

G4
α1,...,αm

(x) =

(

M−1

[

1

P 4
α(x)

])

(x), P 4
α(x) = c0 +

m
∑

k=1

ck(−x)αk , (7.35)and represent solutions (7.31) and (7.32) in the respe
tive forms
y(x) =

∞
∫

0

G3
α1,...,αm

(x

t

)

f(t)
dt

t
(7.36)

y(x) =

∞
∫

0

G4
α1,...,αm

(x

t

)

f(t)
dt

t
(7.37)



94 A.A. KILBASSimilarly, on the basis (7.30) and (7.33) expli
it solutions of the equations (7.25)and (7.26) are dedu
ed in respe
tive forms
y(x) =

∞
∫

0

G5
α1,...,αm

(x

t

)

f(t)
dt

t
. (7.38)

G5
α1,...,αm

(x) =

(

M−1

[

1

P 5
α(x)

])

(x), P 5
α(x) = c0 +

m
∑

k=1

cks−αk , (7.39)and
y(x) =

∞
∫

0

G6
α1,...,αm

(x

t

)

f(t)
dt

t
. (7.40)

G6
α1,...,αm

(x) =

(

M−1

[

1

P 6
α(x)

])

(x), P 6
α(x) = c0 +

m
∑

k=1

cksαk . (7.41)8. Multi-dimensional integral and partial fra
tionaldi�erential equations: integral transforms methodThe Fourier integral transform method, presented in Se
tion 7 to obtaining expli
itsolutions of one-dimensional fra
tional integral and di�erential equations (7.7)�(7.8) and(7.18)�(7.19), 
an be also applied to �nd expli
it solutions of multi-dimensional linearintegral and di�erential equation of the form (1.3) and (1.4) with 
onstant 
oe�
ients
ck ∈ R :

c0y(x) +
m
∑

k=1

ck (Iαky) (x) = f(x) (x ∈ R
n; ck ∈ C, k = 0, 1, . . . , m), (8.1)

c0y(x) +

m
∑

k=1

ck (Dαky) (x) = f(x) (x ∈ R
n; ck ∈ C, k = 0, 1, . . . , m), (8.2)involving the Riesz fra
tional integrals I

αky and derivatives D
αky de�ned in (1.17)and (1.18). Su
h an equation 
an be solved by using the multi-dimensional dire
t andinverse Fourier transforms F and F−1 :

(Fϕ)(x) =

∫

Rn

eix·tϕ(t)dt (x ∈ R
n) , (8.3)

(F−1g)(x) =
1

(2π)n

∫

Rn

e−ix·tg(t)dt (x ∈ R
n) . (8.4)One may �nd the theory of multi-dimensional Fourier transforms in the books by Steinand Weiss [68℄ and by Nikol'skii [69℄.The transforms (8.3) and (8.4) are inverse to ea
h other for suitable fun
tions ϕ ,g :

F−1Fϕ = ϕ, FF−1g = g; (8.5)A

ording to (1.17) and (1.18), there hold the formulas
(FI

αy) (x) = |x|−α(Fy)(x), (FD
αy) (x) = |x|α(Fy)(x). (8.6)for suitable fun
tions y .



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 95Applying the Fourier transform (8.3) to both sides of (8.1) and (8.2), taking (8.6)into a

ount and using the inverse Fourier transform (8.4), we obtain expli
it solutionsof the equations (8.1) and (8.2) in respe
tive forms
y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck|t|−αk

])

(x). (8.7)

y(x) =

(

F−1

[

(Ff)(t)

c0 +
∑m

k=1 ck|t|αk

])

(x). (8.8)Using the Fourier 
onvolution formula


F





∫

Rn

k(x − t)f(t)dt







 (x) = (Fk)(x)(Ff)(x), (8.9)by analogy with (7.15) and (7.22) we 
an introdu
e the Fourier multi-dimensional ana-logue of the Green fun
tion
Gα1,...,αm

(x) =

(

F−1

[

1

Pα(t)

])

(x), Pα(x) = c0 +

m
∑

k=1

ck|x|
αk , (8.10)and rewrite the solutions (8.7) and (8.8) in respe
tive forms of the Fourier 
onvolutionof Gα1,...,αm

(1/x) and f(x) :
y(x) =

∫

Rn

Gα1,...,αm

(

1

x − t

)

f(t)dt (8.11)and of Gα1,...,αm
(x) and f(x) :

y(x) =

∫

Rn

Gα1,...,αm
(x − t)f(t)dt. (8.12)One may �nd results and bibliography of papers devoted to investigation of multi-dimensional fra
tional integral equations involving the Riesz potential (1.19) and moregeneral 
onstru
tions in the monograph by Samko [7℄. A survey of results for par-tial di�erential equations of fra
tional order and more general abstra
t equations werepresented in the paper by Kilbas and Trujillo [14℄.Here we 
hara
terize a series of papers where the Lapla
e, Fourier and Mellin trans-forms were applied to investigate the so-
alled fra
tional di�usion equations, and inmost of them formal expli
it solutions of 
ertain boundary and initial problems for the
onsidered equations were obtained.Wyss [70℄ studied the fra
tional di�erential equation

x−α−1
+

Γ(α)
∗ u(x, t) = λ2 ∂2u(x, t)

∂x2
(x > 0; 0 < α ≤ 1, λ > 0), (8.13)where x−α−1

+ /Γ(α) is understood as distribution in a spe
ial spa
e of generalized fun
-tion. He investigated two problems for this equation
u(x, 0) = 0, u(0, T ) = b (t > 0) (8.14)when b = 0 and b = −1 . He sought a solution u(x, t) of these problems in the form

u(x, t) = f(y), y = t−α/2x, (8.15)
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ed (8.13)�(8.14) to the one-dimensional problem
λ2 d2f(y)

dy2
= (I−α

−;2/α,1f)(y) (y > 0), f(0) = 0, f(∞) = b, (8.16)where
(Iβ

−;σ,ηf)(y) =
σyση

Γ(β)

∞
∫

y

tσ(1−α−η)−1f(t)dt

(tσ − yσ)1−β
(β > 0, σ > 0, η ∈ C) (8.17)is the so-
alled Erdelyi �Kober-type fra
tional integral � see [3, (18.7)℄. Applying to theequation in (8.16) the dire
t and inverse Mellin transforms (7.3) and (7.4) and takinginto a

ount the initial 
onditions in (8.16), Wyss obtained the following solutions ofthe above two problems:

u(x, t) = π−1/2H2,1
2,3

[

x

2λ
t−α/2

∣

∣

∣

∣

(1, 1), (1, α/2)
(1/2, 1/2), (1, 1/2), (0, 1)

]

(8.18)and
u(x, t) = −π−1/2H3,0

2,3

[

x

2λ
t−α/2

∣

∣

∣

∣

(1, 1), (1, α/2)
(0, 1), (1/2, 1/2), (1, 1/2)

]

(8.19)respe
tively. These solutions are given in terms of the so-
alled H -fun
tion, whi
h forintegers m, n, p, q ∈ N0 (0 ≤ m ≤ q, 0 ≤ n ≤ p) , for 
omplex ai, bj ∈ C and positive
αi, βj > 0 (1 ≤ i ≤ p; 1 ≤ j ≤ q) is de�ned by

Hm,n
p,q

[

z

∣

∣

∣

∣

(ai, αi)1,p

(bj, βj)1,q

]

=
1

2πi

∫

C

Hm,n
p,q

[

(ai, αi)1,p

(bj , βj)1,q

∣

∣

∣

∣

s

]

z−sds, (8.20)where
H(s) ≡ Hm,n

p,q

[

(ai, αi)1,p

(bj , βj)1,q

∣

∣

∣

∣

s

]

=

∏m
j=1 Γ(bj + βjs)

∏n
i=1 Γ(1 − ai − αis)

∏p
i=n+1 Γ(ai + αis)

∏q
j=m+1 Γ(1 − bj − βjs)

, (8.21)the 
ontour C being spe
ially 
hosen and an empty produ
t, if it o

urs, being takento be one. Note that the H -fun
tion 
ontains most of elementary and spe
ial fun
tions;its theory 
an be found in the books by Mathai and Saxena [71, Chapter 2℄, Srivastava,Gupta and Goyal [72, Chapter 1℄, Prudnikov, Bry
hkov and Mari
hev [73, Se
tion 8.3℄and Kilbas and Saigo [74, Chapters 1 and 2℄.S
hneider and Wyss [75℄ 
onsidered the equation
u(x, t) =

m−1
∑

k=0

fk(x)tk +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(m − 1 < α ≤ m, m = 1, 2), (8.22)where x ∈ Rn (n ≥ 1) , t > 0 , fk(x) are the initial data, i. e.,

(

∂

∂t

)k

u(x, t)|t=0 = fk(x) (0 ≤ k ≤ m − 1, m = 1, 2), (8.23)and ∆ is the Lapla
ian (1.16). (8.22) presents the fra
tional di�usion and the waveequation when m = 1 , 0 < α ≤ 1 and m = 2 , 1 < α ≤ 2 , respe
tively. Applying to
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e transform (6.1) with respe
t to t and the inverse Mellin transform(7.4), they obtained the solution of (8.22) in the form:
u(x, t) =

m−1
∑

k=0

∫

Rn

Gα
k (|x − y|, t)fk(y)dy, (8.24)where y ∈ Rn , |x−y| =

[
∑n

k=1(xk − yk)2
]1/2 , and the analogies of the Green fun
tions

Gα
k (r, t) (0 ≤ k ≤ m − 1 m = 1, 2) are expressed via the H -fun
tion (8.20) by
Gα

k (r, t) =
π−n/2

2rn

( r

2

)2k/α

H2,0
1,2

[

r

2
t−α/2

∣

∣

∣

∣

(1, α/2)
(n/2 − k/α, 1/2), (1− k/α, 1/2)

]

. (8.25)S
hneider and Wyss also obtained an expli
it solution of the fra
tional di�usionequation (8.22) with 0 < α ≤ 1 in the half spa
e D = Rn−1 × R+ with the boundary
∂D = Rn−1 × {0} , supplemented by a spe
ial boundary 
ondition. Note that in the
ase 0 < α ≤ 1 S
hneider [76℄ gave a more elegant solution of the equation (8.22) with
m = 1 :

u(x, t) = f(x) +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(0 < α ≤ 1), u(x, 0) = f(x) (8.26)by appli
ation of the Fourier transform (8.3) with respe
t to x and the Lapla
e trans-form (6.1) with respe
t to t and their 
orresponding inversion transforms (8.4) and(6.2).Fujita [77℄ studied a two-dimensional equation (8.22) in the 
ase 1 < α < 2

u(x, t) = f(x) +
1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(1 < α < 2; x ∈ R, t > 0) (8.27)in the spa
e C([0,∞); S(R)) 
onsisting of S(R)-valued 
ontinuous fun
tions on [0,∞) ,where S(R) is the spa
e of rapidly de
reasing fun
tions of S
hwartz. Using the Fouriertransform, he obtained its solution u(x, t) :

u(x, t) =
1

α

∞
∫

−∞

Pα(|y|, t)f(t)dt, (8.28)where
Pα(x, t) =

1

2π

∞
∫

−∞

exp
[

−t|s|2/αe−γπsign (s)i/2
]

e−ixsds, γ = 2 −
2

α
. (8.29)Fujita also investigated propeties of the fundamental solution of (8.27).Fujita [78℄ obtained the solution of the equation

u(x, t) = f(x) +
tα/2

Γ(1 + α/2)
g(x) +

1

Γ(α)

t
∫

0

∆u(x, s)ds

(t − s)1−α
(8.30)

(1 ≤ α ≤ 2; x ∈ R, t > 0)



98 A.A. KILBASin the form
u(x, t) =

E

2






f (x + Yα(t)) + f (x − Yα(t)) +

x+Yα(t)
∫

x−Yα(t)

g(t)dt






, (8.31)where Yα(t) is a 
ontinuous, non-de
reasing and nonnegative sto
hasti
 pro
ess withMittag � Le�er distribution of order α/2 , and E stands for the expe
tation. Using theFourier transform (7.1) and probability methods Fujita [79℄ proved energy inequalitiesfor the integro-di�erential equations (8.27) and (8.30) whi
h 
orrespond to the energyinequality for the wave equation.The equation (8.13) belongs to the so-
alled fra
tional di�usion equations dedu
ed byNigmatullin [80℄ (1984), [81℄ (1986). In the simplest 
ase of a one-dimensional di�usionsu
h an equation is given by

(RLDα
0+,tu)(x, t) = λ2 ∂2u(x, t)

∂x2
(α > 0, λ > 0), (8.32)where (RLDα

0+,tu)(x, t) is the partial Riemann �Liouville fra
tional derivative (1.20).When α = 1 and α = 2 , (8.32) 
oin
ides with the well-known heat (di�usion) andwave equations
∂u(x, t)

∂t
= λ2 ∂2u(x, t)

∂x2
,

∂2u(x, t)

∂t2
= λ2 ∂2u(x, t)

∂x2
(α > 0, λ > 0). (8.33)Mainardi [82�84℄ have studied the equation (8.32) with x ∈ R and t > 0 for

0 < α ≤ 2 under natural initial 
onditions. In [82℄ he investigated the Cau
hy problemfor su
h an equation, used the method suggested by S
hneider [76℄ and applied theLapla
e transform with respe
t to t and the Fourier transform with respe
t to x to�nd the expli
it solution u(x, t) of this problem in the form
u(x, t) =

∞
∫

−∞

Gα(x − τ, t)f(τ)dτ, (8.34)where a fra
tional analogue of the Green fun
tion Gα(x, t) is expressed in terms of theintegral of the Mittag � Le�er fun
tion (2.9) and of a spe
ial fun
tion of Wright de�nedfor α > −1 and 
omplex β ∈ C by
φ(α, β; z) =

∞
∑

k=0

1

Γ(αk + β)

zk

k!
. (8.35)In [83, 84℄ Mainardi has used the same approa
h to �nd the fundamental solutionsof the Cau
hy problem and of the so-
alled signalling problem for the equation (8.32)with 0 < α ≤ 2 in terms of the Wright fun
tion (8.35).Goren�o and Mainardi [85℄ 
onsidered the fra
tional di�usion equation (8.32) with

0 < α ≤ 2 and λ = 1 in the quarter-plane R++ = {(x, t) ∈ R2 : x > 0, t > 0} under
ertain initial and boundary 
onditions. They applied the Lapla
e transform to obtainthe expli
it solution of these problems in the form (8.34), where a fra
tional analogyof the Green fun
tion Gα(x, t) is the inverse Lapla
e transform with respe
t to t of
exp

(

−xtα/2
) and −t−α/2 exp

(

−xtα/2
) , respe
tively.Ko
hubei [86℄ has 
onsidered the di�usion equation

(CD
(α)
t u)(x, t) − (∆u)(x, t) = f(x, t), (8.36)
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n and t ∈ [0, T ] , with the Caputo regularized partial derivative of order

0 < α < 1 :
(cD

(α)
t u)(x, t) =

1

Γ(1 − α)





∂

∂τ

t
∫

0

u(x, τ)

(t − τ)α
dτ −

u(x, 0)

tα



 . (8.37)He proved a uniqueness theorem for a bounded solution of equation (8.36) with theinitial 
ondition
u(x, 0) = u0(x) (x ∈ R

n). (8.38)Ko
hubei also found the fundamental solution of the Cau
hy problem (8.36), (8.38). Thefundamental solution of the Cau
hy problem for more general than (8.36) equation, inwhi
h ∆ is repla
ed by a uniformly ellipti
 operator, was 
onstru
ted in terms of the
H -fun
tion (8.20) by Eidelman and Ko
hubei [87℄.In 
on
lusion we indi
ate that the method based on the dire
t and inverse Lapla
eand Fourier transforms, being applied with respe
t to x ∈ R and t > 0 , was appliedby Kilbas, Pierantozzi, Trujillo and Vazquez [88, 89℄ to �nd expli
it solutions of theCau
hy problem

(CDα
t u)(t, x) = λ(Dβ

xu)(t, x) (8.39)

(t > 0, −∞ < x < ∞; 0 < α ≤ 1, β > 0, λ 6= 0),

lim
x→±∞

u(t, x) = 0, u(0+, x) = g(x) (8.40)with the Caputo partial fra
tional derivative (1.21), and of the Cau
hy-type problem
(RLDα

t u)(t, x) = λ(Dβ
xu)(t, x) (8.41)

(t > 0, −∞ < x < ∞; 0 < α ≤ 1, β > 0, λ 6= 0),

lim
x→±∞

u(t, x) = 0, (RLDα−1
t u)(0+, x) = g(x) (8.42)with the Riemann �Liouville partial fra
tional derivative (1.20). The fundamental solu-tions of the above problems were also 
onstru
ted in [88℄ and [89℄.9. Problems and new trends of resear
hIn Se
tions 2�3 we have presented methods and results to investigation of fra
tionaldi�erential equations based on their redu
tion to Volterra integral equations, in Se
tions4�5 and 6�8 we have dis
ussed methods and results to investigation of fra
tional integraland di�erential equations based on operational and 
ompositional methods, and onintegral transforms of Lapla
e, Fourier and Mellin. Some of these methods similar tothat known in the theory of ordinary di�erential equations. Now we 
hara
terize someproblems in these dire
tions whi
h 
an lead to new possible trends of resear
h.The main di�
ulties in the method of redu
tion of Cau
hy-type and Cau
hy prob-lems for fra
tional di�erential equations to the 
orresponding Volterra integral equa-tions 
on
ern the proof of the equivalen
e between solutions of these two 
onstru
tionsin 
ertain fun
tion spa
es. This problem is 
losely 
onne
ted with mapping propertiesof the operators of fra
tional di�erentiation and integration in the spa
es 
onsidered.Su
h properties are well developed for the Riemann �Liouville fra
tional integrals andderivatives (1.6) and (1.7) in the spa
es of integrable and 
ontinuous fun
tions, and soat present the existen
e and uniqueness of a solution y(x) in these spa
es are proved forthe simplest (model) nonlinear Cau
hy-type problem (2.18), (2.19) and (2.23), (2.19)and system of these problems, for nonlinear Cau
hy problems (3.4), (3.7) and (3.13),



100 A.A. KILBAS(3.14). It seems that the existen
e and uniqueness results in these fun
tion spa
es 
anbe proved for Cau
hy-type and Cau
hy problems for fra
tional di�erential equations ofanother type.Mapping properties of fra
tional integration and di�erentiation operators in fun
tionspa
es are suitable if we 
an 
hara
terize their images, and su
h a 
hara
terization isgiven by a homeomorphism of the spa
es 
onsidered with respe
t to fra
tional 
al
ulusoperators. Mapping properties of the Riemann �Liouville fra
tional integrals (1.6) arewell developed in H ö lder spa
es Hλ([a, b]) and in Lp(a, b) (1 ≤ p < ∞) spa
es ona �nite interval [a, b] of the real line R and in the weighted spa
es of these fun
tionswith power weight [3, Se
tions 3�4℄. Therefore we hope that these results 
an be appliedto study the existen
e and uniqueness of the Cau
hy-type problems for the equations(2.18), (2.23), (3.4), (3.7), (3.13) and more general fra
tional di�erential equations inH ö lder- and Lp(a, b)-spa
es.Mapping properties of the Liouville fra
tional integration operator Iα
0+ , Iα

+ ≡ Iα
−∞+(de�ned by (1.6) with a = 0 and (7.9)) and Iα

− (de�ned by (5.19)), are also knownin weighted spa
es of H ö lder and p-summable fun
tions on a half-axis R+ and on thewhole axis R ; see [3, Se
tions 5, 9℄. These results 
an be applied to study Cau
hy-type and Cau
hy problems to fra
tional di�erential equations with the Liouville andCaputo fra
tional derivatives. Applied problems 
an lead to studying fra
tional dif-ferential equations with Riemann �Liouville, Liouville, Caputo, Hadamard and otherfra
tional derivatives in spe
ial fun
tion spa
es. In this 
ase it is ne
essary to developmapping properties of fra
tional 
al
ulus operators in su
h new spa
es, whi
h will leadto new problems in fra
tional 
al
ulus.It should be noted that if there is the equivalen
e of Cau
hy-type problems and
orresponding Volterra integral equations, the known methods in the theory of Volterraintegral equations 
an be applied to investigate the initial value probelms in variousfun
tion spa
es. In parti
ular, the above arguments 
an be used to study Cau
hy-type and Cau
hy problems for linear di�erential equations of fra
tional order. To �ndexpli
it solutions of these problems and fra
tional di�erential equations, we 
an applythe method dis
ussed in Se
tions 2 and 3.Se
tion 4 shows that the operational 
al
ulus method allows us to solve non-homogeneous linear fra
tional di�erential equations with 
onstant 
oe�
ients. Buttheir solutions are usually obtained in 
ertain su�
iently 
ompleted spa
es of fun
-tions. Thus the problem here is a justi�
ation of the solutions obtained in more simplefun
tion spa
es. Another problem is in studying the properties of spe
ial fun
tionsgeneralizing the Mittag � Le�er fun
tion (2.9).An approa
h presented in Se
tion 5 and based on 
ompositions of fra
tional inte-gration and di�erentiation operators with elementary and spe
ial fun
tions, allows usto solve new 
lasses of linear fra
tional integral and di�erential equations with non
on-stant 
oe�
ients. The results were obtained on the basis of 
ompositions of fra
tionalintegration and di�erentiation operators with spe
ial fun
tions of Mittag � Le�er andBessel types. We hope that it is possible to �nd new 
omposition formulas betweenfra
tional 
al
ulus operators and various spe
ial fun
tions whi
h will lead to expli
itsolutions of new 
lasses of fra
tional integral and di�erential equations.The method based on Lapla
e, Fourier and Mellin transforms 
an be used moresuitable to solve linear fra
tional integral and di�erential equations with 
onstant 
o-e�
ients. In these 
ases we also have the problem 
on
erning fun
tion spa
es of solu-tions. As we have seen in Se
tions 6 and 7, formally the one-dimensional Lapla
e andFourier and Mellin transforms yield the expli
it solutions of the non-homogeneous lin-ear fra
tional integral and di�erential equation (6.4)�(6.5), (7.7)�(7.8), (7.18)�(7.19),(7.23)�(7.24) and (7.25)�(7.26), respe
tively. Sin
e the Lapla
e, Fourier and Mellin



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 101transforms (6.1) and (7.3) are de�ned on the half-axis R+ , while the Fourier trans-form (7.1) on the whole real line R , we also need to investigate fun
tion spa
es withrespe
t to these integral transforms. The same 
on
ern solutions of multi-dimensionalintegral and di�erential equations (8.1)�(8.2).Another problem is a representation of the expli
it solutions (6.9)�(6.10), (7.12)�(7.13), (7.31)�(7.32) and (8.7)�(8.8) in more simple forms. In some 
ases these solutions
an be represented via the fra
tional analogies of Green fun
tions (6.20), (7.15), (7.22),(7.34), (7.35), (7.39), (7.41) and (8.10) as 
onvolutions of the form (6.21)�(6.22), (7.16)�(7.17), (7.20)�(7.21), (7.36)�(7.37), (7.38), (7.40) and (8.11)�(8.12). The known expli
itrepresentations of su
h analogies are expressed in terms of the Mittag � Le�er fun
tion(2.9), its modi�
ations and generalizations, and the H -fun
tion (8.20), and the Wrightfun
tion (8.35). We hope that there are other equations whose expli
it solutions 
anbe given via the above fun
tions, their generalizations and modi�
ations. It seems thatin some 
ases su
h fra
tional analogies of Green fun
tion 
an be expressed in terms ofspe
ial fun
tions of hypergeometri
 and Bessel type.It should be noted that results presented in Se
tion 8 and 
on
erning Cau
hy prob-lems to some fra
tional partial di�erential equations, were obtained without proof of theequivalen
e between the initial problems and 
orresponding multi-dimensional integralequations. This equivalen
e depend on mapping properties of multi-dimensional fra
-tional 
al
ulus operators in some spa
es of fun
tions. Therefore the problem to provesu
h an equivalen
e is still open, and it seems that solution of this problem 
an lead toinvestigation of more general and new problems.The above method of integral transforms to solve in 
losed form some fra
tional par-tial di�erential equations with 
onstant 
oe�
ients was suitable be
ause of the simplestdomains for equations 
onsidered: half-spa
e or the whole spa
e. In more general 
asesu
h an approa
h is not suitable, and while 
onsidering fra
tional partial di�erentialequations on a domain in Rn another integral transforms must be used. Probably, theRadon transform or its modi�
ations are suitable for su
h an investigation.It seems that another integral transforms su
h as the Hankel transform, the Meijertransform and other transforms with spe
ial fun
tion kernels 
an be also used to dedu
eexpli
it solutions of some 
lasses of ordinary and partial fra
tional di�erential equations.It was noted in Se
tion 8 that the simplest partial di�usion equation (8.32) 
oin
ideswith 
lassi
al heat and wave equations in limit 
ases α = 1 and α = 2 , respe
tively.This fa
t leads us to the hypothesis that partial fra
tional di�erential equations havemore various properties then the usual ones, and that the properties of the latter 
anbe dedu
ed from the properties of the former. In this 
onne
tion, from our point ofview, it is interesting to 
onstru
t general theory of partial di�erential equations offra
tional order whi
h generalize 
lassi
al theory of partial di�erential equations ofellipti
, hyperboli
 and paraboli
 types. It seems that in this way we 
an obtain newproperties of partial fra
tional di�erential equations whi
h are impossible in 
lassi
al
ases.The present paper was prepared on the basis of the plenary talk made by the au-thor on the International Conferen
e �A
tual Problems in Mathemati
s and Me
hani
s�(Kazan, September 27 � O
tober 1) devoted to 200 years of Kazan State University and70 years of S
ienti�
 Resear
h Institute of Mathemati
s and Me
hani
s of Kazan StateUniversity.This investigation was also supported by Belarusian Fundamental Resear
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