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UDK 510.532 ISOLATION:MOTIVATIONS AND APPLICATIONSG. Wu, M.M. YamaleevAbstra
tIn this paper, we brie�y review the origins of the isolation phenomenon and its appli
ations.We dis
uss a stronger notion of double bubbles. We also show re
ent a
hievements in the studyof latti
e embeddings with the help of the isolation property.Key words: Turing degrees, Ershov hierar
hy, isolated degrees, latti
e embeddings.Introdu
tionAn n + 1 -
.e. degree d is isolated by an n-
.e. degree a if a < d is the greatest
n-
.e. degree below d . The existen
e of su
h isolated n+ 1 -
.e. degrees, for n ≥ 1 , 
anbe obtained, in a nonuniform way, from Kaddah's thesis, where in�ma of n-
.e. degreesin di�erent levels of the Ershov hierar
hy are 
onsidered. The 
ase when n = 1 was �rstproposed expli
itly by Cooper and Yi in their paper [1℄, and the general 
ase, i.e. when
n ≥ 1 , was studied by LaForte in [2℄. A re
ent 
onstru
tion of bubbles of Arslanov,Kalimullin and Lempp in [3℄ also gives rise to the existen
e of isolated degrees, and itis attempting to extend su
h bubble 
onstru
tions to show that di�erent (�nite) levelsin the Ershov hierar
hy are not elementary equivalent.In this paper, we brie�y review the origins of the isolation phenomenon and howvariants of this phenomenon 
an be applied to study lo
al and global properties ofthe Ershov hierar
hy. In Se
tion 1, we �rst show how to obtain isolated degrees fromKaddah's thesis, and then give a brief des
ription of early development in this area. InSe
tion 2, we 
onsider isolation from side, a property that was used by Yang and Yu toshow that the 
.e. degrees is not a Σ1 substru
ture of d.
.e. degrees. This phenomenonhas been extended to n-
.e. degrees by Cai, Shore and Slaman [4℄. We are 
on
ernedwith those nonisolated degrees that 
an be isolated from side, whi
h are nontrivial ex-tensions of Cooper and Yi's isolated degrees. In Se
tion 3, we give a dire
t 
onstru
tionof a bubble, a work of Arslanov, Kalimullin and Lempp. That is, we will provide a 
on-stru
tion of a d.
.e. degree d and a 
.e. degree a < d su
h that every d.
.e. degree ebelow d is 
omparable with a . Obviously, d is isolated by a . We believe that, like theisolation phenomenon, the bubble phenomenon is an important tool for studying thestru
tural properties of the Ershov hierar
hy. In Se
tion 4, we show re
ent developmentof appli
ations of isolation to latti
e embeddings. This proje
t was initiated by Wu inhis thesis [5℄ and has 
ome to a highlight in a re
ent work of Fang, Liu and Wu, whoproved in [6℄ that any nonzero 
appable 
.e. degree 
an have a d.
.e. degree with almostuniversal 
upping property as its 
omplement.Our notation and terminology are standard and generally follow Soare [7℄. We sug-gest the readers to refer Cooper's paper [8℄ and Arslanov's paper [9℄ for the general ideaon lo
al degree theory.



ISOLATION: MOTIVATIONS AND APPLICATIONS 2051. Kaddah's work and isolationA Turing degree is properly d.
.e. if it 
ontains a d.
.e. set, but no 
.e. set. Cooperproved in [10℄ the existen
e of properly d.
.e. degrees, and La
hlan observed that anynonzero d.
.e. degree bounds a nonzero 
.e. degree. That is, given a d.
.e. set D withan e�e
tive approximation {Ds : s ∈ ω} , the asso
iated set
L(D) = {〈x, s〉 : x ∈ Ds −D}is 
.e., and is Turing redu
ible to D , while D is 
.e. in L(D) . If D is 
.e. and

{Ds : s ∈ ω} is an e�e
tive enumeration of D , then L(D) is empty. On the otherhand, if D has proper d.
.e. degree, then L(D) is not 
omputable. L(D) is 
alled theLa
hlan set of D with referen
e to the enumeration {Ds : s ∈ ω} . La
hlan's observationshows that the d.
.e. degrees are downwards dense, whi
h is also true for the 
.e. de-grees. However, the d.
.e. degrees are not dense, and hen
e these two degree stru
turesare not elementarily equivalent.Theorem 1 (Nondensity Theorem for D2 [11℄). There exists a maximald.
.e. degree d < 0′ , and hen
e the d.
.e. degrees are not dense.The fa
t that these stru
tures are not elementarily equivalent was �rst proved byArslanov [12℄ and Downey [13℄, who proved that any nonzero d.
.e. degree is 
uppable,and that the diamond latti
e 
an be embedded into the d.
.e. degrees preserving 0 and 1,respe
tively.In 
ontrast to this nondensity theorem, Ishmukhametov [14℄ and, independently,Cooper and Yi [1℄ proved that any nonempty interval [a,d] , with a 
.e., 
ontainsin�nitely many d.
.e. degrees, a weak density theorem of d.
.e. degrees.Theorem 2 [1, 14℄. If d is a d.
.e. degree and a < d is a 
.e. degree, then thereis a d.
.e. degree c between a and d .Here we 
annot require the degree c above be 
.e., as there are a 
.e. degree a anda d.
.e. degree d > a su
h that no 
.e. degree is between a and d . This 
an be obtainedfrom the following theorem of Kaddah.Theorem 3 [15℄. Every low 
.e. degree is bran
hing in the d.
.e. degrees.Let a be a low, nonbran
hing, 
.e. degree, and let d, e be two d.
.e. degrees above
a su
h that a is the in�mum of d and e in the d.
.e. degrees. Then one of the intervals
(a,d) , (a, e) 
ontains no 
.e. degrees, as a is assumed to be nonbran
hing.Cooper and Yi �rst noti
ed this stru
tural phenomenon and proposed the notion ofisolation expli
itly in their paper [1℄.De�nition 1 [1℄. A d.
.e. degree d is isolated by a 
.e. degree a if a < d is thegreatest 
.e. degree below d . A d.
.e. degree d is isolated if it is isolated by some 
.e.degree a . A d.
.e. degree is nonisolated if it is not isolated.After showing the existen
e of the isolated degrees, Cooper and Yi 
ontinued toshow the existen
e of the nonisolated degrees, where a d.
.e. degree d is nonisolatedif no 
.e. degree below d 
an isolate d . Cooper and Yi a
tually proved the existen
eof a properly d.
.e. degree as a minimal upper bound of a uniformly 
.e. sequen
e ofdegrees, an even stronger result. These two kinds of degrees are proved to be densein the 
.e. degrees.Theorem 4 [16�18℄. Both the isolated d.
.e. degrees and the nonisolated d.
.e.degrees are dense in the 
.e. degrees.



206 G. WU, M.M. YAMALEEVTheorem 4 says that the isolated degrees 
ould be as 
lose to the isolating degreesas wanted. Ishmukhametov and Wu proved that in terms of the high/low hierar
hy, theisolated d.
.e. degree and the isolating degree 
an be quite far from ea
h other.Theorem 5 [19, 20℄. There is a high d.
.e. degree d isolated by a low 
.e. degree c .Su
h a 
.e. degree c 
an be found below any nonzero 
.e. degree a .Cooper [21℄ proved in 1974 that any high 
.e. degree bounds a minimal pair, andhen
e no high 
.e. 
an be nonbounding. However, there do exist high d.
.e. nonboundingdegrees, as �rst 
onstru
ted by Chong, Li and Yang in [22℄ by a fairly 
ompli
ated 0′′′argument. Theorem 5 
an provide another proof of this result, as if we �rst take a asa nonbounding degree, and then apply Theorem 5 to obtain c and d . Obviously, c isalso nonbounding, whi
h implies that d is also nonbounding (and also high).In [18℄, Arslanov, Lempp and Shore showed the existen
e of the nonisolating degrees,and proved that these degrees are downwards dense in the 
.e. degrees, and 
an o

urin every jump 
lass. In 
ontrast to this, Cooper, Salts and Wu proved in [23℄ that thenonisolating degrees are upwards dense in the 
.e. degrees. Furthermore, Salts provedin [24℄ that the nonisolating degrees are not dense in the 
.e. degrees.Theorem 6 [24℄. There is an interval of 
.e. degrees, [a, c] , ea
h of whi
h isolatesa d.
.e. degree.Re
ent work of Wu and Yamaleev1 shows that su
h an interval 
an be large. Thatis, c above 
an be high and a 
an be low.La
hlan [25℄ proved in 1966 that the in�mum of two 
.e. degrees in the 
.e. degreesand the in�mum of two 
.e. degrees in the ∆0
2 degrees 
oin
ide. In 
ontrast to this,in [15℄, Kaddah proved that the in�ma of n-
.e. degrees in the n-
.e. degrees 
an bedi�erent from that of these two n-
.e. degrees in the (n+ 1)-
.e. degrees.Theorem 7 [15℄. For ea
h n ≥ 2 , there are n-
.e. degrees d, e su
h that theyhave f as in�mum in the n-
.e. degrees, and there is an (n + 1)-
.e. degree x with

f < x < d, e .This implies isolation at higher levels in the Ershov hierar
hy, as x shows that dand e do not have f as their in�mum in the (n + 1)-
.e. degrees. Following Cooperand Yi, we 
an say that x is isolated by f in the n-
.e. degrees. Liu, Wang and Wu2proved that su
h isolation pairs, x and f , are dense in the 
.e. degrees. This isolationresult was proved previously by LaForte in [2℄ by a di�erent approa
h.2. Variants of isolationArslanov's 
upping theorem shows that the stru
tures of the 
.e degrees and thed.
.e degrees di�er at Σ3 level, and Cooper et al.'s proof of the existen
e of in
ompletemaximal d.
.e. degrees, and Downey's diamond theorem show that these two stru
turesdi�er at Σ2 level. It be
omes interesting to 
onsider whether two stru
tures di�er at
Σ1 level.Say that nonzero 
.e. degrees a,b, c form a Slaman triple if b 6≥ c , and for anynonzero 
.e. degree w ≤ a , w ∨ b ≥ c . It is easy to 
he
k that a and b above forma minimal pair, and Shore and Slaman proved in 1993 that every high 
.e. degree boundsa Slaman triple.In 1983, Slaman proved the following strengthened version of Slaman triples.

1A large interval of isolating degrees, in preparation.
2An alternative approa
h of isolated (n + 1) -
.e. degrees, in preparation.



ISOLATION: MOTIVATIONS AND APPLICATIONS 207Theorem 8 (Slaman 1983). There are 
.e. degrees a,b, c and a ∆0
2 degree dwith 0 < d < a su
h that (1) a,b, c form a Slaman triple, (2) d ∨ b 6≥ c .Theorem 8 says that no nonzero 
.e. degree w below a has the property that

c 6≤ w ∨ b , while there is a nonzero ∆0
2 degree d below a that has this property. Thisis a Σ1 property, whi
h provides a Σ1 di�eren
e between the 
.e. degrees and the ∆0

2degrees.In [26℄, Yang and Yu proved that the 
.e. degrees and the d.
.e. degrees also di�erat Σ1 level, by modifying this proof of Slaman, where another parameter is introdu
edto handle the degrees of La
hlan's sets of d , if d is d.
.e.Theorem 9 [26℄. There are 
.e. degrees a,b, c, e and a d.
.e. degree d < a su
hthat d ∨ b 6≥ c , d 6≤ e , and for any 
.e. degree w < a , either w ∨ b ≥ c or w ≤ e .This proof was re
ently extended by Cai, Shore and Slaman to prove that for any
m < n , the m-
.e. degrees is not a Σ1 -substru
ture of the n-
.e. degrees.Theorem 10 [4℄. There are 
.e. degrees a,b, c, e and an (n+1)-
.e. degree d < asu
h that d ∨ b 6≥ c , d 6≤ e , and for any n-
.e. degree v < a , either v ∨ b ≥ c or
v ≤ e .These two results give rise to another isolation. That is, all the n-
.e. degrees below dare isolated, or bounded, by 
.e. degree e . Note that we have two 
ases: either there issu
h an e below d (d is isolated by e in the n-
.e. degrees) or e 
annot be below d(d is nonisolated). We 
onsider the 
ase when n = 1 , and in the latter 
ase, we saythat d.
.e. degree d is isolated from side nontrivially: d itself is nonisolated, and thereis a 
.e. degree e in
omparable with d , bounding all the 
.e. degrees below d .We 
omment here that in the results mentioned above, it is hard to insert e below
d . That is, it is hard to make d isolated. For Cai, Shore and Slaman's result, for n ≥ 2 ,if we really want to move e below d , then e 
annot be 
.e. anymore, and we will makeit n-
.e. (this is what we want).In the following, we show how to 
onstru
t a d.
.e. degree isolated from side nontriv-ially. We will build d.
.e. sets B,D and a 
.e. set C satisfying the following requirements:

G : B ≤T C,

PD
e : D 6= ΦC

e ,

PB
e : B 6= ΦWe

e ∨ We 6= ΨB
e ,

Qe : ΦB
e = We ⇒ (∃ c.e. Ue ≤T B)(∀i)(Ue 6= ΨWe

i ),

Re : ΦB⊕D
e = We ⇒ ∃Γe(Γ

B
e = We),where {〈Φe,Ψe,We〉 : e ∈ ω} is a standard enumeration of all 〈Φ,Ψ,W 〉 for whi
h Φ ,

Ψ are partial 
omputable fun
tionals and W is a 
.e. set.Let b, c,d be the Turing degrees of B,C and B⊕D , respe
tively. By the Q-requi-rement, b ≤ c . All the PB -requirements ensure that b is a properly d.
.e. degree, andhen
e b < c . By the Q-strategies, b is nonisolated. The R-strategies ensure that allthe 
.e. degrees below d are also below b , hen
e below c . A

ording to Wu [5℄, d ispseudo-isolated.For the G -requirement, we 
onstru
t a p.
. fun
tional Λ su
h that B = ΛC , andfor a number x , if we put a number x into B , or extra
t it from B , at a stage s , wealways put λ(x)[s] into C automati
ally. Obviously, Λ is totally de�ned.A PD
e -strategy is a standard Friedberg �Mu
hnik strategy, and a PB

e -strategy isa strategy used in the 
onstru
tion of proper d.
.e. degrees. An Re -strategy is similar



208 G. WU, M.M. YAMALEEVto an isolation strategy. That is, we 
he
k at every expansionary stage whether ΓB
e and

We agree, and if not, suppose they di�er at x , then we extra
t relevant numbers outof D to re
over a 
omputation ΦB⊕D
e (x) to a previous one, whi
h has value 0. This
reates a disagreement between ΦB⊕D
e and We , and the requirement is satis�ed.A Qe -strategy, ζ say, attempts to 
onstru
t a 
.e. set Ue su
h that if We = ΦB

e , then
Ue ≤T B and for all i ∈ ω , Ue 6= ΨWe

i . De�ne ζ -expansionary stages in a standardway, and ζ has two out
omes: 0 and 1 , where 0 stands for the 
ase that there arein�nitely many ζ -expansionary stages, and 1 for the other 
ase.Suppose that ζ has out
ome 0. The 
onstru
tion of Ue will be 
arried out by Qe 'ssubstrategies, Se,i , i ∈ ω , whi
h are arranged in the 
one below ζ ⌢ 〈0〉 :
Se,i : Ue 6= ΨWe

i .Let β be an Se,i -strategy. Then β tries to �gure out a disagreement between Ueand ΨWe

i or between We and ΦB
e .(1) Choose x as a fresh number.(2) Wait for a stage s su
h that

Ψ
We,s

i,s (x) ↓= 0 and We,s ↾ ψi,s(x) = ΦBs
e,s ↾ ψi,s(x).(If this never happens, then x is a witness to the su

ess of Se,i .)(3) Put x into Ue and B . Prote
t B ↾ s from other strategies.(4) Wait for a stage s′ su
h that

Ψ
We,s′

i,s′ (x) ↓= 1 and We,s′ ↾ ψi,s(x) = Φ
Bs′

e,s′ ↾ ψi,s(x).(If this never happens, then again x is a witness to the su

ess of Se,i . If ithappens, then the 
hange in ΨWe

i (x) between stages s and s′ 
an only be broughtabout by a 
hange in We ↾ ψi,s(x) , whi
h is irreversible sin
e We is a 
.e. set.)(5) Remove x from B and prote
t B ↾ s from other strategies.(Now x is a permanent witness to the su

ess of Se,i be
ause
ΦB

e ↾ ψi,s(x) = ΦB
e,s ↾ ψi,s(x) = We,s ↾ ψi,s(x) 6= We ↾ ψi,s(x).That is, taking x from B leads to a global win on Qe , and Ue is no longerneeded, so we don't need to 
are about the loss of B -permission for x (whi
h isleft in Ue ).)In the 
onstru
tion, sin
e we are 
onstru
ting B d.
.e., the R-strategy is a littlemore 
ompli
ated than the standard isolation strategy. Suppose that ΓB

η (x) gets de�nedat stage s0 , and a PB (or an S )-strategy ξ with lower priority enumerates a number
z < ϕη(x) into B at a stage s1 > s0 . This enumeration for
es (and allows) us tolift γη(x) to a larger number, γη(x)[s1] . Later, at stage s2 , to get a disagreement, ξ ,or its mother node, takes z out, and thus γη(x) returns to its de�nition at stage s0 .Su
h a variation does no harm to the disagreement strategy of R-strategy, η say.Suppose that η observes at some stage between s1 and s2 that ΓB

η (x) is in
orre
t andperforms the disagreement strategy; then ξ will be initialized, and so ξ has no 
han
eto take z out. In this 
ase, s2 does not exist. In 
ase that s2 does exist, and η �nds



ISOLATION: MOTIVATIONS AND APPLICATIONS 209an in
orre
tness of ΓB
η (x) at stage s3 > s2 , sin
e at stage s2 , γη(x) returns to that ofstage s0 , we have

Bs2
↾ ϕe,s0

= Bs0
↾ ϕe,s0

.Now by the fa
t that γη(x)[s3] = s0 , we have
Bs3

↾ ϕe,s0
= Bs0

↾ ϕe,s0
.This guarantees the su

ess of η 's disagreement strategy.

d above is 
alled a pseudo-isolated degree, as a d.
.e. degree b < d bounds all the
.e. degrees below d . Note that d is nonisolated, as if a is a 
.e. degree below d , then
a is also below b . As b is nonisolated, there is a 
.e. degree e below b (hen
e below d)but not below a . Wu proved in [27℄ that the pseudo-isolated d.
.e. degrees are densein the 
.e. degrees. 3. Double bubbles: a stronger notionIn this se
tion, we 
onsider a phenomenon 
alled bubbles, whi
h was dis
overed byArslanov, Kalimullin and Lempp in their work [3℄. A basi
 fa
t about isolation is that
a isolates d if and only if a and d have the same lower 
ones in the 
.e. degrees.Extending this 
on
ept, we 
onsider the 
ase when all the d.
.e. degrees below d are
omparable with a .Fix a d.
.e. degree d . Let L(d) be the 
olle
tion of all La
hlan sets L(D) , where
D is a d.
.e. set in d . It's easy to see that d is isolated by a if and only if ea
h
X ∈ L(d) has its degree deg(X) ≤ a . In [28℄, Ishmukhametov proved that there exista 
.e. degree a and a d.
.e. degree d su
h that L(d) ⊆ a , and 
alled su
h degrees dexa
t degrees. Obviously, all exa
t degrees are isolated by the degree of La
hlan sets.Ishmukhametov also proved in [28℄ that there exist isolated non-exa
t degrees.Say that two nonzero d.
.e. degrees d and a (together with 0) form a bubble if allthe d.
.e. degrees below d are 
omparable with a . Obviously, any d.
.e. degree in theinterval (a,d) and a also form a bubble. Arslanov, Kalimullin and Lempp in their re
entwork [3℄ proved the existen
e of su
h a bubble and that the degree a in any bubblemust be 
.e. The 
onstru
tion has spe
ial di�
ulties and it is still unknown whethersu
h a stru
tural phenomenon 
an be 
ombined with other properties (in a similar waylike isolated degrees, see, e.g., re
ent work of Wu [29℄ and his joint works with Fang andLiu [6℄ and [30℄).Arslanov, Kalimullin and Lempp also proved in [3℄ the following important theorem.Theorem 11 [3℄. Let D and A be d.
.e. sets with D �T A , and X be a 
.e. setsu
h that X ≤T D,A �T X , and both D and A are 
.e. in X . Then there existsa d.
.e. set U with X ≤T U ≤T D , and U and A are Turing in
omparable.Theorem 11 implies that for any bubble pair a < d , the 
.e. degrees x su
h that
d is relatively enumerable in and above x should be above or equal to a . However,by Sa
ks splitting theorem (avoiding the upper 
one of a), we have that x 
annot bestri
tly above a . That is, x and a are the same, and d is an exa
t degree, and hen
eisolated. The proof of the existen
e of exa
t d.
.e. degrees is simpler than the one forbubbles.One property of bubbles is that the splittings of the top d.
.e. degree of a bubble
a < d are always above a . A related topi
, nonsplittability avoiding upper 
ones, was�rst proposed by Cooper and Li in [31℄.De�nition 2. Given d.
.e degrees a < d ,(1) a splitting x0 , x1 of d is nontrivial if d � xi for i = 0, 1 ;



210 G. WU, M.M. YAMALEEV(2) d is splittable above a if there exist a nontrivial splitting of d = x0 ∪ x1 su
hthat a ≤ xi for i = 0, 1 ;(3) d is splittable avoiding the upper 
one of a if there exists a nontrivial splitting of
d = x0 ∪ x1 su
h that a � xi for i = 0, 1 .Note that if d is nonsplittable avoiding the upper 
one of a , then d is also non-splittable avoiding the upper 
one of any degree e below a . On the other hand, in [32℄,Yamaleev proved that if a and d are properly d.
.e. degrees and there is no 
.e. degreebetween them, then d 
an always be splittable avoiding the upper 
one of a .This result is interesting due to the following reason. Assume that both a < d ared.
.e. degrees and ea
h d.
.e. degree in the interval (a,d] is nonsplittable avoiding theupper 
one of a ; then we 
all this interval a nonsplitting interval. (It is easy to see thatif a < d form a bubble, then (a,d] is a nonsplitting interval.) Sa
ks' splitting theorem(avoiding upper 
ones) implies that no 
.e. degree is in this interval. By Yamaleev'sresult mentioned above, a is 
.e., and hen
e d is isolated by a .Below we provide a sket
h of the proof of a bubble, whi
h 
ontains all features of
onstru
tions of d.
.e. degrees whi
h are nonsplittable avoiding upper 
ones and also
onstru
tions of nonsplitting intervals.Theorem 12 [3℄. There exist a 
.e. degree a and a d.
.e. degree d su
h that

0 < a < d and any d.
.e. degree u ≤ d is 
omparable with a .Sket
h of proof. In the sket
h, we will provide the basi
 idea of 
onstru
ting
.e. set A and d.
.e. set D , in
luding individual strategies and the intera
tions betweenthese strategies. A and D are 
onstru
ted to meet the following requirements:
Pe : A 6= Ψe ,
Se : D 6= ΘA

e ,
Re : Ue = ΦA⊕D

e → (Ue = ΓA
e ∨A = ∆U

e ) ,where {〈Φe,Ψe,Θe〉}e∈ω is an e�e
tive enumeration of all p.
. fun
tionals, and {Ue}e∈ωis an e�e
tive enumeration of all d.
.e. sets. Obviously, if A and D satisfy these re-quirements, then the degrees of A and A⊕D form a bubble, as wanted. Later we willoften omit indi
es.A P -requirement and an S -requirement 
an be satis�ed by the Friedberg �Mu
hnikstrategy (or a variant of it). For an R-strategy, we assume that there are in�nitelymany expansionary stages (approximating U = ΦA⊕D ), and we try �rst to build a p.
.fun
tional Γ at these stages. It 
an happen that some S -strategy below it enumeratesa number x into D , and this enumeration 
an 
hange 
omputation ΦA⊕D(y) , hen
eallowing U to 
hange at y . We 
ould not 
hange ΓA(y) sin
e it requires 
hanges of A onsmall numbers. In the 
onstru
tion of isolated degrees, we just need to extra
t x from D ,making U(y) 6= ΦA⊕D(y) . In our 
onstru
tion, if U(y) 
hanges from 1 to 0, i.e. y leaves
U , then we a
t in the same way: extra
t x from D , making U(y) = 0 6= 1 = ΦA⊕D(y) ,and hen
e satisfy this R-requirement. However, if U(y) 
hanges from 0 to 1, i.e. yenters U , we 
ould not just simply extra
t x out of D , as U(y) 
an 
hange from 1 to 0later, and our e�ort on diagonalization fails. So if we see that U(y) 
hanges from 0 to 1,instead of making diagonalization immediately, we will turn to extend the de�nitionof ∆U on more arguments, z say, with y less than the δ -use. If later we want toenumerate z into A , we will need to for
e y out of U to unde�ne ∆U (z) , and we makeit by extra
ting x from D to re
over ΦA⊕D(y) = 0 , and now either y keeps in U (weget U(y) = 1 6= 0 = ΦA⊕D(y)) or y leaves U and we have ∆U (z) unde�ned, and we
an now enumerate z into A .
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omes ∆,Γ, f in with order ∆ <L Γ <L fin . If there areonly �nitely many expansionary stages, then fin is the 
orre
t out
ome. Otherwise,there are in�nitely many expansionary stages, and if from some stage on, ΓA keeps
orre
t in the remainder of the 
onstru
tion, then Γ is the 
orre
t out
ome. If ea
hversion of ΓA appears in
orre
t, then ∆U will be de�ned in�nitely many times, and
∆ is the 
orre
t out
ome. Note that whenever ∆-out
ome appears to be 
orre
t, the
urrent version of ΓA be
omes invalid, and we will start a new version of ΓA .For 
onvenien
e, we use x as witnesses for S -strategies (
an be enumerated into Dand perhaps removed out later), z as witnesses for P -strategies (
an be enumeratedinto A) and y for elements of U (
an be in or not in U ).As des
ribed before, if an S -strategy, α say, is working below the out
ome Γ ofan R-strategy, τ say, then α works in a standard Friedberg�Mu
hnik manner, tryingto �nd a witness x to satisfy the requirement. If the enumeration of x 
auses U(y)di�erent from ΓA(y) , without loss of generality, we assume that U(y) 
hanges from 0to 1, then τ will have out
ome ∆ , i.e. τ tries to extend ∆U on more arguments.A P -strategy, β say, below the out
ome ∆ of an R-strategy τ , tries to enumerateits witness z into A . β 
annot enumerate z into A immediately if ∆U (z) is de�ned,as 0, at the moment. Here is the point: when β 
hooses z as its witness, τ has out
ome
∆ , whi
h is 
aused by an enumeration of an S -strategy, say α (below out
ome Γ), ata stage s , whi
h makes U(y) to 
hange from 0 to 1. Obviously, when z is sele
ted, zis sele
ted mu
h bigger, and espe
ially z > s . Now if β wants to enumerate z into A ,then the a
tion is to extra
t x out of D and also enumerate z into A simultaneously.Of 
ourse, we 
an enumerate z later, after we see that U(y) 
hanges ba
k to 0. Weprefer to enumerate z into A at the same time when we extra
t x out of D , as z > s ,whi
h is bigger than the use in ΦA⊕D(y)[s] . If U(y) does not 
hange ba
k to 0, thenwe win as ΦA⊕D(x) = 0 6= 1 = U(y) , and the R-requirement is satis�ed. Otherwise,
∆U (z) (and also ∆U (s)) is unde�ned, whi
h makes β 's enumerations into A 
onsistent.As U is assumed to be d.
.e., after y leaves U , it 
an never 
ome ba
k. Due to this,on
e β enumerates z into A , z remains in A , as ∆U (z) will be rede�ned as 1 laterand forever. The situation is quite di�erent for the 
ase when U is 3-
.e., as des
ribedin [3℄.We now 
onsider more 
ompli
ated intera
tions among several strategies.
• P below ∆-out
ome of R2 below Γ-out
ome of R1 .A generi
 
ase is that after we put a number x2 into D , ΓA

1 is de�ned at somepoint y1 , and extra
ting x2 from D may now 
hange U1(y
1) , and the a
tion des
ribedabove to re
over a 
omputation does not apply here, as we are making D d.
.e. Theidea here is that whenever we extra
t a number x2 from D , besides enumerating z into

A , we also enumerate into A a number s , the stage at whi
h x2 is enumerated into D .Enumerating z into A is for the sake of the P -strategy, and enumerating s into A is tounde�ne ΓA
1 (y) , whi
h are de�ned after stage s . This idea is exa
tly the same as that inthe 
onstru
tion of isolated degrees, to maintain the 
onsisten
y between R-strategies.We use s(x) to denote the stage at whi
h x is enumerated into D . It is a routine toshow that for a parti
ular n , ΓA

1 (n) 
an be unde�ned in this way by at most �nitelymany times, whi
h ensures that if ΦA⊕D
1 (n) 
onverges, then ΓA

1 (n) is de�ned.
• P below ∆-out
omes of R2 and R1 .For simpli
ity, we use ∆1 and ∆2 to denote the ∆-out
omes of R-strategies τ1and τ2 , respe
tively, where τ2 is below out
ome ∆1 . Let β be a P -strategy below τ2 'sout
ome ∆2 . We now des
ribe how β works below these two ∆-out
omes.
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all that for any R-strategy, when it turns to have out
ome ∆ , it is 
aused byan enumeration of some S -strategy below out
ome Γ . Here is the idea: when an S -strategy α2 below τ2 's out
ome Γ2 sees that ΦA
i2

(x2) 
onverges to 0, at stage s1 say,instead of enumerating x2 into D immediately, it waits for the next time when α2 isvisited again, whi
h will a
tually show that an S -strategy, α1 say, below τ1 's out
ome
Γ1 , already enumerates a witness x1 , being sele
ted after stage s1 . Note that at thisstage, s(x1) is bigger than the uses of all 
omputations seeing at stage s1 . Now assumethat α2 is visited again at stage s2 , then at this stage, α2 enumerates x2 into D ,so s(x2) = s2 . Without loss of generality, suppose that this enumeration leads τ2 tohave out
ome ∆2 , and β sele
ts a number z as its witness. We then asso
iate z with
x1 and x2 , whi
h means that enumerating z into A and extra
ting x1 and x2 outof D should happen at the same time. Thus, we have x2 < x1 < s(x1) < s(x2) < z .Assume later that β wants to enumerate z into A ; it will do so and at the same timeextra
t both x2, x1 from D and enumerate s(x1), s(x2) into A . As dis
ussed before, ifwe have a new τ1 -expansionary stage, then U1 should have a 
hange on the asso
iatednumber, y1 say, whi
h unde�nes ∆U1

1 (s(x1)) , ∆U1

1 (s(x2)) and ∆U1

1 (z) . Also, if we havea new τ2 -expansionary stage later, then U2 has a 
hange on y2 say, whi
h unde�nes
∆U2

2 (s(x2)) , ∆U2

2 (s(x1)) and ∆U2

2 (z) . This nested pro
edure is the 
ore part of the
onstru
tion of bubbles, and the idea 
an be generalized to a 
ase when β is workingbelow ∆-out
ome of several R-strategies. �In [3℄, Arslanov, Kalimullin and Lempp a
tually proved the existen
e of 3-bubbles,a generalization of double bubbles.De�nition 3. Let d, e, f be 3-
.e. degrees with 0 < d < e < f . Say that thesedegrees form a 3-bubble in D3 if any 3-
.e. degree u < f is 
omparable with e and d .Say that these degrees form a weak 3-bubble in D3 if any 3-
.e. degree u < f is either
omparable with both e and d or in
omparable with both of them.Theorem 11 implies that weak 3-bubbles do not exist in D2 .In [3℄, Arslanov, Kalimullin and Lempp a
tually proved that degrees f , e,d in theweak 3-bubbles 
an be 3-
.e., d.
.e. and 
.e., respe
tively. In the following, we show thatsu
h weak 3-bubbles are a
tually 3-bubbles, so the 
onstru
tion given in [3℄ produ
esa 3-bubble.First, we show that all d.
.e. degrees below f are 
omparable with e and d . Supposenot, and let g be a d.
.e. degree below f , but not 
omparable with e and d . Then g∪dwould be d.
.e. and g∪d > d , whi
h would imply that g∪d > e , as g is not below e .By assumption that f , e,d form a weak 3-bubble in D3 , we know that g ∪ d, e,d alsoform a weak 3-bubble in D3 , whi
h is also a weak 3-bubble in D2 , a 
ontradi
tion.We now assume that h is a 3-
.e. degree below f but in
omparable with e and d .Then h is a properly 3-
.e. degree, and degrees of La
hlan sets of those 3-
.e. sets in hare d.
.e., and hen
e are 
omparable with e and d .Let u be a degree of the La
hlan set of a 3-
.e. set in h . Then u is not above d , asotherwise, h would be also above d , whi
h is impossible. As a 
onsequen
e, u is below
d . Now 
onsider h∪d , whi
h is 3-
.e and relative enumerable in and above d . As here,we assume that d given as a 
.e. degree, by a well-known result of Arslanov, LaForteand Slaman in [33℄ that the 
lass of the d.
.e. degrees 
oin
ides with the interse
tion ofthe 
lass of the ω -
.e. degrees and the 
lass of the 2-REA degrees, we know that h ∪dis d.
.e. Note that h ∪ d > d , and hen
e h ∪ d is 
omparable with e . As h itself isin
omparable with e , h∪d is above e . Thus, h∪d, e,d form a weak 3-bubble in D3 ,whi
h is also a weak 3-bubble in D2 . A 
ontradi
tion again. This 
ompletes the proof.
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upping and diamond embeddingsIn this se
tion, we show how to use isolation phenomenon to provide alternativeproofs of several known results of 
upping properties and diamond embeddings.In [11℄, Cooper, Harrington, La
hlan, Lempp and Soare proved the existen
e ofan in
omplete, maximal d.
.e. degree d . This result is strong, as it implies that d
ups every 
.e. degree not below it to 0′ . In 
ontrast, Li, Song and Wu proved in [34℄the existen
e of an in
omplete ω -r.e. degree 
upping every nonzero r.e. degree to 0′ .These degrees are said to have the universal 
upping property. In terms of the Ershovhierar
hy, Li, Song and Wu's result is optimal.In [30℄, Liu and Wu proposed a 
upping property for the d.
.e. degrees, where a d.
.e.degree d has the almost universal 
upping property if it 
ups every 
.e. degree notbelow it to 0′ . The maximal d.r.e. degree 
onstru
ted by Cooper et al. does have thisproperty. However, 
ompared to the 
onstru
tion of in
omplete maximal d.r.e. degrees,the 
onstru
tion of d.
.e. degrees with almost universal 
upping property is mu
h easier.In [30℄, Liu and Wu 
onstru
ted a d.
.e. degree d with the almost 
upping propertysu
h that d is also isolated by a 
.e. degree b < d .Theorem 13. There is an almost universal 
upping d.
.e. degree d and a 
.e.degree b < d su
h that b is the greatest 
.e. degree below d .To prove Theorem 13, we will 
onstru
t a d.
.e. set D , a nonre
ursive 
.e. set Bsu
h that (i) D 6≤T B , (ii) for any 
.e. set We , either We ≤T B or B⊕D⊕We ≡T ∅′ .That is, the 
onstru
ted sets need to satisfy the isolation requirements and also thefollowing 
upping requirements:
Re : K = ΓB,D,We

e ∨ We = ∆B
e , where Γe and ∆e are p.
. fun
tionals 
onstru
tedby us.Here K is a �xed 
reative set. Note that the R-requirements ensure that B ⊕D hasthe almost universal 
upping property.Let β be an Re -strategy. For 
onvenien
e, we write Γβ for Γe(β) and Wβ for We(β) .

β will 
onstru
t a partial 
omputable (p.
.) fun
tional Γβ su
h that K = Γ
B,D,Wβ

β ,and if β fails, due to the a
tions of the isolation strategies, then an isolation strategywill show that Wβ ≤T B .
Γβ is 
onstru
ted as follows:A. At a stage s , de�ne Γ

B,D,Wβ

β (z)[s] = Ks(z) for those z < s with Γ
B,D,Wβ

β (z)[s]not de�ned, and the use γβ(z)[s] is sele
ted as a fresh number.B. If Γ
B,D,Wβ

β (z)[s] ↓ 6= Ks(z) , then we put γβ(z)[s] into D to unde�ne the 
urrent
Γ

B,D,Wβ

β (z) for the least z < s .In the 
onstru
tion, to 
orre
t Γ , β may enumerate uses γβ(z) into D for in�nitelymany z . These enumerations 
an 
ause dire
t 
on�i
ts between β and those isolationstrategies, η say, below β , whi
h want to preserve 
omputations. This type of intera
tionis an important 
omponent of the whole 
onstru
tion.Let η be an isolation strategy. The basi
 idea of η is to 
onstru
t a p.
. fun
tional
Θη at expansionary stages to ensure that if ΦB,D

η is total, then Θη is well-de�nedand 
omputes Wη 
orre
tly. If later, at an η -expansionary stage, we see that ΘB
η (y)and Wη(y) di�er at an argument y say, we will then for
e a disagreement between

ΦB,D
η (y) 6= Wη(y) .
η has three out
omes f , d and ∞ , with priority ∞ <L f <L d . Here f denotesthat there are only �nitely many η -expansionary stages and η does not 
reate any
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d denotes the out
ome that η su

eeds in 
reating a disagreement between ΦB⊕D

ηand Wη .A 
ru
ial a
tion of η is that when a number, z say, is removed from D , thenanother number, for example, the stage when z is put into D , is enumerated into Bsimultaneously. This a
tion 
an ensure that all the isolation strategies work 
onsistently.We now 
onsider the intera
tion between one isolation strategy and one R-strategy.Let β and η be an R-strategy and an isolation strategy respe
tively, with β ⊂ η . Asmentioned in a single R-strategy, a disagreement 
reated by η 
ould be destroyed by
β 's enumerations into D . Also, when η has ∞ as its out
ome, β may enumerate γ(n)into D as n enters K . Now η may see an opportunity to diagonalize by extra
ting
γ(n) from D , and η 
annot do this as β would be injured by this extra
tion.To avoid this, when η sees a 
omputation ΦB⊕D

η (y) and wants to preserve it, η needsto make this 
omputation 
lear of the γβ -uses, by applying the �
apri
ious method�,an argument �rst introdu
ed by La
hlan in his nonsplitting theorem. That is, when ηis �rst visited, it pi
ks a number kη as its threshold, and whenever a number k ≤ kηenters K , we enumerate the 
urrent γβ(k)-use into D to unde�ne Γ
B,D,Wη

β (k) , and alsoreset η by 
an
elling all the parameters asso
iated to η , ex
ept for the parameter kη .
η aims to de�ne a p.
. fun
tional ∆B

ηβ with the purpose that if η 
annot satisfy theasso
iated isolation requirement, then ∆B
ηβ should be total and 
omputes Wβ 
orre
tly.This will satisfy the Rβ -requirement.Suppose that after stage s , η is not reset and suppose that at a stage t > s , η seesa potential witness y for its disagreement argument, then η puts γβ(kη)[t] into D �rst,to start an atta
k on β , by de�ning

∆B
ηβ ↾ γβ(kη)[t] = Wβ,t ↾ γβ(kη)[t]with use t .If Wβ 
hanges below γβ(kη)[t] after stage t , at an η -expansionary stage t′ > t say,then η performs the disagreement argument by removing numbers out of D , in
luding

γβ(kη)[t] , to re
over 
omputation ΦB⊕D
η (y) to ΦB⊕D

η (y)[s′] , where s′ is the stage atwhi
h ΘB
η (y) is de�ned, as indi
ated above. This Wβ -
hange lifts the value of γβ(z)for those z ≥ kη , and hen
e, after stage t′ , the enumeration of the γβ -uses will nota�e
t the 
omputation ΦB⊕D

η (x) . That is, the atta
k is 
ompleted at stage t′ , and ηpasses the threshold kη for β .On the other hand, if Wβ has no 
hanges below γβ(kη)[t] after stage t , then theatta
k asso
iated with γβ(kη)[t] keeps a
tive until a new atta
k is a
tivated. If in�nitelymany su
h atta
ks are started, then ∆B
ηβ is de�ned as a total fun
tion and 
omputes

Wβ 
orre
tly, and hen
e We is 
omputable in B .In this situation, η has four possible out
omes:
f : There are only �nitely many η -expansionary stages.
d : η passes its threshold kη for β , and a disagreement is 
reated.
∞ : There are in�nitely many η -expansionary stages, and only �nitely many atta
ksare started. In this 
ase, ΘB

η is total and 
omputes Wη 
orre
tly.
gβ : In�nitely many atta
ks are started in the 
onstru
tion, and η never passes itsthreshold kη for β . ∆B

ηβ is total and 
omputes Wβ 
orre
tly. The Rβ -requirementis satis�ed. In this 
ase, Γ
B,D,Wβ

β (pη) diverges.



ISOLATION: MOTIVATIONS AND APPLICATIONS 215Let ξ be any strategy below the out
ome gβ , then ξ knows that γβ(pη)-uses goesto in�nity, and we say that a 
omputation ΦB⊕D
ξ (y) at a stage s is ξ -believable if

γβ(pη)[s] is bigger than the use ϕξ(y)[s] . If ξ is a ba
k-up strategy for η , then by usingonly ξ -believable 
omputations, ξ 
an satisfy the 
orresponding requirement in thestandard way, as after ξ sees at ξ -believable 
omputations, β 's further enumerationsinto D will not a�e
t these 
omputations.This basi
 idea 
an be generalized to the situation when one isolation strategy isworking below several R-strategies, where an atta
k of η needs to pass several thresh-olds. Please refer to [30℄ for further development. In [30℄, Liu and Wu also proved that
b 
an be 
appable. This implies that any d.
.e. degree below b and any d.
.e. degreeabove d , together with 0 and 0′ , form a diamond.This isolation feature allows Fang, Liu and Wu to improve a result of Downey,Li and Wu in [35℄. Fang, Liu and Wu proved re
ently that for any nonzero 
appable
.e. degree c , there is a d.
.e. degree d with almost universal 
upping property anda 
.e. degree b < d su
h that b isolates d and that c and b form a minimal pair.By applying this result twi
e, �rst to c and then to b , we have d and b �rst, and then
e and a su
h that e has almost universal 
upping property and a < e isolates e , and aand b form a minimal pair. Now for any nonzero 
.e. degree w , w 
ups either e or d ,or both, to 0′ . Obviously, this result has Li �,Yi 
upping theorem as a dire
t 
orollary.Both authors are supported by NTU grant RG37/09, M52110101. The se
ond authoris supported by RFBR (Proje
ts 09-01-97010, 10-01-00399), ADTP �Development of theS
ienti�
 Potential of Higher S
hool� of the Russian Federal Agen
y of Edu
ation (Grant2.1.1/5367), Federal Target Grant �S
ienti�
 and Edu
ational Personnel of Innovationof Russia� (Government 
ontra
t No. Ï 269).�åçþìå�. Âó, Ì.Ì. ßìàëååâ. Èçîëèðîâàííîñòü: îáîñíîâàíèÿ è ïðèëîæåíèÿ.Â ñòàòüå ðàññìàòðèâàþòñÿ �åíîìåí èçîëèðîâàííîé ñòåïåíè è åãî ïðèëîæåíèÿ ê èñ-ñëåäîâàíèþ ñâîéñòâ ñòåïåíåé èõ èåðàðõèè Åðøîâà. Àíàëèçèðóþòñÿ ñòåïåíè, îáðàçóþùèå¾âîñüìåðêó¿ (áîëåå ñèëüíûé âàðèàíò èçîëèðîâàííîé ñòåïåíè), à òàêæå äåìîíñòðèðóþòñÿïîñëåäíèå äîñòèæåíèÿ â èçó÷åíèè âëîæèìîñòè ðåøåòîê ïðè ïîìîùè ñâîéñòâà èçîëèðî-âàííîñòè.Êëþ÷åâûå ñëîâà: òüþðèíãîâûå ñòåïåíè, èåðàðõèÿ Åðøîâà, èçîëèðîâàííûå ñòåïåíè,âëîæåíèÿ ðåøåòîê.
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