Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Казанский (Приволжский) Федеральный Университет» Институт фундаментальной медицины и биологии Кафедра микробиологии

Направление подготовки (специальность): 06.04.01 – Биология Профиль (магистерская программа): Микробиология и вирусология

МАГИСТЕРСКАЯ ДИССЕРТАЦИЯ ХАРАКТЕРИСТИКА CRISPR-РЕДАКТИРОВАННОГО ШТАММА ВАСІLLUS SUBTILIS С ИНАКТИВИРОВАННЫМ ГЕНОМ DHBF, ОТВЕТСТВЕННОГО ЗА ПРОДУКЦИЮ СИДЕРОФОРА

Обучающийся 2 курса	0	
группы 01-240-2	- flut-	Гильмутдинова А.И
Научный руководитель		
канд. биол. наук, доцент	Daf	Данилова Ю.В.
Заведующий кафедрой микроби	ологии ОИ	
д-р биол. наук, профессор	- Willey	Ильинская О.Н.

СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ	4
введение	5
ОБЗОР ЛИТЕРАТУРЫ	7
1.1 Характеристика бактерий рода <i>Bacillus</i>	7
1.2 Сидерофоры	8
1.2.1 Синтез, поглощение и экспорт бациллибактина	9
1.2.2 Антагонистическая активность сидерофоров	11
1.3. Характеристика программируемых нуклеаз	13
1.3.1 Целевая инактивация генов технологией CRISPR-Cas9 в <i>В.</i>	subtilis16
1.4 Получение GFP – меченых штаммов бацилл	19
1.4.1 Флуоресцентные белки в исследовании взаимодействия р бактерий	
ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	24
2 МАТЕРИАЛЫ И МЕТОДЫ	24
2.1 Штаммы и плазмиды	24
2.2 Растения, используемые в роботе	24
2.3 Питательные среды и культивирование	24
2.4 Олигонуклеотиды, используемые в работе	25
2.5 Полимеразная цепная реакция (ПЦР)	
2.6 Электрофоретический анализ ДНК	26
2.7 Получение компетентных клеток и трансформация E. coli DH5	iα27
2.8 Получение рекомбинантного вектора	28
2.9 Трансформация клеток <i>B. subtilis</i>	29
2.10 Получение штаммов с инактивированным геном б бациллибакина <i>dhbF</i>	
2.11 Исследование способности бактерий к образованию сидероф	оров30
2.12 Динамика роста и анализ образования биопленок	30
2.13 Antarohuctuueckag akturhocts uitammor <i>B. suhtilis</i>	31

2.14 Получение флуоресцентно меченых штаммов и анализ
взаимодействия бактерий с растениями
2.15 Математическая обработка результатов
3 РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ
3.1 Конструирование плазмиды, несущей фрагмент гена биосинтеза бациллибактина dhbF
3.2 Трансформация штамма <i>B. subtilis</i> 168 сконструированной плазмидой и инактивации гена биосинтеза бациллибактина методом редактирования CRISPR/Cas9
3.3 Исследование способности бактерий к продукции сидерофоров 39
3.4 Динамика роста и образование биопленок
3.5 Исследование антагонистической активности штаммов <i>B. subtilis</i> 44
3.6 Получение флуоресцентно меченые штаммов и изучение колонизации корней растений картофеля сорта Жуковский ранний и модельного A. thaliana
ВЫВОДЫ51
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ52

ВВЕДЕНИЕ

Железо необходимо для большинства процессов роста, являясь кофактором в многочисленных клеточных процессах, таких как цикл трикарбоновых кислот, цепь переноса электронов и окислительное фосфорилирование, а также биосинтез витаминов, антибиотиков, токсинов и других Fe-содержащих ароматических соединений. В естественной среде уровень физиологически доступных концентраций железа может опускаться гораздо ниже 1 мМ, необходимого многим микроорганизмам для оптимального роста. В качестве стратегии выживания многие бактерии, грибы и однодольные растения синтезируют и выделяют высокоаффинные внеклеточные сидерофоры для получения железа.

Катехоловый сидерофор – бациллибактин (ВВ), продуцируемый представителями рода Bacillus, является примером хелатора железа, выполняющего множество функций. У Bacillus subtilis это основной метаболит усвоения железа с высоким сродством к трехвалентному железу, Fe(III). Дополнительные функции включают изменение сообщества почвенных микроорганизмов, стимулирование роста растений, потенциальное использование в качестве агентов биоконтроля и усиление биоремедиации металлов, а также использование в качестве биосенсоров тяжелых [Puja et al., 2023] и селективных медиаторов антибиотиков для клинических бактерий [Xie et al., 2024; Yin et al., 2024].

Сидерофоры в большом количестве изучались в отношении их вклада в приспособленность и вирулентность бактериальных патогенов. В связи с этим, понимание механизмов биосинтеза на разных стадиях формирования ВВ бактерий *В. subtilis*, а также роли бациллибактина во взаимодействии с растениями открывает возможности для разработки улучшенных штаммов бацилл, новых стратегий биоконтроля и инновационных препаратов для защиты растений.

Целью данного исследования являлась инактивация гена биосинтеза бациллибактина *dhbF* в геноме *B. subtilis* 168 с помощью CRISPR-Cas9 технологии и характеристика полученного штамма.

В соответствии с поставленной целью, в работе решались следующие задачи:

- 1) Получение векторной конструкции для инактивации гена dhbF в геноме B. subtilis 168;
- 2) Трансформация клеток *B. subtilis* 168 полученным вектором и целевая инактивация гена биосинтеза бациллибактина *dhbF* методом редактирования CRISPR-Cas9;
- 3) Изучение динамики роста и образования биопленок мутантного штамма *B. subtilis* $168\Delta dhb$ F;
- 4) Оценка способности продуцировать сидерофоры и анализ антимикробной активности мутантного штамма;
- 5) Получение флуоресцентно меченых штаммов *B. subtilis* 168 и *B. subtilis* 168 Δdhb F для изучения колонизации корней растений.

ВЫВОДЫ

- 1) Получена плазмида (pGAb08.23), несущая в составе sgRNA спейсерную последовательность, а также фланкирующие последовательности гена-мишени (dhbF-L и dhbF-R), необходимые для осуществления репарации ДНК с помощью HDR.
- 2) Получены трансформанты B. subtilis 168, проведена инактивация гена технологией CRISPR-Cas9. Получен мутантный штамм B. subtilis $168\Delta dhb$ F.
- 3) Установлено, что инактивация гена *dhb*F привела к снижению динамики роста культуры мутантного штамма на 20% и увеличению образования биопленок на 10 %, по сравнению с нативным штаммом.
- 4) Полученный мутантный штамм B. subtilis $168\Delta dhb$ F характеризуется сниженным синтезом сидерофоров и увеличением ингибиторной активности на 40% против микромицета F. oxysporum DR57, против которого B subtilis 168 не проявлял активности.
- 5) Анализ колонизации флуоресцентно меченых штаммов показал, что мутантный штамм B. subtilis $168\Delta dhb$ F проявляет большую способность к колонизации и проникновению в корни растений.