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Abstract

One- and multi-dimensional integral equations and ordinary and partial differential equa-
tions with fractional integrals and derivatives by Riemann—Liouville, Liouville, Caputo,
Hadamard and Riesz are considered. The method based on the reduction of the Cauchy-
type and Cauchy problems for the one-dimensional nonlinear fractional differential equations
to Volterra integral equations is discussed. A unified approach is presented to solve in close form
of some classes of one- and multi-dimensional linear integral equations and linear ordinary and
partial differential equations of fractional order. This approach is based on compositional rela-
tions, operational calculus and integral transforms by Laplace, Fourier and Mellin. Problems
and new trends of research are discussed.

1. Introduction

Integral and differential equations of fractional order, in which an unknown function
is contained under the operations of integrals and derivatives of fractional order, have
been of great interest recently. It coursed both by intensive development of the theory
of fractional calculus itself and by the applications of such constructions in various
sciences. In this connection we note the books [1-9], the papers [10-12] and Proceedings
of the first Workshop on Fractional Differentiation and its Applications, July 19-21,
Boreauz, France, Bordeaux Univ., Bordeaux, 2004.

In the above monographs and papers one may find various applications of fractional
integral and differential equations in physics, mechanics, chemistry, engineering and
other disciplines together with bibliography in these fields.

The fractional integral and differential equations have the following general forms

F [Za y(l'), Ialy(z)a IDQy(x)v RN Iamy(x)] = f(:L') (11)

and
F [$,y($), Daly(x)a Da2y($)a s 7Damy(x)] = f($) (1'2)

Here z is a point in m-dimensional Euclidean space R™ (n € N = {1,2,...}),
Flx,y,y1,...,Ym] and f(x) are given functions, and I* and D% are the opera-
tors of fractional integration and differentiation with real ap > 0 or complex «y,
Rear >0 (k=1,2,...,m). The corresponding linear equations with given functions
crp(x) (k=0,1,...,m) and f(x) are represented as

m

co(x)y(x) +)_ exlx) (I%*y) (x) = f(x), (1.3)

co(x)y(x) +)_ exl(z) (D) (z) = f(x). (1.4)
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The fractional integration and differentiation operators in (1.1)—(1.4) can have differ-
ent forms. A survey of methods and results on fractional integral equations was given in
the books by Gorenflo, Vessela [2] and Samko, Kilbas, Marichev [4], while on fractional
differential equations in two survey papers by the author and Trujillo [13, 14].

Among these equations the one-dimensional linear fractional integral and differential
equations (1.3), (1.4) and the “model” nonlinear linear differential equation of the form

D%y(x) = fl, y(z)] (1.5)

with real o > 0 or complex a (Re«) > 0, containing the Riemann — Liouville fractional
integrals and derivatives Iy = I3,y and D% = D¢, y, a € R, were studied more.
For complex o € C, Rea > 0, such fractional integrals and derivatives of order « are
defined by

(IS y) () = F(la) / (zy(tt);llta (x >a; a€C, Rear) >0, (1.6)
and INn
D)) = (5:) 0@ @3>0 n=[Real+1),  (17)

respectively, I'(«w) being the Euler Gamma-function. It should be noted that the Rie-

mann — Liouville approach (1.6) to the definition of fractional integration is a general-
x
ization of the integration [ applied n times:
a+

] dt j it ... 72y(tn_1)dtn_1 - ﬁ j ( — )" y()dt: (1.8)

if we use the formula (n —1)! =T'(n) and replaced n € N by a« € C (Rea > 0), then
(1.8) yields (1.6). The fractional differentiation operator Dg, is inverse to the fractional
integration one from the left:

(Dg I y)(x) =y(x) («€C, Rea>0) (1.9)

for suitable function y(z). In particular if 0 < Rea < 1,

(D3+y)(:c)=%r(11a)/(i/(t)f;a, (1.10)

a

and if o =n € N, then (D7, y)(z) = (D"y)(x) (D = d/dx) is the usual derivative of
order n.

Integral equations (1.3) with Riemann - Liouville fractional integrals (1.6) are the
Volterra integral equations with power singularities, generalizing the classical Abel equa-
tion, and therefore these equations are called Abel - Volterra integral equations. As in
the theory of ordinary differential equations, the methods to the investigation of differen-
tial equations of fractional order (1.4) and (1.5), with the Riemann - Liouville fractional
derivative (1.7), are mainly based on the reduction of these equations to Volterra integral
equations of the second kind. This approach was used by many authors to investigate
the uniqueness and the existence of the solution of the Cauchy-type problem for the
nonlinear equation (1.5) on a finite interval of the real line and to obtain the explicit
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solution of such a problem for the linear equation (1.4). A survey of results in this field
was presented in the above paper by Kilbas and Trujillo [13, Sections 4 and 5].

Here we discuss some results in this connection and show that such a method can be
also applied to investigate the Cauchy-type and Cauchy problems to the one-dimensional
equations (1.5) and (1.4) with the so-called Hadamard and Caputo fractional derivatives
Doy = D2 y and D*y = “D¢,y of order a € C, Reaw > 0. The Hadamard
fractional derlvatlve (H D¢, y)(x) is deﬁned by

("Dgyy)(x) = 6" (T05y) (x) (x> a; n=[Rea] +1), (1.11)

where 0 = 2D, D = d/dx, is the so-called 0-derivative, and (7 y)(z) is the Hadamard
fractional integral of order a:

(T2 f%/ log (tt)dt (r >a; a€C, Rea>0). (1.12)
0

T
Such an integral is a generalization of the integration [ = applied n times:
x

a+
it fan T d 1 1 y(t)d
t t1 th1 a1 y(t)dt
to - log 2} AU 1.1
/ /y( i (n—l)!/(Ogt) t (1.13)

compare with (1.8). When o =n € N, then (¥ D7, y)(z) = (6"y)(x) is ¢ derivative of
order n.

The Caputo derivative (“Dg, y)(z) is defined via the Riemann - Liouville derivative
(1.7) by

(CDaer)( )_ ( l Z

where n = [Rea] + 1 for o ¢ N while n = a for & € N. When o ¢ N, there holds the
relation

y(k)

)ﬂ) (x) (n=[Rea]+1), (1.14)

n)
D20 = e [ i = Re(@)] 41, (1.15)

for suitable functions y. For n—1 < a < n the derivative CDg‘er in the form (1.15) was
defined by Caputo in [15] and presented in his book [16]. Therefore the constructions
(1.14) and (1.15) are called Caputo derivatives.

For one-dimensional linear differential equations of fractional order, as in the case of
linear ordinary differential equations, the same methods can be applied to study different
aspects of these equations. In particular, methods based on operational calculus, com-
positional relations and Laplace transform can be used to find their explicit solutions.
Here we discuss some results in this connection and show that the Fourier and Mellin
transforms can be also used to deduce explicit solutions of linear fractional integral
and differential equations of the form (1.3) and (1.4) with constant coefficients ¢, € R
and with the Liouville and Hadamard fractional integrals %y = I*_  y = I{y and
I*y = Jgy, and fractional derivatives Dy = D*__ ,y = D¢y and Dy = HDOer,
defined on the real line R and on the half axis Ry = (0, 00), respectively.

The multi-dimensional Fourier transform can be also applied to solve in closed form
of the linear integral and differential equations (1.3) and (1.4) with constant coefficients
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¢y € R with the Riesz fractional integral %y = I%y and derivative D*y = D%y of
complex order v € C (Rea > 0). Such integrals and derivatives are defined as negative
and positive powers (—A)~%/? and (~A)®/? of the Laplace operator

02 o

A=——+.. .+,
0z? ox?

(1.16)

and it can be represented in terms of the direct F and the inverse F—! Fourier trans-
forms by

(I*y)(x) = (=8)"y)(z) = (F 2|~ (Fy) 2), (1.17)
(Dy)(z) = (=A)*2y) (@) = (F Mal*(Fy) @), @ = (21,...,2,) €R". (1.18)

It should be noted that for 0 < a < n, the Riesz fractional integration I“ can be
realized for suitable functions f as the Riesz potential, given (for = € R™) by

(f)(@) =2(n.0) [ #dy (wn,a)M). (1.19)

~2e7n/2T (/2]

The method based on the Laplace and Fourier transforms, can be also applied to
deduce explicit solutions of partial differential equations of fractional order. Here we
discuss some results in this connection and show that such methods can be also applied
to investigate the Cauchy-type and Cauchy problems for partial fractional differential
equations with the Riemann — Liouville partial fractional derivative with respect to ¢ of
order o > 0 defined by [3, Section 24.2]

t

9\ [+t 1 u(x,y)dt

RL o )

D, t)=|( = t ; 1.2
( 0+,tu) (2,1) <8t> T — {a]) / eI (x>0, t>0; a>0), (1.20)

0
[a] and {a} being the integral and fractional parts of «, and with the Caputo partial
fractional derivative with respect to ¢ of order 0 < a < 1:

(D)t ) = F(ll—a) / 8u((9:, z) - 3:)a (reR, t>0;0<a<1). (1.21)

0

Section 2 deals with the Cauchy-type problem for nonlinear fractional differential
equations with the Riemann—Liouville and Hadamard fractional derivatives (1.7) and
(1.11). Section 3 is devoted to the Cauchy problem for the nonlinear equations with the
so-called sequential fractional derivatives and with the Caputo derivative (1.14). Op-
erational and compositional methods to solution of one-dimensional fractional integral
and differential equations are discussed in Sections 4 and 5, respectively. The method to
solve such equations based on the Laplace transform is discussed in Section 6, while on
the Fourier and Mellin transforms in Section 7. Such an integral transforms approach to
solution of partial differential equations is presented in Section 8. Some problems and
new trends of research are discussed in Section 9.

We also mention that many authors have applied methods of fractional integro-
differentiation to constructing solutions of ordinary and partial differential equations,
to investigating integro-differential equations and to obtaining a unified theory of special
functions. We do not discuss such problems here. Anyone may become acquainted with
methods and results in these fields in the books [3, Chapter 8] and [17].
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2. Cauchy-type problems for ordinary differential equations of fractional
order: method of reduction to Volterra integral equations

In the beginning we indicate three first papers devoted to reduction of fractional
differential equations with the Riemann - Liouville fractional derivative Dg, y, given
by (1.7), to the Voltera integral equations. Pitcher and Sewell [18] first considered the
nonlinear fractional differential equation

(Dary)(x) = fle,y(x)] (0<a <1, acR), (2.1)

provided that f(z,y) is bounded and Lipschitzian with respect to y in a special region
G C R x R. They tried to prove the uniqueness of a continuous solution y(z) of such
an equation on the basis of the corresponding result for the nonlinear integral equation

L[y
o) (x—t)l—afo (x>a; 0<a<l). (2.2)

a

y(x) —

But the result of Pitcher and Sewell given in [18, Theorem 4.2] is not correct because
they have used the relation I$, Dg, y =y instead of the correct one:

(Ia+ Doy y)(x) = y(x) — m(fﬂ —a)*™t, B = (L") (at). (2.3)
However, the paper of Pitcher and Sewell contained the idea of the reduction of the
fractional differential equation (2.1) to the Volterra integral equation (2.2).
Barrett [19] first considered the Cauchy-type problem for the linear differential equa-
tion
(Dgiy)(x) = Ay(x) = f(x) (n—1<Rea<n; A€, (2.4)

with the initial conditions
(D2 *y)(at) =b, €C (k=1,2,...,n) (2.5)

on a finite interval (a,b) of the real axis R. Here (Dg_:ky) (a+) means the limit in the
right neighborhood (a,a +¢€) (¢ > 0) of the point a:

(Dai*y)(a+) = (Dai*y)@) (L<k<n-—1), (2.6)

lim
r—a+
(Day"y)at) = lim (I7%)(2) (@ #n),  (Dei"y)(at) =y(a) (a=mn). (27)

Barrett proved that if f(z) belongs to L(a,b) or L(a,b)()C(a,b], then the problem
(2.4)—(2.5) has a unique solution y(x) in a subspace of L(a,b) and this solution is
given by

n

y(@) = bje —a)* I Eaajir (A —a)*) +

j=1
+/(m — 1) By Mz — 1)) f(t)dt. (2.8)
a
Here E, (z) is an entire function, called the Mittag—Leffler function, defined by
Ea = 1. 1 A ) ) 2.
5(2) ZNM% (@>0, 3>0) (2.9)

k=0
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see |20, Section 18.1]. Arguments of Barrett were based on the formula for the product
I$ D¢, f generalizing (2.3):

n (m _ a)a—k

(g4 Dayy)(x) = y(x) — Z Bkm, (2.10)
k=1
B = 4" (a), yn-alz) = (I17%)(z) (a€C, n=[Rea] +1). (2.11)

Barrett [19] has used implicitly the method of reduction of the Cauchy-type problem
(2.4)—(2.5) to the Volterra integral equation of the second kind

BN bj Cgyeig A [ y(t)dt 1 f(t)at
y(m)*;r(a—jﬂ)(x ) +F(a)a/(x—t)1—0‘+F(a)a/(x—t)1_“ (2.12)

and the method of successive approximations. According to this method, we set

- bj a—j
Yo(z) = ; m(i —a) )

s A [ yma(dt 1 [ f)dt .
Ym(2) = yo( )+F(a)/(:cft)lfa—i—l“(a)/(xft)l*a (m=1,2,...), (2.13)

a a

and have

n_ mtl AL (3 — q)id mooyi—1

ym(x) =D bj Y Tai—j+1 " Z (o) /(30 — ) f(t)dt (2.14)

j=1 i=1

for m =1,2,.... Passing to a limit, as m — oo, and taking into account (2.9) we obtain
the solution (2.8) of the Cauchy-type problem (2.4)-(2.5).
Al-Bassam [21] first considered the Cauchy-type problem

(Dary)(@) = flz,y(x)] (0 <a<1), (2.15)

(DaT'y)(at) = (7 %y)(a+) = by, by €R, (2.16)

in the space of continuous functions C|a, b] provided that f(x,y) is a real-valued, contin-
uous and Lipschitzian function in a domain G C R x R such that sup(, ,yeq |f(z,y)| =
by < co. Applying the operator I, to both sides of (2.15), using the relation (2.3) and
the initial conditions (2.16), he reduced the above problem to the Volterra nonlinear
integral equation

L[ Ity
Na) ) (x—t)l-«

a

b
()

y(x) = (x—a)* ' + (x>a; 0<a<l). (2.17)

Using the method of successive approximations, Al-Bassam established the existence
of the continuous solution y(z) of the equation (2.17). Besides, he probably first indi-
cated that the method of contracting mapping can be applied to prove the uniqueness
of this solution y(z) of (2.17), and gave such a formal proof. Al-Bassam also indicated
— but did not prove — the equivalence of the Cauchy-type problem (2.15)-(2.16) and
the integral equation (2.17), and therefore his results on the existence and uniqueness
of the continuous solution y(x) could be true only for the integral equation (2.17).
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We also note that the conditions suggested by Al-Bassam are not suitable to solve the
Cauchy-type problem (2.15)—(2.16) in the simplest linear case when f[x,y(z)] = y(x).

The same remarks apply to his existence and uniqueness results formulated without
proof to more general than (2.15)—(2.16) Cauchy-type problem with real « > 0:

(Dgyy)(@) = flo,y(@)] (n—1<a<n, n=—[-a]), (2.18)

(D2 Fy)(a+) =by, byeR (k=1,2,...,n), (2.19)

where the corresponding Volterra equation has the form (2.17):

L b oy 1 [ flty)de
W - e g o o)

Jj=1

a
(x>a; n—1<a<n),

to the system of problems (2.18)-(2.19) and to more general than (2.18) differential
equations.

The approach suggested by Al-Bassam was used by many authors. However, they
have not completed their investigations. Most of the researchers obtained some results
not for the initial value problems, but for the corresponding Volterra integral equa-
tions. Some authors considered only particular cases. Moreover, some of the results
obtained contained mistakes in the proof of the equivalence of initial value problems
and the Volterra integral equations and in the proof of the uniqueness theorem. In this
connection see Kilbas and Trujilo [13, Sections 4 and 5.

Kilbas, Bonilla and Trujillo [22, 23] have studied the Cauchy-type problem (2.18)—
(2.19) with complex o € C (Re(w) > 0) on a finite interval [a,b] of the real axis R
in the space of absolutely integrable functions L(a,b). The equivalence of this problem
and the nonlinear Volterra integral equation (2.20) was established. The existence and
uniqueness of the solution y(z) of such a problem was proved by using the method of
successive expansions. The results obtained were extended to the system of problems
(2.18)—(2.19) in [24].

Similar results to the Cauchy-type problem (2.18)—(2.19) in the weighted space of
continuous functions Cj,_q[a,b]:

Cr—ala,b](z) = {y(z): (z—a)" *y(z) € Cla,b]; a€C, Rea >0}, (2.21)

with n = [Re(a)]+1 for a« ¢ N and n = «a for a € N, were established in Kilbas, Bonilla
and Trujillo [25] and Kilbas, Rivero and Trujillo [26]. In particular, the corresponding
results were deduced to the Cauchy-type problem (2.15)—(2.16), with real 0 < a <'1
being replaced by complex «, 0 < Re(a) < 1, and similar assertions were established
to the weighted Cauchy problem
(Dary)(@) = flz,y(@)],  lim [(z —a)""y(@)] = b1, b €R, (2.22)

equivalent to the problem (2.15)-(2.16), in the space Ci_4[a,b].

Kilbas and Marzan [27] extended the above results to the Cauchy-type problem
for more general than (2.18) nonlinear differential equation of complex order @ € C
(0<Reag <...<Rean_1 <Rea):

(Dayy)(x) = f [z,y(2), (Dgiy) (@), ..., (DY) (@)] (2.23)

with the initial conditions (2.19).



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 79

3. Cauchy problems for ordinary differential equations of fractional order:
method of reduction to Volterra integral equations. Continuation

Dzhrbashyan and Nersesyan [28] first studied the linear differential equation of the
form

(D7y)(x) = (D7"y Zak (D7 ty) () + an(2)y(v) = f(x), (3.1)

with the modified fractional derivatives (D7y)(z) and (D7»—*-ty)(z) (k =
.,n — 1) defined in terms of the Riemann — Liouville fractional derivatives (1 7)

D =Dyt "Dy .. D§Y (k=1,2,...n), D% =D§ ", (3.2)
k

op=>Y aj—1(k=0,1,....,n); 0<a;<1 (j=0,1,...,n) (3.3)
j=0
(ak:O'k*O'kfl (k:1,2,...,n), 040:00+].).

Constructions of the form (3.2) are known as sequential fractional derivatives. Special
cases of such modified fractional derivatives in the form (D8‘+)k (k € N) together with
the corresponding linear fractional differential equations were investigated by Miller and
Ross [4].

Dzhrbashyan and Nersesyan [28] proved that for «g > 1 — «, the Cauchy problem

(D7my)(x) = f(z), (D%*y)(04+)=b,C (k=0,1,...,n—1) (3.4)

has a unique continuous solution y(z) € C[0,d] on an interval [0,d] provided that
the functions ap(x) (0 <k <n—1) and f(z) satisfy some additional conditions. In
particular, when ax(z) =0 (k=0,1,...,n), they obtained the explicit solution

x

— b 1 o1
ZO - 1k+ o " T /(:c — )7 f(t)dt (3.5)

a

of the Cauchy problem
(D7my)(x) = f(x), (D%%y)(0+)=br (k=0,1,....,n—1). (3.6)

Bonilla, Kilbas and Trujillo [29] constructed the theory of special classes of linear
fractional differential equations with sequential fractional derivatives and with constant
coefficients.

Delbosco and Rodino [30] considered the Cauchy problem for the nonlinear differ-
ential equation

(Dgy)(@) = flay(@)] (0<z <T), y™(0)=y(0) (k=0,12,....[a]), (3.7)

with continuous function f(z,y) on [0,1] x R. Using Schauder’s fixed point theorem,
they gave conditions for the existence of at least one and of a one continuous solution
y(x) on [0,6] for the corresponding Volterra integral equation. Delbosco and Rodino
showed that if additionally f[z,y(x)] is weighted Lipschitzian:

Flo (@)~ fle Y @)l < ly(e) - V()] (38)
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and flz,y(z)] = fly(z)] and f(0) =0, then the Cauchy problem
(Do1y)(x) = fly(x)], yla)=beR (0<a<l, a>0) (3.9)
and the weighted Cauchy problem

(Deyy)(2) = fly(x)], lma'""y(z)=ceR (0<a<l) (3.10)

x—0

have a unique solution y(x) such that z'~%y(z) € C[0,h] for any h > 0.
Hayek, Trujillo, Rivero, Bonilla and Moreno [31] investigated the Cauchy problem
for a system of linear differential equations

(Dgyy)(x) = flz,y(x)], yla)=b (0<a<l, a>0,becR") (3.11)

with a real valued vector function y(x) provided that f(x,y) is continuous and Lips-
chitzian with respect to y. Applying the method of contractive mapping defined on a
complete metric space, they proved the existence and uniqueness of a continuous solu-
tion y(z) of this problem. In particular, they obtained such a result to the system of
linear differential equations

(Do y)(x) = A(x)y(z) + B(z), yla)=b (0<a<l1,a>0, beR") (3.12)

with continuous matrices A(z) and B(z).

Kilbas, Marzan and Titioura [32] considered the Cauchy-type problem for the non-
linear differential equation of the form (1.5) with the Hadamard fractional derivative
(1.11) on a finite interval (a,b) (0 <a <b < c0):

("D3yy)(x) = flo.y(z)] (a€C, Rea>0); a>0), (3.13)

where n = [Rea+ 1] for « ¢ N and n = a for a € N, with the initial conditions

D2 y)at) =bg, breC (k=1,2,...,n). (3.14)
It was proved the equivalence of this problem and the Volterra integral equation

xT

JXZ;F _j+1 (k’gg)a1+ﬁ/(10g%)a1f[t,y(t)]% (x> a) (3.15)

a

in the space X}(a,b) of Lebesgue measurable functions y(x) on [a,b] such that
[y(x)/x] € L(a,b). Using this fact the conditions were given for a unique solution
of the problem (3.13)—(3.14) in X{(a,b). The method of successive approximation can
be also applied to establish a unique solution of the corresponding Cauchy-type problem
to the linear fractional differential equation

(DY y)(x) = Ay(z) + h(z) (A €C, Rea > 0)), (3.16)
with the initial conditions (3.14) in the form

Zn:bg (log ) EOW,J-Jr1 (>\ <1Og%)“) "

Jj=1

xT

+ / (1o 2) " B (A (102 2)") s % (3.17)

a
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Kilbas and Marzan [33, 34] investigated the differential equation of the form (1.5)
(“D2,y)(z) = flr,y(z)] (a<x<b; a€C, Rea>0) (3.18)
with the Caputo fractional derivative (1.14) and with the initial conditions
y®(a+) =bg, bpeC (k=0,1,2,....,n—1), (3.19)

where n = [Rea]+1 for a ¢ N while n = a for a € N. The equivalence of the Cauchy
problem (3.18)—(3.19) and the corresponding Volterra equation

i j—] r—a)* + F(la) {I[t’_ygi]_dj (x>an—-1<a<n) (3.20)

a

in the space C" '[a,b] of functions y(x) continuously differentiable up to n — 1 was
proved. On the basis of this fact and Schauder’s fixed point theorem, the conditions for
the existence of a unique solution y(x) € C" 1[a,b] of the problem (3.18)—(3.19) and
conditions, when this problem has at least one such a solution, were given. Using the
method of successive expansions, the unique solution of the Cauchy problem for the
corresponding to (3.18) linear equation

DX y)(x) = My(z) = f(x), yM(a+)=breC (k=0,1,2,...,n—1), (3.21)

was deduced in the form

n—1 z

y(x) = bj(x —a) Ea 1 Mz —a)*) + /(z —t)*  Ea,a (Mz — 1)%) f(t)dt. (3.22)
i=1 4
4. Ordinary differential equations of fractional order:
operational calculus method

The usefulness of operational calculus to solve ordinary differential equations is well
known [35]. The basis of such an operational calculus for the operators of differentiation
was developed by Mikusinski [36]. It is based on the interpretation of the Laplace
convolution

(f * g)(x /fx—t (4.1)

as a multiplication of elements f and ¢ in the ring of functions continuous on the
half-axis R . Mikusinski applied his operational calculus to solve ordinary differential
equations with constant coefficients.

Mikusinski’s scheme was developed by Ditkin [37], Ditkin and Prudnikov [38], Meller
[39] and Rodriguez [40] to construct the operational calculus for a Bessel-type differ-
ential operators with nonconstant coefficients. Dimovski [41] considered the transform
approach to the development of operational calculus. Rodriguez, Trujillo and Rivero
[42] were probably the first who applied operational calculus for a Kratzel transform to
solve a Bessel-type differential equation of fractional order.

A series of papers were devoted to develop the operational calculus to fractional
calculus operators with applications to solution of differential equations of fractional
order. Luchko and Srivastava [43] have constructed the operational calculus to the
Riemann - Liouville fractional derivative D§ y given in (1.7), in a special space C_; of
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functions y(z) such as z7P(D§, )*y(z) € C[0,00) (k=1,2,...,m) for some p > —1.
They proved that the operation x) defined for A > 1 by

x

(Foa0)@) = (B o)) = [(B7 D -natde (=1, (@2)

0

IO’\J:l being the operation of Riemann — Liouville fractional integration (1.6), is the con-
volution (without divisors) of the linear operator I§, for o> 0 in the space C_;, and
that the Riemann—Liouville operator I, has the convolution representation

za—k
1)) = (s o) (123<ad 1 b= o5 ). 0)
They showed that the space C_; with the operations %) and +, having the property
of distributivity

(fex(g+h) (@) = (fxx9)() + (fxx h) (@) (f,9,h €Ca), (4.4)

becomes a commutative ring without divisors of zero, and therefore, following Mikusin-
ski [36], C_1 can be extended to the quotient field M. Luchko and Srivastava indicated
that the elements of the field M can be considered as convolution quotients f/g with
the operations

i+ﬁ:(f*xgl)+(9*xf1), (i) (ﬁ):(f*xfl), (4.5)
9 91 (9%x91) g g1 (9%x91)
which means that the ring C; can be embedded in the field M by the map
flz) — (b f)(@) (4.6)

hz)

with h(x) in (4.3). On the basis of these facts they defined the algebraic inverse of the
operator I, as an element S of the field M which is reciprocal to the element h(x)

in the field M: T h h
S=—-=—F==— 4.7
h = (h*xh) — h?’ (4.7)
where I = h/h denotes the identity element of the field M with respect to the operation
of multiplication.

Introducing the space
QMCoy) = {f@) eCr: (DEY @) eCoy (k=1,2...,m)}  (48)

with m € N and o > 0, Luchko and Srivastava proved the relation for f(z) € Q' (C_1)
in the field M

m—1

((Dg )™ f) (x) = S™fF = S™*P(Dg )k f, (4.9)

k=0

where the operator ' = E — I§', D§, is given by

(Ff)(@)i= (B = I DE)N) () = 3 gy Hm(PEF @) (410)
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and F is the identity operator. This result means that the Riemann — Liouville fractional
differentiation operator Dg, is reduced to the operator of multiplication in the field
M.

Such an operational calculus was applied by Luchko and Srivastava [43] to solve the
following Cauchy-type problem:

(Pn(D§)y) (2) = f(2),  Plz) =) e, (4.11)
k=1

with any @ > 0 and f(z) € C_; in the space Q7'(C_1) with the initial conditions
lim (DS R (DG ) y) () =bie (i=0,1,..m—1; k=1,...,7). (4.12)

They reduced this problem to the algebraic equation in the field M

m—1 m—1
Pm(S):f+ 23(5)717 i CerjS] 170,1,...,m—1), (413)
i=0 7j=1

found its unique solution
m—1

(4.14)

i=0
and gave the explicit solution of the Cauchy-type problem (4.11)—(4.12) in terms of the
special function

Z k'I‘ ak +0)’ (4.15)

where (o) is the Pochhammer symbol deﬁned by

(@r=1 (r=0(e+1)...(e+k-1) (k=12,...). (4.16)

(4.15) is a generalization of the Mittag - Leffler function (2.9), deducing from (4.15) for
o=1.

Luchko and Yakubovich [44], Al-Bassam and Luchko ]45] and Hadid and Luchko
[46] have used such a method to solve the Cauchy-type problems for fractional differ-
ential equations with constant coefficients involving the so-called Erdelyi— Kober-type
fractional derivatives — see [3, Section 18.1]. The explicit solutions in these cases are
expressed via the function of Mittag— Leffler type

o Zk
Ey((a,8)niz) = ) Ehyid (e _ : (4.17)

more general then (4.15).

Luchko and Gorenflo [47] have used the operational method to prove that the Cauchy
problem for the fractional differential equations with the Caputo fractional derivative
(1.15)

(“Dy)(z) — My(x) = f(x), (4.18)
y®P0)=by (k=0,1,...n—1;n—1<a<n) (4.19)
has the unique solution
n—1 z
=Y bp2"Eo i1 (Aa®) + /taflEa,a (M) fx — t)dt (4.20)
k=0

0
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in a special space of functions. They also investigated the Cauchy problem for more
general fractional differential equation

(Dgy)(z) — ch(Df’“y)(x) =fx) (a>a1>...>a,>0) (4.21)
k=1

with the initial conditions (4.19) and constructed its explicit solution via multivariate
Mittag-Leffler function.

The above and other results were discussed in a survey paper by Luchko [48]. We
also note that Elizarraraz and Verde-Star [49] obtained the explicit general solution of
the equation (4.11) and the explicit solution of the Cauchy-type problem (4.11)—(4.12)
by using linear algebra construction and classical methods of operational calculus. Their
approach was based on introducing divided differences of fractional order, coinciding
with the Riemann — Liouville fractional differential operators in a certain space of func-
tions, and generalized exponential polynomials, which are connected with functions of
Mittag— Leffler type.

5. Integral and differential equations of fractional order:
compositional method

The idea of the compositional method is based on the known formula for the Rie-
mann — Liouville fractional integral (1.6) and derivative (1.7):

(I (t— a)PH(z) = %(Jc —a)’*t*"1 (Ref > Rea) > 0, (5.1)
(Dg(t— a)ﬁfl)(x) = %(Jc — a)67a71 (Refs > Rea > 0). (5.2)

According to (1.6) and (1.7), (5.1) and (5.2) mean that the composition of the Riemann —
Liouville fractional integral I, derivative D¢, with the power function (z — a)’~!
leads to the same function apart to a certain function factor. It means that

y(z) = (z —a)’~ (5.3)

is a solution of the homogeneous integral equation

(o + 8)(z — a)® / y(t)dt

O YO R AT o4
and of the fractional differential equation
(D%, y)(x) = %y(:ﬂ) (Ref > Rea > 0). (5.5)

These arguments lead us to the conjecture that compositions of fractional integrals
and derivatives with elementary functions can give exact solutions of integral and differ-
ential equations of fractional order. Moreover, from here we deduce another assumption
about the possibility of such results for compositions of fractional calculus operators
with special functions. It allows us to find the explicit solutions of new classes of dif-
ferential equations of fractional order. The compositional method based on relations
between the Riemann —Liouville and Liouville fractional differentiation operators with
functions of Mittag— Leffler type was developed by the author together with Saigo, and



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 85

with functions of Bessel type — together with Bonilla, Rivero, Rodriguez and Trujillo.
Here we characterize some of the results.

Kilbas and Saigo [50-53] and Saigo and Kilbas [54, 55] have investigated compo-
sitions of the Riemann —Liouville fractional integral (1.6) and derivative (1.7) with a
special entire function of the form

Bomu(2) =Y cx2* (5.6)
k=0
with -
-+ Dla(im +1) + 1]
=1 = k=1,2,...). .
Co , Ck ]_;([) F[a(zm—i— I + 1) + 1] ( 3 4y ) (5 7)

Such a function, defined for &« > 0, m > 0 and [ € R such that a(m +1) # —1,-2,...
(140,1,2,...), was introduced by Kilbas and Saigo in [56] while studying asymptotic
properties of solutions of linear integral equations of Abel — Volterra type. When m =1,
this function coincides with the Mittag —Leffer function E, o41(2) in (2.9) apart to the
constant factor I'(ad + 1):

Ea,u(z) = F(al + 1)Ea,al+1(2)- (58)

Kilbas and Saigo proved the relations

1
(165 [t Bama(@t™™)]) (z) = —a0=" 4 [By ma(a®™) 1], (5.9)

provided that > 0, m >0 and [ > —1/I, and
(D(c)uJr [ta(l—m+1)Ea,m7l(atam)}> (I) _

Tl —m+1)+1]
~ Ta(l —m) +1]

2= 4z By (az®™), (5.10)
provided that [ > m — 1 — 1/«; in particular
(D5 [t By pa(@t®™)] ) (2) = @z Boma(az®™), (5.11)

when «(l —m) = —j for some j =1,2,...,—[—q].
On the basis of (5.9) they proved that the Abel-Volterra integral equation

xT

az” Yyt S . -
F(a)o/(zt)la _kzzofk:c (0<z<d<o0) (5.12)

y(z) =
with & >0, 8> —a and pp > —1, fr € R (k=0,1,...,n) has the solution
n
y(z) = Z fkmman,lJrﬁ/a,uk/a (a$a+ﬁ) . (5.13)

k=0

Using (5.11), Kilbas and Saigo showed that the homogeneous fractional differential
equation

(Dg,y)(z) = az’y(z) (O<z<d<oo; a>0, a0, B> —a) (5.14)
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with « # 1,2, ... has linearly independent [a] 4+ 1 solutions

Yi(2) =2 T Eo118/01+ (/e (@) (1=1,2,...,[a] + 1) (5.15)

for 8 > {a} = a—[a]. They also obtained the solution of the corresponding Cauchy-type
problem for (5.14) with the initial conditions

(DS ) (@)omo = b (k=1,2,...,[a] + 1) (5.16)
in the form
[a]+1 .
y(@) = > b1 Eo 101455 a (a2°F7). (5.17)
k=0

The result in (5.10) was applied to obtain the particular solution yo(x) of the non-
homogeneous fractional differential equation with a quasi-polynomial free term

(D§,y)(z) = axly(x) + Zfix‘” O<z<d<oo; a>0,a#0, feR), (5.18)
=0

where pu;, fi € R (i =0,1,...,n), and the solution of the corresponding Cauchy-type
problem for the equation (5.18) with the initial conditions (5.16). In particular, explicit
solutions of fractional differential equations of order 1/2, arising in the theory of voltam-
metry at expanding electrodes [1, equation (8.6.1)] and in the theory of polarography
were constructed.

Kilbas and Saigo also considered the connection of the generalized Mittag-Leffler
function (5.6) with the right-sided Liouville fractional integrals I®y and derivative
D%y of order a € C (Rear > 0) defined for z € R by

(I2y)(x) = F(la) / 0 ?i(’;);lf_a (e € C, Rea > 0), (5.19)
(D%y)(x) = (—%) (I"*y)(xz), n=[Rea]+1, (5.20)

For such fractional integrals and derivative they proved a relations similar to (5.9) and
(5.10) and applied them to obtain the particular solutions of the non-homogeneous
integral equation of the form (5.12), with the integral from 0 to x being replaced by
the integral from x to oo, and of the differential equation of the form (5.18), with Dg,
being replaced by D¢, in terms of the generalized Mittag— Leffler type functions (5.6).

Saigo and Kilbas [57] applied such an approach, based on compositions of usual
derivatives with the generalized Mittag—Leffler type function (5.6), to solve in closed
form of new classes of ordinary differential equations and corresponding Cauchy-type
problems.

Kilbas and Saigo [58] studied the solvability of the nonlinear equation
(Dgyy)(x) = azPy™(z) + b’ (0<z<d<oo; a>0 meR, m#1) (5.21)

with real a (a #0), b, p and v. They proved that if (o + 8)/(1 —m) > a — 1, then
the corresponding homogeneous nonlinear equation (b = 0) has at least one solution
given by

: (5.22)

1 —-m
D(e+1) }/“ "o e

y(@) = LLF(,u —a+1)



FRACTIONAL INTEGRAL AND DIFFERENTIAL EQUATIONS 87

while the non-homogeneous nonlinear equation (5.21) with v = (8 4+ ma)/(1 —m) has
the solution

a+f3
= Azt = 2
y(z) =", p=1—, (5.23)
provided that the transcendental equation
F<a+ﬁ+1a>[a§m+b]F<a—+ﬁ+1)§0 (5.24)
1-m 1-m

is solvable and & = A is its solution. The problem of the uniqueness of the solutions
(5.22) and (5.23) was also discussed in [58]. The solvability of the nonlinear equation
(5.21) depends on the solvability of the transcendental equation (5.24). Positive solutions
of such a transcendental equation were investigated in [59].

Kilbas, Bonilla, Rodriguez, Trujillo and Rivero [60] and Bonilla, Kilbas, Rivero,
Rodriguez L. and Trujillo [61] have studied compositions of the left- and right-sided
Liouville fractional integrals derivatives (5.19) and (5.20) with the special functions

Z)(2) = /t”_1 exp (—tp - %) dt (z€C, Rez>0; p>0, ve() (5.25)
1
and -
\B) () — A _/ 19 1)1-1/Bye ot gy 5.26
'Y,O'(Z) F(,y_i_l_l/ﬁ)l ( ) e ( )

1
(z€C, Rez>0;5>0; veC, Rev>B—1; o €R).

These functions are analytic with respect to z, and are invariant relative to the Liouville
fractional integrals (5.19) and derivatives (5.20) except for a transformation of the
indices:

(1°Z%)(z) = Z5+ (),  (1°AP))(x) = A)_ (@), (5.27)
(D2Z%)(x) = 20 %(x), (D2AP))(2) = A) (@), (5.28)

These relations were applied in [60] to obtain explicit solutions of differential equa-
tions of fractional order

eD"ly + (v — p)aD’y — py = 0, (5.29)

2? D2y 4 (2v = 3p — DaD”y + (v — p)(v — 20)D*Py + p*y = 0 (5.30)

in terms of the function (5.25), and in [61] to obtain the explicit solution of the integral
equation of the third kind

oo

zy(z) =/ {7ﬁ+0+

x

(t— =)
()

(t —x)°
+(B—0— 1)m y(t)dt =0 (x>0) (5.31)

and of differential equations of fractional order
z[(D2 ) (@) — (D2 y)(@)] — (8 + 0 + @) (D2 y) (2)+

+o+a+1-06)(D2y)(x)=0 (z>0) (5.32)

in terms of the function (5.26).



88 A A. KILBAS

6. Fractional integral and differential equations:
Laplace transform method

Here we discuss the method based on the Laplace integral transform to deduce
explicit solutions of linear integral and differential equations of fractional order. First
we present a scheme to solve fractional integral and differential equation of the forms
(1.3) and (1.4) by using the direct and inverse Laplace transforms £ and £7':

(Le)(p) = /w(t)e"’tdt, (6.1)
Y400
(L71g)( / p)dp (y=Rep>o, 0 €R). (6.2)

One may find the theory of Laplace transform in the books by Ditkin and Prudnikov
[35], Titchmarsh [62] and Sneddon [63].
The transforms £ and £~! are inverse to each other for suitable functions ¢, g:

Lo =y, LL'g=g. (6.3)

We consider the equations (1.3) and (1.4) with the Riemann - Liouville integrals
I** = Ig% and derivatives D = Dg% and constant coefficients ¢, € C:

coy(@) + 3 e (Iky) (@) = f(2) (@ >0), (6.4)
k=1
coyla +Z%%w = f(x) (z>0). (6.5)

It is known that for suitable functions y(z) the Laplace transforms of I§,y and Dg, y
are given by

(LIg y)(p) =p “(Ly)(p), (LDgry)(p) = p*(Ly)(p)- (6.6)

Applying the Laplace transform (6.1) to both sides of (6.4) and (6.5) and taking (6.6)
into account we have respective formulas

co+ Y ewp | (Ly)(p) = (Lf)(p), (6.7)
k=1

co+ Y cxp™ (p) = (Lf)(p). (6.8)
k=1

Using the inverse Laplace transform (6.2) we obtain particular solutions of the equations
(6.4) and (6.5) in respective forms

o) = (7 | SR ]) @) (6.9)

€0+ Dy CP Tk

o) = (e |G (6.10)

o + Dy CkP
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We note that Laplace transform method was first applied by Hille and Tamarkin
[64] (1930) to solve the Abel type integral equation of second kind

o0 - ooy [ G = @) (@ >0) (6.11)

(@—t)io

in terms of the Mittag-Leffler function (2.9) with 8 =1;
d [ .
olx) = . E, Mz =) f(t)dt, Eu(z)= Eq1(2). (6.12)
0

One may find results and bibliography of papers devoted to solution in closed form of
certain types of fractional integral equation (6.4) in the books by Gorenflo and Vessela
[2] and by Samko, Kilbas and Marichev [3].

Maravall [65] probably first suggested a formal approach based on the Laplace trans-
form to obtain the explicit solution of a particular case of the fractional differential
equation (6.5), but his paper published in Spanish, was practically unknown.

The Laplace transform was used by many authors to obtain the explicit solutions
of special cases of the differential equation (6.5): see Kilbas and Trujillo [13].

Miller and Ross [4] applied the Laplace transform method to solve the Cauchy
problem for the particular case of (6.5) with derivative o, = ka and 1/a=¢=1,2,...:

> e(DiLy) (@) + coy(x) = f(a), (6.13)
k=1
y(0) = ¢/ (0) = ...y~ D(0) = 0. (6.14)

Miller and Ross introduced a fractional analogue of the Green function G, (x) defined
via the inverse Laplace transform (6.2)

Go(z) = (Ll {P(t“)D (z), P(x)=co+ éckxk, (6.15)

and proved that the unique solution y(z) of (6.13)—(6.14) has the form of the Laplace
convolution of G (x) and f(x):

x

y(z) = / Galz — t)f(t)dt. (6.16)

0

These investigations were developed by Podlubny [5, Chapter 5]) who defined such
a fractional analogue of Green function G, (x) to more general equation (3.1), showed
that the solution (3.5) of the Cauchy problem (3.6) can be expressed in terms of G (x):

x

y(x) = ibkyk(wH/Ga(wt)f(t)dt, yk(z) = (DG DL - D Ga)(x). (6.17)
k=0 0

In particular, he found the explicit formula of G, (z) for the equation (6.5) as a multiple
series containing the Mittag — Leffler functions (2.9).

Examples of linear fractional differential equations of the form (6.5) and (6.13),
solved by using Laplace transform method and analogies of Green function, were given
by Miller and Ross [4, Chapters V and VI| and Podlubny [5, Sections 4.1.1 and 4.2.1].
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Gorenflo and Mainardi [66] applied the Laplace transform to solve the fractional
differential equation

(“Dgy)(x) = —p°y(x) + f(x) (a>0; p>0, z>0), (6.18)

with the Caputo derivative (1.15) and discussed the key role of the Mittag— Leffler
function (2.9) in the cases 1 < a <2 and 2 < a < 3.
Using the formula for the Laplace convolution
x

c / ke — 00t | | () = (CHE)EH D), (6.19)

0

by analogy with (6.15) we introduce the Laplace fractional analogue of the Green func-
tion

Gy () = (z:l [ Pal(x)D (), Pa(z) = co Jréckxa’“. (6.20)

Then the solutions (6.9) and (6.10) of the integral and differential equations (6.4) and
(6.5) have respective forms of the Laplace convolutions of G, ... a,, (1/2) and f(z):

y(z) = /Gamam (ﬁ) Ft)dt, (6.21)
0
and of G, q, (x) and f(z):
y(x) = Gou,...,am (I - t)f(t)dt' (6'22)
/

7. Fractional calculus equations: Fourier and Mellin transforms method

Similarly to Section 6, we present a scheme to solve fractional integral and differential
equations of the forms (1.3) and (1.4) by using direct and inverse Fourier transforms F
and F~1:

[o )

Foa) = [ ottt (@ eR) (1)
F o) = 5 [ o (e R), (12)

and direct and inverse Mellin transforms M and M~1:

oo

(Mo)s) = [ ettt (s€ ) (7.3)

y+oo
(M7 lg)(x) == [ 2 °g(s)ds (y=Rep). (7.4)
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One may find the theory of Fourier and Mellin transforms in the books by Titchmarsh
[62], Sneddon [63] and Ditkin and Prudnikov [35]. In particular, they are inverse to each
other for suitable functions ¢, g:

FlFo=9, FFlg=gy; (7.5)

M IMp=p, MM lg=y. (7.6)

We consider equations of the form (1.3) and (1.4) with constant coefficients ¢ € R

coy(x) + ch (I*y) (2) = f(z) (x>0; ¢, €C, k=0,1,...,m), (7.7)
k=1

coy(x) + ch (Dy) (z) = f(z) (x>0; ¢t €C, k=0,1,...,m), (7.8)
k=1

involving the so-called left-sided Liouville fractional integrals and derivatives I{*y and
D%y of order o € C (Rea > 0) defined for z € R by

(I29)(a) = (1a) / (xy_(tg)df_a (@ eC, Rea>0), (7.9)
(D%y)(x) = (%) (I~ %y)(z), n=[Rea]+1. (7.10)

It is known [3, Section 7.1] that for suitable functions y(z) the Fourier transforms of
I¢y and D¢y are given by

(FIZy)(z) = (—ix)"*(Fy)(z), (FDIy)(x) = (—ix)* (Fy)(z). (7.11)

Applying the Fourier transform (7.1) to both sides of (7.9) and (7.10), taking (7.11)
into account and using the inverse Fourier transform (7.2), we obtain solutions of the
equations (7.7) and (7.8) in respective forms

)= (7 [y ) 1
- ([l

Using the Fourier convolution formula
F| [ ke oswit ] | @) = FREE) . (r.14

by analogy with (6.20) we can introduce the Fourier fractional analogue of the Green
function

1
G,

v (%)

(]—'—1 [Pll D (x), Pa(z)=co+ Y cx(—iz)™, (7.15)
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and rewrite the solutions (7.12) and (7.13) in respective forms of the Fourier convolution
of Ga,.....a, (1/2) and f(z):

y(z) = /G}h, . (xl_t) f(t)dt. (7.16)
and of Gg, ... a., (z) and f(z):
y(x) = /G}ll, o, (T =) f(t)dt. (7.17)

Similarly it is proved that the equations (1.3) and (1.4) with constant coefficients
cr € R

coy(x —|—ch Ia’c x)=f(z) (x>0; ¢, €C, k=0,1,...,m) (7.18)

coy(w +ch (D*y) (z) = f(z) (z>0; cx €C, k=0,1,...,m) (7.19)

with the right-sided Liouville fractional integrals I** and derivatives D", defined in
(5.19) and (5.20), has solutions of the forms (7.16) and (7.17):

v@) = [ G2 nlo = 0f 1 (7.20)

y(z) = / G2, o (a—0)f(0)dt, (7.21)

where

GZooa (1) = (]-'1 [P;(t)b (z), P3(x)=co+ ick(iz)a’“, (7.22)

Now we consider the equations of the forms (1.3) and (1.4) with constant coefficients
cr € R

coy(z) + ch (Joofy) () =f(x) (x>0; ¢, €C, k=0,1,...,m), (7.23)
k=1

coy(x —|—ch HDO"“ Y(z)=f(z) (>0; x€C, k=0,1,...,m), (7.24)

involving the Hadamard fractional integrals and derivatives J3'fy and H D@ty defined
by (1.12) and (1.11) on the half axis Ry, and the equations

coy(w +ch (T%y) (x) = f(x) (x>0; x €C, k=0,1,...,m), (7.25)
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m
coy(x +ch HD“" (x)=f(z) (x>0; ¢, €C, k=0,1,...,m), (7.26)
k=1

with the Hadamard fractional integrals and derivatives J“*y and 7 D%y defined for
complex o € C (Rea > 0) by

(T%y) 7(10g ) % (x > 0), (7.27)

and
T D2y)(z) = (—6)" (T y) (x) (x> 0; n=[Rea] +1), (7.28)

respectively; see the paper by Butzer, Kilbas and Trujillo [67].
It is known [67] that for suitable functions y(x) the Mellin transforms of Ji v,
HD3+y and J%, "Dy are given by

(MIGy)(s) = (=5)"*(My)(s), (MTDF,y)(s) = (—5)*(My)(s), (7.29)

(MT2Y)(s) = s (My)(s), (MTDy)(s) = s*(My)(s). (7.30)

Applying the Mellin transform (7.3) to both sides of (7.23) and (7.24), taking (7.29)
into account and using the inverse Mellin transform (7.4), we obtain particular solutions
of the equations (7.23) and (7.24) in respective forms

o= (v [ Jyey
o= (7 [t ] o,

Using the Mellin convolution formula

(M ( / k(D) f(t)%)) (1) = (ME) (D) (M) (p), (7.33)

0

by analogy with (7.15) and (7.22) we can introduce the Mellin fractional analogies of
the Green function

) = (M7 ] )@ Bw =as Sans

k=1
G = (M7 [ )@ PlR =t S a0

y(w) = 7 o (5) 102 (7.36)
0

vw) = [ G (5) £OF (737
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Similarly, on the basis (7.30) and (7.33) explicit solutions of the equations (7.25)
and (7.26) are deduced in respective forms

o) = [ (5) 10T (7.3%)
0
Gzl,m,am () = (M_l [Pgl(x)]) (), Pa5(x) =cp —l—gcks_“’“, (7.39)
and -
o) = [ (5) 10T (7.40)
0
Gglwﬁam (x) = (M_l [Paﬁl(:c)]) (), Pa6(x) =cp —l—écks“". (7.41)

8. Multi-dimensional integral and partial fractional
differential equations: integral transforms method

The Fourier integral transform method, presented in Section 7 to obtaining explicit
solutions of one-dimensional fractional integral and differential equations (7.7)—(7.8) and
(7.18)—(7.19), can be also applied to find explicit solutions of multi-dimensional linear
integral and differential equation of the form (1.3) and (1.4) with constant coefficients
cr € R:

coy(x) + > ex I%y) (z) = f(x) (x €R™ x €C, k=0,1,...,m), (8.1)
k=1

coy(z) + ch (D% y) (z) = f(z) (x€R™ ¢, €C, k=0,1,...,m), (8.2)
k=1

involving the Riesz fractional integrals I*+y and derivatives Dy defined in (1.17)
and (1.18). Such an equation can be solved by using the multi-dimensional direct and
inverse Fourier transforms F and F~1!:

(Fi)(z) = / ()l (x € RY), (8.3)
]Rn
—1 o ]‘ efia}t T n
7 g)(m)—(%)nR[ o) (€ RY). (34)

One may find the theory of multi-dimensional Fourier transforms in the books by Stein
and Weiss [68] and by Nikol’skii [69].
The transforms (8.3) and (8.4) are inverse to each other for suitable functions ¢ ,g:
FlFo=9p, FFlg=g; (8.5)
According to (1.17) and (1.18), there hold the formulas
(FI%) (z) = =]~ (Fy)(x), (FD) () = |z|*(Fy)(x). (8.6)

for suitable functions y.
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Applying the Fourier transform (8.3) to both sides of (8.1) and (8.2), taking (8.6)
into account and using the inverse Fourier transform (8.4), we obtain explicit solutions
of the equations (8.1) and (8.2) in respective forms

y(z) = (]—'1 [ FNM) D (@), (8.7)

co+ Yoy crlt]mox

I (FH(©)
y(z) = (7—' [CO S Ck|t|ak:|) (). (8.8)
Using the Fourier convolution formula
F /k(ﬂf —t)f@)dt | | (x) = (Fk)(x)(Ff)(x), (8.9)

n

by analogy with (7.15) and (7.22) we can introduce the Fourier multi-dimensional ana-
logue of the Green function

Gy () = <}‘1 {Pal(t)]) (@), Pa(z) = co +I§ck|z|a’“, (8.10)

and rewrite the solutions (8.7) and (8.8) in respective forms of the Fourier convolution
of Gas.....a (1/2) and f(z):

) = [ Goson (1) 1001 (8.11)
R’IL
and of G, q, (x) and f(z):
v@) = [ Gy lx — 11701 (8.12)
/

One may find results and bibliography of papers devoted to investigation of multi-
dimensional fractional integral equations involving the Riesz potential (1.19) and more
general constructions in the monograph by Samko [7]. A survey of results for par-
tial differential equations of fractional order and more general abstract equations were
presented in the paper by Kilbas and Trujillo [14].

Here we characterize a series of papers where the Laplace, Fourier and Mellin trans-
forms were applied to investigate the so-called fractional diffusion equations, and in
most of them formal explicit solutions of certain boundary and initial problems for the
considered equations were obtained.

Wyss [70] studied the fractional differential equation

—a—1 2
2 _ \20%u(x, 1)
(@) wu(z,t) =\ o2

(x>0; 0<a<1, A>0), (8.13)

where 27%7'/T'(a) is understood as distribution in a special space of generalized func-
tion. He investigated two problems for this equation
w(z,0) =0, u(0,7)=0b (t>0) (8.14)

when b =0 and b = —1. He sought a solution u(x,t) of these problems in the form

u(z,t) = f(y), y=t"a (8.15)
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and reduced (8.13)—(8.14) to the one-dimensional problem

df(2 2 =250 Ny) (y>0), [f(0)=0, f()=0, (8.16)
where
_o.ycrn tcflan lf()
(ﬁmﬂMM—Iwﬂ!‘(ﬂyyxg (>0, 0>0,neC) (8.17)

is the so-called Erdelyi — Kober-type fractional integral — see [3, (18.7)]. Applying to the
equation in (8.16) the direct and inverse Mellin transforms (7.3) and (7.4) and taking
into account the initial conditions in (8.16), Wyss obtained the following solutions of
the above two problems:

u(x,t) = *1/2H21 {2)\15 /2

1,1),(1,a/2)
(1/2,(1/2))7 ((1,1/2)7(0,1) ] (8.18)

and

t o 71/2H30 tfa/Q
u(x,t) = —m o

(1,1), (1, /2)
(0,1),(1/2,1/2),(1,1/2) (8.19)
respectively. These solutions are given in terms of the so-called H -function, which for
integers m,n,p,q € Ng (0 <m <gq, 0 <n <p), for complex a;, b; € C and positive
@i, ;>0 (1 <i<p; 1<j<q) is defined by

m,n (ai7ai)1p 1 / m,n (aiaa’i)lp
H™ ’ _ s >
P [Z‘ (bj, Bj)1q 27 M (b5 Bi)1.4

s] z7%ds, (8.20)

where

5} _ [12, Ty + 858) [Ty T(A — a; — as) (8.21)
[T, 1 T(ai + ais) H?=m+1 T(1—b;—B;s)

the contour C being specially chosen and an empty product, if it occurs, being taken
to be one. Note that the H -function contains most of elementary and special functions;
its theory can be found in the books by Mathai and Saxena [71, Chapter 2], Srivastava,
Gupta and Goyal [72, Chapter 1], Prudnikov, Brychkov and Marichev [73, Section 8.3]
and Kilbas and Saigo [74, Chapters 1 and 2].

Schneider and Wyss [75] considered the equation

— m,n (aia ai)l,p
H(s) = Hag { (b5, 8)1.q

u(z,t) = 2 Fu(x)th + r(la) / @“(z’;)dj (m—-1l<a<m, m=1,2), (8.22)
k=0 5

where z € R" (n > 1), t >0, fr(x) are the initial data, i. e.,
o\*
<§) u(z,t)|t=0 = fr(r) O<k<m-—1, m=1,2), (8.23)

and A is the Laplacian (1.16). (8.22) presents the fractional diffusion and the wave
equation when m =1, 0 < a <1 and m =2, 1 < a < 2, respectively. Applying to
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(8.22) the Laplace transform (6.1) with respect to ¢ and the inverse Mellin transform
(7.4), they obtained the solution of (8.22) in the form:

m—1
uuxr:EI/GﬁM—MJﬁum@, (8.24)
k=0gn

where y € R", [z —y| = [ 7_; (zx — yr)?] 1/2, and the analogies of the Green functions

G¢(r,t) (0<k<m-—1 m=1,2) are expressed via the H-function (8.20) by

—n/2

2k/ o
G (r,t) = 7;7 (g) B2 Bt—aﬂ (1,a/2) . (8.25)

(n/247k/aal/Q%(lgfk/aal/Q)

Schneider and Wyss also obtained an explicit solution of the fractional diffusion
equation (8.22) with 0 < o < 1 in the half space D = R"~! x R, with the boundary
dD = R"! x {0}, supplemented by a special boundary condition. Note that in the
case 0 < o <1 Schneider [76] gave a more elegant solution of the equation (8.22) with
m=1:

¢
1 Au(zx, s)ds
want) = f0) + o [ TSRS O<a <) uw0)=f@)  (520)
0
by application of the Fourier transform (8.3) with respect to « and the Laplace trans-
form (6.1) with respect to ¢ and their corresponding inversion transforms (8.4) and
(6.2).
Fujita [77] studied a two-dimensional equation (8.22) in the case 1 < o < 2

t

B 1 Au(x, s)ds _
u(x,t) = f(x) + o) O/ i—s)io (l<a<2;zeR, t>0) (8.27)

in the space C([0,00); S(R)) consisting of S(R)-valued continuous functions on [0, c0),
where S(R) is the space of rapidly decreasing functions of Schwartz. Using the Fourier
transform, he obtained its solution wu(x,?):

[o )

1
u(et) =% [ Palul (00, (3.25)
where
P,(x,t) = L / exp [7t|s|2/ae*7“ig“(5)i/2] e S ds, vy =2~ z (8.29)
’ 27 ’ a
— 00

Fujita also investigated propeties of the fundamental solution of (8.27).
Fujita [78] obtained the solution of the equation

— f(r te/2 . 1 / Au(z, s)ds
o) = F0) + a7 90+ 1y [ s

(8.30)

(1<a<2, zeR, t>0)
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in the form
P z+Yo (1)
wet) =g @+ Ya®) +f@-Yalt)+ [ g0, (83D

z=Yo(t)

where Y, (t) is a continuous, non-decreasing and nonnegative stochastic process with
Mittag— Leffler distribution of order «/2, and E stands for the expectation. Using the
Fourier transform (7.1) and probability methods Fujita [79] proved energy inequalities
for the integro-differential equations (8.27) and (8.30) which correspond to the energy
inequality for the wave equation.

The equation (8.13) belongs to the so-called fractional diffusion equations deduced by
Nigmatullin [80] (1984), [81] (1986). In the simplest case of a one-dimensional diffusion
such an equation is given by

2 0%u(x,t)

(RLD3+,tu)(xa t) 02

(>0, A>0), (8.32)

where (LD§, u)(x,t)is the partial Riemann-—Liouville fractional derivative (1.20).

When o = 1 and a = 2, (8.32) coincides with the well-known heat (diffusion) and

wave equations
ou(z,t) 5 u(z,t)  0*u(w,t) o 0%u(z,t)

= =\ — 0, A>0). 8.33

ot 927 0P 2 (>0 A>0) (8.33)

Mainardi [82-84] have studied the equation (8.32) with € R and ¢ > 0 for

0 < o < 2 under natural initial conditions. In [82] he investigated the Cauchy problem

for such an equation, used the method suggested by Schneider [76] and applied the

Laplace transform with respect to ¢ and the Fourier transform with respect to = to
find the explicit solution w(z,t) of this problem in the form

oo

(e, t) = / G — 7, 0) f(7)dr, (8.34)

— 00

where a fractional analogue of the Green function G(x,t) is expressed in terms of the
integral of the Mittag— Leffler function (2.9) and of a special function of Wright defined
for @« > —1 and complex g € C by

> 1 2k
(o, By 2) = gmg- (8.35)

In [83, 84] Mainardi has used the same approach to find the fundamental solutions
of the Cauchy problem and of the so-called signalling problem for the equation (8.32)
with 0 < a < 2 in terms of the Wright function (8.35).

Gorenflo and Mainardi [85] considered the fractional diffusion equation (8.32) with
0<a<2and XA =1 in the quarter-plane R, , = {(z,t) € R? : >0, t > 0} under
certain initial and boundary conditions. They applied the Laplace transform to obtain
the explicit solution of these problems in the form (8.34), where a fractional analogy
of the Green function G®(x,t) is the inverse Laplace transform with respect to ¢ of
exp (—xt®/?) and —t=*/?exp (—xt®/?), respectively.

Kochubei [86] has considered the diffusion equation

(D) (x,t) — (Au)(z,t) = f(x,1), (8.36)
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for € R™ and ¢ € [0,T], with the Caputo regularized partial derivative of order
O<a<l:

t
1 0 u(z,T) u(z,0)
D) (x,t) = —— —/ Ly — ——L | 8.37
(D@D = 5 |57 | Tora® ™~ (8:37)
0

He proved a uniqueness theorem for a bounded solution of equation (8.36) with the
initial condition

u(z,0) =up(z) (x€R™). (8.38)

Kochubei also found the fundamental solution of the Cauchy problem (8.36), (8.38). The
fundamental solution of the Cauchy problem for more general than (8.36) equation, in
which A is replaced by a uniformly elliptic operator, was constructed in terms of the
H -function (8.20) by Eidelman and Kochubei [87].

In conclusion we indicate that the method based on the direct and inverse Laplace
and Fourier transforms, being applied with respect to € R and t > 0, was applied
by Kilbas, Pierantozzi, Trujillo and Vazquez [88, 89] to find explicit solutions of the
Cauchy problem

(CDgu)(t,z) = M(DIu)(t, ) (8.39)
(t>0, —co<z<oo; 0<a<l, >0, A#£0),
zglfoou(tvx) =0, u(0+a :L') = g(’J)) (840)

with the Caputo partial fractional derivative (1.21), and of the Cauchy-type problem
("EDfu)(t,x) = N(DJu)(t, ) (8.41)

(t>0, —co<zr<oo; 0<a<l, >0, A\#0),
lim u(t,z) =0, ("FD& M) (0+,2) = g(x) (8.42)

r—Foo
with the Riemann — Liouville partial fractional derivative (1.20). The fundamental solu-
tions of the above problems were also constructed in [88] and [89].

9. Problems and new trends of research

In Sections 2-3 we have presented methods and results to investigation of fractional
differential equations based on their reduction to Volterra integral equations, in Sections
4-5 and 6-8 we have discussed methods and results to investigation of fractional integral
and differential equations based on operational and compositional methods, and on
integral transforms of Laplace, Fourier and Mellin. Some of these methods similar to
that known in the theory of ordinary differential equations. Now we characterize some
problems in these directions which can lead to new possible trends of research.

The main difficulties in the method of reduction of Cauchy-type and Cauchy prob-
lems for fractional differential equations to the corresponding Volterra integral equa-
tions concern the proof of the equivalence between solutions of these two constructions
in certain function spaces. This problem is closely connected with mapping properties
of the operators of fractional differentiation and integration in the spaces considered.
Such properties are well developed for the Riemann —Liouville fractional integrals and
derivatives (1.6) and (1.7) in the spaces of integrable and continuous functions, and so
at present the existence and uniqueness of a solution y(x) in these spaces are proved for
the simplest (model) nonlinear Cauchy-type problem (2.18), (2.19) and (2.23), (2.19)
and system of these problems, for nonlinear Cauchy problems (3.4), (3.7) and (3.13),
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(3.14). Tt seems that the existence and uniqueness results in these function spaces can
be proved for Cauchy-type and Cauchy problems for fractional differential equations of
another type.

Mapping properties of fractional integration and differentiation operators in function
spaces are suitable if we can characterize their images, and such a characterization is
given by a homeomorphism of the spaces considered with respect to fractional calculus
operators. Mapping properties of the Riemann —Liouville fractional integrals (1.6) are
well developed in Hélder spaces H*([a,b]) and in Ly(a,b) (1 < p < oo) spaces on
a finite interval [a,b] of the real line R and in the weighted spaces of these functions
with power weight [3, Sections 3-4]. Therefore we hope that these results can be applied
to study the existence and uniqueness of the Cauchy-type problems for the equations
(2.18), (2.23), (3.4), (3.7), (3.13) and more general fractional differential equations in
Hoélder- and Ly (a,b)-spaces.

Mapping properties of the Liouville fractional integration operator I, , I¢ = 1%,
(defined by (1.6) with a = 0 and (7.9)) and I% (defined by (5.19)), are also known
in weighted spaces of Holder and p-summable functions on a half-axis R, and on the
whole axis R; see [3, Sections 5, 9]. These results can be applied to study Cauchy-
type and Cauchy problems to fractional differential equations with the Liouville and
Caputo fractional derivatives. Applied problems can lead to studying fractional dif-
ferential equations with Riemann— Liouville, Liouville, Caputo, Hadamard and other
fractional derivatives in special function spaces. In this case it is necessary to develop
mapping properties of fractional calculus operators in such new spaces, which will lead
to new problems in fractional calculus.

It should be noted that if there is the equivalence of Cauchy-type problems and
corresponding Volterra integral equations, the known methods in the theory of Volterra
integral equations can be applied to investigate the initial value probelms in various
function spaces. In particular, the above arguments can be used to study Cauchy-
type and Cauchy problems for linear differential equations of fractional order. To find
explicit solutions of these problems and fractional differential equations, we can apply
the method discussed in Sections 2 and 3.

Section 4 shows that the operational calculus method allows us to solve non-
homogeneous linear fractional differential equations with constant coefficients. But
their solutions are usually obtained in certain sufficiently completed spaces of func-
tions. Thus the problem here is a justification of the solutions obtained in more simple
function spaces. Another problem is in studying the properties of special functions
generalizing the Mittag— Leffler function (2.9).

An approach presented in Section 5 and based on compositions of fractional inte-
gration and differentiation operators with elementary and special functions, allows us
to solve new classes of linear fractional integral and differential equations with noncon-
stant coefficients. The results were obtained on the basis of compositions of fractional
integration and differentiation operators with special functions of Mittag—Leffler and
Bessel types. We hope that it is possible to find new composition formulas between
fractional calculus operators and various special functions which will lead to explicit
solutions of new classes of fractional integral and differential equations.

The method based on Laplace, Fourier and Mellin transforms can be used more
suitable to solve linear fractional integral and differential equations with constant co-
efficients. In these cases we also have the problem concerning function spaces of solu-
tions. As we have seen in Sections 6 and 7, formally the one-dimensional Laplace and
Fourier and Mellin transforms yield the explicit solutions of the non-homogeneous lin-
ear fractional integral and differential equation (6.4)-(6.5), (7.7)-(7.8), (7.18)—(7.19),
(7.23)—(7.24) and (7.25)-(7.26), respectively. Since the Laplace, Fourier and Mellin

Y
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transforms (6.1) and (7.3) are defined on the half-axis R, while the Fourier trans-
form (7.1) on the whole real line R, we also need to investigate function spaces with
respect to these integral transforms. The same concern solutions of multi-dimensional
integral and differential equations (8.1)—(8.2).

Another problem is a representation of the explicit solutions (6.9)—(6.10), (7.12)-
(7.13), (7.31)—(7.32) and (8.7)—(8.8) in more simple forms. In some cases these solutions
can be represented via the fractional analogies of Green functions (6.20), (7.15), (7.22),
(7.34), (7.35), (7.39), (7.41) and (8.10) as convolutions of the form (6.21)-(6.22), (7.16)-
(7.17), (7.20)—(7.21), (7.36)—(7.37), (7.38), (7.40) and (8.11)—(8.12). The known explicit
representations of such analogies are expressed in terms of the Mittag— Leffler function
(2.9), its modifications and generalizations, and the H -function (8.20), and the Wright
function (8.35). We hope that there are other equations whose explicit solutions can
be given via the above functions, their generalizations and modifications. It seems that
in some cases such fractional analogies of Green function can be expressed in terms of
special functions of hypergeometric and Bessel type.

It should be noted that results presented in Section 8 and concerning Cauchy prob-
lems to some fractional partial differential equations, were obtained without proof of the
equivalence between the initial problems and corresponding multi-dimensional integral
equations. This equivalence depend on mapping properties of multi-dimensional frac-
tional calculus operators in some spaces of functions. Therefore the problem to prove
such an equivalence is still open, and it seems that solution of this problem can lead to
investigation of more general and new problems.

The above method of integral transforms to solve in closed form some fractional par-
tial differential equations with constant coefficients was suitable because of the simplest
domains for equations considered: half-space or the whole space. In more general case
such an approach is not suitable, and while considering fractional partial differential
equations on a domain in R™ another integral transforms must be used. Probably, the
Radon transform or its modifications are suitable for such an investigation.

It seems that another integral transforms such as the Hankel transform, the Meijer
transform and other transforms with special function kernels can be also used to deduce
explicit solutions of some classes of ordinary and partial fractional differential equations.

It was noted in Section 8 that the simplest partial diffusion equation (8.32) coincides
with classical heat and wave equations in limit cases a = 1 and « = 2, respectively.
This fact leads us to the hypothesis that partial fractional differential equations have
more various properties then the usual ones, and that the properties of the latter can
be deduced from the properties of the former. In this connection, from our point of
view, it is interesting to construct general theory of partial differential equations of
fractional order which generalize classical theory of partial differential equations of
elliptic, hyperbolic and parabolic types. It seems that in this way we can obtain new
properties of partial fractional differential equations which are impossible in classical
cases.

The present paper was prepared on the basis of the plenary talk made by the au-
thor on the International Conference "Actual Problems in Mathematics and Mechanics®
(Kazan, September 27 — October 1) devoted to 200 years of Kazan State University and
70 years of Scientific Research Institute of Mathematics and Mechanics of Kazan State
University.

This investigation was also supported by Belarusian Fundamental Research Fund
(project FO3MS-008).
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Pesome

A.A. Kusabac. HoBble HampaBJ/IeHUs] B TEOPUU IPOOHBIX UHTETPAIbHBIX U auddepennmain-
HBIX YPaBHEHUM.

B crarpe paccMaTpumBaiOTCH OJHOMEDHBIE W MHOTOMEPHBIE HWHTErpajIbHbIE yPABHEHUS,
obbikHOBeHHDBIE mqud deperuanpuble ypaBHenns u anddepeHnuasbHble ypPaBHEHUS B
YACTHBIX MPOM3BOIAHBIX Tuna Pumana—JInysusns, JInyswmns, Kamyro, Amamapa n Pucca.
Ob6cyx)maerca METo/T OCHOBAHHBIN Ha peayKiuu 3a1a9u Konm /719 0HOMEPHOr0 HeJIMHEHHOTO
npobuoro auddepeHnuasbHOT0 ypaBHEHWs K WHTErpaIbHOMY ypaBHeHHIO Bomabreppa.
OrnuceiBaeTCst €IMHBI TOIXO K HAX0XK IEHUIO PEIIEHNs B 3AMKHYTOH (popMe JJTst psifia KJIacCoB
OJTHOMEPHBIX ¥ MHOTOMEPHBIX MHTErPaIbHBIX YpaBHeHuil, n auddepeHnmnaabHbX ypaBHEeHnl B
YACTHBIX ITPOU3BOIHBIX APOOHOTO MOPAIKA. DTOT HOAXO0/ OCHOBAH HA ONEPATOPHOM UCUUCICHUN
¥ MHTErpasbHBIX peobpazoBannsx Jlamraca, @yprse nu Mesumna. O6cy K /1a10TCsT TEPCIIEK TUBI
AaHHOTO HAIMIPABJIEHUS WCCJIEIOBAHUI.
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