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UDK 512.5ON THE LOCUS OF p-CHARACTERS DEFININGSIMPLE REDUCED ENVELOPING ALGEBRASS.M. SkryabinAbstratWe on�rm in two ases the onjeture stating that the redued enveloping algebra Uξ(g)of a restrited Lie algebra g is simple if and only if the alternating bilinear form assoiatedwith the given p -harater ξ ∈ g∗ is nondegenerate.Key words: restrited Lie algebras, solvable Lie algebras, Frobenius Lie algebras, reduedenveloping algebras.In the representation theory of a �nite dimensional p-Lie algebra g over an alge-braially losed �eld k of harateristi p > 0 one is naturally led to onsider the familyof redued enveloping algebras Uξ(g) assoiated with linear funtions ξ ∈ g∗ (see [1℄).The algebra Uξ(g) is de�ned as the fator algebra of the universal enveloping algebra
U(g) by its ideal generated by entral elements xp −x[p]−ξ(x)p ·1 with x ∈ g , and ξ isalled the p-harater of any g-module whih an be realized as a module over Uξ(g) .There is a ertain, still far from fully understood, relation between generi propertiesof the family of redued enveloping algebras and generi properties of the family ofstabilizers of linear funtions. The stabilizer z(ξ) of ξ ∈ g∗ oinides with the radialof the alternating bilinear form βξ : g × g → k de�ned by the rule

βξ(x, y) = ξ
(
[x, y]

) for x, y ∈ g .The Lie algebra g is alled Frobenius if βξ is nondegenerate for at least one ξ .In general one annot determine the type of one partiular algebra Uξ(g) just know-ing z(ξ) . It is quite interesting and surprising that sometimes this an be done. In [2℄it was onjetured that Uξ(g) is simple if and only if z(ξ) = 0 , that is, if and only if
βξ is nondegenerate. The purpose of the present artile is to verify this onjeture intwo ases. When g is solvable and p > 2 we do this using the desription of irreduible
g-modules due to Strade [3℄. We have to make more areful seletions of subalgebrasfrom whih irreduible g-modules are obtained by indution. The seond ase ourswhen g is Frobenius and all adjoint derivations of g lie in the Lie algebra of the auto-morphism group. Here we apply geometri arguments to the extension of the family ofredued enveloping algebras onstruted in [4℄.An example at the end of the paper shows that semisimpliity of the algebra Uξ(g)annot be reognized in terms of z(ξ) by means of a possible generalization of the aboveonjeture. 1. Solvable Lie algebrasIt is assumed in this setion that g is solvable and p > 2 . Reall that a polarizationof g at ξ ∈ g∗ is a Lie subalgebra whih is simultaneously a maximal totally isotropisubspae with respet to the alternating bilinear form βξ [5℄.



SIMPLE REDUCED ENVELOPING ALGEBRAS 197Denote by P the set of all triples (p, a, λ) suh that a ⊂ p ⊂ g are vetor subspaes,
λ ∈ a∗ is a linear funtion and there exists a hain of subspaes

0 = a0 ⊂ a1 ⊂ . . . ⊂ an = a ⊂ p = pn ⊂ . . . ⊂ p1 ⊂ p0 = g (1)with the property that
[pi−1, ai] ⊂ ai and pi = {x ∈ pi−1 | λ([x, ai]) = 0} (2)for all i = 1, . . . , n . As one heks by indution on i , eah pi is a p-subalgebra of g ,and ai is an ideal of pi−1 . In partiular, p is a p-subalgebra of g , and a is an ideal of

p . Furthermore, λ vanishes on [p, a] and, therefore, also on [a, a] .Lemma 1. Suppose that (p, a, λ) ∈ P . If ξ ∈ g∗ is a linear funtion suh that
λ(x)p − λ(x[p]) = ξ(x)p for all x ∈ a and W is an irreduible Uξ(p)-module suh that
xw = λ(x)w for all x ∈ a and w ∈ W , then the indued g-module Uξ(g) ⊗Uξ(p) W isirreduible.Here Uξ(p) stands for the redued enveloping algebra of p orresponding to therestrition of ξ to p . The proof is obtained by a repeated appliation of the harateristi
p analog of Blattner's irreduibility riterion [6, Theorem 3℄.We will need additional onditions on triples. Denote by P ′ the set of all triples
(p, a, λ) suh that a ⊂ p ⊂ g are vetor subspaes, λ ∈ a∗ is a linear funtion, andthere exists a hain of subspaes

0 = a0 ⊂ a1 ⊂ . . . ⊂ an = a ⊂ p ⊂ p̃n ⊂ . . . ⊂ p̃1 ⊂ p̃0 = g (3)with the property that
[p̃i−1, ai] ⊂ ai, (4)

p̃i = {x ∈ p̃i−1 | λ([x, a′i]) = 0}, where a′i = {y ∈ ai | λ(y) = 0}, (5)
p = {x ∈ p̃n | λ([x, a]) = 0} (6)for all i = 1, . . . , n . We will say that hain (3) is (p, a, λ)-admissible in this ase.Lemma 2. In a (p, a, λ)-admissible hain eah p̃i is a p-subalgebra, ai is an idealof p̃i−1 , and a′i is an ideal of p̃i . Furthermore, p is an ideal of p̃n .Proof. Sine [p̃i, ai] ⊂ ai by (4) and λ vanishes on [p̃i, a

′
i] by (5), we dedue that

[p̃i, a
′
i] ⊂ a′i . Sine the normalizer of a′i in g is a p-subalgebra, an indution on i showsthat so too is p̃i . Now [p, a] ⊂ a and λ vanishes on [p, a] by (4) and (6), whene

[p, a] ⊂ a′n . It follows [[p̃n, p], a] ⊂ [p̃n, a′n] + [p, a] ⊂ a′n , and so [p̃n, p] ⊂ p .Lemma 3. It holds P ′ ⊂ P .Proof. Let (p, a, λ) ∈ P ′ . Consider a (p, a, λ)-admissible hain (3) and for eah ide�ne pi = {x ∈ p̃i | λ([x, ai]) = 0} . We obtain then a hain (1) with pi ⊂ p̃i , and it isheked straightforwardly that (2) is ful�lled. Thus (p, a, λ) ∈ P .Lemma 4. Suppose that a is a one-dimensional ideal of a solvable Lie algebra h ,and b is an ideal of h , minimal with respet to the property that a ⊂ b , a 6= b and
[a, b] = 0 . Then b is abelian.Proof. Put c = {x ∈ b | [x, b] = 0} . Then c is an ideal of h and a ⊂ c ⊂ b . By theminimality of b we have either c = b or c = a . In the �rst ase [b, b] = 0 , and weare done. Suppose that c = a . Then the multipliation in b indues a nondegeneratealternating bilinear form b/a×b/a → a . In partiular, b/a has even dimension. On theother hand, b/a is an irreduible h-module by the minimality of b , and therefore
dim b/a is a power of p , hene odd, by [3, Satz 3℄. We arrive at a ontradition.



198 S.M. SKRYABINLemma 5. Suppose that (p, a, λ) ∈ P ′ . If a 6= p , then there exists a vetor subspae
b ⊂ p suh that a is ontained in b properly, [b, b] ⊂ a′ = kerλ , and for every linearfuntion µ ∈ b∗ extending λ there exists q satisfying (q, b, µ) ∈ P ′ .Proof. Consider a (p, a, λ)-admissible hain (3). By Lemma 2 a and p are idealsof p̃n . Let us hoose an ideal b of p̃n suh that a ⊂ b ⊂ p , a 6= b , and b is minimalwith respet to these properties. Then [b, b] ⊂ a sine p̃n is solvable and [b, a] ⊂ a′by (6). If a 6= a′ , then dim a/a′ = 1 . Lemma 4 applied to the Lie algebra p̃n/a′ andits one-dimensional ideal a/a′ shows that b/a′ is abelian in this ase. Thus we have
[b, b] ⊂ a′ in any ase. If µ ∈ b∗ extends λ , then put

p̃n+1 = {x ∈ p̃n | µ([x, b′]) = 0} and q = {x ∈ p̃n+1 | µ([x, b]) = 0},where b′ = {y ∈ b | µ(y) = 0} . Note that b ⊂ q sine µ is zero on [b, b] ⊂ a′ . Obviously
q ⊂ p̃n+1 ⊂ p̃n . Setting an+1 = b , we obtain an extension of (3) to a (q, b, µ)-admissiblehain. Thus (q, b, µ) ∈ P ′ .We say that (p, a, λ) ∈ P is maximal if p = a . Denote by Pmax ⊂ P the subset ofall maximal triples and put P ′

max = Pmax ∩P ′ . All onlusions of the next propositionwith P in plae of P ′ were obtained by Strade [3℄ in a somewhat di�erent language.Proposition 1. (i) Given ξ ∈ g∗ , there exists (p, a, λ) ∈ P ′
max suh that λ = ξ|p .In this ase p is a polarization of g at ξ .(ii) Given an irreduible g-module V , there exists (p, a, λ) ∈ P ′

max suh that thesubspae Vλ = {v ∈ V | xv = λ(x)v for all x ∈ a} is nonzero.Proof. Denote by P ′
ξ ⊂ P ′ the subset of those triples (p, a, λ) for whih λ = ξ|p .This subset is nonempty as we may take a = 0 , p = g . Suppose that (p, a, λ) ∈ P ′

ξand p 6= a . Find b as in Lemma 5 and set µ = ξ|b . There exists (q, b, µ) ∈ P ′ whihbelongs to P ′
ξ by the hoie of µ . We have here dim b > dim a . This argument showsthat P ′

ξ ∩ P ′
max is nonvoid. Indeed, it su�es to pik out (p, a, λ) ∈ P ′

ξ for whih
dim a is maximal possible. By Lemma 3 (p, a, λ) ∈ P . There exists then a hain (1)satisfying (2). It follows by indution on i that pi = {x ∈ g | ξ([x, ai]) = 0} . Hene
p = a is a maximal totally isotropi subspae of g with respet to βξ .Denote by P ′

V ⊂ P ′ the subset of those triples (p, a, λ) for whih Vλ 6= 0 . The triple
(g, 0, 0) is again in P ′

V . Suppose that (p, a, λ) ∈ P ′
V and p 6= a . Let b be as in Lemma 5.Sine [b, a] ⊂ a′ , the subspae Vλ is stable under b . Hene the abelian Lie algebra b/a′operates in Vλ . It follows that Vλ ontains a one-dimensional b -submodule, say kv .The equality xv = µ(x)v de�nes a linear funtion µ ∈ b∗ whih extends λ . We have

v ∈ Vµ by the onstrution. Lemma 5 provides a triple (q, b, µ) ∈ P ′ whih belongs to
P ′

V . The intersetion P ′
V ∩ P ′

max is therefore nonvoid, similarly as in ase (i).Proposition 2. Suppose that ξ ∈ g∗ and (p, a, λ) ∈ P ′
max with λ = ξ|p . If ξvanishes on z(ξ) , then ξ(p[p]) = 0 . In this ase the one-dimensional p-module kλ onwhih p operates via λ has p-harater λ , and so Uξ(g) ⊗Uλ(p) kλ is an irreduible

g-module of dimension p
1

2
(dim g−dim z(ξ)) .Proof. For eah subspae h ⊂ g denote by h⊥ ⊂ g its orthogonal omplement withrespet to βξ . One has then (h⊥)⊥ = h+ z(ξ) . Consider a (p, a, λ)-admissible hain (3).Put p̃ = p̃n and p′ = a′n . Note that a′i−1 ⊂ a′i for all i = 1, . . . , n . It follows then from(5) by indution on i that p̃i = a′⊥i for eah i . For i = n we obtain p′⊥ = p̃ . Hene

p̃⊥ = p′ + z(ξ) . Note that z(ξ) ⊂ p sine p is a maximal totally isotropi subspae of gwith respet to βξ . Under the hypotheses of Proposition 2 z(ξ) ⊂ p ∩ ker ξ = p′ . Thus
p̃⊥ = p′ .



SIMPLE REDUCED ENVELOPING ALGEBRAS 199Observe that [p̃, p[p]] ⊂ [p, p] sine p is an ideal of p̃ by Lemma 2. Hene ξ vanisheson [p̃, p[p]] , and so p[p] ⊂ p̃⊥ = p′ . This shows that ξ(p[p]) = 0 . The laim aboutirreduibility follows from Lemma 1, and the dimension formula follows from the equality
dim g − dim p = 1

2

(
dim g − dim z(ξ)

) .Proposition 3. Suppose that ξ ∈ g∗ and (p, a, λ) ∈ Pmax with λ = ξ|p . Then everymaximal torus of z(ξ) is a maximal torus of p .Proof. Consider a hain (1) satisfying (2). We have a⊥i = pi , and therefore p⊥i =

= z(ξ) + ai . As ai is an ideal of pi−1 , we get [pi−1, a
[p]
i ] ⊂ [ai, ai] for i > 0 , whih isontained in the kernel of ξ . This shows that a

[p]
i ⊂ p⊥i−1 = z(ξ) + ai−1 .Denote by bi the [p]-losure of ai . Then bi is an ideal of p sine so is ai . Hene

z(ξ) + bi is a p-subalgebra for eah i , and it follows that b
[p]
i ⊂ z(ξ) + bi−1 .Suppose that t is a maximal torus of z(ξ) and s ∈ p is a [p]-semisimple elementwhih entralizes t . We will prove that s ∈ t + bi by the downward indution on

i = 0, . . . , n . For i = n the assertion is lear sine t + bn = p . Suppose that s ∈ t + bifor some i > 0 . Then s = t + x , where t ∈ t , x ∈ bi and [t, x] = 0 . By the above
s[p] = t[p]+x[p] ∈ z(ξ)+bi−1 . Sine s is a linear ombination of elements s[pr ] with r > 0 ,we get s ∈ z(ξ) + bi−1 . The p-Lie algebra hi =

(
z(ξ) + bi−1

)
/bi−1 is a homomorphiimage of z(ξ) , and therefore the image of t in hi is a maximal torus of hi by [7, Theorem2.16℄. It follows that s ∈ t + bi−1 , providing the indution step. We an now onludethat s ∈ t + b0 = t , and the proof is omplete.Corollary 1. If z(ξ) is [p]-nilpotent, then so too is p .We ome to the main result of this setion:Theorem 1. Let g be a solvable �nite dimensional p-Lie algebra over an alge-braially losed �eld of harateristi p > 2 , and let ξ ∈ g∗ .(i) The algebra Uξ(g) is simple if and only if βξ is nondegenerate.(ii) If βξ is nondegenerate, then ξ admits a [p]-nilpotent polarization p suh that

ξ(p[p]) = 0 , and the single irreduible Uξ(g)-module is indued from the one-dimensional
Uξ(p)-module on whih p operates via ξ .Proof. Suppose that βξ is nondegenerate so that z(ξ) = 0 . By Proposition 1 thereexists (p, p, λ) ∈ P ′

max suh that λ = ξ|p . Then p is [p]-nilpotent by Corollary 1.By Proposition 2 Uξ(g) ⊗Uλ(p) kλ is an irreduible g-module of dimension p
1

2
dim g .Sine Uξ(g) is of dimension pdim g , it has to be simple. This proves (ii) and also oneimpliation in (i).Suppose now that Uξ(g) is simple, and let V be its irreduible module. In viewof Proposition 1, there exists (p, p, λ) ∈ P ′

max suh that Vλ 6= 0 . Let 0 6= v ∈ Vλso that kv ⊂ Vλ is a one-dimensional irreduible Uξ(p)-submodule. By Lemma 1 the
g-module Uξ(g)⊗Uξ(p) kv is irreduible, hene of dimension p

1

2
dim g . Therefore dim p =

= 1
2 dim g . Let η ∈ g∗ be any linear funtion suh that η|p = λ . By Proposition 1 p isa maximal totally isotropi subspae of g with respet to βη . The well-known formula

dim g + dim z(η) = 2 dim p now yields z(η) = 0 . By Proposition 2 applied to the linearfuntion η in plae of ξ the p-harater of the p -module kv equals λ . Hene λ = ξ|p .We may thus use η = ξ in the argument above to onlude that z(ξ) = 0 . The proof isomplete.



200 S.M. SKRYABIN2. Frobenius Lie algebras with exponentiable adjoint derivationsLet g be an arbitrary �nite dimensional p-Lie algebra over the ground algebraiallylosed �eld k . We want to ompare two sets
X = {ξ ∈ g∗ | Uξ(g) is simple}, Y = {ξ ∈ g∗ | βξ is nondegenerate}.Lemma 6. There exists a homogeneous polynomial funtion f on the vetor spae

V = g∗ ⊕ k suh that
X = {ξ ∈ g∗ | f(ξ, 1) 6= 0}, Y = {ξ ∈ g∗ | f(ξ, 0) 6= 0}.Proof. Let n = dim g . We will exploit the algebrai family of pn -dimensionalassoiative algebras Uξ,λ = Uξ,λ(g) parameterized by points (ξ, λ) ∈ V (see [4℄). Thealgebra Uξ,λ ontains g as a generating subspae and has de�ning relations
xy − yx = λ[x, y], xp = λp−1x[p] + ξ(x)p · 1 (x, y ∈ g).In partiular, two speial ases of these algebras are Uξ,1

∼= Uξ(g) and Uξ,0
∼= Sξ(g) ,the fator algebra of the symmetri algebra S(g) by its ideal generated by all elements

xp − ξ(x)p · 1 with x ∈ g .There is a p-representation adξ,λ : g → Der Uξ,λ suh that adξ,λ(x)(y) = [x, y] for
x, y ∈ g . In this way Uξ,λ may be regarded as a module algebra over the restriteduniversal enveloping algebra U0(g) and as a module over the smash produt algebra
Rξ,λ = Uξ,λ#U0(g) . Let

ϕξ,λ : Rξ,λ → Tξ,λ = Endk Uξ,λdenote the orresponding representation. Note that dimRξ,λ = dimTξ,λ = p2n . Henethe map ϕξ,λ is bijetive if and only if Uξ,λ is a simple Rξ,λ -module. Now the Rξ,λ -submodules of Uξ,λ are preisely those left ideals that are stable under the ation adξ,λ .When λ 6= 0 suh left ideals are preisely the two-sided ideals, and the simpliity of
Uξ,λ as a Rξ,λ -module is equivalent to the simpliity as an algebra. In partiular,

X = {ξ ∈ g∗ | ϕξ,1 is bijetive}.On the other hand, aording to [4, Proposition 3.4℄ the algebra Sξ(g) has a uniquemaximal g-invariant ideal I , and the odimension of this ideal is pcodimg z(ξ) . In orderthat Sξ(g) be a simple Rξ,0 -module, it is neessary and su�ient that I = 0 , whihamounts to z(ξ) = 0 , that is, to ξ ∈ Y . It follows that
Y = {ξ ∈ g∗ | ϕξ,0 is bijetive}.It remains to show that the bijetivity of ϕξ,λ an be expressed by means of theondition f(ξ, λ) 6= 0 for a suitable homogeneous polynomial funtion f on V . We mayview Rξ,λ and Tξ,λ as �bers of two algebrai vetor bundles R and T over V . Let

e1, . . . , en be any basis for g . The monomials ea1

1 · · · ean
n with 0 ≤ ai < p form a basisfor eah Uξ,λ . These monomials give rise to a basis for eah Rξ,λ and a basis for eah

Tξ,λ , yielding trivializations of R and T . The entries of the matrix of ϕξ,λ in the abovebases are polynomial funtions in (ξ, λ) . Taking f(ξ, λ) to be the determinant of thismatrix, we see that ϕξ,λ is bijetive if and only if f(ξ, λ) 6= 0 .As explained in [4℄, for eah 0 6= t ∈ k there is a g-equivariant algebra isomorphism
θt : Uξ,λ → Utξ,tλ(g) . Hene the algebra Uξ,λ has no nontrivial g-invariant ideals if andonly if so does Utξ,tλ(g) . In other words, bijetivity of ϕξ,λ is equivalent to bijetivityof ϕtξ,tλ . It follows that the zero lous of the polynomial funtion f is a onial subsetof V , whene f is homogeneous.



SIMPLE REDUCED ENVELOPING ALGEBRAS 201Remark. It is possible to ompute the degree of the polynomial funtion f inLemma 6 proeeding as follows. The isomorphisms θt indue ations of the one-dimensional torus Gm on R and T . Taking quotients modulo these ations we passto a morphism of vetor bundles R → T over the projetive spae P(V ) assoiatedwith V . Let also U = U/Gm , where U is the vetor bundle over V r {0} with �bers
Uξ,λ . Eah line bundle over P(V ) is isomorphi to some L(s) , de�ned as the quotientof (V r {0})× k by the ation of Gm suh that t · (v, c) = (tv, tsc) , where s ∈ Z . Thesalar multiples of any monomial ea1

1 · · · ean
n produe a Gm -stable line subbundle of U .This leads to a deomposition

U ∼=
⊕

{(a1,...,an)|0≤ai<p}

L(−a1 − · · · − an).The bundle R is isomorphi to a diret sum of pn opies of U , while T ∼= U ⊗ U
∗ .As a result, ∧p2n

R ∼= L(−d) , where
d = pn ·

∑

{(a1,...,an)|0≤ai<p}

(a1 + · · · + an) =
np2n(p − 1)

2
,while ∧p2n

T ∼= L(0) is trivial. Now f an be identi�ed with a setion of the line bundle
Hom

(
L(−d), L(0)

)
∼= L(d) . This means that deg f = d .Corollary 2. If g is Frobenius, that is, Y 6= ∅ , then f 6= 0 , and therefore X 6= ∅ .Whether X 6= ∅ implies Y 6= ∅ is a speial ase of the still open Ka�Weisfeileronjeture from [8℄.Proposition 4. If g is Frobenius and Y ⊂ X , then X = Y .Proof. By Lemma 6 the omplements X c = g∗ r X and Yc = g∗ r Y are hy-persurfaes in g∗ . The inlusion Y ⊂ X entails X c ⊂ Yc . Therefore eah irreduibleomponent of X c is an irreduible omponent of Yc . Sine Yc is a onial subset of

g∗ , so too is eah irreduible omponent of Yc . It follows that X c is a onial subset aswell. Hene the polynomial funtion ξ 7→ f(ξ, 1) de�ning X c is homogeneous. We anwrite
f(ξ, λ) =

d∑

i=0

fi(ξ)λ
i,where eah fi is a homogeneous polynomial funtion of degree d − i on g∗ . Sine gis Frobenius, we have Y 6= ∅ , whene f0 6= 0 . But then we must have fi = 0 for all

i > 0 , that is, f(ξ, λ) does not depend on λ .Theorem 2. Let g be a Frobenius p-Lie algebra with the automorphism group G .Suppose that ad g ⊂ Lie G . Then X = Y .Proof. Both X and Y are stable under the oadjoint ation of G . For any ξ ∈ Ythe nondegeneray of βξ yields g · ξ = g∗ . Hene the tangent spae at ξ to the G-orbit
Gξ oinides with g∗ , and therefore Gξ is open in g∗ . Sine any two nonempty opensubsets of g∗ have nonempty intersetion, we onlude that Y is a single G-orbit. As Xis also nonempty and open in g∗ , we get X

⋂
Y 6= ∅ , whene Y ⊂ X . Now Proposition4 applies.



202 S.M. SKRYABIN3. The semisimple lous: an exampleLet us now look at a di�erent pair of subsets of g∗ :
X = {ξ ∈ g∗ | Uξ(g) is semisimple}, Y = {ξ ∈ g∗ | z(ξ) is toral}.It was proved in [4, Setion 4℄ that both of them are open in g∗ and that Y 6= ∅implies X 6= ∅ . Moreover, the stabilizers z(ξ) of all linear funtions ξ ∈ Y have equaldimensions. If s denotes their ommon dimension, then for eah ξ ∈ X the semisimplealgebra Uξ(g) has preisely ps nonisomorphi simple modules, all of equal dimension.One may ask what are those p-Lie algebras for whih X = Y . For instane, if gis the Lie algebra of a simply onneted semisimple algebrai group G and p is goodfor the root system of G , then X onsists preisely of the regular semisimple linearfuntions [9, Corollary 3.6℄ so that the equality X = Y does hold. In this setion, weprovide examples of nilpotent p-Lie algebras for whih X 6= Y .Consider a p-Lie algebra g whose enter t is a toral subalgebra of odimension 2in g and [g, g] ⊂ t . Let u, v ∈ g span a subspae omplementary to t in g . Thereis an element 0 6= t ∈ t suh that [u, v] = t . Then [g, g] = kt is a one-dimensionalsubspae.Sine g is nilpotent, it has a largest toral subalgebra. Clearly this subalgebra oin-ides with t . Now t ⊂ z(ξ) for all ξ ∈ g∗ . Hene z(ξ) is toral if and only if z(ξ) = t .If z(ξ) 6= t , then z(ξ) = g , whih ours preisely when ξ vanishes on [g, g] . It followsthat

Y = {ξ ∈ g∗ | ξ(t) 6= 0}.Denote by t∗(1) the vetor spae of all p-semilinear maps t → k , that is, t∗(1) isthe Frobenius twist of the dual spae t∗ . The map ℘ : t∗ → t∗(1) de�ned by the rule
℘(λ)(x) = λ(x)p − λ(x[p]) for λ ∈ t∗ and x ∈ tis a �nite surjetive morphism of algebrai varieties. There is also a bijetive morphism

t∗ → t∗(1) given by λ 7→ λp , where λp(x) = λ(x)p .With any simple g-module V one an assoiate a linear funtion λ ∈ t∗ suhthat eah element x ∈ t ats in V as a salar multipliation by λ(x) . If ξ is the p-harater of V , then ℘(λ) = ξp|t . Conversely, for any pair λ ∈ t∗ and ξ ∈ g∗ satisfyingthe previous equality there is preisely one simple Uξ(g)-module V whih has λ asthe assoiated funtion. If λ(t) = 0 , then [g, g] annihilates V , whene dimV = 1 .Otherwise V is indued from a one-dimensional representation of any abelian subalgebraof odimension 1 in g so that dimV = p . Sine all �bers of the map ℘ have ardinality
N = pdim t , for eah ξ ∈ g∗ there are preisely N nonisomorphi simple Uξ(g)-modules.In order that Uξ(g) be semisimple, it is neessary and su�ient that its dimension pdim gbe equal to ∑

(dim V )2 , the sum over all those modules. This happens preisely whenall simple Uξ(g)-modules have dimension p . We onlude that
X = {ξ ∈ g∗ | λ(t) 6= 0 for eah λ ∈ ℘−1(ξp|t)}.Suppose now that t is suh that t[p] /∈ kt . Then neither X ⊂ Y nor Y ⊂ X .To see this let λ and ξ be as above. If λ(t) = 0 , but λ(t[p]) 6= 0 , then the equality

λ(t)p −λ(t[p]) = ξ(t)p yields ξ(t) 6= 0 . In this ase ξ ∈ Y , but ξ /∈ X . Now the subspae
S = {λ ∈ t∗ | λ(t) = λ(t[p]) = 0}has odimension 2 in t∗ . Hene ℘(S) is a losed subvariety of odimension 2 in t∗(1) ,and it follows that there exists ξ ∈ g∗ suh that ξ(t) = 0 , but ξp|t /∈ ℘(S) . In this ase

ξ /∈ Y , but ξ ∈ X .



SIMPLE REDUCED ENVELOPING ALGEBRAS 203This work was Supported by the Russian Foundation for Basi Researh (GrantNo. 10-01-00431) and the Presidential Grant for Support of Leading Sienti� Shools(Grant No. 5383.2012.1). �åçþìåÑ.Ì. Ñêðÿáèí. Î ëîêóñå p -õàðàêòåðîâ, îïðåäåëÿþùèõ ïðîñòûå ðåäóöèðîâàííûå îáåð-òûâàþùèå àëãåáðû.Â äâóõ ñëó÷àÿõ ïîäòâåðæäåíà ãèïîòåçà, óòâåðæäàþùàÿ, ÷òî ðåäóöèðîâàííàÿ îá¼ð-òûâàþùàÿ àëãåáðà Uξ(g) îãðàíè÷åííîé àëãåáðû Ëè g ÿâëÿåòñÿ ïðîñòîé òîãäà è òîëüêîòîãäà, êîãäà àëüòåðíèðóþùàÿ áèëèíåéíàÿ �îðìà, àññîöèèðîâàííàÿ ñ çàäàííûì p -õàðàê-òåðîì ξ ∈ g∗ , íåâûðîæäåíà.Êëþ÷åâûå ñëîâà: îãðàíè÷åííûå àëãåáðû Ëè, ðàçðåøèìûå àëãåáðû Ëè, �ðîáåíèó-ñîâû àëãåáðû Ëè, ðåäóöèðîâàííûå îáåðòûâàþùèå àëãåáðû.
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