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ISOLATION:
MOTIVATIONS AND APPLICATIONS

G. Wu, M.M. Yamaleev

Abstract

In this paper, we briefly review the origins of the isolation phenomenon and its applications.
We discuss a stronger notion of double bubbles. We also show recent achievements in the study
of lattice embeddings with the help of the isolation property.

Key words: Turing degrees, Ershov hierarchy, isolated degrees, lattice embeddings.

Introduction

An n + 1-c.e. degree d is isolated by an n-c.e. degree a if a < d is the greatest
n-c.e. degree below d. The existence of such isolated n+ 1-c.e. degrees, for n > 1, can
be obtained, in a nonuniform way, from Kaddah’s thesis, where infima of n-c.e. degrees
in different levels of the Ershov hierarchy are considered. The case when n = 1 was first
proposed explicitly by Cooper and Yi in their paper [1], and the general case, i.e. when
n > 1, was studied by LaForte in [2]. A recent construction of bubbles of Arslanov,
Kalimullin and Lempp in [3] also gives rise to the existence of isolated degrees, and it
is attempting to extend such bubble constructions to show that different (finite) levels
in the Ershov hierarchy are not elementary equivalent.

In this paper, we briefly review the origins of the isolation phenomenon and how
variants of this phenomenon can be applied to study local and global properties of
the Ershov hierarchy. In Section 1, we first show how to obtain isolated degrees from
Kaddah'’s thesis, and then give a brief description of early development in this area. In
Section 2, we consider isolation from side, a property that was used by Yang and Yu to
show that the c.e. degrees is not a ¥; substructure of d.c.e. degrees. This phenomenon
has been extended to n-c.e. degrees by Cai, Shore and Slaman [4]. We are concerned
with those nonisolated degrees that can be isolated from side, which are nontrivial ex-
tensions of Cooper and Yi’s isolated degrees. In Section 3, we give a direct construction
of a bubble, a work of Arslanov, Kalimullin and Lempp. That is, we will provide a con-
struction of a d.c.e. degree d and a c.e. degree a < d such that every d.c.e. degree e
below d is comparable with a. Obviously, d is isolated by a. We believe that, like the
isolation phenomenon, the bubble phenomenon is an important tool for studying the
structural properties of the Ershov hierarchy. In Section 4, we show recent development
of applications of isolation to lattice embeddings. This project was initiated by Wu in
his thesis [5] and has come to a highlight in a recent work of Fang, Liu and Wu, who
proved in [6] that any nonzero cappable c.e. degree can have a d.c.e. degree with almost
universal cupping property as its complement.

Our notation and terminology are standard and generally follow Soare [7]. We sug-
gest the readers to refer Cooper’s paper [8] and Arslanov’s paper [9] for the general idea
on local degree theory.
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1. Kaddah’s work and isolation

A Turing degree is properly d.c.e. if it contains a d.c.e. set, but no c.e. set. Cooper
proved in [10] the existence of properly d.c.e. degrees, and Lachlan observed that any
nonzero d.c.e. degree bounds a nonzero c.e. degree. That is, given a d.c.e. set D with
an effective approximation {Dy : s € w}, the associated set

L(D)={(x,s):x € Dy — D}

is c.e., and is Turing reducible to D, while D is c.e. in L(D). If D is c.e. and
{Ds : s € w} is an effective enumeration of D, then L(D) is empty. On the other
hand, if D has proper d.c.e. degree, then L(D) is not computable. L(D) is called the
Lachlan set of D with reference to the enumeration {Ds : s € w}. Lachlan’s observation
shows that the d.c.e. degrees are downwards dense, which is also true for the c.e. de-
grees. However, the d.c.e. degrees are not dense, and hence these two degree structures
are not elementarily equivalent.

Theorem 1 (Nondensity Theorem for Dy [11]). There exists a mazimal
d.c.e. degree d < 0', and hence the d.c.e. degrees are not dense.

The fact that these structures are not elementarily equivalent was first proved by
Arslanov [12] and Downey [13], who proved that any nonzero d.c.e. degree is cuppable,
and that the diamond lattice can be embedded into the d.c.e. degrees preserving 0 and 1,
respectively.

In contrast to this nondensity theorem, Ishmukhametov [14] and, independently,
Cooper and Yi [1] proved that any nonempty interval [a,d], with a c.e., contains
infinitely many d.c.e. degrees, a weak density theorem of d.c.e. degrees.

Theorem 2 [1, 14]. If d is a d.c.e. degree and a < d is a c.e. degree, then there
is a d.c.e. degree c between a and d.

Here we cannot require the degree c above be c.e., as there are a c.e. degree a and
a d.c.e. degree d > a such that no c.e. degree is between a and d. This can be obtained
from the following theorem of Kaddabh.

Theorem 3 [15]. Every low c.e. degree is branching in the d.c.e. degrees.

Let a be a low, nonbranching, c.e. degree, and let d, e be two d.c.e. degrees above
a such that a is the infimum of d and e in the d.c.e. degrees. Then one of the intervals
(a,d), (a,e) contains no c.e. degrees, as a is assumed to be nonbranching.

Cooper and Yi first noticed this structural phenomenon and proposed the notion of
isolation explicitly in their paper [1].

Definition 1 [1]. A d.c.e. degree d is isolated by a c.e. degree a if a < d is the
greatest c.e. degree below d. A d.c.e. degree d is isolated if it is isolated by some c.e.
degree a. A d.c.e. degree is nonisolated if it is not isolated.

After showing the existence of the isolated degrees, Cooper and Yi continued to
show the existence of the nonisolated degrees, where a d.c.e. degree d is nonisolated
if no c.e. degree below d can isolate d. Cooper and Yi actually proved the existence
of a properly d.c.e. degree as a minimal upper bound of a uniformly c.e. sequence of
degrees, an even stronger result. These two kinds of degrees are proved to be dense
in the c.e. degrees.

Theorem 4 [16-18]. Both the isolated d.c.e. degrees and the nonisolated d.c.e.
degrees are dense in the c.e. degrees.
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Theorem 4 says that the isolated degrees could be as close to the isolating degrees
as wanted. Ishmukhametov and Wu proved that in terms of the high/low hierarchy, the
isolated d.c.e. degree and the isolating degree can be quite far from each other.

Theorem 5 [19, 20]. There is a high d.c.e. degree d isolated by a low c.e. degree c.
Such a c.e. degree c can be found below any nonzero c.e. degree a.

Cooper [21] proved in 1974 that any high c.e. degree bounds a minimal pair, and
hence no high c.e. can be nonbounding. However, there do exist high d.c.e. nonbounding
degrees, as first constructed by Chong, Li and Yang in [22] by a fairly complicated 0"
argument. Theorem 5 can provide another proof of this result, as if we first take a as
a nonbounding degree, and then apply Theorem 5 to obtain ¢ and d. Obviously, c is
also nonbounding, which implies that d is also nonbounding (and also high).

In [18], Arslanov, Lempp and Shore showed the existence of the nonisolating degrees,
and proved that these degrees are downwards dense in the c.e. degrees, and can occur
in every jump class. In contrast to this, Cooper, Salts and Wu proved in [23] that the
nonisolating degrees are upwards dense in the c.e. degrees. Furthermore, Salts proved
in [24] that the nonisolating degrees are not dense in the c.e. degrees.

Theorem 6 [24]. There is an interval of c.e. degrees, [a,c|, each of which isolates
a d.c.e. degree.

Recent work of Wu and Yamaleev! shows that such an interval can be large. That
is, ¢ above can be high and a can be low.

Lachlan [25] proved in 1966 that the infimum of two c.e. degrees in the c.e. degrees
and the infimum of two c.e. degrees in the Ay degrees coincide. In contrast to this,
in [15], Kaddah proved that the infima of n-c.e. degrees in the n-c.e. degrees can be
different from that of these two n-c.e. degrees in the (n -+ 1)-c.e. degrees.

Theorem 7 [15]. For each n > 2, there are n-c.e. degrees d,e such that they
have £ as infimum in the n-c.e. degrees, and there is an (n + 1)-c.e. degree x with
f<x<de.

This implies isolation at higher levels in the Ershov hierarchy, as x shows that d
and e do not have f as their infimum in the (n + 1)-c.e. degrees. Following Cooper
and Yi, we can say that x is isolated by f in the n-c.e. degrees. Liu, Wang and Wu?
proved that such isolation pairs, x and f, are dense in the c.e. degrees. This isolation
result was proved previously by LaForte in [2] by a different approach.

2. Variants of isolation

Arslanov’s cupping theorem shows that the structures of the c.e degrees and the
d.c.e degrees differ at X3 level, and Cooper et al.’s proof of the existence of incomplete
maximal d.c.e. degrees, and Downey’s diamond theorem show that these two structures
differ at 3o level. It becomes interesting to consider whether two structures differ at
Y1 level.

Say that nonzero c.e. degrees a,b,c form a Slaman triple if b ? ¢, and for any
nonzero c.e. degree w < a, wV b > c. It is easy to check that a and b above form
a minimal pair, and Shore and Slaman proved in 1993 that every high c.e. degree bounds
a Slaman triple.

In 1983, Slaman proved the following strengthened version of Slaman triples.

LA large interval of isolating degrees, in preparation.
2An alternative approach of isolated (n -+ 1)-c.e. degrees, in preparation.
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Theorem 8 (Slaman 1983). There are c.e. degrees a,b,c and a AY degree d
with 0 < d < a such that (1) a,b,c form a Slaman triple, (2) dVb % c.

Theorem 8 says that no nonzero c.e. degree w below a has the property that
¢ £ wV b, while there is a nonzero AY degree d below a that has this property. This
is a ¥; property, which provides a ¥; difference between the c.e. degrees and the A
degrees.

In [26], Yang and Yu proved that the c.e. degrees and the d.c.e. degrees also differ
at X level, by modifying this proof of Slaman, where another parameter is introduced
to handle the degrees of Lachlan’s sets of d, if d is d.c.e.

Theorem 9 [26]. There are c.e. degrees a,b,c,e and a d.c.e. degree d < a such
that dVb % c, d £ e, and for any c.e. degree w < a, either wVb >c or w<e.

This proof was recently extended by Cai, Shore and Slaman to prove that for any
m < n, the m-c.e. degrees is not a X -substructure of the n-c.e. degrees.

Theorem 10 [4]. There are c.e. degrees a,b,c,e and an (n+1)-c.e. degree d < a
such that dV b # c, d £ e, and for any n-c.e. degree v < a, either vV b > c or
v<e.

These two results give rise to another isolation. That is, all the n-c.e. degrees below d
are isolated, or bounded, by c.e. degree e. Note that we have two cases: either there is
such an e below d (d is isolated by e in the n-c.e. degrees) or e cannot be below d
(d is nonisolated). We consider the case when n = 1, and in the latter case, we say
that d.c.e. degree d is isolated from side nontrivially: d itself is nonisolated, and there
is a c.e. degree e incomparable with d, bounding all the c.e. degrees below d.

We comment here that in the results mentioned above, it is hard to insert e below
d. That is, it is hard to make d isolated. For Cai, Shore and Slaman’s result, for n > 2,
if we really want to move e below d, then e cannot be c.e. anymore, and we will make
it n-c.e. (this is what we want).

In the following, we show how to construct a d.c.e. degree isolated from side nontriv-
ially. We will build d.c.e. sets B, D and a c.e. set C satisfying the following requirements:

G:B<rC,

PP D# 9L,

PE. B#£oWe v W, # U5,

Q.: O =W, = (3ce. U. <7 B)(Vi)(U. # W),
Re: ®POP =W, = Ar (I8 =W.),

where {(®., V., W,) : e € w} is a standard enumeration of all (®, ¥, W) for which ®,
U are partial computable functionals and W is a c.e. set.

Let b, c,d be the Turing degrees of B,C and B & D, respectively. By the Q-requi-
rement, b < c. All the PZ-requirements ensure that b is a properly d.c.e. degree, and
hence b < c. By the Q-strategies, b is nonisolated. The R-strategies ensure that all
the c.e. degrees below d are also below b, hence below c. According to Wu [5], d is
pseudo-isolated.

For the G-requirement, we construct a p.c. functional A such that B = A®, and
for a number z, if we put a number z into B, or extract it from B, at a stage s, we
always put A(z)[s] into C' automatically. Obviously, A is totally defined.

A PP _strategy is a standard Friedberg - Muchnik strategy, and a P -strategy is
a strategy used in the construction of proper d.c.e. degrees. An R.-strategy is similar
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to an isolation strategy. That is, we check at every expansionary stage whether I'Z and
W, agree, and if not, suppose they differ at x, then we extract relevant numbers out
of D to recover a computation ®Z®P(z) to a previous one, which has value 0. This
creates a disagreement between ®5®P and W, , and the requirement is satisfied.

A Q. -strategy, ( say, attempts to construct a c.e. set U, such that if W, = ®Z | then
Ue <r B and for all i € w, U, # \IIZVE. Define (-expansionary stages in a standard
way, and ¢ has two outcomes: 0 and 1, where 0 stands for the case that there are
infinitely many (-expansionary stages, and 1 for the other case.

Suppose that ¢ has outcome 0. The construction of U, will be carried out by Q.’s
substrategies, Se;, ¢ € w, which are arranged in the cone below ¢ ™ (0):

Sei:Uc # W)

Let 3 be an S, ;-strategy. Then [ tries to figure out a disagreement between U,
and \I/zWe or between W, and &5,

(1) Choose = as a fresh number.

(2) Wait for a stage s such that

Ut (@) 1= 0 and Wes | 9is(z) = ®F: | gy (x).

(If this never happens, then x is a witness to the success of Se;.)
(3) Put z into U, and B. Protect B | s from other strategies.

(4) Wait for a stage s’ such that

U (@) 1= 1 and Weyy | his(x) = D25 | ().

(If this never happens, then again x is a witness to the success of Se;. If it
happens, then the change in \IIZVE () between stages s and s’ can only be brought
about by a change in We | ¢, (x), which is irreversible since We is a c.e. set.)

(5) Remove x from B and protect B [ s from other strategies.

(Now x is a permanent witness to the success of Se; because
OF [ this(@) = BT, | tis(@) = Wess | i) # We | ().

That is, taking = from B leads to a global win on Q., and U, is no longer
needed, so we don’t need to care about the loss of B-permission for x (which is

left in Ue).)

In the construction, since we are constructing B d.c.e., the R-strategy is a little
more complicated than the standard isolation strategy. Suppose that I‘ff (z) gets defined
at stage sg, and a PP (or an S)-strategy ¢ with lower priority enumerates a number
z < ¢p(x) into B at a stage s; > so. This enumeration forces (and allows) us to
lift v,(z) to a larger number, ~,(x)[s1]. Later, at stage sz, to get a disagreement, &,
or its mother node, takes z out, and thus ~,(z) returns to its definition at stage s .
Such a variation does no harm to the disagreement strategy of R-strategy, n say.
Suppose that 7 observes at some stage between s; and sg that I‘ff(x) is incorrect and
performs the disagreement strategy; then £ will be initialized, and so £ has no chance
to take z out. In this case, sy does not exist. In case that s does exist, and 7 finds
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an incorrectness of I'}}(x) at stage s3 > sz, since at stage sz, () returns to that of
stage sg, we have

B52 f Pe,s0 = Bsg f Pe,sq -
Now by the fact that ~,(z)[s3] = so, we have

Bss | @e,so = Bsy | ©e,s0-

This guarantees the success of n’s disagreement strategy.

d above is called a pseudo-isolated degree, as a d.c.e. degree b < d bounds all the
c.e. degrees below d. Note that d is nonisolated, as if a is a c.e. degree below d, then
a is also below b. As b is nonisolated, there is a c.e. degree e below b (hence below d)
but not below a. Wu proved in [27] that the pseudo-isolated d.c.e. degrees are dense
in the c.e. degrees.

3. Double bubbles: a stronger notion

In this section, we consider a phenomenon called bubbles, which was discovered by
Arslanov, Kalimullin and Lempp in their work [3]. A basic fact about isolation is that
a isolates d if and only if a and d have the same lower cones in the c.e. degrees.
Extending this concept, we consider the case when all the d.c.e. degrees below d are
comparable with a.

Fix a d.c.e. degree d. Let L(d) be the collection of all Lachlan sets L(D), where
D is a d.c.e. set in d. It’s easy to see that d is isolated by a if and only if each
X € L(d) has its degree deg(X) < a. In [28], Ishmukhametov proved that there exist
a c.e. degree a and a d.c.e. degree d such that L(d) C a, and called such degrees d
exact degrees. Obviously, all exact degrees are isolated by the degree of Lachlan sets.
Ishmukhametov also proved in [28] that there exist isolated non-exact degrees.

Say that two nonzero d.c.e. degrees d and a (together with 0) form a bubble if all
the d.c.e. degrees below d are comparable with a. Obviously, any d.c.e. degree in the
interval (a,d) and a also form a bubble. Arslanov, Kalimullin and Lempp in their recent
work [3] proved the existence of such a bubble and that the degree a in any bubble
must be c.e. The construction has special difficulties and it is still unknown whether
such a structural phenomenon can be combined with other properties (in a similar way
like isolated degrees, see, e.g., recent work of Wu [29] and his joint works with Fang and
Liu [6] and [30]).

Arslanov, Kalimullin and Lempp also proved in [3] the following important theorem.

Theorem 11 [3]. Let D and A be d.c.e. sets with D <7 A, and X be a c.e. set
such that X <p D,A £r X, and both D and A are c.e. in X. Then there exists
ad.ce set U with X <p U <7 D, and U and A are Turing incomparable.

Theorem 11 implies that for any bubble pair a < d, the c.e. degrees x such that
d is relatively enumerable in and above x should be above or equal to a. However,
by Sacks splitting theorem (avoiding the upper cone of a), we have that x cannot be
strictly above a. That is, x and a are the same, and d is an exact degree, and hence
isolated. The proof of the existence of exact d.c.e. degrees is simpler than the one for
bubbles.

One property of bubbles is that the splittings of the top d.c.e. degree of a bubble
a < d are always above a. A related topic, nonsplittability avoiding upper cones, was
first proposed by Cooper and Li in [31].

Definition 2. Given d.c.e degrees a < d,

(1) a splitting x¢, x1 of d is nontrivial if d £ x; for i =0, 1;
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(2) d is splittable above a if there exist a nontrivial splitting of d = xo U x; such
that a < x; for i =0,1;

(3) d is splittable avoiding the upper cone of a if there exists a nontrivial splitting of
d = x9 Ux; such that a € x; for i =0,1.

Note that if d is nonsplittable avoiding the upper cone of a, then d is also non-
splittable avoiding the upper cone of any degree e below a. On the other hand, in [32],
Yamaleev proved that if a and d are properly d.c.e. degrees and there is no c.e. degree
between them, then d can always be splittable avoiding the upper cone of a.

This result is interesting due to the following reason. Assume that both a < d are
d.c.e. degrees and each d.c.e. degree in the interval (a,d] is nonsplittable avoiding the
upper cone of a; then we call this interval a nonsplitting interval. (It is easy to see that
if a < d form a bubble, then (a,d] is a nonsplitting interval.) Sacks’ splitting theorem
(avoiding upper cones) implies that no c.e. degree is in this interval. By Yamaleev’s
result mentioned above, a is c.e., and hence d is isolated by a.

Below we provide a sketch of the proof of a bubble, which contains all features of
constructions of d.c.e. degrees which are nonsplittable avoiding upper cones and also
constructions of nonsplitting intervals.

Theorem 12 [3]. There exist a c.e. degree a and a d.c.e. degree d such that
0 <a<d and any d.c.e. degree u < d is comparable with a.

Sketch of proof. In the sketch, we will provide the basic idea of constructing
c.e. set A and d.c.e. set D, including individual strategies and the interactions between
these strategies. A and D are constructed to meet the following requirements:

Pe: A# V.,
Se: D # 6%,
Re: U, =d28P - (U, =TAvA=AY)

Y

where {(®¢, U.,0O.)}ecc. is an effective enumeration of all p.c. functionals, and {Ue}ecw
is an effective enumeration of all d.c.e. sets. Obviously, if A and D satisfy these re-
quirements, then the degrees of A and A& D form a bubble, as wanted. Later we will
often omit indices.

A P-requirement and an S-requirement can be satisfied by the Friedberg— Muchnik
strategy (or a variant of it). For an R-strategy, we assume that there are infinitely
many expansionary stages (approximating U = ®4®P) and we try first to build a p.c.
functional T" at these stages. It can happen that some S-strategy below it enumerates
a number x into D, and this enumeration can change computation ®4%% (y)  hence
allowing U to change at y. We could not change I'*(y) since it requires changes of A on
small numbers. In the construction of isolated degrees, we just need to extract x from D,
making U(y) # ®49P(y). In our construction, if U(y) changes from 1 to 0, i.e. y leaves
U, then we act in the same way: extract = from D, making U(y) = 0 # 1 = ®49P (),
and hence satisfy this R-requirement. However, if U(y) changes from 0 to 1, i.e. y
enters U, we could not just simply extract = out of D, as U(y) can change from 1 to 0
later, and our effort on diagonalization fails. So if we see that U(y) changes from 0 to 1,
instead of making diagonalization immediately, we will turn to extend the definition
of AU on more arguments, z say, with y less than the J-use. If later we want to
enumerate z into A, we will need to force y out of U to undefine AY(z), and we make
it by extracting z from D to recover ®49P(y) = 0, and now either y keeps in U (we
get U(y) =1# 0= ®19P(y)) or y leaves U and we have AU(z) undefined, and we
can now enumerate z into A.



ISOLATION: MOTIVATIONS AND APPLICATIONS 211

An R-strategy has three outcomes A, T", fin with order A <y I" <y fin.If there are
only finitely many expansionary stages, then fin is the correct outcome. Otherwise,
there are infinitely many expansionary stages, and if from some stage on, I'* keeps
correct in the remainder of the construction, then I' is the correct outcome. If each
version of I'4 appears incorrect, then AU will be defined infinitely many times, and
A is the correct outcome. Note that whenever A-outcome appears to be correct, the
current version of ' becomes invalid, and we will start a new version of T'4.

For convenience, we use x as witnesses for S-strategies (can be enumerated into D
and perhaps removed out later), z as witnesses for P-strategies (can be enumerated
into A) and y for elements of U (can be in or not in U).

As described before, if an S-strategy, « say, is working below the outcome I' of
an R-strategy, 7 say, then « works in a standard Friedberg—Muchnik manner, trying
to find a witness = to satisfy the requirement. If the enumeration of = causes U(y)
different from T'4(y), without loss of generality, we assume that U(y) changes from 0
to 1, then 7 will have outcome A, i.e. 7 tries to extend AY on more arguments.

A P-strategy, G say, below the outcome A of an R-strategy 7, tries to enumerate
its witness z into A. 3 cannot enumerate z into A immediately if AY(z) is defined,
as 0, at the moment. Here is the point: when 3 chooses z as its witness, 7 has outcome
A, which is caused by an enumeration of an S-strategy, say « (below outcome I'), at
a stage s, which makes U(y) to change from 0 to 1. Obviously, when z is selected, z
is selected much bigger, and especially z > s. Now if § wants to enumerate z into A,
then the action is to extract x out of D and also enumerate z into A simultaneously.
Of course, we can enumerate z later, after we see that U(y) changes back to 0. We
prefer to enumerate z into A at the same time when we extract x out of D, as z > s,
which is bigger than the use in ®4¢P(y)[s]. If U(y) does not change back to 0, then
we win as ®49P(z) = 0 # 1 = U(y), and the R-requirement is satisfied. Otherwise,
AY(z) (and also AY(s)) is undefined, which makes 3’s enumerations into A consistent.

As U is assumed to be d.c.e., after y leaves U, it can never come back. Due to this,
once 3 enumerates z into A, z remains in A, as AV(z) will be redefined as 1 later
and forever. The situation is quite different for the case when U is 3-c.e., as described
in [3].

We now consider more complicated interactions among several strategies.

e P below A-outcome of R, below I'-outcome of R;.

A generic case is that after we put a number zy into D, T'{! is defined at some
point y!, and extracting z» from D may now change U;(y'), and the action described
above to recover a computation does not apply here, as we are making D d.c.e. The
idea here is that whenever we extract a number xo from D, besides enumerating z into
A, we also enumerate into A a number s, the stage at which x5 is enumerated into D.
Enumerating z into A is for the sake of the P-strategy, and enumerating s into A is to
undefine I'{'(y), which are defined after stage s. This idea is exactly the same as that in
the construction of isolated degrees, to maintain the consistency between R-strategies.
We use s(z) to denote the stage at which x is enumerated into D. It is a routine to
show that for a particular n, I'{'(n) can be undefined in this way by at most finitely
many times, which ensures that if ®{'®?(n) converges, then T'{(n) is defined.

e P below A-outcomes of Ry and R;.

For simplicity, we use A; and A, to denote the A-outcomes of R-strategies 1
and 79, respectively, where 75 is below outcome A;. Let 8 be a P-strategy below 7 ’s
outcome As. We now describe how ( works below these two A-outcomes.
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Recall that for any R-strategy, when it turns to have outcome A, it is caused by
an enumeration of some S-strategy below outcome I'. Here is the idea: when an S-
strategy avo below 15 ’s outcome T's sees that <I>f; (z2) converges to 0, at stage s1 say,
instead of enumerating xo into D immediately, it waits for the next time when as is
visited again, which will actually show that an S -strategy, ay say, below T ’s outcome
'y, already enumerates a witness x1, being selected after stage s1. Note that at this
stage, s(x1) is bigger than the uses of all computations seeing at stage s;. Now assume
that «q is visited again at stage so, then at this stage, ay enumerates x5 into D,
so s(x2) = s2. Without loss of generality, suppose that this enumeration leads 7 to
have outcome As, and [ selects a number z as its witness. We then associate z with
x1 and xo, which means that enumerating z into A and extracting x; and x5 out
of D should happen at the same time. Thus, we have 2o < 21 < s(z1) < s(z2) < z.
Assume later that § wants to enumerate z into A; it will do so and at the same time
extract both 3,27 from D and enumerate s(x1),s(z2) into A. As discussed before, if
we have a new 7y -expansionary stage, then U; should have a change on the associated
number, y; say, which undefines A" (s(z1)), AV (s(z2)) and AV (2). Also, if we have
a new To-expansionary stage later, then U, has a change on y, say, which undefines
AY2(s(x3)), AY?(s(z1)) and AY?(z). This nested procedure is the core part of the
construction of bubbles, and the idea can be generalized to a case when (3 is working
below A-outcome of several R-strategies. 0

In [3], Arslanov, Kalimullin and Lempp actually proved the existence of 3-bubbles,
a generalization of double bubbles.

Definition 3. Let d,e,f be 3-c.e. degrees with 0 < d < e < f. Say that these
degrees form a 3-bubble in D3 if any 3-c.e. degree u < f is comparable with e and d.
Say that these degrees form a weak 3-bubble in D3 if any 3-c.e. degree u < f is either
comparable with both e and d or incomparable with both of them.

Theorem 11 implies that weak 3-bubbles do not exist in D,.

In [3], Arslanov, Kalimullin and Lempp actually proved that degrees f,e,d in the
weak 3-bubbles can be 3-c.e., d.c.e. and c.e., respectively. In the following, we show that
such weak 3-bubbles are actually 3-bubbles, so the construction given in [3] produces
a 3-bubble.

First, we show that all d.c.e. degrees below f are comparable with e and d. Suppose
not, and let g be a d.c.e. degree below f, but not comparable with e and d. Then gud
would be d.c.e. and guUd > d, which would imply that gUd > e, as g is not below e.
By assumption that f e, d form a weak 3-bubble in D3, we know that gUd, e, d also
form a weak 3-bubble in D3, which is also a weak 3-bubble in D5, a contradiction.

We now assume that h is a 3-c.e. degree below f but incomparable with e and d.
Then h is a properly 3-c.e. degree, and degrees of Lachlan sets of those 3-c.e. sets in h
are d.c.e., and hence are comparable with e and d.

Let u be a degree of the Lachlan set of a 3-c.e. set in h. Then u is not above d, as
otherwise, h would be also above d, which is impossible. As a consequence, u is below
d. Now consider hUd, which is 3-c.e and relative enumerable in and above d. As here,
we assume that d given as a c.e. degree, by a well-known result of Arslanov, LaForte
and Slaman in [33] that the class of the d.c.e. degrees coincides with the intersection of
the class of the w-c.e. degrees and the class of the 2-REA degrees, we know that hud
is d.c.e. Note that hUd > d, and hence hUd is comparable with e. As h itself is
incomparable with e, hud is above e. Thus, hud, e,d form a weak 3-bubble in Ds,
which is also a weak 3-bubble in Dy. A contradiction again. This completes the proof.
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4. Isolation, cupping and diamond embeddings

In this section, we show how to use isolation phenomenon to provide alternative
proofs of several known results of cupping properties and diamond embeddings.

In [11], Cooper, Harrington, Lachlan, Lempp and Soare proved the existence of
an incomplete, maximal d.c.e. degree d. This result is strong, as it implies that d
cups every c.e. degree not below it to 0’. In contrast, Li, Song and Wu proved in [34]
the existence of an incomplete w-r.e. degree cupping every nonzero r.e. degree to 0’.
These degrees are said to have the universal cupping property. In terms of the Ershov
hierarchy, Li, Song and Wu’s result is optimal.

In [30], Liu and Wu proposed a cupping property for the d.c.e. degrees, where a d.c.e.
degree d has the almost universal cupping property if it cups every c.e. degree not
below it to 0’. The maximal d.r.e. degree constructed by Cooper et al. does have this
property. However, compared to the construction of incomplete maximal d.r.e. degrees,
the construction of d.c.e. degrees with almost universal cupping property is much easier.
In [30], Liu and Wu constructed a d.c.e. degree d with the almost cupping property
such that d is also isolated by a c.e. degree b < d.

Theorem 13. There is an almost universal cupping d.c.e. degree d and a c.e.
degree b < d such that b is the greatest c.e. degree below d.

To prove Theorem 13, we will construct a d.c.e. set D, a nonrecursive c.e. set B
such that (i) D €7 B, (ii) for any c.e. set W, either W, <r B or B& D& W, =1 V.
That is, the constructed sets need to satisfy the isolation requirements and also the
following cupping requirements:

Re: K =TBDPWe v W, = AB | where I'. and A, are p.c. functionals constructed
by us.

Here K is a fixed creative set. Note that the R-requirements ensure that B & D has
the almost universal cupping property.

Let 3 be an R.-strategy. For convenience, we write I'g for I'c(g) and Wy for W) .
B will construct a partial computable (p.c.) functional I'g such that K = I’g’D’WB,
and if [ fails, due to the actions of the isolation strategies, then an isolation strategy
will show that W <7 B.

I'g is constructed as follows:

B,D,Wg B,D,Wg

A. At a stage s, define I'; (2)[s] = Ks(z) for those 2z < s with T'y (2)[s]
not defined, and the use y3(z)[s] is selected as a fresh number.

B. If I‘g’D’WB (2)[s] | # Ks(2), then we put v3(z)[s] into D to undefine the current
Fg’D’W" (2) for the least z < s.

In the construction, to correct I', f may enumerate uses y3(z) into D for infinitely
many z. These enumerations can cause direct conflicts between § and those isolation
strategies, n say, below 3, which want to preserve computations. This type of interaction
is an important component of the whole construction.

Let 1 be an isolation strategy. The basic idea of 7 is to construct a p.c. functional
©,, at expansionary stages to ensure that if CIDE’D is total, then ©,, is well-defined
and computes W, correctly. If later, at an n-expansionary stage, we see that @f(y)
and W, (y) differ at an argument y say, we will then force a disagreement between
L (y) # Wy (y).

7 has three outcomes f, d and oo, with priority co <p f <r d. Here f denotes
that there are only finitely many n-expansionary stages and 7 does not create any
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disagreement, and oo denotes that there are infinitely many 7-expansionary stages.
d denotes the outcome that 7 succeeds in creating a disagreement between @f@D
and W,.

A crucial action of 7 is that when a number, z say, is removed from D, then
another number, for example, the stage when z is put into D, is enumerated into B
simultaneously. This action can ensure that all the isolation strategies work consistently.

We now consider the interaction between one isolation strategy and one R-strategy.
Let 5 and n be an R-strategy and an isolation strategy respectively, with 5 C n. As
mentioned in a single R-strategy, a disagreement created by n could be destroyed by
(’s enumerations into D. Also, when 7 has oo as its outcome, S may enumerate y(n)
into D as n enters K. Now 7 may see an opportunity to diagonalize by extracting
~v(n) from D, and n cannot do this as § would be injured by this extraction.

To avoid this, when 7 sees a computation @f@D(y) and wants to preserve it, 77 needs
to make this computation clear of the 7z-uses, by applying the “capricious method”,
an argument first introduced by Lachlan in his nonsplitting theorem. That is, when 7
is first visited, it picks a number k, as its threshold, and whenever a number k < k,
enters K, we enumerate the current yz(k)-use into D to undefine F?’D’W” (k), and also
reset n by cancelling all the parameters associated to 7, except for the parameter k.

1 aims to define a p.c. functional ASB with the purpose that if 1 cannot satisfy the
associated isolation requirement, then Afﬁ should be total and computes Wy correctly.
This will satisfy the Rg-requirement.

Suppose that after stage s, n is not reset and suppose that at a stage ¢t > s, 1 sees
a potential witness y for its disagreement argument, then 1 puts y3(k,)[t] into D first,
to start an attack on 3, by defining

Ajls T vp(kn)[t] = W T vp(kn)[1]

with use ¢.

If W5 changes below vg(ky)[t] after stage ¢, at an n-expansionary stage t’ > t say,
then 7 performs the disagreement argument by removing numbers out of D, including
Y5 (ky)[t], to recover computation 5P (y) to TP (y)[s], where s is the stage at
which ©F(y) is defined, as indicated above. This Ws-change lifts the value of ~y5(z)
for those z > k,, and hence, after stage ¢’, the enumeration of the vg-uses will not
affect the computation CIDEGBD(:C). That is, the attack is completed at stage t', and 7
passes the threshold k, for .

On the other hand, if Wj has no changes below ~3(k,)[t] after stage ¢, then the
attack associated with ~vg(k,)[t] keeps active until a new attack is activated. If infinitely
many such attacks are started, then Affﬁ is defined as a total function and computes
Wg correctly, and hence W, is computable in B.

In this situation, n has four possible outcomes:

f: There are only finitely many n-expansionary stages.
d: n passes its threshold k, for §, and a disagreement is created.

00 : There are infinitely many n-expansionary stages, and only finitely many attacks
are started. In this case, @,’? is total and computes W,, correctly.

gg : Infinitely many attacks are started in the construction, and 1 never passes its
threshold k,, for 3. ASB is total and computes W3 correctly. The R g-requirement

is satisfied. In this case, I’g’D’Wﬁ (py) diverges.
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Let & be any strategy below the outcome gg, then ¢ knows that v3(p,)-uses goes
to infinity, and we say that a computation <I>§ EBD(y) at a stage s is &-believable if
~v8(pn)[s] is bigger than the use ¢¢(y)[s]. If € is a back-up strategy for 7, then by using
only &-believable computations, £ can satisfy the corresponding requirement in the
standard way, as after & sees at {-believable computations, §’s further enumerations
into D will not affect these computations.

This basic idea can be generalized to the situation when one isolation strategy is
working below several R-strategies, where an attack of n needs to pass several thresh-
olds. Please refer to [30] for further development. In [30], Liu and Wu also proved that
b can be cappable. This implies that any d.c.e. degree below b and any d.c.e. degree
above d, together with 0 and 0’, form a diamond.

This isolation feature allows Fang, Liu and Wu to improve a result of Downey,
Li and Wu in [35]. Fang, Liu and Wu proved recently that for any nonzero cappable
c.e. degree c, there is a d.c.e. degree d with almost universal cupping property and
a c.e. degree b < d such that b isolates d and that ¢ and b form a minimal pair.
By applying this result twice, first to ¢ and then to b, we have d and b first, and then
e and a such that e has almost universal cupping property and a < e isolates e, and a
and b form a minimal pair. Now for any nonzero c.e. degree w, w cups either e or d,
or both, to 0’. Obviously, this result has Li—,Yi cupping theorem as a direct corollary.

Both authors are supported by NTU grant RG37/09, M52110101. The second author
is supported by RFBR, (Projects 09-01-97010, 10-01-00399), ADTP “Development of the
Scientific Potential of Higher School” of the Russian Federal Agency of Education (Grant
2.1.1/5367), Federal Target Grant “Scientific and Educational Personnel of Innovation
of Russia” (Government contract No. II 269).

Pesiome
I'. By, M.M. fImanees. VI301upoBaHHOCTD: 0OOCHOBAHUS W TIPUIOKEHUS.

B crarse paccmarpuBaooTcst heHOMEH M30JIMPOBAHHON CTEIEHN W ero MPUJIOKEH!S K HC-
CJIeIOBAHMIO CBOMCTB CTereHei ux uepapxuu Epmosa. AHaIM3upyo0TCs cTenenn, 00pasyomue
«BOCBMEPKY» (6os1ee CHIHHBIN BAPMAHT M30/IMPOBAHHON CTENEHN ), 4 TAKKE TeMOHCTPUPYIOTCS
OCTIeHIEe NOCTUKEHUS B M3YUEeHHH BJIOKUMOCTHU DPEIIeTOK P! IOMOINU CBOMCTBA M30JIUPO-
BaHHOCTH.

KiroueBble ciioBa: THIOPUHIOBBIE CTereHu, nepapxus Epmiosa, n30/1npoBaHHbIe CTENeHN,
BJIOJKEHUSA PEIIeTOK.
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